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Abstract: Discrete tomography is a specific case of computerized tomography that deals with the
reconstruction of objects made of a few density values on a discrete lattice of points (integer valued
coordinates). In the general case of computerized tomography, several hundreds of projections are
required to obtain a single high-resolution slice of the object; in the case of discrete tomography,
projections of an object made by just one homogeneous material are sums along very few angles of
the pixel values, which can be thought to be 0’s or 1’s without loss of generality. Genetic algorithms
are global optimization techniques with an underlying random approach and, therefore, their con-
vergence to a solution is provided in a probabilistic sense. We present here a genetic algorithm able
to straightforwardly reconstruct binary objects in the three-dimensional space. To the best of our
knowledge, our methodology is the first to require no model of the shape (e.g., periodicity, convexity
or symmetry) to reconstruct. Experiments were carried out to test our new approach in terms of
computational time and correctness of the solutions. Over the years, discrete tomography has been
studied for many interesting applications to computer vision, non-destructive reverse engineering
and industrial quality control, electron microscopy, X-rays crystallography, biplane angiography, data
coding and compression.

Keywords: discrete tomography; three-dimensional reconstruction; genetic algorithm

1. Introduction

The goal of computerized tomography [1] is the three-dimensional reconstruction
of generic objects slice by slice. For a physical medium, a variable proportional to the
density is summed along a sequence of rays to form a projection. The application of choice
is medical diagnostics, and several hundreds of projections are needed because the body
consists of numerous organs with different absorption rates. In the particular case of objects
with a few density values, it is possible to reduce the number of projections, thus defining
the so-called discrete tomography [2].

Classical algorithms of computerized tomography have been unable to provide satisfy-
ing results in the case of discrete tomography [3]. Although in the literature there are many
works from a theoretical point of view, this latter reconstruction task is still particularly hard
to face. Moreover, all current studies involve reconstructing a single slice at a time, without
actually considering the entire three-dimensional object. The computational complexity of
three-dimensional discrete tomography with missing data has been considered in [4] again
from a mere theoretical viewpoint.

It can be proved in polynomial time whether there exists any object compatible with
just a pair of projections [5,6]; the complexity of this reconstruction process becomes NP-
hard in the case of at least three projections along non-parallel directions [7,8]. In addition,
the number of binary images compatible with a small set of projections is typically huge
even if these images can be very different from each other [9].

Exact reconstruction requires additional information: not only a big enough number of
projections, but also the geometric and topological properties of the object [10]. For example,
in crystallography, we may need some knowledge about the types of atoms to analyze, the
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probability to find holes inside the object and its topology (e.g., some configurations are
energetically unstable) [11,12]. Particular two-dimensional reconstruction algorithms were
designed for ad hoc classes of binary images (e.g., periodic images, which have repetitions
of pixels along some directions [13]; hv-convex polyominoes, which are connected sets
with 4-connected rows and columns [14,15], convex objects [16]; and symmetric convex
polygons [17], which is different from respecting the symmetry of particular organs of
the patient [18]). Networks flows and Boolean solvers have been proposed to reduce the
number of potential solutions [19]. Recently, a method has been proposed to determine the
suitable directions of projections in the case of two-dimensional convex models [20]. Even a
relatively seemingly simple case such as two-dimensional orthogonal discrete tomography
with a Hamiltonicity constraint was proven to be NP-complete [21].

Heuristic approaches [22–25] have been applied to the reconstruction problem whereas
evolutionary methodologies have shown their feasibility to reconstruct specific kinds of im-
ages such as circular or elliptical objects [26,27], images from interferometric fringes [28,29]
and compact binary images [30]. A combined tabu-search and algebraic reconstruction
algorithm has been developed for discrete tomography, although it needs a large number
of projections [31].

Two-dimensional discrete tomography can be extended to the three-dimensional case
by assuming some similarity between pairs of adjacent slices. This corresponds to the
introduction of a model of the object to reconstruct, which may be useful from a general
point of view though unfeasible in the case of security and medical imaging. To the best of
our knowledge, no real, meaningful approach has been proposed so far.

This paper is organized as follows. After the description of the main parts of our
evolutionary algorithm (Section 2), we describe the used dataset and the results (Section 3).
Conclusions will highlight the advantages of the adopted technique, providing inspiration
for future developments (Section 4).

2. Materials and Methods

In short, in a genetic algorithm, candidate solutions, called individuals, evolve from
one generation to another toward better and better solutions: individuals can mate to
exchange information and can suffer alterations in the hope that their new genetic arrange-
ment is better. Obviously, the solution is not known, but it is known what it will have to
look like.

Indeed, a fitness function evaluates how much each individual approaches the un-
known solution and lets only the best individuals survive in the next generation according
to an evolutionary pressure: the best individual of the entire process is presented as the
final solution. To cover as large an area of the search space as possible, various techniques
are considered to prevent individuals from being overly similar to each other. A description
of modern evolutionary strategies is given in [32].

It should be noted that we do not know the exact solution to the problem, but a
different representation of its appearance—specifically, its projections. Therefore, our goal
is finding a data volume that satisfies the same set of projections, assuming that this is the
desired solution. In fact, there is no guarantee that the output of any evolutionary algorithm
will actually be the desired solution, even if it satisfies the entire set of projections. As a
rule of thumb, the greater the amount of input information (i.e., the number of projections),
the greater the chance that the solution will be correct.

This paper presents a substantially revised and extended account of research previ-
ously reported in [30]. Compared to that work, we are now able to directly reconstruct
three-dimensional objects from a reduced number of appropriate projections in a reasonable
time (please see Section 3). We set aside the initial idea of assuming that there is a correla-
tion between adjacent slices because this implicitly introduces a model of the volume to
reconstruct. Instead, our new approach forces the reconstruction by oblique projections that
intersect different areas of separate slices. Therefore, our approach avoids the introduction
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of any model that could force the reconstruction of the object towards a user-defined, albeit
incorrect, shape.

The algorithm keeps the population size constant during the evolution, and it stops
when a suitable solution is found. This avoids a rapid performance degradation. In any
case, a halt condition is established by the total number ng of allowed generations.

A minimalist representation of the proposed algorithm is shown in Figure 1 (details
will be provided shortly). The most suitable cardinality nc of the population, number ng of
generations, and probabilities px and pm for the genetic operators will be considered in
Section 3. For the sake of clarity, from now on, we will use the term random to indicate a
pseudorandom generation according to a uniform probability distribution. In particular,
we used the Mersenne Twister [33] algorithm with seed initialized according to the current
time before each reconstruction to exclude repetitions in the experiments.

Figure 1. Sketch of the proposed genetic algorithm.

2.1. Individuals

The proposed methodology allows us to directly reconstruct cubes with binary values;
for practical purposes, we will consider n × n × n points with n = 32, 64 and 128. It must
be noted that these sizes correspond to binary images with about 181 × 181, 512 × 512
and 1448 × 1448 pixels, respectively, in the case of the standard two-dimensional discrete
tomography; this provides a rough sense to compare our methodology against those already
known in the literature in terms of data complexity.

We define an individual as a binary matrix of size n × n × n with element equal to 0 if
the corresponding point is white (i.e., it belongs to the background) or equal to 1 if the point
is black (i.e., it belongs to the foreground). Please note that these two colors are swapped
with respect to the usual representation in order to improve the graphical rendering of the
forthcoming figures (see Figure 2).

Let k be the total number of foreground points in the body to reconstruct. Each
individual in the population is actually a binary vector of length n3 instead of k three-
dimensional coordinates. This choice may result in a potential waste of memory in the
case of very few foreground points (i.e., sparse data) but it simplifies the genetic operators,
which must be performed quickly. Figure 3 shows the vector representation of the object in
Figure 2e.

We used no distinctive information regarding the final goal; therefore, the initial
individuals are formed by nc completely random vectors, each containing k elements equal
to 1 and the remaining n3−k elements equal to 0. Our experimental results confirm that a
few generations are usually sufficient to approximate the searched solution, even in the
case of small values of nc.
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Figure 2. Some of the objects we considered for our experiments (a–h). For a better visualization,
they are presented here by small dots. The lower objects (e–h) exhibit hollow spaces and therefore
are shown also by means of a couple of their sections (e’–h’). For example, the sphere (e) contains six
smaller empty spheres (e’).

0 32767

Figure 3. Binary individual vector of the object in Figure 2e.

2.2. Projections

Traditionally, the tomographic reconstruction has been approached by using projec-
tions that cut the body, literally slicing and then reconstructing it. We preferred to recon-
struct the whole body at once from twelve projections intended as complete “radiographs”—
that is, from a few planar images representing the number of black points along the direction
perpendicular to each radiograph. When a large number of projections is available, the
complexity increases because the image has to satisfy more constraints, and it is also true
that this reduces the presence of eventual artifacts. In this paper, constraints are retained by
projections in the three-dimensional space along non-coplanar directions: the underlying
idea is that these projections should not revolve around any axis.

Besides the natural direct access through coordinates to each point in the individual,
we created a structure (essentially a lookup table of memory locations of about 1.5, 12, 98
MiB with n = 32, 64, 128, respectively) that provides quick access to a whole projection
plane by grouping all points that belong to it, arranged so as to reduce memory faults.
We chose twelve particular projections (Figure 4) because points along the same direction
vector are adjacent to each other and because they make it easy to create the lookup data
structure. An animation that we include in the supplementary material shows that the
projection planes p3−p12 vary in shape and size inside the cube, depending on both the
angle and depth of the considered projection. As a complete example, Figure 5 shows the
projections of the object in Figure 2e.
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Crossover and mutation (to be described in Sections 2.4 and 2.5) take most of the total
processing time because each point modified in the individual’s encoding is picked up by
all twelve projections, which must be updated. In the case of crossover, the entire object
modifies radically and, therefore, recalculating the projections is mandatory. On the other
hand, mutation affects a few points and just some parts of the projections should be updated;
nonetheless, it is more convenient to recalculate all whole projections. To recalculate the
projections as fast as possible, we make extensive use of the ordered coordinates in the
lookup table. According to this data structure, we actually deal with all twelve projections
of a given object as a numeric vector. Figure 6 shows the projections in Figure 5 and should
not be mistaken with the binary vector illustrated in Figure 3: the former is an example of
input for our methodology whereas the latter is the corresponding output.

Figure 4. The twelve directions of the considered projections. The direction along the tunnel indicated
by the red dashed line is missing to allow the body move along the tunnel of our mock-up equipment.
All arrows point toward the center of the cube.
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Figure 5. The projections used to reconstruct the object in Figure 2e. Pure black corresponds to the
overall maximum count, equal to 28 foreground aligned points for this object (see Figure 6).

0 26051

0

28

Figure 6. The projection vector of the object in Figure 2e stores all projections of Figure 5 and is
provided as input to the proposed methodology. Twelve distinct zones are quite evident.

2.3. Fitness Function

Given an individual from the population, its fitness is merely the L1 distance (i.e., the
sum of the absolute value differences) between the individual’s projection vector and that
provided as input. Better individuals correspond to lower fitness; a zero value indicates
that the individual’s projections are identical to those of the object, although there is no
guarantee that the two cubes are actually identical.

Despite its simplicity and fast computation, this fitness function provides enough
variability to obtain correct results for all objects we considered. The population evolves
until a stable solution is found or a maximum number of generations is reached.

2.4. Crossover

We considered several selection methods (e.g., tournament, ranking and roulette) to
choose individuals for crossover, but they yielded poor results. As a consequence, we
excluded them in the final version of the algorithm and the pair of individuals to recombine
is randomly selected: this does not adhere strictly to the evolutionary theory, though it
allows for more gene variability. Moreover, crossover occurs according to the probability
px, which is set by the user.
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Given any point within the cube and one of the possible twelve projections directions,
the crossover operator cuts both individuals (i.e., parents) along the plane passing through
that point and orthogonal to that direction. Both the point and the direction are determined
randomly. The parts of the cut individuals are swapped to obtain a couple of offspring; their
new projections must be calculated completely. The individuals thus obtained generally
possess an incorrect number of foreground points, but comparing their projections with
the input ones allows us to add random points where they are missing and to eliminate
them where they are in excess. This last step of the operator basically constitutes some
form of mutation, although it is aimed at improving the fitness. The projections of the
final individuals must be updated. Figures 7 and 8 illustrate the crossover application on a
couple of individuals attempting to reconstruct the object in Figure 2e.

Figure 7. Given two parents (a,b), the offspring (c,d) are obtained by a random cut along one of the
twelve directions, which is also randomly selected (p5 in this example). It is usually needed to add or
remove some points from the offspring (e,f) to keep their number. These points are highlighted in (g)
(which shows the difference between (c,e) and (h) (which shows the difference between (d,h)). For
interpretation of the colors, the reader is referred to the electronic version of this article.

0 32767

Figure 8. From top to bottom, binary individual vectors of the individuals in Figure 7a,b,e,f. For
interpretation of the colors, the reader is referred to the electronic version of this article.

Parents and children are compared together based on their fitness values, and the two
best ones remain in the future population to keep the population size constant throughout
the whole process. This means that parents only are allowed to remain alive, as opposed
to other techniques that replace parents with offspring in every case and regardless of
their quality.

2.5. Mutation

This simple operator modifies the shape of an individual by changing the state of some
of its points. The user specifies a priori the probability pm that an individual will undergo
mutation, the amount qt of its points that will change from background to foreground, or
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vice versa. This allows finer control on the behavior of the genetic algorithm in relation
to the number of individuals: in the case of a very small population, it is advantageous to
have few mutating individuals (a small value of pm), although the selected individuals
must undergo a more pronounced mutation (a large value of qt). It is noteworthy that qt
indicates the exact number of points, meaning that during mutation it is not possible for
the same point to change its state more than once. Usually, pm is much smaller than px to
guarantee a gradual convergence towards a stable solution within the search space.

As single isolated points (i.e., completely surrounded by points of opposite state) are
generally attributed to noise, immediately after mutation we detect these isolated points
and randomly choose them to change their state. Mutated points are chosen randomly and,
therefore, the fitness of the new individual may be worse: an equal number of background
and foreground points (actually, the minimum value between the quantity of these two sets
of points) are exchanged to keep their total amount constant. This means that some isolated
points may remain if the number of background and foreground is not equal. Regrettably,
detecting isolated points is a particularly slow operation because it requires scanning each
point within the cube through a sliding box with 3 × 3 × 3 points. Figure 9 depicts an
example of mutation.

Figure 9. The object (a) in Figure 7a and one of its possible random mutations (b). Differences
between (a) and (b) are highlighted in (c).

2.6. Crossbreeding

Crossbreeding is about improving the biological quality of a hybrid progeny obtained
by sharing traits from parents of different lineages. Although the resulting offspring may
sometimes be inferior to the parents, this problem is overcome by the genetic algorithm that
quickly removes unpromising individuals. One possible pattern involves sub-populations
(named demes) evolving independently during most of the time; at regular generations,
all individuals are merged to compete altogether and mix their genotype with individuals
from other demes [34].

When a deme remains isolated for a long time from the rest of the population, it may
become a subspecies from the original population. In our case, each deme could converge
independently to different solutions of the same problem, and this constitutes an implicit
form of computational parallelism. From a practical point of view, we require that each
deme evolves its gene pool independently of one another (thus covering different areas of
the search space) and that in every cb generation the demes share information to converge
toward a common best solution.

From Section 2.4, it is clear that a simple method of randomly choosing pairs of individ-
uals to crossover is to shuffle randomly the population at the beginning of each generation.
This is performed directly with a random permutation of nc integers, representing the
indices of individuals in the entire population. So far, this corresponds to merging all the
demes.

Let us consider each deme of equal size nc/nd, where nd is the number of demes. To
separate the demes, it is sufficient to assemble a permutation of nc integers that has the
indexes from 1 to nc/nd in the first nc/nd elements, the indexes from 1 + nc/nd to 2nc/nd
in the elements from 1 + nc/nd to 2nc/nd, the indexes from 1 + 2nc/nd to 3nc/nd in the
elements from 1 + 2nc/nd to 3nc/nd and so on (Figure 10).
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Basically, these nd demes remain alone for most of the time by way of this particular
permutation; every cb generations, a totally random permutation of length nc merges them
all together, thereby allowing individuals to migrate among them. From a computational
perspective, the application of crossbreeding does not involve any real overhead with
respect to the rest of the methodology.
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2.7. Cloning

This is the ordinary elitist selection that assures that only the individual with the best
fitness value will be present as two identical copies in the next population. In the case of
demes, cloning is applied to each sub-population.

Usually, this reduces the variability of the hereditary characteristics in the case of very
few individuals; nonetheless, we have experimentally verified that this strategy increases
the accuracy of the final result when enough individuals are available.

3. Results

In order to verify the effectiveness of the proposed genetic algorithm, we produced
twenty objects of different shapes with 32 × 32 × 32, 64 × 64 × 64 and 128 × 128 × 128
points, sometimes composed by more than one part or with hollows inside them. Some
instances have been shown in Figure 2.

We limited the preliminary experiments to n=32; nc=64, 128, 256; px=0.90, 0.95, 1.00;
pm=0.03, 0.05, 0.07; qt=0.03, 0.05, 0.07; nd=1, 2; and cb=64, 128 when nd=2. This leads
to 243 experiments per object. In addition, to minimize the effect of random fluctuations,
each set of parameters was evaluated five times (i.e., 1215 experiments per object).

Despite the typical uncertainty of evolutionary approaches, all experiments returned
correct results: not only were the final projections identical to the initial ones, but the
reconstructed objects were actually identical to those satisfying the initial projections.
Hence, the processing time alone can be used to identify the optimal values of parameters.

The application of crossover can be reduced as the number of individuals increases:
with nc=64, 128, 256, it is appropriate to use px=1.00, 0.95, 0.90, respectively. On the other
hand, we have already discussed how the computation time is linearly dependent on the
number of individuals.

Regarding mutation, we have experimentally verified that the values pm = 0.05
and qt = 0.07 are the most convenient, independent of the number of individuals, thus
confirming the importance of genetic diversity. In other words, it is advisable to mutate
just a few individuals greatly.

Crossbreeding is irrelevant with nc = 64, 128 individuals because not enough gene
diversity is available; instead, with nc=256 individuals, it is useful to merge nd=2 demes
every cb=64 generations.

We observed that the shape complexity of the object, which is difficult to formalize in
rigorous terms, influences the computation time, whereas the mere number of points that
compose the object does not modify so much the convergence rate towards the solution.

We almost always obtained the exact reconstruction of the object with nc= 64 indi-
viduals, making it useless to work with nc=128 or even nc=256 individuals; this entails
a significant gain in processing time. However, it is suggested to increase the number of
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individuals to compute the position of a large number of points or when the object consists
of various components. We considered this possibility in the conclusion below.

Ultimately, the parameters that correspond to the best trade-off between convergence
speed and correctness of the solution are, in general,

nc=128, nd=1, px=0.95, pm=0.05, qt=0.07.

Figure 11 shows the average trend in reconstructing the objects in Figure 2 with this set
of parameters. In the additional material, we provide animations for single reconstructions
of the objects in Figure 2e–h.

Figure 11. Average fitness (red) of the best individual and average standard deviation of the fitness
(blue) among the five experiments per object in Figure 2, by using the preset parameters. The genetic
diversity, highlighted by the increasing standard deviation, contributed to the convergence towards
the correct solutions. As in the case (e), a greater number of generations indicates more complexity
in the object to reconstruct. For interpretation of the colors, the reader is referred to the electronic
version of this article.
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Our algorithm was implemented in MatLab 2017b language for Windows 10 on an
i7-2600 processor (produced in 2011) with 16 GiB of RAM. Although some experiments
with n= 32 points and with nc= 64 individuals took just five seconds, the average time
was about thirty seconds. A single experiment with nc=64 individuals takes about four
minutes when n = 64 and more than half an hour when n = 128. These times roughly
double in the case nc=128 and more than quadruple in the case nc=256.

Altogether, the initial 24300 experiments (i.e., 1215 experiments for 20 objects) with
just n = 32 required about three weeks. To make sure that the default parameters are
indeed also the best in the case of n=64, 128 and because the exhaustive completion of all
experiments (i.e., with n= 64, 128) would take approximately four years, we performed
further experiments with only the prefixed parameters plus 1% of random tests of the
remaining experiments (corresponding to two weeks or so of calculations). Limited to the
parameter values we considered, the search for the default ones is exhaustive in the n=32
case and extended to the n=64, 128 cases. All these evaluations confirmed the correctness
of the default above parameters. Regarding the hardware we used, we expect that the latest
generation i7 CPU with current RAM should provide just half the calculation time.

4. Discussion

Discrete tomography differs from standard computerized tomography in the small
variety of density distribution of the object to analyze and in the very few projections to
take. Although this research field is now more than thirty years old, it is still particularly
complex to address, and the increasing number of recent publications highlights a great
interest because of the variety of possible practical applications.

The methodology we presented here is able to compute in a reasonable amount of time
the reconstruction of three-dimensional binary objects from twelve projections: about 30 s
for a cube of 32 × 32 × 32 points, which corresponds to a traditional slice of 181 × 181 pixels.
Our evolutionary approach is simple and exhibits great flexibility because no model (e.g.,
periodicity, convexity or symmetry) is needed. To the best of our knowledge, this is the
first discrete tomography algorithm able to deal with this type of reconstruction directly.

We were interested mainly in the development of reconstruction techniques, albeit in
an efficient way on regular personal computers rather than in optimizations on particular
hardware. In practice, we proved that it is possible to extend binary discrete tomography
to the three-dimensional case with a sufficiently fast computing time.

It can be argued that twelve projections are more than what is usually proposed for
the reconstruction in discrete tomography. We would like to emphasize that we use these
projections for a direct reconstruction of three-dimensional objects of any shape—that
is, without assuming any particular model. Indeed, many algorithms proposed in the
literature use fewer projections to deal with planar reconstructions provided that it is given
some information about the final appearance of the binary image.

The bottleneck of the proposed reconstruction methodology lies in accessing the
three-dimensional coordinates of the points, basically as a function of the direction of the
radiation considered. As described in Section 2.1, the shape of the plane orthogonal to this
direction changes together with the position of the point itself. Due to this reason, we have
precomputed all spatial coordinates, although this requires a large amount of memory in
the case of big cubes.

Evolutionary algorithms are particularly suitable to exploit parallel implementations.
Our code was written from scratch in MatLab language without even using its Global
Optimization Toolbox. Except for the native parallelism offered by this vector programming
language, no parallel instructions (multi-core CPU either GPU) have been applied explicitly.
This should ease the translation of our methodology onto heterogeneous, high-performance
machines by implementing in parallel all operations that can be subdivided into simpler
steps to be performed independently of each other.
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