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Abstract: The low-density-lipoprotein receptors represent a family of pleiotropic cell surface re-
ceptors involved in lipid homeostasis, cell migration, proliferation and differentiation. The family
shares common structural features but also has significant differences mainly due to tissue-specific
interactors and to peculiar proteolytic processing. Among the receptors in the family, recent studies
place low-density lipoprotein receptor-related protein 8 (LRP8) at the center of both neurodegen-
erative and cancer-related pathways. From one side, its overexpression has been highlighted in
many types of cancer including breast, gastric, prostate, lung and melanoma; from the other side,
LRP8 has a potential role in neurodegeneration as apolipoprotein E (ApoE) and reelin receptor,
which are, respectively, the major risk factor for developing Alzheimer’s disease (AD) and the
main driver of neuronal migration, and as a γ-secretase substrate, the main enzyme responsible
for amyloid formation in AD. The present review analyzes the contributions of LDL receptors,
specifically of LRP8, in both cancer and neurodegeneration, pointing out that depending on var-
ious interactions and peculiar processing, the receptor can contribute to both proliferative and
neurodegenerative processes.

Keywords: LRP8; cancer; Alzheimer’s disease; apolipoprotein; LDL receptor family

1. Introduction

Cancer and neurodegeneration represent two age-related conditions that share com-
mon biochemical features, and it is not clear what triggers can lead to one or the other
condition through apparently common routes and pathways [1–3]. It is well-known that the
activation and deregulation of the cell cycle may lead to cell death in neurons and to uncon-
trolled proliferation in malignant cells; however, there is still a gap in the understanding of
the precise molecular processes involved in both disorders; unraveling them represents an
important opportunity to identify prognostic markers and to achieve therapeutic progress
in both pathological conditions.

The low-density-lipoprotein receptors (LDLRs) represent a family of cell surface re-
ceptors originally linked to lipoprotein and lipid trafficking and, more recently, considered
pivotal regulators of signal transduction pathways for cell proliferation, migration and
differentiation [4]. Recent growing evidence has also highlighted their associations with
neurodegenerative disorders and cancer due to the modulation of specific molecular path-
ways related to neuronal cell death and, in parallel, to cell proliferation, cell cycle activation
and metastatic invasion [5–9].
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2. LDLR Family

Listed in the order of their discovery, the main members of the LDLR family are:
LDLR; LDLR-related protein (LRP, LRP1); Megalin (LRP-2, originally called gp330); very
low-density lipoprotein (VLDL) receptor (VLDLR; in chicken termed LR8); LR11 (also
named SorLA); apolipoprotein E (ApoE) receptor type 2 (LRP8, LRP-8) [4]; LRP-3, -4, -5,
and -6, and LR32 (also termed LRP1B).

The structure of the LDL receptors, described in Figure 1, contains five common
functional regions: a N-terminal ligand-binding domain with a variable number of LDLR
type A (LA) repeats, an epidermal growth factor precursor homology (EGFP) domain
composed of EGF-repeats (cysteine-rich class B repeats) and a YWTD (Tyr–Trp–Thr–Asp)/β-
propeller domain, an O-linked sugar domain, a transmembrane domain and a cytoplasmic
domain containing at least one NPxY (Asn-Pro-Xaa-Tyr) motif [10–12]. SorLA has two
additional domains: the fibronectin type III (FNIII) domain and the vacuolar protein sorting
10 (VPS10) homology domain. In addition to the LDLR members, the NPXY motif is found
in a subset of cell surface proteins well-known to be involved in cell proliferation and
cancer including APP [13], growth factor receptors [14] and integrins [15].
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Figure 1. The domain structure of the LDL family members: differences and similarities. LDLR,
VLDLR, and LRP8 are made of seven LA repeats in the ligand-binding domain, three EGF-like
domains, and one YWTD β-propeller. LRP1 and LRP2 have the largest extracellular domains, each
with eight YWTD β-propellers spaced by EGF and LA repeats. LRP4, LRP5 and LRP6 carry high
sequence homology to a region within LRP1 with YWTD β-repeats going three through six. SorLA
has two additional domains: the FNIII domain and the VPS10 domain. Regarding the NPxY motif,
VLDLR, LRP8 and LR11/SorLA-1A have a single copy, whereas LRP1 and LRP1B contain two copies
and LRP2/Megalin three copies. No NPXY is present in LRP5 and LRP6. Domains are not drawn
to scale.
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The LDLR family participates in a wide range of physiological processes in different
organs, tissues and cell types [4]. They are mainly known for binding and internalizing
several extracellular ligands, including lipoproteins, exotoxins and lipid-carrier complexes,
as well as for mediating signaling responses as a result of changes in the extracellular
environment. The presence of the NPxY motif in the cytoplasmic domain represents an
intracellular binding site for many adaptor proteins such as the mammalian Disabled-l
(mDab-1), mDab-2, FE65, JNK-interacting protein JIP-1 and JIP-2, PSD-95, CAPON, and
SEMCAP-1 [16–18]; many of these contain in their structure at least one of the three
frequently found interaction domains such as phosphotyrosine binding (PTB), PDZ or
SH2-SH3 domains or ankyrin repeats.

A functional peculiarity of the LDL receptors, especially LRP8, is their double func-
tional role in neurodegeneration and cancer, the main focus of this review, as summarized
in Table 1.

2.1. LDLR

The low-density lipoprotein receptor (LDLR) is the prototype of a classical endocytosis
receptor that mediates the uptake of ligands and is broadly expressed on multiple cell
types in various tissues. In the CNS, the LDLR plays an important role in regulating the
homeostasis of cholesterol in the blood and also within tissues and cells [19]. The main well-
known LDLR ligand is represented by apolipoprotein E (ApoE), a 34 kDa soluble protein
that is a main component of lipoproteins in plasma and a secreted glycoprotein of 34 kDa
that acts as a cholesterol carrier and signaling molecule. Through its interaction with LDLR,
ApoE plays a critical role in peripheral cholesterol metabolism [20] and also in cholesterol
transport into the central nervous system (CNS) [21,22]. LDLR is the only member of this
receptor family to demonstrate an apoE isoform-specific binding affinity (E4 > E3 >> E2).
Evidence suggests that a functional interaction between ApoE and LDLR influences the risk
of cardiovascular disease (CVD) and AD [23]. The apoE–LDLR interaction may also play a
more direct role through the modulation of amyloid clearance and/or deposition. Several
intriguing studies have shed some light on the potential pathophysiological pathways by
which LDLR may contribute to AD. In cell culture, overexpression of the amyloid precursor
protein (APP) led to the increased expression of LDLR and altered receptor localization [24].
Varying results in amyloid deposition have been shown in AD mouse models lacking the
LDLR, with one study showing that amyloid deposition was enhanced on a LDLR null
background [25], while in another study, LDLR deficiency had no effect on brain amyloid-β
peptides (Aβ) levels [26].

Kim et al., showed that LDLR over-expression reduced brain ApoE levels and amyloid
β aggregation [27], while further work from the same laboratory showed that LDLR over-
expression in the brain increased the rate of brain-to-blood clearance of both exogenously
administered and endogenous Aβ [28]. These studies, in which LDLR over-expression
increases Aβ clearance, point to the upregulation of LDLR in the brain as a potential
therapeutic strategy for AD.

Considering the vital role of the LDL/LDLR routine in regulating blood and intra-
cellular cholesterol homeostasis, several studies have focused on the function of LDLR
in cancer progression. Chen et al., have demonstrated that the reduced expression of
LDLR in hepatocellular carcinoma cells impairs LDL uptake but promotes proliferation
and metastasis in vitro and in vivo by activating MEK/ERK [29].

2.2. LRP1

LRP1 represents a key receptor in maintaining lipid metabolism. The expression of
LRP1 is ubiquitous, and its upregulation has been reported in numerous human diseases.
In addition to its function as a scavenger receptor for various ligands, LRP1 transduces
multiple intracellular signal pathways including mitogen-activated protein kinase (MAPK),
Akt, Rho and the integrin signaling pathway. LRP1 signaling plays an important role in
the regulation of diverse cellular processes, such as cell proliferation, survival, motility,
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differentiation and transdifferentiation, and thus, it participates in the pathogenesis of
organ dysfunction and injury [30]. LRP1 is widely expressed throughout the CNS, where
it modulates neuronal survival, neurite outgrowth, regeneration and calcium signaling
through different ligands and cell-specific mechanisms. Indeed, LRP1 recognizes and
is involved in the endocytosis of more than 40 different ligands including ApoE, APP
and Aβ [31–33]. Depending on its binding to different ApoE isoforms, LRP1 is involved
in calcium-related cellular processes such as increasd resting calcium, calcium response
to N-methyl-D-aspartate (NMDA) and neurotoxicity [34]. Moreover, LRP1 binding to
lipoprotein particles containing ApoE 3/4 protects against apoptosis upon the activa-
tion of protein kinase Cδ (PKCδ) and the inactivation of glycogen synthase kinase-3β
(GSK3β), with a greater effect due to lipoproteins with ApoE4 than those with ApoE
3 [35]. The majority of research examining LRP1 function in the brain has focused on
APP trafficking [36,37], Aβ clearance from the brain parenchyma [38] and blood–brain
barrier permeability [39]. Studies on knockout mouse models have shown that LRP1 defi-
ciency is lethal early in development [40], whereas mice lacking LRP1 exhibit severe motor
and behavioral abnormalities, hyperactivity, age-dependent dendritic spine degeneration,
synapse loss, neuroinflammation, memory loss and eventual neurodegeneration [41,42].
In addition to its role in neuronal-related physiological processes, an additional role in
cancer development has been associated with LRP1. In particular in human glioblastoma
U87 cells, LRP1 promotes cellular migration and invasion by inducing the expression of
the matrix metalloproteinase-2 (MMP-2) and MMP-9 [43]. Moreover, in U87 cells, Song
et al., have proposed that phosphorylated ERK is a potential mediator of LRP1-regulated
MMP expression. An additional piece to this puzzle has been provided by Fayard et al.,
suggesting that the serine protease inhibitor serpin PN-1 is a ligand of LRP1 that activates
ERK and stimulates, in turn, MMP-9 expression in breast tumor cell lines [44]. Support-
ing this hypothesis, an analysis of 126 breast cancer patients revealed that those patients
whose breast tumors had elevated PN-1 levels had significantly higher probabilities of
developing lung metastasis, but not metastasis to other sites, on relapse. Finally, it has been
found that in Her-2/neu and triple-negative breast cancer (TNBC), there is an increased
expression of LRP1 that is linked to neoplastic aggressiveness due to high histological
grade, elevated mitotic index, Ki67 > 20% and tumor recurrence, while in endometrial
carcinoma (EC), the increased expression of LRP1 is associated with p53 alterations and p16
protein overexpression [45].

2.3. LRP2/Megalin

LRP2 is a multiligand receptor mostly localized in the epithelial cells of the renal
tubules [46] and the choroid plexus [47], as well as in the lateral ventricles [48] and in
different CNS cells ranging from oligodendrocytes, retinal ganglion cells, cerebellar granule
neurons and astrocytes to hippocampal neurons [49]. In the CNS, LRP2 modulates neuronal
survival and regeneration [50] as well as learning- and memory-related physiological mech-
anisms such as neurite outgrowth and synaptic plasticity [49]. LRP2 neurotrophic activity
is performed through its binding with Transthyretin [51], while its neurite outgrowth func-
tion seems associated with metallothionines [52] and the APP/Fe65 pathway [53]. In the
blood–brain barrier, LRP2 plays a central role in the clearance/entrance of many proteins
from the brain/cerebrospinal fluid, including Aβ, insulin, insulin-like growth factor (IGF)-I
and ApoE. Together with LRP8, LRP2 is also known to transport selenium, which is trans-
ported in the form of the selenocysteine-enriched selenoprotein P1 (Sepp1) to target tissues,
where it constitutes the active center of glutathione peroxidase, thioredoxin reductase and
deiodinases. In the kidney, proximal tubule epithelial cells highly express LRP2, indicating
its physiological role in the reabsorption of Sepp1. This function is confirmed by studies on
LRP2-mutant mice displaying urinary selenium loss, which correlates with Sepp1 excretion
in their urine and reduced selenium and glutathione peroxidase activity in the brain [54].

LRP2 genetic alterations have also been associated with pathological conditions. In
particular, some LRP2 mutations lead to the protein loss of function, underlying an autoso-
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mal recessive disorder, Donnai–Barrow syndrome, characterized by several CNS functional
defects [55]. Other genetic studies have associated a polymorphism located in the LRP2 pro-
moter with AD risk, regardless of the ApoE genotype [56], as well as some LRP2 germ-line
polymorphisms with increased risk of prostate cancer recurrence [57]. Moreover, somatic
LRP2 mutations have been identified in gastric cancer [58]. In support of LRP2’s role in
cancer, Andersen et al., have reported that LRP2 is more frequently expressed among
malignant melanoma samples compared with benign counterparts and that the prolifer-
ation and survival rates of cultured LRP2-expressing melanoma cells decrease upon the
siRNA-mediated knockdown of LRP2 [7].

2.4. VLDLR

VLDLR is highly expressed in adipose tissue, heart and skeletal muscle and is mainly
known for the following roles: uptake of VLDL-derived lipids, enhancement of lipoprotein
lipase activity and mediation of the Reelin-related pathway, together with LRP8 [59].
Reelin binding to VLDLR/LRP8 receptors activates intracellular Src family kinases (SFKs),
which in turn phosphorylate the adaptor protein Disabled-1 (Dab1) in specific tyrosine
residues. Although the activation of the Reelin pathway through VLDLR and LRP8 is well-
known to mediate the development of the central nervous system, studies have highlighted
differences between the two receptors in terms of splicing, localization, interactors and
trafficking, leading to unique functions separate from the overlapping ones. In particular,
the Pafah1b complex mediates the downstream effects of VLDLR on neuronal migration,
but it is not necessary for the function of LRP8 [60].

In addition to its roles in neuronal physiological processes, studies have highlighted
the role of VLDLR in cancer. Indeed, Lei He et al., have shown that VLDLR promotes
cell proliferation and migration in adenocarcinoma SGC7901 cells via beta-catenin/TCF
signaling [8], and Lei He et al., have correlated VLDLR II expression with lymph node and
distant metastasis in gastric and breast cancer patients [61].

2.5. LRP4

Although it is mainly expressed in bone, where it regulates bone formation by inhibit-
ing sclerostin in Wnt1/β-catenin signaling [62], LRP4 is also found in astrocytes of the
prefrontal cortex and hippocampus, regions particularly vulnerable to AD [63]. Studies
of the genetic deletion of the Lrp4 gene in 5xFAD male mice, an AD mouse model, have
shown increased levels of Aβ plaques and decreased neurotransmission and cognition,
supporting a link between LRP4 loss and AD [64]. In the brain, LRP4 plays roles in synaptic
transmission, long-term potentiation (LTP), cognitive function [65] and adult hippocampal
neurogenesis [66]. Through its ligand agrin, LRP4 regulates the formation and mainte-
nance of the neuromuscular junction [67,68]. In particular, the agrin–Lrp4 interaction
increases its binding with MuSK, which is activated and thus activates the kinase that
via Dok7 and rapsyn mediates AChR clustering [69]. In addition to AD, LRP4 has been
associated with cancer. In papillary thyroid cancer, LRP4 has been reported to be signifi-
cantly overexpressed in both tissues and related cell lines (TPC1, BCPAP and KTC-1) in
comparison with controls, likely playing a role in proliferation, migration and invasion
by inducing phosphoinositide 3-kinases (PI3K)/AKT mediated epithelial–mesenchimal
transition (EMT) [70]. LRP4 overexpression has also been observed in gastric cancer tissues,
where it correlates with malignant proliferating clinical features, while in gastric cancer
cells (MKN45, MGC803, BGC823 and AGS), LRP4 activates the PI3K/AKT under regulation
of miR-140-5p [71].

2.6. LR11/SorLA

SorLA is highly enriched in the brain. As LRP1, SorLA interacts with APP, influencing
its trafficking and regulating Aβ levels [72,73]. Indeed, SorLA represents one of the major
cellular players contributing to abnormal APP processing and enhanced Aβ formation. In
particular, SorLA acts as a retention factor for APP in trans-Golgi compartments/trans-
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Golgi network, with GGA and PACS-1 adaptor proteins involved in protein transport to
and from the trans-Golgi network, preventing the release of the precursor into regular
processing pathways [74]. Interestingly, a peculiar alternative splicing of SORL1, induced
by a non-coding RNA, is associated with the impaired processing of APP and Aβ forma-
tion [75]. A consistent loss of SorLA is observed in AD brains, particularly in vulnerable
regions [76], and variants in the SORL1 gene encoding SorLA have been associated with
AD risk, adding considerable support to the hypothesis that SorLA is genetically linked to
AD pathogenesis [77]. However, SorLA represents another LDLR whose overexpression is
linked to cancer, and in particular, it has been observed in HER2-driven cancer cell lines
where the receptor regulates endosomal trafficking and oncogenic fitness of HER2 [78].
SorLA and its released soluble form are also strongly elevated in acute leukemia. Remark-
ably, the increased levels of soluble SorLA level were reduced in patients who achieved
complete remission [79,80].

2.7. LRP5/6

LRP5 and LRP6 are two LDL receptors with amino acid sequences with 71% iden-
tity [81]. Their extracellular domains are responsible for binding Wnt ligands and their
inhibitors, such as Dickkopf-related protein 1 (DKK1) and sclerostin [82]; indeed, LRP5 and
LRP6 are the key players that the Wnt pathway together with the Frizzled receptors [83–85].
In particular, Wnt ligands signal through at least three different pathways: the canonical or
Wnt/β-catenin pathway and the two noncanonical Wnt/JNK and Wnt/Ca2+ pathways. In
the canonical pathway, the Wnt-Fzd-LRP5/6 leads to a downregulation of glycogen syn-
thase kinase-3 (GSK-3) activity that in turn increases β-catenin levels in the cytosol, thereby
facilitating its translocation to the nucleus. At the nuclear level, β-catenin forms complexes
with members of the Tcf/Lef class of DNA-binding proteins modulating transcriptional
activity of target promoters [86,87]. The Wnt-Fzd-LRP5/6 interaction leads to the inhibition
of the axin degradasome destruction complex that is recruited to the plasma membrane,
helping the interaction between LRP5/6 and axin. When LRP5/6 is phosphorylated at
specific amino acidic residues (Ser1490, Thr1530, Thr1572, Ser1590, Ser1607), it acts as a
direct competitive inhibitor of GSK3. The Wnt signaling, most probably through LRP5
and LRP6, can also directly activate the mammalian target of rapamycin (mTOR) pathway
by decreasing GSK-3-mediated activation of the TSC2/TSC1 complex. The activation
of mTOR signaling promotes cell growth in addition to representing a vital regulator of
autophagy [88].

LRP5 and LRP6 receptors are expressed differently in various tissues and organs. In
humans, LRP5 expression level is the highest in liver, while substantial level of expression
is also observed in pancreas, prostate, placenta and small intestine. The expression level of
this receptor in brain and peripheral leukocytes is very low [89]. Human LRP6 expression
is highest in the ovary, with significant levels in the heart, brain, placenta, lung, kidney,
pancreas, spleen and testis. The expression of LRP6 is very low in peripheral blood
leukocytes, thymus and small intestine [81].

LRP5 and LRP6 have been shown to play important roles in a broad panel of cancers.
This is supported by the fact that the main pathway activated by both receptors is the
Wnt/β-catenin pathway, which represents a pleiotropic signal involved in cell growth,
cell proliferation and polarity, cell differentiation and tissue development [90,91] with a
potential link to several diseases including cancer [92–94].

LRP5 has been reported to be involved in mediating Wnt/β-catenin signaling in
skeletal metastasis prostate cancer (PC) due to the increased levels of Wnt-1 and β-catenin
proteins in both PC cell lines and primary specimens [95]. The presence of LRP5 has also
been linked significantly with tumor metastasis such as the chondroblastic subtype of
osteosarcoma [96].

LRP6 overexpression, observed in many types of cancer and malignant tissues, leads
to an abnormal Wnt pathway that is linked to tumorigenesis [97]. In humans, some LRP6
single-nucleotide polymorphisms (SNPs) and mutations in the LRP6 gene have been as-
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sociated with increased or decreased risk of cancer development [98]. For example, an
LRP6 variant (rs6488507) in non-small-cell lung cancer (NSCLC) patients is linked to an
increase in the risk of NSCLC in tobacco smokers [99]. Moreover, the overexpression of
LRP6 has been documented in breast cancer [97], hepatocellular carcinoma [100], colorectal
cancer [101] and pancreatic ductal adenocarcinoma (PDAC) KRAS-dependent pancreatic
cancer [102]. Consistent with these observations, a reduction of LRP6 expression and/or
activity inhibits cancer cell proliferation and delays tumor growth in vivo [98,103]. Al-
though mainly known as a co-receptor of the Wnt signaling pathway and therefore related
to proliferative cellular pathways, some studies have described a connection of LRP6 to
neurodegeneration. The LRP6-mediated Wnt signaling pathway is, in fact, compromised
in AD brains, and its deficiency in an AD mouse model exacerbates amyloid pathology,
synapse loss and Aβ toxicity, synergistically accelerating AD progression [104].

2.8. LRP1B

LRP1B is closely related to LRP1 due to their overlapping structural features and thus
have shared ligands such as complexes of urokinase plasminogen activator, plasminogen
activator inhibitor type-1 and receptor-associated protein (RAP) [105]. Both uPA and PAI-1
are key components of the uPA system, one of the major extracellular matrix-degrading
proteinase systems playing a central role in cancer invasion and metastasis as well as
other physiological and pathological processes involved in tissue remodeling [106]. LRP1B
ligands link the receptor to altered cellular invasion/metastasis and support the corre-
lations observed between LRP1B genetic and epigenetic alterations and many types of
cancer [107–109], including urothelial malignancies [110], esophageal squamous cell carci-
nomas [111], gliomas, cervical adenocarcinomas, B-cell lymphomas [112], leukemias [113]
and primary pulmonary adenocarcinomas [114]. In particular, its inactivation in 40% of
NSCLC cell lines caused this receptor to initially be named LRP-deleted in tumors (LRP-
DIT) [115]. Despite its structural link to LRP1, however, LRP1B differs from LRP in terms
of tissue expression, localizing mainly in the brain (cortex, hippocampus and cerebellum in
neurons, activated astrocytes and microglia), thyroid and salivary gland [105,116,117]. Its
wide expression in the brain may suggest a yet-unclear CNS-related biological function, in
part supported by its link to Aβ generation. In fact, Cam et al., have shown that LRP1B
decreases APP internalization, thus reducing Aβ generation in a framework of anti-amyloid
activity [118].

Table 1. CNS/neurodegeneration and the cancer-related roles of the LDL receptors. The table
summarizes roles and relative molecular pathways of all LDLR (except LRP8, which is discussed
later in detail) in CNS/neurodegeneneration and cancer.

LDLR Family
Members

CNS Roles/
Neurodegeneration Molecular Pathway Refs. Cancer Related Roles Molecular

Pathway Refs.

LDLR
Modulation of

amyloid clearance
and/or deposition

ApoE interaction [25,27,
28]

Downregulation
of cell

proliferation and
metastasis

Downregulation of
LDLR through

MEK/ERK
stimulation

[29]

LRP1

Neuronal
survival

ApoE-dependent activation of PKCδ
and inactivation of GSK3β [35]

APP trafficking
regulation and
processing and
Aβ clearance

LRP1 antagonist RAP increases cell
surface levels of APP and significantly

reduce Aβ synthesis.
In the absence of LRP1, Aβ
production, APP secretion,

APP internalization,
turnover of full-length APP

and stability of APP
C-terminal fragments are affected.

At the site of the BBB, surface
LRP1-mediated extrusion of cerebral

Aβ into the luminal side
Soluble LRP1 in the periphery

sequesters free Aβ in circulation.

[36–39] Cellular migration
and invasion

Expression of
MMP-2 and MMP-9

through ERK in
human

glioblastoma
Serpin

PN-1-dependend
MMP-9 expression

through ERK
activation in breast

cancer

[43,44]
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Table 1. Cont.

LDLR Family
Members

CNS Roles/
Neurodegeneration Molecular Pathway Refs. Cancer Related Roles Molecular

Pathway Refs.

LRP1

Calcium-related
cellular processes

ApoE4, but not ApoE3, significantly
increased the resting calcium,

the calcium response to NMDA-R and
the neurotoxicity.

[34]
Cell proliferation, tumor

invasion and
angiogenesis

LRP1 expression
has been linked to

neoplastic
aggressiveness due
to high histological
grade and elevated

mitotic index.
Regeneration of the

uPAR receptor
system

[45]

Neurite outgrowth,
synaptic plasticity,

learning and
memory

modulation

Upon TTR binding to LRP2,
Src, NMDA-Rs, ERK1/2,
CREB and Akt activation

and/or a pathway
involving RIP and the

formation of LRP2-ICD
MT-IIA binding to LRP2 stimulates

neurite outgrowth via signal
transduction pathways activated by

the NPxY motifs of LRP2.

[49,52] Cell survival and
proliferation

LRP2 is frequently
expressed in

malignant
melanoma.

Modulation of
phosphorylated Akt

and ERK levels

[7]

VLDLR

Regulation of the
migration and
layering of the
neurons in the
cortex and the

cerebellum

Reelin-induced Dab1
binding to VLDLR

activates SFK and Abl families,
together with LRP8.

Pafah1b complex mediates
downstream effects of VLDLR on

neuronal migration.

[59,60,
119]

Cell proliferation,
migration and

metastasis

VLDLR II is
overexpressed in
lymph node and

distant metastasis in
gastric and breast

cancer patients,
promoting cell

proliferation and
migration.

ATRA attenuates
proliferation and

migration through
significant

decreases in VLDLR
II, while PMA has
the opposite effect

on VLDLR II, which
activates

β-catenin/TCF
signaling and
modulation of

MMP-2 and
MMP-9.

[8,61]

LRP4

Synaptic
homeostasis

LRP4 mutant astrocytes suppressed
glutamatergic transmission by
enhancing the release of ATP.

[63]

Synaptic
transmission, LTP

and cognitive
function

LRP4 KO shows deficits in cognitive
tasks with

aberrant synapse form
and function and loss of LTP.

[65] EMT promotion

LRP4 is
overexpressed in
papillary thyroid

and gastric cancers,
where it promotes

EMT through
PI3K/AKT pathway
and modulation of
N-cadherin, ZEB1

and EZH2.

[70,71]

Adult hippocampal
neurogenesis

LRP4 mutation blocks
NPSC proliferation.

Agrin-LRP4-Ror2 signaling
is involved in NSPC proliferation.

[66] Cell proliferation,
migration and invasion

LRP8
downregulation

affects colony
formation and
migratory and

invasive capacities
through PI3K/AKT

pathway.
miR-140-5p

negatively regulates
LRP4.

[70,71]

Formation and
maintenance of the

neuromuscular
junction

Agrin–LRP4 interaction via MuSK,
Dok7 and rapsyn mediates AChR

clustering.
[67,68]
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Table 1. Cont.

LDLR Family
Members

CNS Roles/
Neurodegeneration Molecular Pathway Refs. Cancer Related Roles Molecular

Pathway Refs.

LR11/
SorLA

Regulation of APP
processing

and Aβ levels

Interaction with APP, enhancement of
APP in endosomal compartments and

Golgi,
modulation of APP processing and

reduction of Aβ levels

[72,73] Cell proliferation

Regulation of
endosomal

trafficking and
oncogenic fitness of
HER2, promoting
PI3K-dependent
HER2 signaling

[78]

LRP6 Synaptic function
and integrity

Activation of
Wnt signaling [104]

Cell proliferation,
survival and

differentiation,
tumor growth

Co-receptor for
WNT and Wnt

activator
[98,103]

LRP1B
Regulation of APP
endocytic rate and

Aβ levels reduction
Interaction with APP [118]

Suppression of cell
growth, invasion,

migration, colony and
tumor formation

Reduction of matrix
metalloproteinase 2

level
and negative

regulation of uPAR
DNA methylation

[106–
108]

Aβ, amyloid beta; BBB, blood-brain barrier; MMP-2, matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-
9; NMDA-R, N-methyl-D-aspartate receptor; uPAR, urokinase-type plasminogen activator receptor; MAP,
mitogen-activated protein; CREB, cAMP response element-binding protein; MT, metallothionein; RIP, regu-
lated intramembrane proteolysis; ICD, intracellular domain; SFK, Src kinase family; ATRA, All-trans retinoic
acid; PMA, phorbol-12-myristate-13-acetate; LTP, long term potentiation; EMT, epithelial-mesenchymal transition;
NPSCs, neural progenitor stem cells; AChR, acetylcholine receptor; PI3K, phosphoinositide 3-kinases; MuSK,
muscle-specific Tyr kinase.

3. Apolipoprotein E Receptor 2 (LRP8)

LRP8 (gene name LRP8) is a modular type I transmembrane receptor of the LDLR
family whose structure is made of one N-terminal extracellular ligand-binding domain
made of seven conserved LA repeats, an EGF domain made of three EGF repeats and one
β-propeller and one NPxY motif in the intracellular domain, as described in Figure 1 [120].
LRP8 is involved in many intracellular signaling pathways and cellular responses involving
different ligands and co-receptors that will be discussed in detail in Sections 3.1 and 3.2 and
in the respective Figures 2 and 3. The intracellular signaling pathways mediated by LRP8
mostly involve the carboxy-terminal NPXY motif [121,122]. This motif adopts in fact a tight
hairpin conformation required for binding to phospho-tyrosine binding (PTB) domains or
to SH2-SH3 domain-containing proteins. Ligand binding to LRP8, together with different
LRP8 spliced variants, also modulates its proteolytic processing that releases C-terminal
fragments (CTF) and a transcriptionally active intracellular domain (ICD) [123,124]. A
detailed molecular mechanism of LRP8 proteolitic processing is described in Section 3.2.

As mentioned above, LRP8 has several splice variants, expressed in a tissue-specific
manner [125–127], whose alteration has also been correlated to sporadic Alzheimer’s
disease [128], that modify LRP8 functions such as ligand-binding activity [129], receptor
glycosylation and processing [130] and downstream signaling [131]. A well-studied LRP8-
spliced variant is the LR7/8B, which harbors high ligand-binding repeats and is known
to be a receptor for α-macroglobulin together with LRP1 [132]. Another spliced variant,
reported in all placental mammals so far studied and not in marsupials, birds or reptiles,
includes exon 19 that encodes for a 59 amino acid proline-rich insert in the cytoplasmic
domain of LRP8, which is unique in the LDLR family [133,134]. The human LRP8 unique
aminoacidic sequence contains two potential SH3 binding motifs, PXXP (two prolines
spaced by two other amino acids), suggesting a role in signal transduction pathways
involving reelin, PSD-95, NMDA-R and JIPs and the corresponding functional roles in
memory and spatial learning [16,18]. Indeed, its deletion in the mouse LRP8 gene (exon 19)
explains defects in long-term memory storage and spatial learning, most probably due to
the interruption of the reelin-mediated activation of NMDA receptors [134].

Additionally, there are variants missing epidermal growth factor repeat B or the O-
glycosylation domain [126]. It has been reported that differential LRP8 splicing, together
with its glycosylation at the O-linked sugar, regulates the release of the ICD. In this context,
Wasser et al., have reported an alternative LRP8 splice variant lacking the O-linked glycosy-
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lation region that is cleaved more efficiently than the full-length counterparts [130]. More
recently, it has been shown that LRP8 isoforms with differing numbers of ligand-binding
repeats to generate different amounts of CTFs compared with full-length LRP8 [135].

LRP8 is enriched in the brain, in particular in the neocortex, cerebellum, hippocampus
and olfactory bulb [136], and to a minor extent also in the peripheral nervous system such as
in the sciatic nerve and Schwann cells [137]. Outside the nervous system, LRP8 can be found
in placenta, testis, ovary and platelets and also in immune cells and vascular endothelial
and smooth muscle cells [120,138]. Unlike LRP1, LRP8 inactivation has no impact on
plasma triglyceride or cholesterol levels. Hence, the association between polymorphisms
in the LRP8 gene and CVD risk is likely independent of lipid metabolism but related to
LRP8-modulating cellular functions in the vessel wall [139].

3.1. LRP8 and Cancer

Although, LRP8 is mainly recognized for its role in CNS-related pathways, scientific
evidence also suggests an involvement of the receptor in carcinogenesis. Generally, cancer
cells require higher uptake of cholesterol than normal cells in which the receptor-mediated
endocytosis of serum LDL enhances the cholesterol content through LDLR. Increases
in LDLR and elevated plasma low-density lipoprotein cholesterol (LDL-C) have been
reported as features of leukemia, glioblastoma and lung and pancreatic tumors [140]. This
is explained by the fact that tumor cells rely on cholesterol for membrane and lipid raft
biosynthesis, signaling molecules and other factors in order to meet the fast growth.

In this context, many studies summarized in Table 2 have highlighted the role of
LRP8 in the tumorigenesis and progression of several cancers such as osteosarcoma, breast
cancer, gastric cancer, hepatocellular carcinoma, lung cancer, prostate cancer and pancreatic
cancer [6].

Table 2. LRP8 in cancer-related molecular pathways. The table summarizes LRP8 main findings in
cancer, with the corresponding roles, molecular mechanisms and in vitro and in vivo models used
(see references).

Cancer Types LRP8 Cancer
Roles

Main Findings &
Molecular Mechanism

In Vitro E in Vivo
Models Refs.

Osteosarcoma
Cell proliferation

and
anti-apoptotic effect

LRP8 is overexpressed
in osteosarcoma tissues.
LRP8 enhances PD-L1

expression
via STAT3, evading the host

immune system.

Cell lines:
MG63

and U2OS
[141]

TNBC
TNBC

Cell proliferation,
anti-apoptotic effect and

colony formation

LRP8 is overexpressed
in TNBC patients.

LRP8 depletion induces
arrest

of the cell cycle and
apoptosis.

LRP8 knockdown impairs
colony formation.

Cell lines: BT-474, T47D,
MCF7, ZR-75-1, SKBR3,

HCC1569, HCC1954, BT-20,
HCC1143, HCC38, HCC70,

MDA-MB-468 and
MDA-MB-45

In vivo model: xenograft
mice model (MDA-MB-468)

[142]

Tumorigenesis
and

chemoresistance

LRP8 silencing suppresses
BCSCs and tumorigenesis in

TNBC via Wnt signaling
inhibition.

LRP8 KO shifts TNBC cells
to a more differentiated

phenotype, sensitizing them
to chemotherapy.

Cell lines:
HCC1937

and SUM149
In vivo model: xenograft

NOD/SCID mice (SUM149)

[9]
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Table 2. Cont.

Cancer Types LRP8 Cancer
Roles

Main Findings &
Molecular Mechanism

In Vitro E in Vivo
Models Refs.

Gastric
cancer

Cell migration
Mycophenolic acid

downregulates LRP8,
reducing cell migration.

Cell lines:
AGS and Hs746T [143]

Cancer progression

MiR-142 suppresses
progression of gastric

carcinoma
via directly targeting LRP8.

Cell lines:
AGS, MKN-45, MKN-28,
SGC-7901 and BGC-823

[144]

Hepatocellular
carcinoma Pharmacoresistance

LRP8-dependent activation
of

β-catenin pathway
suppresses

Sorafenib induced apoptosis.

Cell lines:
Huh7

and MHCC-97H
[145]

Melanoma
Suppression of cell

invasion and endothelial
recruitment

miR-1908, miR-199a-5p,
and miR-199a-3p

limit ApoE secretion
suppressing

LRP8 endothelial
engagement

Cell lines: TWM-266-4, A375,
SK-Mel-28, HT-144, A2058,

MeWo, SK-Mel-2, SK-Mel-28,
A375, WM-266-4, HT-144,

and A2058
In vivo model: xenograft
NOD scid mice (MeWo)

[146]

Lung
cancer

Cancer progression
and

cisplatin resistance

miR-30b-5p inhibits
lung cancer cell viability,

migration and invasion and
enhances cell sensitivity

to DDP via targeting LRP8.

Cell lines:
A549, A549/DDP,

NCI-H1299, NCIH446
and H1650

In vivo model: xenograft
BALB/c nude mice

[147]

Cell proliferation,
migration, invasion, EMT,

tumor growth
(NSCLC)

LRP8 is markedly
overexpressed in NSCLC

patients with poor
clinicopathological

characteristics and prognosis.
LRP8 KO elicits

tumor-suppressive functions
by suppressing the

Wnt/β-catenin pathway.

Cell lines:
95-D, H1299, H460,

HCC-827, A549,
PC-9, and H1975

[148]

Prostate
cancer Cancer progression

miR-455-5p inhibits cancer
cell

migration and invasive
abilities

through LRP8
downregulation.

Cell lines:
PC3, DU145,

and C4-2
[149]

Pancreatic
cancer Cell proliferation

ApoE2-LRP8 induces
phosphorylation

of ERK1/2 to activate c-Myc,
promoting

cyclin D1, cdc2 and cyclin B1
expression and reducing

p21Waf1 activity.

Cell lines: MIA PaCa-2,
Capan-2, PANC-1, Bxpc-3 [150]

TNBC, Triple-negative breast cancer; BCSCs, Breast cancer stem cells; EMT, Epithelial-to-mesenchymal transition;
NSCLC, Non-small cell lung cancer.

In fact, LRP8 is overexpressed in different cancers including osteosarcoma [141] and
NSCLC [148], and its overexpression has been significantly correlated with poor clinico-
pathological features and prognosis. Abnormal LRP8 expression has also been associated
with breast cancer progression, where it facilitates cell growth and confers a poor prognosis
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in patients. In particular, Maire et al., demonstrated that LRP8 is more strongly expressed
in breast cancer without hormone receptor expression (TNBC and HER2 positive) than in
luminal tumors (Luminal A and Luminal B) and that LRP8 depletion promotes apoptosis
and impaired cell proliferation and colony formation. These findings have been further
confirmed in an in vivo xenograft model where LRP8 depletion slowed tumor growth [142].
Other studies indirectly support the idea of a role of LRP8 in tumorigenesis: Dun et al.,
have shown that mycophenolic acid severely downregulates the expression of cell surface
LRP8, inhibiting cell migration and the invasion of gastric cancer cells [143]; Cai et al., have
separately found that LRP8 is responsible for hepatocellular carcinoma cell resistance to
sorafenib [145].

In a scenario in which LRP8 seems to have an oncogenic role in many types of cancer,
it remains still elusive the biochemical pathways through which LRP8 exerts such activity
(Figure 2).
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Figure 2. LRP8 in four main cancer-related molecular pathways. (1) LRP8 binding to ApoE2 induces
ERK1/2 phosphorylation and cell cycle activation [150]. (2) LRP8 promotes Wnt-induced β-catenin
accumulation, inducing Axin2 transcription [151]. (3) PCSK9 modulates LRP8 endocytosis and
signaling by targeting the receptor for lysosomal degradation [152]. (4) LRP8 activates p-STAT3 and
its nuclear signaling [141,153].

One hypothetical mechanism is linked to ApoE isoform 2, which is known to have
a critical role in cell proliferation and has been identified as a cancer-related molecule.
Through its binding to LRP8, ApoE2 induces ERK1/2 phosphorylation, activating c-Myc
that in turn inhibits p21Waf1 and thus removing the brake on the expression of cycle-related
proteins such as cyclin D1, cdc2 and cyclin B1 [150].

In osteosarcoma, the overexpression of LRP8 compared with normal tissues, increases
phospho-STAT3 (p-STAT3) levels and facilitates its translocation into the nucleus, resulting
in an enhancement of mRNA, protein and promoter activity of the programmed death-
ligand 1 (PD-L1), which is a marker of metastasis and mortality risk in osteosarcoma [141].

Among the intracellular signaling pathways positively regulated by LRP8, the Wnt/β-
catenin is definitely one that links LRP8 to its tumorigenic role [151]. As already reported
above, the Wnt/β-catenin pathway is a pleiotropic signal linked to several diseases in-
cluding cancer. In particular, LRP8 seems to be a positive regulator of the Wnt pathway,
increasing Wnt-induced transcriptional responses and promoting Wnt-induced β-catenin
accumulation. The LRP8 regulation of the Wnt/β-Catenin pathway has been observed
both in triple-negative breast cancer, where LRP8 depletion inhibits breast cancer stem
cells, cell proliferation and invasion and epithelial–mesenchymal transition [9], and in
NSLC, in which an increase in LRP8 expression facilitates tumor proliferation [148]. Fur-
thermore, in KS483 osteoprogenitor cells, knockdown of LRP8 results in a decrease in the
Wnt/β-Catenin pathway, with reduced β-catenin levels and the suppression of Axin2 tran-
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scription; as a secondary effect, the depletion of LRP8 decreases osteoblast differentiation
and mineralization, whereas LRP8 ectopic expression has the opposite effect [151].

Together with VLDLR and LRP1, LRP8 is also involved in tumor cell growth through
its binding to the glycoprotein Proprotein convertase subtilisin/kexin type 9 (PCSK9).
PCSK9 is known to modulate cholesterol metabolism through its binding to LDLR family
members, including LRP8, and promoting their degradation in intracellular acidic compart-
ments. The binding between PCSK9 and the LDLR members occurs between the PCSK9
catalytic subunit and the LDLR EGF-A domain [152]. In this context, in addition to being a
key player in the LDL metabolism in the liver and in the brain, PCSK9 is overexpressed in
various human cancer cell lines [154].

Komaravolu et al., reported a cell-cycle modulation, not strictly related to cancer,
that was mediated by LRP8 through its intracellular interaction with the catalytic subunit
of the heterotrimeric enzyme PP2A, a protein complex that is vitally important for the
maintenance of normal cell division [155,156]. In this regard, LRP8 participates in mitosis
via its interaction with PP2A-C, promoting the formation of active CDC20 to complete
cytokinesis. Moreover, since the LRP8-interacting adaptor protein Dab2 is also a substrate
for PP2A dephosphorylation, LRP8 may work in concert with Dab2 to modulate cell cycle
progression and cytokinesis [156].

LRP8 is also a key mediator in metastatic melanoma, as an ApoE receptor, in paral-
lel with VLDLR and LRP1. According to Pencheva et al., selected miRNAs (miR-1908,
miR-199a-5p and miR-199a-3p) limit ApoE secretion, thus suppressing its anti-metastatic
action through the engagement of endothelial LRP8 receptor; in this condition, LRP8
no longer suppresses cell invasion and endothelial recruitment, eventually promoting
metastasis [146].

Consistent with the above observations, LRP8 was also identified as a target of miR-
30b-5p in lung cancer progression and cisplatin resistance. In particular, LRP8 level was
markedly increased in lung cancer tissues compared with the control group, apparently
acting as an oncogene. In addition, miR-30b-5p inhibits lung cancer cell viability, migration
and invasion and enhances cell sensitivity to cysplatin via targeting LRP8, suggesting that
miR-30b-5p inhibits lung cancer progression by targeting LRP8 [147]. Lu et al., published a
similar work highlighting the role of miR-142 as a gastric cancer suppressor by targeting
LRP8 [144]. A similar LRP8 regulation by miR-455-5p has been reported by Arai at al. in
prostate cancer [149].

3.2. LRP8 in Neurodegeneration

LRP8 has long been studied for its role in cholesterol transport and metabolism;
however, the identification of ApoE4, the major genetic risk factor for developing late-onset
Alzheimer’s disease, as one of its ligands has brought attention to its role in CNS-related
pathways and neurodegeneration (Figure 3).
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Figure 3. LRP8 in CNS related molecular pathways and neurodegeneration. Ligands binding to LRP8
modulate intracellular pathways, LRP8 cleavage, LRP8-APP interaction and Aβ production. (1) ApoE.
Aβ production is increased by ApoE binding to LRP8 [157]. (2) F-Spondin. F-Spondin increases
LRP8 cleavage and decreases Aβ production [158]. (3) LRP8 levels also modulate Aβ production in a
positive manner by increasing the APP association with lipid rafts and γ-secretase activity [159]. (4)
Reelin. Reelin binding to LRP8 induces different signaling pathways: (a) the tyrosin phosphorylation
of Dab1 by Src-family kinases [160] and its interaction with the LRP8 NPxY motif. Phosphorylated
Dab1 subsequently interacts with PI3K, whose activation leads to the further activation of Akt, which
in turn inhibits GSK3β, suppressing tau phosphorylation [161]; (b) the LRP8-JIPS interaction at the
plasma membrane level that interferes in turn with the signaling of JNK, whose translocation into
the nucleus is therefore inhibited. In addition, the activity of rhoGEF, which is associated with JIP,
might be modulated by the Reelin-LTP8-JIPs complex [18,162]; (c) the promotion of LRP8, Dab1 and
NMDA-R clustering and related NMDA-R phosphorylation mediated by SFK, which in turn leads to
an increase in calcium influx [163] (Chen, 2005). The signal activated by LRP8 and NMDA-R complex,
but not necessarily their physical association, involves PSD-95, which is known to inhibit NMDA-R
internalization [164].

LRP8 is mainly known for being a receptor of ApoE, which is produced in various
organs, including liver, brain, kidneys, and adrenal glands, and which represents a compo-
nent of lipoproteins responsible for packaging cholesterol and other fats and carrying them
through the bloodstream [165]. LRP8 binds with high affinity only to ApoE-rich β-VLDL,
while its affinity for LDL and other VLDL is much lower [120]. In humans, three ApoE
isoforms exist that differ at positions 112 and 158 (ApoE2, ApoE3 and ApoE4) [166]. ApoE2
has cysteines at positions 112 and 158, ApoE3 has a cysteine at position 112 and an arginine
at position 158 and ApoE4 has arginines at positions 112 and 158. The ApoE ε2 allele is
associated with the recessive inheritance of hyperlipoproteinemia in patients with type III
hyperlipidemia [167], and the ε4 allele is strongly associated with cardio-cerebrovascular
diseases and Alzheimer’s disease [168]. A single copy of the ε4 allele increases AD risk by
about 3-fold, with two copies of the ε4 allele increasing disease risk about 12-fold relative
to individuals who have 2 copies of the ε3 allele. On the other side, the ε2 allele seems to
decrease AD risk by about 0.6 [169,170]. Additional studies have demonstrated that ApoE
is closely related to cognitive functions; indeed, ApoE-deficient homozygous mice show
impaired working memory [171] accompanied by the age-dependent loss of synaptic pro-
teins [172]. In addition to AD, ApoE has also been reported to have an impact on dementia
and synucleinopathy in Parkinson’s disease (PD) dementia and dementia with Lewy bodies
as well as in mouse models of synucleinopathy [173,174]. ApoE is also directly involved
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in the binding and clearance of Aβ, with ApoE ε3 and ApoE ε2 having a higher affinity
compared with ApoE ε4 [175,176]. Moreover, these data were also confirmed in in vivo
studies showing that knockout ApoE mice crossed with AD mice overexpressing APP
exhibit less Aβ deposition compared with those expressing ApoE ε3 or ApoE ε4 [177,178].

In Alzheimer’s disease, Aβ is generated from APP through sequential cleavages,
first by β-secretase and then by γ-secretase complex, the latter consisting of at least four
components: presenilin (PS, PS1 or PS2), Nicastrin, anterior pharynx-defective-1 (APH-1)
and presenilin enhancer-2 (PEN-2) [179,180]. PSs are the crucial catalytic components of
γ-secretase, and mutations in PS1 are causative in the majority of familial AD (FAD) cases,
likely through a yet-unclear loss of function, while APP overexpression or mutations are
causative of FAD, likely favoring amyloidosis and tauopathy [181,182].

Hoe et al., uncovered interactions between LRP8, APP and F-spondin, a component
of the extracellular matrix involved in neuronal migration and plasticity in adult and
developing brains, suggesting that interaction between extracellular matrix proteins and
LRP8 at the cell surface can alter APP processing and decrease Aβ production. LRP8 and
APP interaction happens at the extracellular and intracellular levels and increases with the
presence of F-spondin, which also mediates increased LRP8 cleavage [158].

The potential clustering of APP and LRP8 modulates their endocytosis, likely altering
the cleavage of each receptor, via both extracellular metalloproteinases and intramembra-
nous γ-secretase cleavage. Interestingly, LRP8 expression also correlates with a significant
increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production
seems, in turn, to depend on the integrity of the NPXY endocytosis motif of LRP8; in fact,
LRP8 expression increases APP association with lipid rafts and γ-secretase activity, both
of which might contribute to increased Aβ production [159]. Moreover, ApoE binding
to LRP8 also increases APP endocytosis and Aβ production in an isoform-specific man-
ner [157]. There is therefore a link between ApoE and Aβ that does not depend on their
direct interaction but rather on the ability of the different isoforms of ApoE to modify
the processing of APP through LRP8, thus representing a bidirectional bridge between
cholesterol metabolism and amyloidosis.

In addition to ApoE, another well-known ligand of LRP8 is Reelin: which is ligand as
well of the VLDL receptor and that is produced by Cajal–Retzius neurons at the surface of
the developing neocortex [183]. Depending on the specific tissue and cell type involved,
the binding of Reelin to LRP8 leads to the tyrosine phosphorylation of the adaptor protein
Dab1/2 to initiate several signaling cascades such as the activation of PI3K, ERK1/2, Src-
family kinases and protein kinase B/Akt. In this context, it is important to highlight that
Dab1 is essential for neuronal migration both upon LRP8 or APP activation, suggesting
that it is likely through Dab1 that both APP and LRP8 regulate neuronal migration from
SVZ toward the cortical plate [59,184]. Furthermore, Stockinger et al., have reported a role
of the LRP8-Reelin interaction in the correct positioning of neurons during the embryonic
development of the brain.

In the CNS, Reelin is able to regulate APP processing and Aβ production by interacting
with APP. Reelin increases cell surface levels of APP and decreasedthe endocytosis of APP
in hippocampal neurons in vitro. In vivo, Reelin levels were increased in the brains of APP
knockout mice and decreased in APP-overexpressing mice [185].

Reelin signaling is crucial for many CNS functions such as neuronal migration, den-
dritic spine development [186], synaptic plasticity [184,187,188] and brain embryonic de-
velopment [59]. Some of the Reelin functions are played through binding to LRP8; indeed,
LRP8 Reelin-regulated neuronal (LRN) enhancer binding modulates learning and mem-
ory, which activates synaptic plasticity genes including NMDA receptor NR1, NR2A and
NR2B [124]. In addition to its NMDA gene activation, Reelin signaling through LRP8
induces the tyrosine phosphorylation of the receptor NMDA (NR2) subunits, changing
their surface distribution and activity and in turn regulating synaptic plasticity, which
is further modulated by the differential splicing of the LRP8 cytoplasmic domain [188].
Moreover, LRP8 proline rich 59 amino acid insert is essential for the Reelin-induced en-
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hancement of LTP in mice [59]; in this context, interference with Reelin expression or its
intracellular signaling pathway has effects on LTP and seizure potential that are partially
replicated in LRP8 knockouts. In this context, presenilin mutations have also been linked
to Reelin-signaling elements such as phosphatidylinositide 3-kinase and Crk/Dock1/Rac,
highlighting a potential correlation of presenilin mutations on synaptic processes with
LRP8 [189,190].

Additional studies on LRP8-KO mice have supported a role of LRP8 in neuronal
functions, showing in particular a severe impairment in freezing behaviors by performing a
classical form of robust associative learning (contextual fear paradigm) reflecting a decline
in long-term memory formation [124]. Moreover, LRP8 deficiency in mice has been shown
to affect the development of the neocortex, preventing neurons from completing their
migration and causing in turn a partial inversion of the neuronal layers in the neocortex [59].
In this context, LRP8 KO/ApoE KO mice have shown cognitive decline greater than that
observed in ApoE single-KO mice as indicated by behavioral tests [191].

In addition to the activation of intracellular signaling pathways, the binding of some
ligands, especially Reelin, to LRP8 also regulates its proteolytic processing. From the LRP8
full-length mature form (105 kDa), two major proteolytic products have been described
so far [88,166–168], the carboxy-terminal fragment generated by extracellular α-secretase
(20–25 kDa) and a C-terminal fragment (15–18 kDa) that is produced by γ-secretase cleavage
and is similar to AICDs derived by APP processing [166]. In fact, LRP8 is a γ-secretase
substrate, like APP and other LDL members such as LRP1 [169], LRP1b [170], LRP2 [171],
LRP6 [172], LR11 [173] and VLDLR [174] as well as many other substrates including
Notch [175–178]. The LRP8 C-terminal fragment produced by γ-secretase cleavage appears
to translocate into the nucleus where it inhibits Reelin transcription, creating a negative
feedback loop for Reelin levels; indeed, depletion of Presenilin1, the catalytic component
of γ-secretase, elevates the levels of both Reelin and LRP8 in mouse brain [123]. Telese
et al., showed that the nuclear translocation of the LRP8 CTF, derived from γ-secretase
cut, stimulates specific enhancers critically involved in hippocampus-dependent learning
and memory, implying that Reelin can impact genes related to learning and memory via
the LRP8 γ-CTF and that this process might be attenuated by PS1 mutations [124]. In
this scenario, in which the processing of LRP8 modulates its functions, Reelin causes a
reduction of the full-length receptor, probably enhancing its proteolysis by a sheddase
after ligand-stimulated internalization. PS1 mutations show impaired γ-secretase activity
relatively to LRP8 and an accumulation of its C-terminal fragments after Reelin exposure;
this last effect is potentiated by co-exposure to DAPT, a γ-secretase inhibitor [192].

In addition to the ligands already mentioned, ApoE, F-Spondin and Reelin, other
proposed LRP8 ligands are: (1) trombospondin-1, expressed in the subventricular zone and
throughout the rostral migratory stream, where it acts on LRP8 by promoting neuroblast
chain migration [193]; (2) clusterin (apolipoprotein J), which modulates a cell proliferative
signal in migrating neuronal precursors of SVZ explants, in vitro, via Dab1 activation [194];
(3) selenoprotein P, a mediator of selenium transport whose binding with LRP8 has been
observed in the brain, testis and bone. Selenium and its carrier protein, selenoprotein P,
have been reported to have important roles in maintaining optimal brain function as well as
in relevant AD-related pathways in addition to regulating the development and the immune
system and having antitumor properties due to their strong antioxidant activities [195].
Epidemiological studies have shown a significant positive correlation between selenium
level and cognitive ability [196] and that blood selenium level gradually decreases with
age [197]. Furthermore, selenium levels change significantly in the brain and blood of
patients with various neurodegenerative diseases such as AD, PD, multiple sclerosis and
Batten’s disease [198]. In this context, LRP8 KO mice have shown similar phenotypes
of selenoprotein P KO mice in the brain and in the testis, highlighting the biological
significance of the receptor-mediated uptake of selenium. Indeed, lowering brain Se levels
by the genetic inactivation of selenoprotein P, or its neuronal receptor LRP8 [199,200], has
been shown to lead to spontaneous neurological deficits and neurodegeneration.
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An overview of the LRP8 roles and molecular mechanisms in CNS and neurodegener-
ation is reported in Table 3.

Table 3. LRP8 in CNS- and neurodegeneration-related molecular pathways. The table summarizes
main findings in CNS and neurodegeneration correlating LRP8 and its ligand binding to correspond-
ing roles, molecular mechanisms and in vitro and in vivo models used in the experimental studies
taken into consideration (see references).

LRP8
Interactors

Roles in
CNS and

Neurodegeneration

LRP8 Main Findings &
Molecular Mechanism

Related to CNS

In Vitro E in Vivo
Models Refs.

ApoE Neurodegeneration
Increase in APP endocytosis

and Aβ production
via X11α or X11β (X11α/β)

Neuroblastoma
N2a cells [157]

Reelin

Synaptic
plasticity

Activation of
synaptic plasticity genes mediated

by the activation
of neuronal enhancers

Primary
cortical

neurons/heterozygous
Reeler

and LRP8-KO mice

[124]

Enhancement of LRP8
proteolytic processing,
followed by LRP8-ICD
induced transcription

Modulation of NMDA-R
phosphorylation

via SFKs and Dab1 followed by
increased Calcium influx

Primary
wild-type cortical

neurons/Dab1
knock-out neurons

[163]

Control of neuronal
migration and cellular
layer formation in the

developing brain

Partial inversion
of the neuronal layers

in the neocortex

VLDL and
LRP8 KO mice [59]

Neurodegeneration

Activation of the signaling pathway
involving Dab1-PI3K-AKT

leading to the inhibition of GSK3β
and in turn phosphorylation of tau

Primary neurons [161]

Trombospondin-1
(THBS-1)

Postnatal neuronal
migration

Promotion of
neuroblast chain migration

SVZ explants from
wild-type mice,
ApoER2−/−

VLDLR−/− mice and
THBS-1−/− mice on a
C57BL6/J background

[193]

Clusterin Postnatal neuronal
migration

Modulation of a cell proliferative
signal

in migrating neuronal precursors
via Dab1-PI3K/Akt signal

SVZ explants from
wild-type mice [194]

Selenoprotein P (Sepp1)
Preservation of

neurological function and
survival

Selenium transport

Sepp1−/− and Sepp1+/+
male mice

ApoER2−/−
mice (strain name,

B6;129S6-Lrp8tm1Her/J)

[199]

F-Spondin Neurodegeneration LRP8 cleavage increase
and Aβ production decrease

COS7 and HEK293 cells
transfected with reelin,

spondin, thrombospondin
or F-spondin

[158]

SVZ, Subventricular zone.

4. Final Remarks

LDLR, and LRP8 in particular, are receptors that through multiple pathways and
mechanisms seems to play a role both in the modulation of neuronal activity and in the
regulation of cell proliferation. In this context, several studies have proposed a potential link
between oncological and neurodegenerative pathways but have rarely found a common
denominator. Using an obvious oversimplification, we could say that high levels of LRP8
manifest a correlation with proliferation and metastasis in cancer cells and tissues, while
functions related to neuronal migration, amyloidosis and neurodegeneration, in a broad
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sense, are likely modulated by the proteolytic processing of LRP8, which however has
never been fully defined in its complexity.

Some features of LRP8 are, from this point of view, relevant: from one side, the same
pathways (for example Wnt) foresee LRP8 as pivotal regulator both in degeneration like
Alzheimer’s and in tumor genesis such as in breast cancer; from the other side, ApoE, the
most famous ligand of LRP8, is at the crossroads between metastatic proliferation and
Alzheimer’s-type neurodegeneration. At present, it is not clear what is the main pathway
through which LRP8 can influence tumor proliferation or whether there is a prevalent
mechanism in which it is involved. Specific studies on cancer stem cells and using in vivo
xenograft animal models will need to clarify these aspects before LRP8 can be defined as a
potential therapeutic marker.

In addition, it is well-known that the processing of many receptors involved in onco-
logical and/or neurodegenerative pathways depends on the action of the intramembrane
protease γ-secretase. In fact, γ-secretase inhibitors are still used in oncological trials and
in the recent past have been used, with unfortunately negative results, to treat patients
suffering from Alzheimer’s disease. Regarding LRP8, it is not known if its processing by
γ-secretase is altered in patients with Alzheimer’s disease, and the consequences of this
processing on amyloid formation are still underexplored.

After putting together the pieces of the puzzle, there are still obvious questions
that remain open and whose answers could lead not only to decipher key points in the
intersection between oncological and neurodegenerative pathways but also to define
new therapeutic targets in both fields: One, what is the exact role of ApoE/LRP8 in
tumorigenesis and Alzheimer’s? Two, how important are the different isoforms of splicing
and the complex processing of LRP8 to defining its functions in AD and cancer? Three,
can amyloidosis and cell proliferation in cancer be reversed targeting ApoE/LRP8? In
this context, it is sadly remarkable that the hypothesis of a loss of function of γ-secretase
in familial AD mutants, relative to other substrates than APP, has never been studied in
depth [201,202]. The answers to these questions will hopefully lead to a greater knowledge
of the molecular mechanisms in which LDLR receptors are involved, and LRP8 in particular,
to develop new diagnostic and therapeutic tools that can be used both in oncology and
in some neurodegenerative conditions such as the Alzheimer’s dementia and pathologies
related to aberrant neuronal migration.
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