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Various aspects of axion electrodynamics in the presence of a homogeneous and isotropic dielectric
medium are discussed. First, we consider the “antenna-like” property of a planar dielectric surface in axion
electrodynamics, elaborating on the treatment given earlier on this topic by Millar et al. [J. Cosmol.
Astropart. Phys. 01 (2017) 061.]. We calculate the electromagnetic energy transmission coefficient for a
dielectric plate, and compare with the conventional expression in ordinary electrodynamics. Second, we
consider the situation where the medium exterior to the plate, assumed elastic, is “bent back” and glued
together, so that we obtain a circular dielectric string in which the waves can propagate clockwise or
counterclockwise. As will be shown, a stationary wave pattern is permitted by the formalism, and we show
how the amplitudes for the two counterpropagating waves can be found. Third, as a special case, by
omitting axions for a moment, we analyze the Casimir effect for the string, showing its similarity as well as
its difference from the Casimir effect of a scalar field for a piecewise uniform string [I. Brevik and H. B.
Nielsen, Phys. Rev. D 41, 1185 (1990).]. Finally, including axions again we analyze the enhancement of the
surface-generated electromagnetic radiation near the center of a cylindrical haloscope, where the interior
region is a vacuum and the exterior region a high refractive index medium. This enhancement is caused by
the curvature of the boundary, and is mathematically a consequence of the behavior of the Hankel function
of the second kind for small arguments. A simple estimate shows that enhancement may be quite
significant, and can therefore be of experimental interest. The presence of an absorber in the center and the
possibility of adopting it to search for axions with mass in the THz region, and possibly the GHz region too,
is also discussed. This proposal is suggested as an alternative to the reflector arrangement in a similar
arrangement recently discussed by Liu et al. [Phys. Rev. Lett. 128, 131801 (2022).].
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I. INTRODUCTION

The antenna-like behavior of a single dielectric plane
surface in axion electrodynamics in the presence of a strong
external magnetic field is a rather remarkable phenomenon.
In particular, it is quite perplexing that the Poynting vector
normal to a dielectric surface is no longer continuous across
the surface, a property otherwise considered as a corner-
stone in electromagnetic theory. There occurs an extra

electromagnetic radiation of energy from the surface. Of
course, this energy must stem from somewhere. It is rather a
consequence of the interchange of field energies happening
between two reservoirs, namely the usual electromagnetic
reservoir, and the other one due to the axion field. A
detailed exposition of these properties of axion electrody-
namics is given by Millar et al. [1]. The effect is also
planned for use in experimental broadband tests [2].
Our purpose with the present paper is first to elaborate

further on some of the consequences of this dielectric-
surface effect. After giving a brief survey of axion
electrodynamic formalism in the next section, we consider
in Sec. III the most simple dielectric system where two
surfaces are involved, namely the planar dielectric disk. We
point out the close similarity between the transmission
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coefficients in the axion case and in the nonaxion case, a
similarity that is not quite trivial. Thereafter in Sec. IV, still
dealing with two-surface systems, we turn the exterior
medium 2 “back” and join it with medium 1 so that we
obtain a circular loop or string, and investigate if the axion
formalism admits a stationary state implying clockwise
and counterclockwise propagating modes. Actually the
formalism does so. Such a system is most likely only of
fundamental interest, but the positive outcome of the
analysis demonstrates the flexibility of the axionic formal-
ism. As a by-product, if we for a moment ignore the axion
field we can calculate the electromagnetic Casimir energy
of the system. This is considered in Sec. V. We show how
the systems bears similarities to the piecewise uniform
relativistic string which has been considered repeatedly
earlier [3–9]. Finally, in Sec. VI we return to the antenna-
like property of dielectric surfaces, and investigate the
enhancement of the electric field near the center of a
cylindrical haloscope caused by the curvature of the
emitting boundary. Here the central region is a vacuum,
while the outer region is a metal. The enhancement can
actually be quite significant. This opens the possibility for
the measurement of the emitted field from the cylindrical
boundary, and may thus be an alternative to the broadband
solenoidal haloscope recently proposed by Liu et al. [2].
Some of the pioneering papers on axion electrodynamics

are listed in Refs. [10–18]. More recent works can be found
in Refs. [19–43].

II. BASIC FORMALISM IN A DIELECTRIC
ENVIRONMENT

We consider a pseudoscalar axion a ¼ aðr; tÞ present in
the entire universe,making a two-photon interactionwith the
electromagnetic field. We assume a dielectric environment
where the permittivity is ε and the permeability is μ, where
these material parameters are constants. The constitutive
relations are D ¼ εE, B ¼ μH. There are two field tensors,
Fαβ andHαβ, where α and β run from 0 to 3. We assume the
standard Minkowski space with the convention g00 ¼ −1.
The dual tensor is defined as F̃αβ ¼ 1

2
εαβγδFγδ, with

ε0123 ¼ 1.
For convenience we give the expression for the field

tensors explicitly,

Fαβ ¼

0
BBB@

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

1
CCCA; ð1Þ

Hαβ ¼

0
BBB@

0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0

1
CCCA: ð2Þ

The Lagrangian is

L ¼ −
1

4
FαβHαβ þA · J − ρΦ −

1

2
∂μa∂μa −

1

2
m2

aa2

−
1

4
gγ
α

π

1

fa
aðxÞFαβF̃αβ: ð3Þ

Here, ρ and J are the usual electromagnetic charge and
current densities (since the axions are electrically neutral
they cannot contribute); gγ is a model-dependent constant
for which we adopt the value 0.36 [22]; α is the fine-
structure constant, and fa is the axion decay constant
whose value is insufficiently known. Often it is assumed
that fa ∼ 1012 GeV.
Defining the combined axion–two-photon coupling con-

stant as

gaγγ ¼ gγ
α

π

1

fa
; ð4Þ

we see that the last term in the Lagrangian (3) can be
written as Laγγ ¼ gaγγaðxÞE ·B.
It is convenient to define the quantity θðxÞ,

θðxÞ ¼ gaγγaðxÞ: ð5Þ

Based on the expression (3), the extended Maxwell
equations can then be written as

∇ ·D ¼ ρ −B ·∇θ; ð6Þ

∇ ×H ¼ Jþ _Dþ _θBþ∇θ ×E; ð7Þ

∇ · B ¼ 0; ð8Þ

∇ × E ¼ − _B: ð9Þ

These equations are general, i.e., there are no restrictions so
far on the spacetime variation of aðxÞ. The equations are
moreover relativistic covariant, with respect to shift of the
inertial system.
The governing equations for the fields can correspond-

ingly be written as

∇2E− εμË¼∇ð∇ ·EÞþ μ_Jþμ
∂

∂t
½_θBþ∇θ×E�; ð10Þ

∇2H − εμḦ ¼ −∇ × J −∇ × ½_θBþ∇θ ×E�: ð11Þ
The dynamical-field entities are here the electromagnetic
fields; we limit ourselves to a perturbative approach in
which the axions are the perturbation. We do not consider
the field equations for the axions explicitly.
Assume now that a strong static magnetic fieldBe ¼ Beẑ

acts in a region where ρ and J are zero and the axion field is
spatially uniform but varies harmonically in time,
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aðtÞ ¼ a0 cosωat: ð12Þ

This is the situation usually found in the inner region of a
haloscope. Then it is convenient to separate out the part of
E that is caused by the uniformly fluctuating axions.
Calling this contribution EaðtÞ, we see from Eq. (10) that
it is connected by the θ̈ term. From the governing equation
for EaðtÞ,

∇2Ea − εμËa ¼ μθ̈Be; ð13Þ

we then obtain, after omitting the ∇2 term, the solution

EaðtÞ ¼ −
1

ε
E0 cosωatẑ; ð14Þ

where

E0 ¼ θ0Be: ð15Þ

After the separation of the component Ea, the field
equation (10) takes the reduced form

∇2E − εμË ¼ ∇ð∇ ·EÞ þ μ_Jþ μ½_θ _Bþ∇θ × _E�: ð16Þ

Likewise, for the magnetic field

∇2H−εμḦ¼−∇×J

− ½_θ∇×Bþð∇θÞ∇ ·E− ð∇θ ·∇ÞE�: ð17Þ

III. ANTENNA-LIKE BEHAVIOR: TWO PLANE
PARALLEL SURFACES

We begin by considering one single planar dielectric
surface, placed at x ¼ 0, separating the left region 1
(refractive index n1) from the right region 2 (refractive
index n2). We assume the simple case where the media are
nonmagnetic and n1, n2 constants and real. A strong static
magnetic field Be ¼ Beẑ is imposed in the z direction. An
incoming wave polarized in the z direction comes in from
the left, propagates in the x direction, and becomes partly
reflected by the surface. The basic property following from
the extended Maxwell equations in the present context is
that the components ofE andH parallel to the surface have
to be continuous (as in ordinary electrodynamics) at x ¼ 0.
This is the situation analyzed in detail by Millar et al. [1].

Because of the axions there will be produced two outgoing
electromagnetic waves, one going to the left and one going
to the right. In this sense we can consider the dielectric
surface to have antenna-like properties. It does not mean
that electromagnetic energy comes out from nothing,
however, but that there occurs an energy interchange
between the ordinary electromagnetic and the axion
reservoirs.

It is now convenient, following Ref. [1], to distinguish
the produced traveling fields by an extra index γ.
Continuity of Ek gives straightaway

Eγ
1 þ Ea

1 ¼ Eγ
2 þ Ea

2: ð18Þ

Next, we may take into account the relationship

Hγ ¼ � 1

n
Eγ; ð19Þ

which holds for a propagating wave when the medium is
nonmagnetic. This implies that the boundary condition for
Hk can be written as

−n1E
γ
1 ¼ n2E

γ
2; ð20Þ

expressing that the two wave vectors k1 and k2 are
antiparallel. As Ea ¼ −ð1=εÞE0, we can then solve for
the produced fields to get

Eγ
1 ¼ −

E0

n1

�
1

n2
−

1

n1

�
; Eγ

2 ¼
E0

n2

�
1

n2
−

1

n1

�
; ð21Þ

(recall that E0 ¼ θ0Be).
Remark: The argument above did not imply there to be

any in-falling initial photons from the left. This is the most
fundamental constellation. The argument however implies
a nontrivial point, namely the use of Eq. (19) in an initial
vacuum. This equation is not a general one in electrody-
namics, but is implicitly resting on the assumption that
there are propagating waves. This point thus brings some
concern about the validity of the argument in this special
case where there is initially a vacuum. Now, Millar et al. [1]
discuss also the more general case where there are in-falling
photons from the left, and in that case the use of Eq. (19) is
of course nonproblematic.
Now move on to consider the situation with two

dielectric surfaces; we focus first on simple dielectric slab
of thickness d, surrounded by vacuum. The refractive index
is n ¼ ffiffiffi

ε
p

, similarly as above. It is of interest to consider
the energy transmission coefficient

T ¼
����ET

EI

����2 ð22Þ

in the presence of axions, ET and EI referring to the
transmitted and incident wave amplitudes, respectively.
Based upon Eq. (5.4a) in Ref. [1] we obtain

T ¼ 4n2

4n2 þ ðn2 − 1Þ2sin2kd ; ð23Þ

where k ¼ 2π=λ ¼ nω. Remarkably enough, this expression
does not contain E0. Some special cases are noteworthy: if
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d ¼ λ=4 the transmission is at minimum, T ¼ Tmin ¼
4n2=ðn2 þ 1Þ2, whereas if d ¼ λ=2, the transmission is at
maximum, T ¼ Tmax ¼ 1.
It is of interest to compare this transmission coefficient

from that occurring in ordinary electrodynamics. Giving
the latter quantity an extra subscript elmag, we obtain
(page 514 in Stratton [44])

Telmag ¼
4n2

ðn2 þ 1Þ2 − ðn2 − 1Þ2sin2kd : ð24Þ

It is seen that T and Telmag are different, which could be
expected since their derivations are different. Now, if d¼λ=4,
Telmag¼1, while if d¼λ=2, Telmag¼4n2=ðn2þ1Þ2, its mini-
mum value. It ought to be mentioned that the reflection and
transmission coefficients refer to the axion-generated fields
only. If there were external probe source fields, Eprobe,
present, then its effect would be suppressed by a factor
ðE0=EprobeÞ2.

IV. CLOSED-STRING GEOMETRY

In this section we will continue to consider dielectric
systems containing two interfaces separating media of
refractive indices n1 and n2, but now in a form that has
not been considered before as far as we know. Let n1 refer
to the left medium, n2 refer to the second medium, and
assume that the media are elastic so that medium 2 can be
turned back and glued to the left side of medium 1.
Therewith we obtain a ring-formed system. One may
ask: does such a system allow stationary oscillations to
occur when axions are present? It is of physical interest to
examine this point, not because of the applicability of the
formalism in practice, but rather as a test of the flexibility of
this kind of generalized electrodynamics. Figure 1 shows
the configuration. We let σ denote the length coordinate
along the string, such that the two dielectric junctions are at
σ ¼ 0 and σ ¼ LI . The total length of the string is
L ¼ LI þ LII, so that the junctions σ ¼ 0 and σ ¼ L are
overlapping. We will be interested in the fields in the
interior regions of the string. The string is lying in the xy

plane, and a strong uniform magnetic field Be is applied in
the z direction.
We will seek stationary oscillations of the electromag-

netic oscillations in the string. If EIðσ; tÞ and EIIðσ; tÞ are
the electric fields in the two regions, we have in complex
representation [3]

EIðσ; tÞ ¼ e−iωt½ξIein1ωσ þ ηIe−in1ωσ�; ð25Þ

EIIðσ; tÞ ¼ e−iωt½ξIIein2ωðσ−LIÞ þ ηIIe−in2ωðσ−LIÞ�; ð26Þ

where ξI , ηI , ξII , ηII are constants. Analogously, using the
same relationship H ¼ �nE as previously, we have for the
magnetic field

HIðσ; tÞ ¼ n1e−iωt½ξIein1ωσ − ηIe−in1ωσ�; ð27Þ

HIIðσ; tÞ ¼ n2e−iωt½ξIIein2ðσ−LIÞ − ηIIe−in2ωðσ−LIÞ�: ð28Þ

We omit the immaterial common time-dependent factor
e−iωt, which is present in both (25) and (26) for the electric
fields and (27) and (28) for magnetic fields (see also [3])
and introduce the shorthand notation

δ1 ¼ n1ωLI; δ2 ¼ n2ωLII: ð29Þ

The boundary conditions at the junctions are, for the
electric field,

−
E0

ε1
þξIeiδ1 þηIe−iδ1 ¼−

E0

ε2
þξIIþηII; σ¼LI; ð30Þ

−
E0

ε2
þ ξIIeiδ2 þ ηIIe−iδ2 ¼ −

E0

ε1
þ ξI þ ηI; σ ¼ L; ð31Þ

and for the magnetic field,

n1ðξ1eiδ1 − ηIe−iδ1Þ ¼ n2ðξII − ηIIÞ; σ ¼ LI; ð32Þ

n1ðξI − ηIÞ ¼ n2ðξIIeiδ2 − ηIIe−iδ2Þ; σ ¼ L; ð33Þ

where E0 ¼ θ0Be ¼ gaγγa0Be as before.
Note: Similarly as in Ref. [1], in the Eqs. (25)–(33) we

have assumed ω ¼ ωa. That is, the frequency ω of the
forced oscillations has been taken to be the same as the
axion frequency ωa associated with the magnetic field Be.
This is the most natural approach. It is however possible to
take a more general approach, in which ω is assumed to be
arbitrary. It means that the terms with E0 in (30) and (31)
would need to be corrected with the factor eiðωa−ωÞt. The
reason for taking ω to be equal to the axion frequency ωa is
that in measurements the bulk of contribution comes from
values of omega around ωa. Indeed, the effective/measured
quantities are always averages over some period of time,
and the mentioned time-dependent oscillations give a deltaFIG. 1. Geometry and notation of the closed string.
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function when integrated over all times. If averaging over
any finite period of time, the contribution of the regions of
ω substantially different from ωa due to the fast oscillating
phase factor add up to zero (cf. the Lebesgue-Riemann
lemma). We assume that in [1] for the same reason also
such a value for ω has been chosen.
We introduce the symbol n12 for the refractive index

ratio,

n12 ¼
n1
n2

; ð34Þ

and consider the scheme0
BBBBB@

eiδ1 e−iδ1 −1 −1
1 1 −eiδ2 −e−iδ2

n12eiδ1 −n12e−iδ1 −1 1

n12 −n12 −eiδ2 e−iδ2

1
CCCCCA

0
BBBBB@

ξI

ηI

ξII

ηII

1
CCCCCA

¼

0
BBBBB@

E0ð 1ε1 − 1
ε2
Þ

E0ð 1ε1 − 1
ε2
Þ

0

0

1
CCCCCA: ð35Þ

Here the determinant D of the system matrix Mik can be
calculated to be

D ¼ detMik

¼ −8n12 þ 2ð1þ n12Þ2 cosðδ1 þ δ2Þ
− 2ð1 − n12Þ2 cosðδ1 − δ2Þ: ð36Þ

This is a real quantity. We can now calculate explicit
expressions for the field amplitudes ξI, ηI, ξII , ηII ,in the two
regions of the string. The expressions become complicated,
and will not be given here. There is one particular case of
interest, however, namely when n2 becomes large in
comparison to n1 so that the ratio n12 → 0. The lengths
LI and LII are assumed arbitrary. From Eq. (36) we obtain
in this case

Dðn12 → 0Þ ¼ 2 cosðδ1 þ δ2Þ − 2 cosðδ1 − δ2Þ
¼ −4 sin δ1 sin δ2; ð37Þ

and after some calculation we obtain, as an example, the
first of the amplitudes in the region 0 < σ < LI (note that
1=ε2 → 0),

ξI ¼
E0

2ε1

�
1 − i

1 − cos δ1
sin δ1

�
; n12 → 0: ð38Þ

It is noteworthy that this expression does not contain the
phase δ2 related to the length LII . It is of further interest to
consider the case where the length LI → 0, corresponding

to a kind of point defect sitting on an otherwise uniform
string. As δ1 → 0 in this case, we see from the last equation
that

ξI ¼
E0

2ε1
; n12 → 0; LI → 0; ð39Þ

which is a real quantity. If E0 ¼ 0, the axion-induced
forced oscillations vanish.
In conclusion, we have managed to show that the axionic

electrodynamic scheme is flexible enough to uphold sta-
tionary oscillations in the closed-string geometry.

V. CASIMIR EFFECT FOR THE
CLOSED STRING

We now set E0 ¼ 0, so that the forced axion-induced
oscillations vanish, and those remaining possible are only
the free oscillations. They correspond to the system
determinant D being zero. For a given set of geometric
quantities LI , LII , n1, n2, the eigenfrequencies ω are thus
found by solving D ¼ 0 using Eq. (36). Moreover, this
geometry makes it very natural to consider the Casimir
effect also, after applying an appropriate regularization.
This will be the topic of the present section. Actually, this
situation bears a considerable similarity with the Casimir
energy for the relativistic piecewise uniform string, as
mentioned earlier [3–9].
For clarity, we ought to clarify the difference between the

approach in Sec. IV and that of the present section in some
more detail. The two cases are physically different. In
Sec. IVassuming E0 ≠ 0, the system was exposed to forced
oscillations, primarily with frequency ωa (eventually with
arbitrary ω), giving expressions for the energy E as a
function of the refractive-index ratio n12 ¼ n1=n2. In the
present section the frequencies are no longer up to choice,
but are determined by the determinant condition D ¼ 0.
The Casimir effect is under stationary conditions linked to
discrete eigenvalues. As just mentioned, it is this condition
that is just analogous to that encountered in the study of the
Casimir effect for the piecewise uniform string. Before
embarking on the general case, it is convenient to start with
special cases of interest. The simplest case is when the
string is uniform, n12 ¼ 1, corresponding to n1 ¼ n2 ¼ n.
Then,

Dðn12 ¼ 1Þ ¼ −8ð1 − cosωnLÞ; ð40Þ

so that the eigenfrequencies become

ωN ¼ 2πN
nL

; ð41Þ

with N ¼ 1; 2; 3;… Assuming implicitly that we apply a
regularization procedure, for instance that of a cutoff
regularization, we can express the Casimir energy as
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Euniform ¼ 2 ×
1

2

X∞
N¼1

ωN; ð42Þ

where the factor 2 in front accounts for the degeneracy of
the left-right running modes. The result is (cf., for instance,
Ref. [3])

Euniform ¼ −
π

6L
: ð43Þ

The next special case of interest is when n12 → 0, the case
considered also in the previous section (note that the value
of n1 itself is arbitrary, not necessarily small). Then, from
Eq. (37) we see that the eigenfrequencies occur in two
branches,

ωN ¼ πN
n1LI

; ð44Þ

ωN ¼ πN
n2LII

; ð45Þ

again with N ¼ 1; 2; 3;… (there is no degeneracy in this
case, thus no extra factor 2). Introducing the symbol s for
the length ratio,

s ¼ LII

LI
; ð46Þ

we get in this case

Eðn12 → 0Þ ¼ −
π

24L

�
sþ 1

s
− 2

�
: ð47Þ

This Casimir energy is in general negative, but attains its
maximum value zero when the pieces have equal lengths,
s ¼ 1.
In the general case when n12 is arbitrary the situation is

more complex, but can yet be handled in a reasonably
simple way by making use of Cauchy’s argument principle.
This principle states that any meromorphic function gðωÞ
satisfies the equation

1

2πi

I
ω

d
dω

ln gðωÞdω ¼
X

ω0 −
X

ωpoles; ð48Þ

where ω0 are the zeros and ωpoles are the poles of gðωÞ
inside the contour of integration. This contour is taken to be
a semicircle of large radius R in the right half plane.
A definite advantage of this method is that the multiplicities
of zeros and poles are automatically included. The
argument principle was introduced in connection with
the Casimir effect by van Kampen et al. [45], and has
later been made use of extensively (cf., for instance,
Refs. [5,8,8,46]).

For the function gðωÞ it is natural to start from the
expression for D in Eq. (36), but we have to normalize it in
a convenient way. We first introduce a convenient para-
metrization which relates the pieces LI and LII to the total
length L,

LI ¼ pL; LII ¼ qL; pþ q ¼ 1: ð49Þ

Then, define the quantity A as

A ¼ 1

4
ð1þ n12Þ2 cos½ðn1pþ n2qÞωL�

−
1

4
ð1 − n12Þ2 cos½ðn1p − n2qÞωL�: ð50Þ

For a uniform string, n12 ¼ 1 ðn1 ¼ n2 ¼ nÞ, we have
A ¼ cosðnωLÞ. We now define gðωÞ as

gðωÞ ¼
���� 1 − A

A

����: ð51Þ

With this form, the big semicircle does not contribute to the
integration. Let ω ¼ iξ, where ξ is the frequency along the
imaginary axis. This Wick rotation implies that the quantity
A goes into

A → AðξÞ ¼ 1

4
ð1þ n12Þ2 cosh½ðn1pþ n2qÞξL�

−
1

4
ð1 − n12Þ2 cosh½ðn1p − n2qÞξL�: ð52Þ

By performing a partial integration along the imaginary
axis, and observing that the positive and negative frequen-
cies contribute equally, we obtain for the Casimir energy

E ¼ 1

2π

Z
∞

0

ln

���� 1 − AðξÞ
AðξÞ

����dξ: ð53Þ

With our adopted normalization, we can now test the results
for E calculated in special cases. To simplify the formalism
somewhat, we choose n1 ¼ 1, the lowest possible value for
n1 in nondispersive theory. Then, n2 ¼ 1=n12. Let us also
choose L ¼ 1. This implies that the expression for AðξÞ
becomes simpler,

AðξÞ ¼ 1

4
ð1þ n12Þ2 cosh

��
pþ q

n12

�
ξ

�

−
1

4
ð1 − n12Þ2 cosh

��
p −

q
n12

�
ξ

�
: ð54Þ
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A. The case of a uniform string

In this case AðξÞjx¼1 ¼ cosh ξ for all p, and we get

Euniform ¼ 1

2π

Z
∞

0

ln

���� 1 − cosh ξ
cosh ξ

����dξ: ð55Þ

The integral can be calculated analytically by means of
polylogarithm functions and is equal to

Euniform ¼ −3
π

16
: ð56Þ

It is worth noticing it is different from (43) by a multipli-
cative factor 9

8
. One could think that this is an inconsistency

as the calculations seem to refer to the same Casimir energy
E for the homogenous string. Actually, the two situations
are different: The energy of Eq. (43) is calculated for a
scalar field, so quantum numbers run from N ¼ 1 to
infinity, while Eq. (56) is calculated for the electromagnetic
field, where N ¼ 0 contributions are not zero. It is known
in electromagnetic Casimir problems for dielectrics that
both TE and TM polarizations contribute with zero fre-
quency [47]. Although the two cases are not directly
comparable, we note that the result of the integral (56)
is obtained from

Euniform ¼ −
1

2π
ð4Li2ð1Þ − Li2ð−1ÞÞ; ð57Þ

where the first term in brackets gives the energy (43), and
the second term gives the difference.

B. The case when p= 1=2

The string is then divided into two equal halves, the
refractive-index ratio n12 being arbitrary. Now

AðξÞjp¼1=2 ¼
1

4
ð1þ n12Þ2 cosh

��
1þ 1

n12

�
ξ

2

�

−
1

4
ð1 − n12Þ2 cosh

��
1 −

1

n12

�
ξ

2

�
; ð58Þ

and the Casimir energy is found by inserting this expression
into Eq. (53). It is not trivial to find an analytical solution
for the integral (53), so we calculated it numerically by a
PYTHON program. We show the resulting plot in Fig. 2.
It is worth noticing how the energy E is positive or

negative depending on the value of n12. For n12 ⪅ 0.15, E is
positive and has a maximum at n12 ≈ 0.04; for larger n12
the energy is negative until it reaches the value (56) for
n12 ¼ 1. In the following case for p → 0 we are discussing
the similarity with this case.

C. The case when p → 0

This case is of interest since it corresponds to a “particle”
sitting on a uniform string. We have now AðξÞjp→0 ¼
n12 coshðξ=n12Þ, and the Casimir energy becomes

E ¼ 1

2π

Z
∞

0

ln

���� 1 − n12 coshðξ=n12Þ
n12 coshðξ=n12Þ

����dξ: ð59Þ

As before, we assume that n12 lies in the interval
0 < n12 < 1. Figure 3 shows the same behavior except

FIG. 2. Graph of E versus n12 in the case 2, where n12 is
restricted to the region 0 < n12 < 1. We show that E can be
positive or negative depending on the value of n12: for n12 ⪅ 0.15,
E is positive and has a maximum at n12 ≈ 0.04; for bigger n12 the
energy is negative, until it reaches the value in Eq. (56)
for n12 ¼ 1.

FIG. 3. Graph of E versus n12 in the case 3, analogous to Fig. 2.
We show that E is positive or negative depending on the value of
n12: for n12 ⪅ 0.15, E is positive and has a maximum at
n12 ⪅ 0.04; for larger n12, the energy is negative until it reaches
Eq. (56) for n12 ¼ 1. The main difference from Fig. 2 relies on the
behavior of the function in the middle region, where the energy of
case 3 diminishes more slowly than in the case 2.
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from the middle region 0.15 ⪅ n12 < 1, where the energy
of case 3 diminishes slower than in case 2. These
similarities in the extremes for n12 ⪅ 0.15 and n12 ¼ 1
can be understood. It is easy to verify that the integrals in
Eqs. (58) and (59) give the same result for n12 ¼ 0, because
we have no fields due to boundary conditions and the
medium in region II behaving as a perfect mirror so we get
E ¼ 0. The same is valid for n12 ¼ 1, as the cases 1, 2, and
3 are equivalent when the string is uniform.

VI. CURVATURE-INDUCED ENHANCEMENT
OF THE PRODUCED ELECTRIC FIELD

AT A DIELECTRIC BOUNDARY

As our last topic, we will return to the cylindrical
haloscope idea, emphasizing a point that to our knowledge
has not been considered before. Namely, the extra produced
electric field Eγ occurring in the interior cylindric vacuum
region will necessarily be enhanced near the center of the
cylinder. The enhancement is solely caused by the curvi-
linear geometry. Obviously, this is a point that can be of
experimental interest. We assume the case when the optical
frequency is equal to the axion frequency ωa.
As before, assume there is an infinitely long cylindrical

vacuum region with radius R, surrounded by an exterior
massive dielectric environment of high refractive index.
There is moreover a strong uniform static magnetic fieldBe
in the z direction. We assume there are only the time-
varying axions present in the system, together with the
extra photons Eγ that they generate at the boundary. The
solutions of the Bessel equations in the exterior and interior
regions are cylinder functions. No propagation of electro-
magnetic modes are assumed to take place in the z
direction, and we can start from the usual electromagnetic
mode expressions for the axial electric and the azimuthal
magnetic field components in the exterior and interior
regions (cf. Ref. [44], page 525)

Eext
z ¼Hð1Þ

0 ðk2rÞaexte−iωt; Hext
θ ¼ in2H

ð1Þ0
0 ðk2rÞaexte−iωt;

ð60Þ

Eint
z ¼ J0ðωrÞainte−iωt; Hint

θ ¼ iJ00ðωrÞainte−iωt: ð61Þ

Here k1 is the wave number in the inner region 0 < r < R,

and k2 refers to the outer region r > R. Hð1Þ
p is the Hankel

functions of the first kind, of order p. Azimuthal symmetry
is assumed, so that only p ¼ 0 applies. Outgoing waves are
assumed on the outside, and on the inside a stationary wave
field is assumed, finite at the center.
In the present case the situation is different, as the

antenna-like property of the boundary r ¼ R causes radi-
ation to occur inward also. It is illustrative here to give
some of the mathematical background [44]. In general, the
complex Hankel functions of the first and the second kinds
are defined as

Hð1Þ
p ðρÞ ¼ JpðρÞ þ iNpðρÞ; Hð2Þ

p ðρÞ ¼ JpðρÞ− iNpðρÞ;
ð62Þ

where JpðρÞ and NpðρÞ are the real Bessel and Neumann
functions. For large arguments ρ ≫ 1 one has asymptoti-
cally, after multiplying with the common time factor e−iωt,

Hð1Þ
p ðρÞ ¼

ffiffiffiffiffiffi
2

πρ

s
eiðρ−

2pþ1
4

π−iωtÞ;

Hð2Þ
p ðρÞ ¼

ffiffiffiffiffiffi
2

πρ

s
e−iðρ−

2pþ1
4

πþiωtÞ: ð63Þ

This shows that Hð2Þ
0 is the correct cylinder function to use

in the present case. It describes waves produced at the
boundary r ¼ R, moving inward.
Now, replacing J0 byH

ð2Þ
0 in Eq. (61), the equation takes

the form

Eint
z ¼ Hð2Þ

0 ðωrÞainte−iωt;
Hint

θ ¼ iHð2Þ0
0 ðωrÞainte−iωt: ð64Þ

As before, k2 ¼ n2ω with n2 real. The coefficients aext and
aint are determined by the boundary conditions at r ¼ R.
Looking back at the treatment in Sec. III, we will require
the correspondence

Eγ
2 → Hð1Þ

0 ðk2RÞaexte−iωt;
Eγ
1 → Hð2Þ

0 ðωRÞainte−iωt: ð65Þ

We assume in the following that the radius R is so large that
the approximate versions (63) for the Hankel functions

are applicable on the boundary. As Hð1Þ0
0 ðρÞ ¼ iHð1Þ

0 ðρÞ,
Hð2Þ0

0 ðρÞ ¼ −iHð2Þ
0 ðρÞ, we can write the boundary condi-

tions as

Hð1Þ
0 ðk2RÞaext −

E0

ε2
¼ Hð2Þ

0 ðωRÞaint − E0; ð66Þ

n2H
ð1Þ
0 ðk2RÞaext ¼ −Hð2Þ

0 ðωRÞaint; ð67Þ

where E0 ¼ θ0Be, as before. The coefficients aext and aint
can then be found, and we can express the result as

Hð1Þ
0 ðk2RÞaext ¼ −

E0

n2

�
1 −

1

n2

�
; ð68Þ

Hð2Þ
0 ðωRÞaint ¼ E0

�
1 −

1

n2

�
; ð69Þ

in agreement with Eq. (21) obtained for plane geometry.
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We now move on to the central point in this analysis,
which is to observe the behavior of the inward-emitted
electric field Ez near the center of the cylinder. As the

magnitude of Hð2Þ
0 ðρÞ increases logarithmically as ρ → 0,

there will necessarily be an enhancement of the field in this
region. (Note that this enhancement is a pure focusing
effect caused by the boundary r ¼ R, and is not related to a
divergence of the source.) One might argue that the
accumulation of electric fields near r ¼ 0 would lead to
an unstable situation. We may avoid this, at least concep-
tually, by assuming there to be a perfect cylindrical
absorber of small radius r ¼ δ centered at the z axis, thus
allowing for stable conditions.
Letting the inward-generated field at r ¼ R be repre-

sented by Hð2Þ
0 ðωRÞ, we may for small values of the

argument ρ make use of the approximation

Hð2Þ
0 ðρÞ ¼ J0ðρÞ− iN0ðρÞ ¼ 1þ 2i

π
ln

2

γρ
; ρ≪ 1; ð70Þ

with γ ¼ 1.78107. We need only consider the magnitudes
of the field expressions. Thus, the magnitudes of the fields
measured at the minimum radius δ and at the cylinder
radius R are related by

���� Eγ
zðδÞ

Eγ
zðRÞ

���� ¼
���� H

ð2Þ
0 ðωδ=cÞ

Hð2Þ
0 ðωR=cÞ

���� ¼
���� 1þ

2i
π ln

2c
γωδ

Hð2Þ
0 ðωR=cÞ

���� ð71Þ

in physical units.
We make finally some numerical estimates. Take

R ¼ 20 cm as a reasonable value for the cylinder radius,
and choose for definiteness mac2 ¼ 10−4 eV for the axion
energy, which corresponds to ω ¼ 1.52 × 1011 rad=s.
Then, ωR=c ¼ 1.0 × 102, thus justifying use of the

approximation (63). We get jHð2Þ
0 ðωR=cÞj ¼ 0.080. With

the minimum radius chosen as δ ¼ 100 μm, corresponding
to ρmin ¼ ωδ=c ¼ 0.051, it is seen that also the low-
argument approximation (70) is justified. We obtain for
the ratio (71)

���� Eγ
zðδÞ

Eγ
zðRÞ

���� ¼ 12.5 × j1þ 2.0ij ¼ 28.0: ð72Þ

There occurs thus a considerable enhancement of the
amplitude in the neighborhood of the cylinder center.
While the numerical values above were chosen so as to
satisfy the mathematical approximations, there is clearly a
flexibility of choosing different parameters that can better
fit experimental conditions.
We emphasize again that this enhancement is solely a

geometrical focusing effect, being an extension of the
theory worked out earlier [1] for plane geometry. An
observation of the increased signal near r ¼ 0 may be of
experimental interest. The idea may be looked upon as an
alternative to the idea recently put forward in Ref. [2],
concerning the broadband solenoidal haloscope.
The situation discussed above is obviously an idealistic

one. In practice, an accurate positioning of the absorber
would be needed, and the impedance-matched absorber
should be with the property of having no reflection. One
may ask if there exist broadband frequency reflectionless
absorbers in the THz region that might be suitable for this
purpose. Perhaps the use of metamaterials turns out to be
useful in this context. We may mention here the paper of
Zhang et al. on a broadband THz absorber based on
dispersion-engineered catenary coupling in dual metasur-
face [48]. Indeed, the authors of [48] were able to obtain an
ultrabroadband THz absorber with a bandwidth range from
0.52 to 4.4 THz, thus just in the region of interest. Similar
investigations, in the GHz region, are given by Chen et al.
[49] and Chen et al. [50]. A general review on metamaterial
absorbers is recently given by Abdulkarim et al. [51].
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