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Abstract: Intellectual disability (ID) is a pathological condition characterized by limited intellectual

functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharma-

cological therapies are currently available. More than 1000 genes have been found mutated in ID

patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous

and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological

modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction.

Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from

the molecular level and moving toward higher levels of organization, i.e., cell compartment and

functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell

processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall

establishment of an effective network and consequently on the cognitive phenotype. Systems biology

(SB) approaches are more focused on the overall interconnected network rather than on individual

genes, thus encouraging the design of therapies that aim to correct common dysregulated biological

processes. This review summarizes current knowledge about cytoskeleton control in neurons and its

relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of

those findings into biomedical research.

Keywords: actin cytoskeleton; microtubules; GTPase signaling; small Rho GTPases; intellectual dis-

ability; neuronal networks; systems biology; Boolean modeling; protein:protein interaction network;

pharmacological modulation

1. Introduction

ID is a heterogeneous group of neurodevelopmental disorders (NDDs), usually di-
agnosed before the age of 18, characterized by significant limitations in both intellectual
functioning (IQ < 70) and adaptive behavior as expressed in conceptual, social, and practical
adaptive skills [1]. It affects 1–3% of the worldwide population, depending on the inclusion
criteria, with a higher prevalence among males [2–5]. Because of its high frequency, limited
treatability, and required lifelong care, ID has a dramatic social and economic impact.

ID is manifested as both syndromic and non-syndromic forms, depending on whether
the disability is associated with other symptoms, and it is clinically classified referring to
severity (mild, moderate, and severe) and penetrance (partially to fully penetrant) [1].
A phenotype-based cluster analysis was made by Kochinke et al., establishing gene–
phenotype relationships and revealing compromised molecular processes that underlie
specific ID subgroups. For example, genes involved in growth factor signaling pathways,
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such as the MAPK pathway, are enriched in comorbidities such as short stature and ec-
todermal anomalies as compared to all other ID-associated genes. Epilepsy, metabolic
dysfunctions, and myopathy are instead co-occurring within a cluster of genes enriched
with mitochondrial function. Microcephaly and behavioral abnormalities were linked to
two clusters comprising genes enriched with chromatin-related functions.

ID mutations can be autosomal–recessive, autosomal–dominant (mostly de novo), or
X-linked. The latter two are responsible for the higher prevalence of ID in males versus
females.

The causes of ID are heterogeneous and still to be completely defined: it has been esti-
mated that half of all cases are due to environmental factors such as intrauterine/neonatal
insults (preterm-birth complications, intrapartum-related factors such as hypoxic-ischemic
encephalopathy, and infections like meningitis and neonatal tetanus) and postnatal risk
factors such as severe malnutrition during infancy. The other half of the cases are associated
with genetic variants, highly heterogeneous, and only partially identified. According to
the SysID database [1], 1454 ID genes (excluding 1224 annotated as low-confidence ID
genes) have been identified, some of which code for proteins involved in the Rho GTPases
signaling pathway, such as OPHN1 (oligophrenin 1), ARHGEF9 (Cdc42 guanine nucleotide
exchange factor 9), FGD1 (FYVE, RhoGEF, and PH domain-containing 1), RAC1 (Rac family
small GTPase 1), and PAK3 (P21-activated kinase 3).

Based on a wealth of experimental data from animal models and cultured neurons, it
is widely accepted that cognitive deficits in ID patients are linked to altered neuronal net-
working, impaired synaptic plasticity, and excitation/inhibition unbalance in the cerebral
cortex and hippocampus, resulting in abnormal information processing [6–11].

2. From Genetics to Core Regulatory Modules

As genome-sequencing technologies improve and become accessible, more ID-causing
mutations will surely be identified in patients. However, our mechanistic understanding
of ID pathophysiology continues to lag behind the pace of gene discovery.

Considering the elevated number of risk genes and their heterogeneity, it is unlikely
that each identified mutation represents an independent pathway that, when misregulated,
causes a similar cognitive phenotype. On the contrary, it can be assumed that the iden-
tified mutations may converge to, or participate in, a limited number of core regulatory
intracellular modules that are beginning to be identified, although they are not yet fully
characterized. The dysfunction of different genes impacting the same process will result
in analogous dysfunctions of the process itself. Thus, multiple genetic causes converge
on a few common cellular outcomes and result in one overall phenotype. For this reason,
an integrated approach that collects a large set of data but focuses on single biological
processes is more suitable for furthering genetic diagnostics and developing treatment
strategies to target shared pathways rather than single genes.

Three key questions arise: (i) What are the common core regulatory mechanisms
dysregulated in ID? (ii) What are the key proteins (hubs; in gene network theory, hubs
are defined as nodes with a high number of edges compared with other nodes) and/or
posttranslational modifications at the basis of the cell endophenotype resulting in ID? (iii)
Do we have adequate tools to identify and study such hubs and biological processes?

Integrative methods and data meta-analyses, protein::protein interaction (PPI) net-
works, and transcriptomics analysis coupled with gene ontology (GO) [12,13] have been
successfully used to answer these questions, a general approach also known as SB. To
reorganize the wealth of mutational data into biologically coherent modules, Kochinke et al.
characterized the functional coherence and connectivity of a set of high-confidence ID genes
using GO-based annotations and PPI databases. Eighty-six percent of these genes were
found to be associated with at least one of 32 GO annotations, with the higher fold enrich-
ment detected for transcription and chromatin regulation, metabolism, WNT, Hedgehog,
MTOR, and MAPK signaling pathways, synaptic functioning, ubiquitination, cytoskele-
ton, and small GTPase signaling. Most ID proteins were also found to be co-expressed,
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especially in the hippocampus, and to physically interact with each other. Similarly, Liu
et al. [14] organized 63 prioritized high-confidence ID genes based on biological annota-
tions and PPI networks, showing that they tightly converge onto two cellular mechanisms:
chromatin modification/transcriptional regulation and synaptic function. Moreover, co-
expression networks revealed that the same genes are enriched in the cortex from the early
fetal to late mid-fetal stages.

A second approach used RNA-seq data derived from the blood of patients harboring
mutations in the ID genes CCNT2 (cyclin T2), CDK9 (cyclin-dependent kinase 9), and TAF2
(TATA-box binding protein associated factor 2), all encoding for transcription factors [15].
Differentially expressed genes were functionally enriched in the GO classes cytoskeleton
dynamics, GTPase activity, axonogenesis, synaptic plasticity, neuronal differentiation, and
chromatin regulation.

A third approach adopted a systematic analysis by building a highly stringent PPI
network from genes previously related to ID and global developmental delay (GDD) in
the Human Phenotype Ontology database [16]. This analysis identified six genes defined
as hubs and 166 brain-expressed proteins that have not been previously associated with
ID and GDD. The six hubs included CDC42 (cell division cycle 42) and RAC1, two known
cytoskeleton regulators, APP (amyloid β precursor protein), involved in proliferation, cell–
cell adhesion, migration, and synaptogenesis, EP300 (E1A binding protein p300), important
for genomic stability through chromatin regulation, TP53 (tumor protein p53), and GNB1
(G protein subunit β1).

Overall, the SB approaches reported above identified the following wide biological
processes on which ID genes converge (Figure 1A).

2.1. Chromatin Modification and Transcriptional Regulation

Many chromatin-modifying enzymes and other epigenetic regulators have been ge-
netically associated with ID and other syndromes in which ID is one of the major clinical
outcomes [17,18]. A catalog of 519 ID genes was enriched 2.7-fold in the GO terms chro-
matin binding, chromatin remodeling, and chromatin modification [1]. Mutations in
EHMT1 (euchromatic histone lysine methyltransferase 1) and SWI/SNF chromatin re-
modeling complex were shown to have a role in Kleefstra syndrome and Coffin–Siris
syndrome [19,20], respectively; mutations in KDM5C (lysine demethylase 5C), encoding an
eraser enzyme for di-methylated and tri-methylated histone H3 lysine 4, account for 2% of
X-linked ID (XLID) [21]; mutations in DDX3X (DEAD-box helicase 3 X-linked), coding for
an RNA helicase involved in post-transcriptional modifications, were found to be relevant
in ID because of its fundamental role in neurite outgrowth and dendritic spine formation
via modulation of RAC1 transcription [22]. Interestingly, analysis of co-expression networks
and genetic structural variants suggested a role for long non-coding RNAs in ID [23].

2.2. Signal Transduction

WNT, MTOR, and MAPK signaling pathways have been shown to play a central role
in brain development. Perturbations of these pathways have been implicated in multiple
neuropsychiatric disorders, including autism spectrum disorder (ASD) and ID [23–25]. Mu-
tations in elements of the MTOR signaling pathway can affect the synaptic transmission and
dendritic spine density, as shown by mutation of EIF4E (eukaryotic translation initiation
factor 4E), a regulator of MTOR (mechanistic target of rapamycin kinase) translation [26],
while loss-of-function (LOF) of upstream components of the MTOR pathway like PTEN
(phosphatase and tensin homolog) and TSC1/2 (TSC complex subunit 1 and 2, also known
as tuberous sclerosis 1 and 2) results in overactive MTOR signaling, causing dendritic
and axonal overgrowth, neuronal hypertrophy, and ASD-like behavioral patterns [27,28].
Similarly, mutations in WNT pathway components, like CTNNB1 (catenin β1) and CHD8
(chromodomain helicase DNA binding protein 8), are associated with ID, as CTNNB1
is involved in synaptic function and its mutations are associated with deficits in intra-
hemispheric connections, dendritic branching, long-term potentiation (LTP), and cognitive
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functions [29]. MAPK pathway dysregulation has been implicated in several syndromic ID
forms. For instance, mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase),
MAP2K1 (mitogen-activated protein kinase kinase 1, alias MEK1), MAP2K2 (alias MEK2),
and KRAS (KRAS proto-oncogene, GTPase) are associated with cardio-facio-cutaneous
syndrome, in which ID is present in the majority of patients [30]. The constitutively active
KRAS12V expressed in both forebrain excitatory and inhibitory neurons cause decreased
excitatory transmission, accompanied by reduced hippocampal LTP [31].

2.3. Ubiquitination System

Mutations in several ubiquitination system genes have been linked to ID. Gain and
LOF mutations in UBE3A (ubiquitin protein ligase E3A) have been associated with in-
creased risk of ASD and ID through dysregulation of WNT and MTOR pathways [32,33];
the X-linked E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing E3
ubiquitin protein ligase 1), which regulates both CTNNB1 and EIF4E, was associated to ID
and ASD [34,35]; CUL4B (cullin 4B) LOF mutations [36] cause defects in dendritic spines,
affecting their morphogenesis and plasticity in the hippocampus via the accumulation of
its target TSC1/2, and through the subsequent overactivation of the MTOR pathway [37].

2.4. Metabolism

The contribution of metabolic dysregulations to ID is highly dependent on the period
in which the defect becomes relevant (prenatal, early or late infancy, adolescence). For
example, alterations in oxidative phosphorylation during the prenatal period lead to
abnormalities in brain formation [38]. Creatine deficiencies, like the one caused by SLC6A8
(solute carrier family 6 member 8, alias SLC6A) mutations, cause a mild to moderate
ID phenotype [39]. A mutation prevalence study in 288 male patients presenting mild
to severe XLID found that 2.1% of them carried a SLC6A8 pathogenic mutation [40].
Disorders of glycine, serine, and biogenic amine metabolism may produce severe mental
and motor disturbances, having a connection with the molecular process of synaptic
function [38], as seen in the succinic semialdehyde dehydrogenase deficiency, which causes
γ-hydroxybutyric aciduria and disorder of GABA metabolism [41]. Finally, the excess or
unavailability of substrates (urea cycle disorders, organic acidurias) can cause a varying
severity of the ID phenotype [42].

2.5. Synaptic Function

Synaptic signaling pathways, such as the Rab and Arf pathways, are commonly altered
in ID. Genome-wide weighted co-expression network analysis showed specific enrichment
for synaptic functioning [14]. Mutations in genes coding for the GDI1 (Rab GDP dissocia-
tion inhibitor 1) regulator are known to be involved in ID [43]. The lack of GDI1 impairs
synaptic vesicles’ biogenesis and recycling in the hippocampus by defective endosomal-
dependent recycling, leading to alterations in short-term plasticity [44]. Numerous genetic
studies have shown that de novo missense variants of CACNA1A (calcium voltage-gated
channel subunit α1 A), coding the α-1A subunit of the P/Q-type voltage-dependent cal-
cium channel, cause congenital ataxia and ID [45,46]. De novo mutations of SYNGAP1
(synaptic Ras GTPase activating protein 1) are found in non-syndromic ID patients [47]. In
2019, more than 50 individuals with SYNGAP1-related forms of ID showing behavioral
abnormalities, including generalized epilepsy and ASD, have been reported [48]. Notably,
most mutations affecting synaptic functioning are linked with the cytoskeleton regulation,
in particular that of actin, required for the optimal trafficking of neurotransmitter vesicles
(presynaptically) and receptor turnover (postsynaptically) [49,50].

2.6. Cytoskeleton Dynamics and Rho GTPases Signaling

The altered control of cytoskeleton dynamics within developing neurons is a core
dysfunction in ID as well as in Down syndrome (DS), Rett syndrome, Fragile X syndrome
(FXS), and ASD. CDC42 and WASP, known regulators of actin filament polymerization and
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branching, have been identified as hubs in PPI networks based on differentially expressed
genes in DS [51]. Schizophrenia patients showed reduced actin polymerization in the brain,
justifying the altered dendritic spine morphology and the reduced spine density [52].

Imbalance of actin cytoskeleton regulation has also been reported in FXS, a condition
caused by an LOF mutation in FMR1 (FMRP translational regulator 1, also known as fragile
mental retardation 1) [53]. Transcriptomic analysis on animal models of Rett syndrome
revealed dysregulation of genes associated with cytoskeleton dynamics, actin polymeriza-
tion, and focal adhesion [54]. Recent evidence suggests that dysfunction of Rho GTPases
signaling contributes substantially to the pathogenesis of ASD: twenty genes encoding
Rho GTPases regulators and effectors have been listed as ASD risk genes, representing
2.4% of the total [55]. Studies on the regulation of actin cytoskeleton dynamics in stem cells
from ASD patients revealed altered dynamics of filament reconstruction upon activation
of the Rho GTPases RAC1, CDC42, or RHOA (ras homolog family member A), showing
shorter and less arborized neurites [56]. Expression and phosphorylation of cytoskele-
ton components were determined in the prefrontal cortex, hippocampus, and cerebellum
of autistic-like C58/J mice. They revealed a region-dependent altered expression and
phosphorylation patterns of Tau isoforms, associated with anomalous microtubule depoly-
merization and region-dependent changes in ADF/cofilin expression and phosphorylation
associated, in turn, with abnormal actin filament depolymerizing dynamics [57].

Overall, strong evidence indicates that cytoskeleton dynamics isaffected by mutations
detected in ID (Figure 1B) and other NDDs; in this review, we focus on cytoskeleton
regulation in physiological conditions and its dysregulation in the ID context.

Figure 1. Cont.
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Figure 1. Core regulations in intellectual disability. (A). Deregulated biological processes identified in ID. The scheme

illustrates the main intracellular processes identified via integrated analyses and their subcellular localization within

hypothetical excitatory (in purple) and inhibitory (in blue) neurons. For each process, a few representative ID genes are

reported. (B). GO terms [12,13] enrichment for ID-associated genes. The terms reported referring to biological processes

linked to cytoskeleton activity and regulation. Four databases provided the list of ID-associated genes: HPO (Human

Phenotype Ontology, in blue) [58], GEISINGER (in red) [59], OMIM (Online Mendelian Inheritance in Man, in green) [60],

and SysID (in orange) [1]. *, **, and *** indicate p < 0.05, <0.01, and <0.001 respectively. n.s., not significant.

3. Cytoskeleton Functions in Neuronal Development

During development, neurons migrate to find synaptic partners and establish the
complexity of the neuronal wiring. Neurite extension and navigation are possible thanks
to the formation of the growth cone, a sensory-motile structure at the tip of the growing
axon directed by chemotaxis [61]. The structure of the growth cone is characterized by a
dynamic periphery, in which actin filaments extend and retract to explore the surrounding
environment, and by a more stable center that forms the axonal shaft [62]. The interplay
between microtubule assembly and actin dynamics is then essential for axonal elonga-
tion. The polarity of microtubules, essential for the directional transport of proteins and
organelles [63], allows the sliding movement that supports axon formation, as tubulin
monomers are continuously transported at the leading edge of the growth cone [64].

Microtubules’ and actin filaments’ polymerization result from the addition of α/β-
tubulin and glomerular actin (G-actin), respectively [65,66]. The rate of filament elongation
and morphogenesis depends on the concentration and availability of monomers but also
on the presence of proteins that regulate the assembly/disassembly kinetics and those re-
sponsible for increasing the level of complexity for higher-order network structures [67,68].
While microtubules are the stiffest components of the cytoskeleton and can switch between
a stably growing state and a rapidly shrinking one [69], actin filaments are less rigid and
more organized, supporting the overall structure and allowing the motility of the leading
edge [70].
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It is assumed that growth cones are already provided with all the proteins necessary
for synaptogenesis during their searching for contacts [71]. The protrusion of filopodia
finger-like structures retract upon contact with the postsynaptic cell to form a vestigial
presynaptic terminal. These filopodia are characterized by a less tight bundle that is
more dynamic compared to the architectural stability of conventional filopodia [72]. This
dynamism is required to let the nascent spine be perfectly aligned between the presynaptic
active zone and the postsynaptic density (PSD). The juxtaposition is possible thanks to
the presence of cell adhesion molecules that provide perfect docking geometries between
the two membranes in the synaptic cleft [73]. The actin cytoskeleton is involved in spine
morphogenesis, as it controls changes in spine shapes. Immature dendritic spines show
linear and thin-like structures, but, after making contact with the presynaptic terminal,
actin filaments begin to cluster and enlarge the contact surface to form a mature spine
with a mushroom-like shape [74]. This is conceivable thanks to actin-related proteins that
generate branched filaments, such as the ARP2/3 complex, balanced with capping proteins,
such as CAPZ, to restrict their elongation and actin severing proteins, such as ADF/cofilin,
that enhance filament disassembly [75]. In addition, several scaffold proteins contribute to
the maturation of dendritic spines controlling actin dynamics, e.g., PSD95, SHANK, and
SRCIN1 (also known as p140Cap) [76–78].

Synapses are not static formations. They undergo changes in postnatal life, while
carrying out specific activities, e.g., learning, and in specific periods, e.g., synaptic pruning
during adolescence. In particular, synaptic plasticity takes place in an activity-dependent
manner: LTP is the result of strengthened synapses after high-frequency stimulation from
the presynaptic terminal, while long-term depression (LTD) is a decrease in synaptic activity
after low-frequency signals [79]. For LTP, the presence of NMDA-type glutamate receptors
in the membrane of the postsynaptic cells allows the insertion of new AMPA receptors
in response to high-frequency stimuli. The localization of these ionotropic, excitatory
glutamate receptors leads to an increase in the postsynaptic current and consequently to
a stronger connection in a positive feedback loop. Both AMPA receptors’ and NMDA
receptors’ trafficking relies on the actin cytoskeleton [80–83].

3.1. The Core Regulation of Actin Dynamics

Alterations in neurites and spine morphology, as well as in neuronal migration prop-
erties, have been consistently associated with ID and other NDDs that include ID as a
main and recurrent phenotype [84]. These developmental features rely on the proper
actin cytoskeleton dynamics, as neurite outgrowth, axonal migration, synaptogenesis, and
synaptic plasticity are the result of three main processes: fibrous-actin (F-actin) dynamics
(elongation/severing/branching), actin–myosin contractility, and F-actin coupling with
the extracellular matrix [85,86]. All three processes are regulated by a complex protein
network in which the Rho-family small GTPases RAC1, CDC42, and RHOA emerge as
hubs (Figure 2A).

This section illustrates in detail the key components of the signaling pathway respon-
sible for the control of the dynamics of the actin cytoskeleton, focusing on the biochemical
and cellular role of each protein and its links with neurological and cognitive deficits in
human and animal models.

3.1.1. Rho GTPases and Effectors

RAC1: RAC1 is a key regulator of neurite elongation, axon migration, synaptic
function, and synaptic plasticity, as it promotes neurite outgrowth [85], spine formation
and stabilization [87], and clustering of AMPA and NMDA receptors in the postsynaptic
membrane [83,88], and it is essential for long-term synaptic plasticity in the hippocampus,
which is the molecular mechanism at the base of learning and memory formation [89].
Formation and stabilization of integrin-dependent adhesion sites at membrane protrusion
require local RAC1 activation followed by local RAC1 inactivation [90]. Moreover, the
expression of constitutively active RAC1 inhibits NGF-induced neurite outgrowth [91],
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indicating that tight spatiotemporal regulation of RAC1 signaling is required for optimal
neurite outgrowth.

Seven de novo missense RAC1 variants have been reported in patients with mild to
severe ID [92,93]. Among them, two function as dominant-negative alleles (p.Cys18Tyr
and p.Asn39Ser), while one is a constitutively active allele (p.Tyr64Asp) [93]. For the
other mutations, it is not clear if they generate dominant-negative alleles or if they could
result in a condition of haploinsufficiency. Interestingly, the p.Cys18Tyr variant prevented
GTP-mediated activation of RAC1 and prevented overexpression of the mutated RAC1
from inhibiting the induction of LTP in the hippocampus [94].

In mice, the deletion of Rac1 in the ventricular zone of the telencephalon resulted
in ventricles enlargement, impaired migration of median ganglionic eminence-derived
interneurons, and impaired projection of commissural and corticothalamic axons. Inter-
estingly, primary Rac1-deficient neurons had increased neurites formation and branching,
indicating that RAC1 may be dispensable for neuritogenesis per se [95].

CDC42: CDC42 plays a critical role in neurite outgrowth [91], neuronal migration, and
dendritic spines formation and maturation [96]. It is also essential for the establishment of
neural polarity, as it promotes axon formation and elongation by regulating ADF/cofilin
activity at the growth cone and by promoting microtubules stability through DPYSL2
(dihydropyrimidinase-like 2) [97,98].

Eight CDC42 de novo missense mutations have been reported in 13 unrelated patients
showing several developmental abnormalities, including ID and dysmorphic facial fea-
tures [99–102]. In vitro studies and experiments involving C. elegans showed that these
mutations result in proteins with altered activity and/or impaired target interactions,
with some mutations acting as a gain of function and others acting as hypomorphs [101].
Notably, one missense mutation of CDC42, which has been described as a de novo mu-
tation in one individual and inherited mutation in three related individuals, resulted in
a hypomorphic allele associated with several developmental phenotypes, but not with
ID [101]. Overall, the complex and heterogeneous set of developmental abnormalities
associated with CDC42 mutations may reflect different functional consequences of the
single mutations.

Brain-specific Cdc42-KO mice die soon after birth and show a reduced cortical mass
and a widespread loss of axonal tracts [97]. The effects of CDC42 depletion in the postnatal
brain have been assessed using Cdc42flox/flox, Camk2a-CRE mice, in which CRE recombinase
is expressed in cortical pyramidal neurons and hippocampus starting from P16-P19. These
mice showed reduced spine density and LTP in the hippocampus, together with memory
deficits [103].

RHOA: Broadly speaking, the effects of RAC1 and CDC42 signaling on neurite out-
growth and dendritic spine formation are antagonized by RHOA signaling [85,90,104].
In particular, RHOA activity inhibits the formation of integrin-dependent adhesions [8],
promotes neurite retraction by activating myosin 2a [105–107], and negatively regulates
spine formation and maintenance [108].

Interestingly, KCTD13 (potassium channel tetramerization domain containing 13) and
CUL3 (cullin 3), two genes linked to NDDs, are involved in RHOA ubiquitination [109–111],
and RHOA inhibition rescues synaptic transmission, learning, and memory defects in
Kctd13-KO mice [112,113]. These findings are consistent with the notion that RHOA
dysregulation itself is linked to NDDs.

PAK1: Six PAK proteins have been identified in mammals. Based on their sequence
homology, PAKs are classified into two groups, the first including PAK1, PAK2, and PAK3
and the second including PAK4, PAK5, and PAK6. All six PAKs are expressed in the
nervous system with a different spatio-temporal pattern, with PAK1 and 3 being the most
studied in the context of neuronal function [114]. Active RAC1 and CDC42 bind to the CRIB
region of PAK1, relieving its autoinhibition and promoting its kinase activity [115–117].

PAK1 plays a critical role in both synaptic function and axon migration. Pak1-KO
mice show impaired LTP at hippocampal CA1 synapses, reduced enrichment of F-actin
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at dendritic spines, and impaired NMDA-dependent ADF/cofilin phosphorylation [118].
Both overexpression and inhibition of PAK1 in the mouse developing brain led to profound
defects in the migration of cortical neurons [119].

In humans, gain of function missense variants in PAK1 have been associated with
ID, macrocephaly, and seizures [120,121]. Interestingly, deficits in the PAK1 pathway may
partially explain the impaired migration of GABAergic neurons in DS patients [122].

PAK3: Differently from PAK1, which is activated by both RAC1 and CDC42, PAK3 is
mainly activated by CDC42 [123].

Mutations of PAK3 are associated with XLID [124,125]. Two PAK3 variants responsible
for severe ID and corpus callosum agenesis (G424R and K389N) were shown to suppress
kinase activity, increase the interaction between PAK3 and the guanine exchange factor
ARHGEF6 (Rac/Cdc42 guanine nucleotide exchange factor 6, also known as α-PIX), and
inhibit cell migration [124]. Another variant (R67C) inhibits the binding of PAK3 to CDC42,
impairing PAK3 activation [123].

In mice, the latter variant impacts cognitive functions and adult hippocampal neuro-
genesis [126]. Likewise, Pak3-KO mice have no apparent defects in the actin cytoskeleton,
but showed impaired hippocampal LTP, together with learning and memory deficits [127].

LIMK1: LIMK1 (LIM domain kinase 1) is a serine–threonine kinase that possesses
two LIM domains, a PDZ domain, and a C-terminal kinase catalytic domain [128]. LIMK1
is a key downstream target of RAC1 signaling and is activated by PAK1 by phosphory-
lation at the Thr-508 residue [129]. Dominant-negative LIMK1 inhibits RAC1-stimulated
lamellipodial protrusion [130], CDC42-induced filopodia formation, and RHOA-mediated
stress fibers formation in Cos-7 cells [131].

Neurons of Limk1-KO mice showed reduced growth cone size and altered dendritic
spine morphology [127].

In humans, heterozygous deletion of 27 genes, including LIMK1, results in Williams
syndrome, a complex developmental disorder characterized by ID and impaired long-term
memory [132]. Interestingly, Limk1+/− mice also showed impaired long-term memory,
together with reduced late-LTP in the hippocampus [133], indicating the LIMK1 haploinsuf-
ficiency in Williams syndrome patients may be causally related to memory defects. Unlike
LIMK1, which is specifically expressed in the nervous system and enriched at mature
synapses, LIMK2 is ubiquitously expressed [134,135], although it has been less studied.
In the neuronal context, there is evidence for the role of LIMK2 in neurite outgrowth and
neuronal migration [136,137].

ROCK: ROCK (Rho-associated coiled-coil containing protein kinase) is activated
by active RHOA [138,139]. Two ROCK isoforms exist: ROCK1, which is prominently
expressed in non-neuronal tissues such as liver and testis, and ROCK2, which is mainly
expressed in brain and skeletal muscle [140]. ROCK activity stabilizes actin filaments
by activating LIMK, which in turn inactivates ADF/cofilin [141,142]; on the other hand,
ROCK promotes actomyosin contractility and stress fibers formation by phosphorylating
MLC9 (myosin light chain 9) at Ser19, the same residue phosphorylated by MLCK (myosin
light chain kinase) [143], and by phosphorylating MBS, the regulatory subunit of myosin
light chain phosphatase [144,145]. A nonsense variant of ROCK was identified in an ID
patient [146].

The pharmacological inhibition of actomyosin contractility inhibits actin retrograde
flow and actin filaments’ severing, and promotes neurite outgrowth in the early stages
of neuronal polarization [147,148], indicating that RHOA opposes neurite elongation by
stimulating actomyosin contractility.

Notably, PAK1 inhibits MLCK [149], suggesting that RAC1 and RHOA act antagonis-
tically on actomyosin contractility.

Cdk5-p35: CDK5 (cyclin-dependent kinase 5) is activated by binding with the specific
protein partners CDK5R1 (cyclin-dependent kinase 5 regulatory subunit 1, also known as
p35) and CDK5R2 (also known as p39) [150,151]. CDK5 is important for neuronal migration,
neurite outgrowth, axon guidance, and synaptogenesis during brain development and for
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synaptic plasticity during adulthood [152,153]. CDK5 controls cytoskeleton remodeling by
regulating Rho GTPases and by stabilizing actin filaments through p35-mediated-binding to
F-actin [154]. CDK5 functions as a balance factor, as it can both facilitate RHOA-mediated
growth cone collapse or dendritic spine retraction through phosphorylation of NGEF
(neuronal guanine nucleotide exchange factor, also known as ARHGEF27) [155] or inhibit
these processes by phosphorylating CDKN1B (cyclin-dependent kinase inhibitor 1B), and
prevents RHOA activation by guanine exchange factors (GEFs) [156,157].

Similarly, CDK5 activates RAC1 via phosphorylation of KALRN (kalirin RhoGEF
kinase) to promote dendritic spine stabilization [158] or inhibits RAC1 activation via
phosphorylation of a RASGRF2 (Ras protein-specific guanine nucleotide releasing factor
2) or PPP1R9A (protein phosphatase 1 regulatory subunit 9A, also known as neurabin-
I) [159,160]. CDK5 can also indirectly regulate CDC42-mediated dendrite outgrowth and
extension via phosphorylation of NTR (neurotrophic receptor tyrosine kinase 2) [161].

In a mutation screening, novel silent mutations in CDK5 and p35 were identified:
three intronic variations and four heterozygous variations in a cohort of 360 patients with
non-syndromic ID, suggesting that these mutations and polymorphisms may contribute to
ID phenotype [162].

3.1.2. GAPs and GEFs

Small GTPases cycle between a GTP-bound active state and a GDP-bound inactive
state. The most important regulators of small GTPases are GTPase-activating proteins
(GAPs), which promote GTP hydrolysis, GEFs, which promote activation by inducing the
release of GDP and the binding of GTP, and guanine dissociation inhibitors, which prevent
GDP dissociation [163].

OPHN1: OPHN1 is an F-actin binding protein ubiquitously expressed in the central
nervous system in both glial cells and neurons, where it mainly localizes at the tip of
growing neurites, growth cones, and dendritic spines [164,165]. It shows GAP activity
towards RHOA, and, to a lesser extent, towards RAC1 and CDC42 [164,166].

In humans, LOF mutations in OPHN1 cause syndromic XLID, in which ID is associated
with epilepsy, ventriculomegaly, and cerebellar hypoplasia [167–169].

Ophn1-KO mice recapitulate some aspects of the human phenotype, such as social,
behavioral, and cognitive impairments, as well as ventricular enlargement and susceptibil-
ity to seizures [165,170]. At the cellular level, Ophn1-KO mice show hyperexcitability of
the hippocampal network, associated with a reduced number of hippocampal GABAer-
gic interneurons, impaired dendritic spine maturation, and short-term synaptic plastic-
ity [165,170]. Moreover, OPHN1-deficient human iPSCs showed decreased neurogenic
potential and impaired neurite elongation [171].

ARHGAP15: ARHGAP15 (Rho GTPase activating protein 15) is a RAC-specific GAP
protein, expressed in both excitatory and inhibitory neurons of the adult hippocampus
and cortex. It is a negative regulator of RAC1/RAC3 activity, and its loss results in the
hyperactivation of the RAC1 pathway [172]. ARHGAP15 comprises a pleckstrin homology
domain, which mediates its membrane localization and consequent activation via binding
to the PI3K product phosphatidylinositol 3,4,5-trisphosphate [172].

Arhgap15-KO mice showed altered neuritogenesis and synaptic density, resulting in in-
creased spike frequency and bursts, accompanied by poor synchronization. Its loss mainly
impacts interneuron-dependent inhibition. Adult Arhgap15-KO mice showed defective
hippocampus-dependent functions such as working and associative memories [172].

In humans, the loss of ARHGAP15 has been reported in a rare variant of Mowat–
Wilson disease, which is characterized by severe neurological deficits, severe ID, speech
impairment, and ASD [173,174].

NOMA-GAP: ARHGAP33 (Rho GTPase activating protein 33, also known as NOMA-
GAP) is a multi-adaptor protein with GAP activity, and it is a major negative regulator of
CDC42 [175]. NOMA-GAP has been shown to be essential for NGF-stimulated neuronal
differentiation through the inhibition of CDC42 signaling and regulation of the ERK5-
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MAPK signaling [175]. Noma-gap-KO mice showed hyperactivity of CDC42 and reduced
complexity of dendritic arborization [176].

TRIO: TRIO (trio Rho guanine nucleotide exchange factor) is a conserved Rho GTPase
regulator that is highly expressed during brain development [177,178]. It contains two
functional GEF domains: GEFD1, which regulates RAC1 and RHOG activity, and GEFD2,
which regulates RHOA activity. It is involved in actin remodeling and it is necessary for
cell migration and growth. TRIO controls, through RAC1 activation, cytokinesis, axon
outgrowth, and guidance and modulates excitatory synaptic transmission [7,179]. In the
developing hippocampal neurons, it limits dendrite formation without affecting the estab-
lishment of axon polarity. While Trio-KO has been shown to be embryonically lethal [180],
hippocampus- and cortex-specific Trio-KO and heterozygous mice show progressive defects
in learning ability, sociability, and motor coordination [178,181]. Whole-exome sequencing
studies identified TRIO de novo mutations in several patients affected by NDDs in which
ID appears as a prominent phenotype [182].

ARHGEF6 and ARHGEF7: ARHGEF6 and ARHGEF7 (Rho guanine nucleotide ex-
change factor 7, also known as βPIX) are GEFs of the Rho GTPases. ARHGEF6 has been
shown to be specific for RAC1, activating and targeting it to membrane ruffles and focal
adhesions [183]. On the other hand, Arhgef6-KO mice showed a significant reduction in the
activity of both RAC1 and CDC42, but only at the hippocampal level [184].

Both proteins share an SH3 domain, a prerequisite for the binding with PAK1, PAK2,
and PAK3 [185]. Santiago-Medina et al. [186] stressed the importance of the subtle reg-
ulation exerted on adhesion dynamics and membrane protrusions by PAK–ARHGEF6
and PAK–ARHGEF7 interactions during neurite outgrowth, as the partial inhibition of the
interaction robustly stimulates neurite outgrowth and growth cone point contacts’ turnover,
whereas the complete inhibition freezes it stabilizing adhesions.

Both ARHGEF6 and ARHGEF7 present the Dbl homology and pleckstrin domains,
which possess RhoGEF activity. Moreover, an ARHGEF7 transcriptional isoform presents a
PDZ target at the C-terminal, functional to the binding with PDZ protein, e.g., SHANKs
(SH3 and multiple ankyrin repeat domains), at the excitatory synaptic sites [187].

Mutation screening of 119 patients with nonspecific ID revealed a T > C variant in
the first intron of ARHGEF6 (c.166-11T > C) [188,189], although the pathogenicity of this
specific variant was then questioned [190]. In addition, a male patient with severe ID,
carrying a molecularly unbalanced translocation (X;21) disrupting ARHGEF6, was then
identified [188].

Arhgef6-KO mice showed an increased dendritic length of hippocampal pyramidal
neurons, reduced spine synapses, an overall reduction in early-phase LTP, and an increase
in LTD, together with impaired spatial and complex learning and less behavioral control in
mildly stressful situations, resembling the human ID phenotype, thus validating Arhgef6-
KO mice as a proper ID animal model [184].

For what concerns ARHGEF7, the case of two siblings presenting generalized epilepsy
and ID was reported, consequently to the 13q34 deletion. This genomic locus contains
two protein-coding genes, SOX1 (SRY-box transcription factor 1) and ARHGEF7, thereby
supporting the possible contribution of ARHGEF7 haploinsufficiency to the pathogenic
phenotype [191].

Arhgef7-KO mice showed embryonic lethality at E9.5; for this reason, the in vivo role
of ARHGEF7 was investigated through heterozygous or cortex-specific KO mice [192,193].
These models demonstrated that ARHGEF7 is essential in both neuritogenesis and synap-
togenesis during cortical and hippocampal development, since its loss results in extensive
loss of axons and reduced dendritic complexity, as well as in a decrease of synaptic density.
Furthermore, Arhgef7 heterozygous mice exhibited impaired social interactions [192].

ARHGEF9: ARHGEF9 is a brain-specific GEF that specifically activates CDC42 [194].
It regulates, through the recruitment and activation of CDC42, the clustering of GPHN
(gephyrin) at postsynaptic sites [195]. GPHN clusters, in turn, promote postsynaptic
clustering of glycine receptors and GABAA receptors [196].
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Arhgef9-KO mice showed reduced GABAA receptor clusters at dendritic spines, en-
hanced LTP, increased levels of anxiety, and impaired spatial learning [197].

In humans, ARHGEF9 mutations cause an XLID syndrome associated with seizures
and facial dysmorphism [198–200].

TIAM1: TIAM1 (TIAM Rac1 associated GEF 1) is a GEF protein highly expressed in
the developing nervous system that activates RAC1 and, to a lesser extent, CDC42 and
RHOA [201,202]. RAC1 activation by TIAM1 is required for neurite outgrowth induced
by NGF/NTRK1, BDNG/NTRK2, and Ephrin/Eph signaling [203,204]. Moreover, sup-
pression of TIAM1 activity leads to defects in axonogenesis and radial migration [205,206].
TIAM1 is also required for spine formation and morphogenesis in response to various
extracellular signals. In particular, Eprin-B1/EphB2 signaling promotes spine development
by activating RAC1 through TIAM1, while NMDA-mediated calcium influx at glutamater-
gic synapses activates a CAMK2 (calcium/calmodulin-dependent protein kinase II)-TIAM1
complex that persistently activates RAC1, leading to LTP and spine enlargement [207,208];
interestingly, knock-in mice harboring a mutation that inhibits the formation of the CAMK2–
TIAM1 complex showed reduced RAC1 activity and memory deficits [209].

TIAM1 activity seems to be exquisitely relevant for granule neurons of the dentate
gyrus, as TIAM1 knock-down (KD) in these cells led to a decreased number of glutamatergic
synapses expressing AMPA receptor and to an increased spine length, while no effect was
observed upon TIAM1 KD in CA1 neurons [210].

Consistent with this finding, Tiam1-KO mice showed defective maintenance of the
dendritic arborization and impaired stabilization of dendritic spines in the granule neu-
rons [211]. Strikingly, these mice showed enhanced contextual learning and memory [211].
For this reason, and considering that TIAM1 is overexpressed in DS patients, the authors of
this study speculated that elevated levels of TIAM1 contribute to the learning and memory
deficits associated with DS.

3.1.3. Actin Binding Proteins

The effects of RAC1, CDC42, and RHOA on actin dynamics are mediated by actin-
binding proteins (ABPs), which are classified according to their activity: actin depolymer-
ization, such as ADF/cofilin, branching, such as ARP2/3, severing, such as GSN (gelsolin),
bundling, such as fascin family proteins, and nucleotide exchanging, such as profilin family
proteins [68].

ADF/cofilin: LIMK1 inhibits ADF/cofilin proteins by phosphorylation at the Ser3
residue [212,213].

This protein family is composed of three isoforms: DSTN (destrin, actin depolymeriz-
ing factor, also known as ADF), CFL1 (cofilin 1), which is the most expressed in the central
nervous system, and CFL2, which is specifically expressed in muscle tissue [214,215]. Since
most studies addressing the roles of ADF/cofilin do not specify the isoform and most
antibodies do not differentiate between these isoforms, this protein family is referred to
simply as ADF/cofilin.

ADF/cofilin binds to ADP-actin, increasing the depolymerization rate of the pointed
end and causing the severing of actin filaments [131,216]. This leads to an increase in
G-actin availability and the number of barbed ends, resulting, at physiological ATP-actin
concentrations, in actin reorganization and promoting axon elongation [97,217,218]. Impor-
tantly, not only the balance but also the cycling between the active and inactive forms of
ADF/cofilin plays a role in modulating actin dynamics [97,219,220].

SSH: Proteins of the Slingshot family (SSH1-3 in mammals) dephosphorylate ADF/cofilin
at Ser3 [221], thereby controlling actin dynamics and reorganization. SSH proteins medi-
ate NGF-induced neurite extension. SSH1 and SSH2 KD suppress neurite extension by
increasing the concentration of the non-phosphorylated form of ADF/cofilin [222].

YWHAZ: YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase ac-
tivation protein zeta, also known as 14-3-3 ζ) is an adaptor protein that affects actin
dynamics via the stabilization of phospho-ADF/cofilin [223] and the regulation of SSH and
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LIMK1 [224]. Additionally, it has been shown that 14-3-3 ζ inhibits the ubiquitin-mediated
degradation of δ-catenin [225], a component of the cadherin–catenin cell adhesion complex,
which in turn inhibits RHOA and activates CDC42 and RAC1 [226–228].

14-3-3 ζ-KO mice present reduced spine density, stressing the importance of this
protein in the regulation of the actin cytoskeleton [229].

ARP2/3: The ARP2/3 complex is a heptameric complex formed by ACTR2 (actin-
related protein 2, also known as ARP2), ACTR3 (also known as ARP3), and ARPC1-5
(actin-related protein complex 1–5) [230]. It binds existing actin filaments and initiates
the formation of new filaments that branch off the existing filaments at an angle of about
70◦ [231]. The axon guidance molecules VEGF and SEMA3A affect actin dynamics at the
growth cone by increasing and decreasing ARP2/3 activity, respectively [232,233]. Thus,
ARP2/3 is essential for neuronal migration [74] but also for spine formation, maturation,
and maintenance [234,235].

The postnatal loss of ARPC3 in forebrain excitatory neurons leads to progressive
spine loss and defective LTP-induced spine volume expansion [235]. Moreover, ARP2/3
activity is required for the maturation of filopodia into spines and for the recruitment at the
postsynaptic membrane of AMPA receptors, a process that is essential for the functional
maturation of excitatory synapses [236]. The activity of ARP2/3 is also controlled by PAK1,
which can phosphorylate ARPC1 promoting F-actin polymerization and branching [237].

NPFs: The activity of nucleation-promoting factors (NPFs) is required to activate
the nucleation and branching activity of the ARP2/3 complex. These factors include
WASP (Wiskott–Aldrich syndrome protein), N-WASP (neural WASP), the WAVE regulatory
complex (WRC) formed by WASF1 (WASP family member 1), CYFIP1 (cytoplasmic FMR1
interacting protein 1), ABI2 (abl interactor 2), NCKAP1 (NCK associated protein 1), and
BRIK (BRICK1 subunit of SCAR/WAVE actin nucleating complex), or paralogues of these,
and the WASH complex, formed by WASHC1-5 (WASH complex subunit 1–5) [230,238].
The activity of NPFs is controlled by Rho GTPases; in particular, active RAC1 and CDC42
activate N-WASP and WASP, respectively, by binding to their CRIB region [239,240]. Active
RAC1 has also been shown to activate WRC [241]. Notably, dominant-negative WASF1
abolishes the formation of RAC1-dependent lamellipodia and RAC1-dependent neurite
extension [242].

Strong genetic evidence indicates that alterations in the NPFs-ARP2/3 signaling
module may lead to ID: copy number variants of the chromosomal region 15q11-q13, en-
compassing CYFIP1, were identified in patients with ASD and ID [243], with several studies
indicating a pathogenic role for both increased and decreased CYPFI1 dosage [244–246];
21 de novo missense CYPFI2 variants, most of which were shown to impact on WRC-
mediated actin remodeling, have been reported in 37 ID patients [247,248]; WASHC4 has
been identified as an autosomal recessive ID gene [249,250]; NCKAP1 variants predicted to
be deleterious for protein function have been associated with ID [251]; ABI2 is a candidate
autosomal recessive ID gene [252]; de novo splice site mutations of WASHC5 were shown
to cause Ritscher–Schinzel/3C syndrome, a disorder characterized by several phenotypes,
among which ID [253].

GSN: GSN (gelsolin) acts by severing actin filaments and capping free barbed ends [254].
Its depletion in hippocampal neurons increases the number of filopodia by reducing their
retraction [255]. GSN is recruited to dendritic spines following LTD [256], presumably
by the increase in calcium concentration [257], suggesting its involvement in synaptic
plasticity.

FMN2: FMN2 (formin 2) is an ABP that belongs to the family of formin homology (FH)
domain proteins. Since it is involved in the maturation of tip adhesion, it is essential for
the generation of traction forces by filopodia and the stabilization of the growth cone [258].
By binding to the actin cytoskeleton, it functions as a clutch with the extracellular matrix at
adhesion sites. FMN2 was found localized to ventral actin stress fibers in fibroblasts [258]
and punctae along dendrites in neurons [259].
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Notably, FMN2 truncating mutations in two consanguineous families lead to decreased
spine density and non-syndromic autosomal-recessive ID [259].

Profilins: Profilin family proteins (PFN1-4) promote the conversion of ADP-actin into
ATP-actin, thus providing the actin monomers necessary to sustain barbed end elonga-
tion [260]. In striking contrast, low levels of profilin can also inhibit actin polymerization
by sequestering actin monomers [261–263]. Profilins may have a role in the stabilization
of spine morphology [264], and it is involved in the regulation of actin polymerization in
growing neurites, as both overexpression and expression of dominant-negative profilin
lead to impaired neurite outgrowth [265].

SHTN1: PAK1 phosphorylates SHTN1 (shootin 1), promoting its interaction with
F-actin [266]. SHTN1 physically interacts with L1-CAM and F-actin, thus allowing the
force generated by actin retrograde flow to be transmitted to the extracellular matrix and
coupling actin polymerization with neurite elongation [267,268].

Interestingly, SHTN1 mRNA was found to be consistently down-regulated in blood
samples of ID patients harboring mutations in the transcription factors CCNT2, CDK9, and
TAF2 [15].

Figure 2. Cont.
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Figure 2. Proteins involved in the regulation of neurite elongation. (A). PPI network of the best-characterized components

of the Rho GTPase signaling RAC1, RHOA, and CDC42 realized with Cytoscape [269]. Boxes represent the nodes (proteins),

while the arrows indicate the edges (interactions). GTPases are reported in green, their GEFs and GAPs in red, their

effectors in blue, and actin-binding or actin-modifying proteins in purple. Edges can be either “activatory” (arrowheads) or

“inhibitory” (blunted lines). The “neurite elongation” node represents the phenotypic outcome. Acronyms are spelled out in

the text. (B,C). Expression trajectories of ID-related genes in the human dorsolateral prefrontal cortex (B) and hippocampus

(C). Quantile normalized gene-level expression values (log2 transformed) inferred from Human Brain Transcriptome

database [270] were plotted against logarithmic age in days. The pattern was summarized by the smoothed curves of the

expression values. Dashed lines divide periods of development and the solid line separates prenatal from postnatal periods.

Individual genes are color-coded, legend in panel (C).

3.2. Synaptogenesis and Synaptic Plasticity

A set of mutations identified in ID specifically affect spine development and mor-
phological changes during maturation. In this section, we summarize the most relevant
findings.

KALRN: KALRN (kalirin) is a GEF for RAC1 [271]. In mice, KALRN expression
increases at two weeks of age, a key time for synaptogenesis [272]. Kalrn-KO mice showed
decreased synaptic density in the apical dendrites of CA1 hippocampal neurons, along
with learning deficits [273].

PPP1R9A and PPP1R9B: PPP1R9A (neurabin -I) and PPP1R9B (also called neurabin-II
or spinophilin) show F-actin cross-linking and phosphatase activity. They are enriched in
dendritic spines [274] and are likely to influence dendritic spine morphology and function
through their interaction with F-actin [275].

Ppp1r9b-KO mice have a reduced number of filopodia and an increase in spine den-
sity [276].

ARHGEF2: Neurabin-I and Neurabin-II interact with the Rho GEF ARHGEF2 (also
known as Lfc). This interaction selectively regulates Rho-dependent organization of F-actin
in spines; ARHGEF2 is maintained inactive/sequestered through the interaction with
microtubules and targeted to dendritic spines as a result of the interaction with Neurabin-I
and Neurabin-II [277].

ARHGEF2 mutation leads to reduced activity of the RHOA pathway. A homozy-
gous frameshift mutation in the ARHGEF2 is associated with ID, midbrain–hindbrain
malformation, and mild microcephaly in a consanguineous family of Kurdish–Turkish
descent [278].

SHANK: SHANK family proteins are higher-order organizing scaffold proteins of
the PSD. They are known to interact with the ABP DBNL (drebrin like) in the PSD to
promote the reorganization of actin after stimulation [279]. SHANK proteins activate RAC1
signaling at the PSD by recruiting ARHGEF7 through its PDZ C-terminal domain [187].
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Indeed, heterozygous mice lacking a SHANK3 C-terminus have an impaired actin poly-
merization and a consequent decrease of NMDA receptor delivery to the postsynaptic
plasma membrane [280]. SHANK3 can also directly interact with the ARP2/3 complex
to increase F-actin level by decapping the barbed ends of actin filaments, thus promoting
filament extension [281]. A large variety of alterations in SHANK proteins are grouped
as “shankopathies” and are linked with NDDs characterized by alterations in the actin
cytoskeleton network [282].

It has been proposed that in the 22q13 deletion syndrome, an NDD characterized by
ID, the disruption of SHANK3 is responsible for the clinical disorder [283–285].

CAMK2: The activity of CAMK2, which is stimulated upon the increase in intracel-
lular calcium concentration, is essential for AMPA receptor delivery to the membrane of
silent synapses and SYNGAP activation [48,286]. Whole-exome sequencing identified 19
rare de novo variants of CAMK2A and CAMK2B in 24 unrelated ID patients [287].

3.3. The Role of Microtubules in ID

Microtubules are basic elements of the cytoskeleton and actively participate in most
neurodevelopmental processes. Neurons depend on microtubule dynamics for cell division,
axon guidance, intracellular trafficking, and synapse formation [288]. They are constituted
by heterodimers of α- and β-tubulin that associate to form a hollow cylinder. The stable to
dynamic microtubules ratio is significantly higher in the neurite that is meant to form the
axon as compared to the other neurites, indicating that stable microtubules are essential for
axon specification [289,290]. Microtubules’ polarity is required to deliver various cargoes
to the correct location within the cell to assure axonal trafficking and to maintain the correct
neuronal morphology. Microtubules also play a crucial role in spinogenesis, as dynamic
microtubules penetrate dendritic spines to modulate their morphology by interacting with
a large variety of microtubule-associated proteins [291–293]. Some of them act directly on
microtubules to affect their assembly or stability, while others act indirectly by modulating
tubulin level or intracellular transport; for example, severing proteins are essential to
increase tubulin monomers’ availability and to reorganize microtubules’ scaffold archi-
tecture [294], while microtubule plus-end tracking proteins (+TIPs) are responsible for
the regulation of microtubules by interacting with the plus ends and by functioning as
a scaffold for other regulatory proteins [295,296]. Cytoplasmic linker proteins (CLIPs), a
subgroup of +TIPs, are fundamental for microtubule invasion into the growth cone leading
edge and into nascent dendritic spines [297,298].

Many microtubule-associated genes are linked to ID and to other NDDs in which
ID appears as a prominent and recurrent phenotype: ADNP mutations are associated
with ASD; ASPM, MCPH1, STIL, CDK5RAP2, CENPJ, PRUNE1, and KIF20 mutations are
associated with microcephaly; TUBB2B mutations are associated with polymicrogyria; LIS1,
DCX, and TUBA1A are linked to lissencephaly [288].

KIF1A, KIF4A, KIF5C, and KIF7: Kinesins are motor proteins that move along micro-
tubules in an anterograde fashion, transporting their cargo towards microtubules’ plus end.
KIF1A (kinesin family member 1A) is selectively expressed in neurons, and its partial or to-
tal depletion results in the disruption of axonal and dendritic transports [299]. A dominant
de novo missense mutation in KIF1A was found in a patient with non-syndromic ID [300],
and other de novo mutations were found in six patients affected by severe early-infantile
neurodegenerative syndrome [301]. Next-generation sequencing revealed mutations in
other kinesin family members such as KIF4A and KIF5C for which the causative role in ID
is supported by evidence obtained using KO models [302]. Mutations in KIF2A and KIF5C
were reported in patients with malformations of cortical development presenting ID [303],
and homozygous mutations in KIF7 were found in patients with ciliary disorders in which
ID is part of the phenotype [304].

KIFBP: KIFBP (kinesin family binding protein) is a modulator of kinesins activity.
Homozygous nonsense mutations of KIFBP are associated with Goldberg–Shprintzen
syndrome, which is a form of syndromic ID [305].
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CHAMP1: CHAMP1 (chromosome alignment maintaining phosphoprotein 1) is a zinc
finger protein that regulates chromosome segregation during mitosis. De novo CHAMP1
mutations are associated with GDD and ID [306–308].

CLIP1: CLIP1 (CAP-Gly Domain Containing Linker Protein 1) is a +TIP that regulates
microtubule growth and bundling. Next-generation sequencing revealed an autosomal
recessive form of ID associated with a nonsense variant in CLIP1 in an Iranian consan-
guineous family [309].

KATNAL1: KATNAL1 (katanin catalytic subunit A1 like 1) is one of the two major
catalytic subunits of the microtubule-severing enzyme Katanin, together with KATNAL2.
Three unrelated patients with heterozygous de novo deletions encompassing 13q12.3
presented moderate ID phenotype; since this region contains KATNAL1, this gene has been
proposed as a candidate ID gene [310].

MID1 and MID2: MID1 (midline 1) and MID2 are E3 ubiquitin ligases that have a
role in microtubule stability and organization. MID1 mutations are associated with Opitz
G/BBB syndrome, in which mild to severe ID can appear [311]. A MID2 missense mutation
that disrupts its interaction with microtubules is associated with XLID [312].

CDKL5: CDKL5 (cyclin-dependent kinase-like 5) is a kinase protein essential for brain
development. CDKL5 interacts with IQGAP1 (IQ motif containing GTPase activating
protein 1), through which it forms a functional complex with its effectors RAC1 and CLIP1,
MAPRE2 (microtubule-associated protein RP/EB family member 2), MAP1S (microtubule-
associated protein 1S), ARHGEF2, and SHTN1 [313–315], thus stressing its regulation
over cytoskeleton dynamics, in particular over microtubules. CDKL5 mutations cause
the so-called CDKL5 deficiency disorder in which severe ID is one of the most important
clinical manifestations [316].

4. Cytoskeleton in Non-Neuronal Cells and ID

Astrocytes, oligodendrocytes, and microglia cells express a fair fraction of ID genes, in-
cluding those involved in Rho GTPases signaling and cytoskeleton organization (Figure 3).
For this reason, and considering that these cells contribute to cognitive functions, it is
reasonable to hypothesize that mutations in these genes might lead to ID not only by
affecting neuron functions but also in a non-neuron autonomous manner. In the following
section, we will review some of the literature on this subject.

Astrocytes: It is well established that astrocytes play a role in learning and memory
formation [317,318]. For example, inhibition of lactate release by astrocytes impairs long-
term memory formation [319], while chemogenetic or optogenetic activation of astrocytes
in the CA1 region of the hippocampus during learning enhances memory formation [320].

The actin cytoskeleton is involved in many aspects of astrocyte physiology and func-
tion, such as the plasticity of the perisynaptic astrocytic processes [321], small membrane
protrusions that contact synapses and regulate synaptic transmission [322], glial scar for-
mation [323,324], and vesicle trafficking [325].

Therefore, one might speculate that defects in cytoskeleton dynamics may lead to ID
by affecting astrocyte functions. In line with this hypothesis, astrocytes of Ophn1-KO mice
are less ramified and show altered migration and glial scar formation [326]. Moreover,
mice deficient for ARNTL (aryl hydrocarbon receptor nuclear translocator like, also known
as Bmal1), an essential component of the molecular clockwork driving circadian rhythms,
showed severe cognitive deficits, associated with a reduction of perisynaptic astrocytic
processes covering hippocampal mossy fiber synapses, which is probably due to a reduction
of RHOA activity in Arntl-deficient astrocytes [327].

The generation of astrocyte-specific Ophn1-KO and Arntl-KO mice may elucidate the
non-neuron autonomous contribution of these proteins.

Oligodendrocytes: Oligodendrocytes, the myelin-forming cells of the central ner-
vous system, are essential to establish neuronal networks with proper functions [328,329].
Myelination of newborn synapses is a key process during learning and memory forma-
tion, indicating a role for oligodendrocytes in cognitive functions [330,331]. The actin
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cytoskeleton participates in myelination in two steps: first, actin filaments’ assembly drives
oligodendrocytes’ branching, and second, their depolymerization induces myelin wrap-
ping [332]. This regulation underlies the importance of actin dynamics in oligodendrocytes,
with actin-depolymerizing proteins like GSN and ADF/cofilin being among the most
abundant transcripts in oligodendrocytes [333,334]. Myelin defects have been reported in
DS patients [335,336] and non-syndromic XLID patients with mutations in PAK3 [337,338].
PAK3 is highly expressed in oligodendrocyte progenitor cells, and it is essential for their
differentiation into mature oligodendrocytes [339–341]. Notably, P14 (but not P60) Pak3-KO
mice showed myelination defects of the axons of corpus callosum [341], a phenotype
that is reminiscent of corpus callosum agenesis observed in ID patients harboring PAK3
mutations.

Microglia: Microglia cells, the resident innate immune cells of the brain, are involved
in the regulation of brain development by promoting both synaptic pruning and synapse
formation [342]. Interestingly, mice with autophagy-deficient microglia showed impaired
synaptic pruning and, consequently, altered brain connectivity, leading to social and
behavioral defects [343]. Since microglia engulf synapses during pruning [342,344] and
considering that engulfment requires cytoskeleton rearrangements, it would be interesting
to investigate the role of cytoskeleton dynamics in synaptic pruning.

Figure 3. Cytoskeleton-related ID gene expression in non-neuronal cells. Venn diagrams created with the multiple list

comparator tool by molbiotools [345] showing the intersections between the lists of primary ID genes reported in the SysID

database (red) [1], genes associated to the GO terms [12,13] “regulation of GTPase activity” and “cytoskeleton organization”

(blue), and genes expressed in astrocytes (on the left), oligodendrocytes (at the center), and microglia (on the right) (green).

The list of genes expressed in non-neuronal cell types was obtained from an RNA-seq dataset [346].

5. In Silico Modeling of Cytoskeleton Regulation

SB approaches complement the wealth of experimental and mutational data derived
from small-scale studies and high-throughput methods with computational and mathe-
matical modeling to reconstruct the dynamic organization of a specific cellular regulatory
network, a task that is often out of reach of molecular technologies. Moreover, compu-
tational models can be implemented with existing data to raise predictions of how the
biological system would behave in particular conditions. Our ability to model a complex
regulation of connected elements in silico has largely improved, allowing us to:

- simultaneously consider a large number of interacting proteins and link their relation-
ships with emerging phenotypes

- elaborate hypotheses and design new experiments
- search for biomarkers and druggable targets for translational purposes

SB studies are performed with bottom-up (dynamic models such as Boolean models)
or top-down (statistical analyses and static networks) procedures. A Boolean model was
implemented to study the molecular dynamics underlying the behavior of the neuronal
growth cone during axon growth and guidance. Interestingly, simulations performed with
mutant networks suggest that many mutations underlying ID and ASD affect the motility
of the growth cone and in particular the formation of filopodia and lamellipodia [347].
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To our knowledge, no studies have currently applied this type of modeling to study the
regulatory module underlying neurite elongation.

Bottom-up pipelines start with a survey and manual curation of the scientific literature
and databases looking for key genes, proteins, and interactions regulating the process under
investigation, e.g., neurite extension, in order to derive a graphical depiction of the network
in which nodes are genes/proteins and edges are the interactions among them. Here, we
provide an example of a protein regulatory network for neurite elongation centered on
GTPases (Figure 2A). The graphical map can be translated into a computational and/or
mathematical model for dynamic simulations of the biochemical network in different
contexts.

There are different frameworks for mathematical/computational modeling (ODEs,
Boolean, agent-based), which differ in their trade-off in terms of biological complexity,
scalability, or simulation reliability. Referring to Boolean models, there are only two
mutually exclusive states for each node, the logic 1 and 0. The initial graphical map is
rewritten converting the interactions between proteins/genes to Boolean functions by
using the three logical operators: AND, OR, and NOT. As an example, in Table 1, we show
the Boolean model corresponding to the network of Figure 2A rewritten with the >syntax
of the ‘BoolNet’ R package [348] and simplified by removing nodes that lack downstream
targets in our reconstruction of the network (i.e., PAK3) or that exert a redundant effect
with other nodes (i.e., Gelsolin and ArhGEF9), thus reducing the computational cost.

Table 1. Boolean model of the GTPases network for neurite elongation.

Targets, Factors (1) Reference

neuro_elo, f_actin [68]
f_actin, (profilin | formin | arp2_3 | shootin1) & !cfl [266,349–353]

arp2_3, wave [351,354]
wave, (rac1 | cdc42) & !cdk5_p35 [351,355,356]

cdc42, (arhgef6 | arhgef7) & !(noma_gap | ophn1) [166,176,184,193,357]
rhoa, trio | !(ophn1 | tiam1) [164,358,359]

rac1, (tiam1 | arhgef6 | arhgef7 | trio) & !(arhgap15 | ophn1) [164,172,184,193,205,358]
rock, rhoa [360]

pak1, (rac1 | cdc42 | arhgef6 | arhgef7) & !(arhgap15 | cdk5_p35) [186,361–364]
arhgap15, !pak1 [363]
shootin1, pak1 [266]

cdk5_p35, f_actin [154]
limk2, rock [360]

cfl, ssh1 & !(limk2 | limk1) [222,365]
limk1, pak1 | !ssh1 [129,224]

ssh1, f_actin [222,366]

(1) Targets and factors refer to the components (nodes and edges) indicated in Figure 2A rewritten with the BoolNet R package syntax.

Simulations can be run by choosing the initial conditions to be used (exhaustive,
chosen, random), i.e., selecting which node is set as active (1) or inactive (0). During
the simulation, the nodes state can be either synchronous or asynchronous: in the syn-
chronous type, the state is updated simultaneously, while in the asynchronous type, only
one transition function—randomly chosen—is updated at each simulation.

The simulation aims to identify the steady states reached by the system, named
“attractors”, corresponding to particularly stable configurations of activity for each node
of the network (Figure 4B). Attractors are thought to correspond to cell phenotypes [367];
consequently, it is a good practice to add in the network one or more “abstract” nodes
whose meaning refers to a particular phenotype, like the one named “neurite extension” in
Figure 2A, facilitating the identification of attractors that correspond to the activation (or
inactivation) of the phenotypic node.

The simulation performed on the neurite elongation Boolean network using the ex-
haustive method and the synchronous type yielded 2155 attractors (five relevant examples
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are shown in Figure 4B) in which the phenotypic node is active in 12.4% of attractors
(Figure 3C). This preliminary simulation suggests that the system has a low propensity to
promote neurite elongation in its default condition. As a validation, we performed an in
silico mutagenesis analysis using published experimental data on KO/KD models for all
the proteins of the network (Table 2).

Table 2. Proteins involved in the regulation of neurite elongation with the corresponding KO/KD phenotypes.

Protein Gene Mutation (1) Phenotype Reference

Rac1 Forebrain-specific KO
Increased number of primary neurites and secondary

branches
[95]

RhoA KO
Increased axon length (significantly greater actin retrograde

flow, fewer actin arcs, and substantially longer F-actin
bundles)

[368]

Cdc42 KO
Defective axon formation (disrupted cytoskeletal

organization, enlargement of the growth cones, and
inhibition of filopodia dynamics)

[97]

WAVE1 KO No effect on neurite growth [369]
Cdk5 Dominant-negative Inhibition of neurite outgrowth [370]
p35 KD Inhibition of neurite outgrowth [370]

Arp2/3 KD Increased number of irregular, shorter, and broader neurites [371]
PAK1 Dominant-negative Decreased number of dendrites [361]
PAK2 Dominant-negative No effect on the neurite growth [372]
PAK3 KD Increased elongation of neuronal processes [373]

LIMK2 KD
Reduced number of neurite-bearing cells and the mean

neurite length
[222]

LIMK1 KD
Reduced number of neurite-bearing cells and the mean

neurite length
[222]

ROCK1 Haploinsufficiency
Increased basal and apical dendritic length and dendritic

intersections
[374]

ROCK2 Haploinsufficiency No effect on the neurite growth [374]
SSH1/SSH2 KD Decreased neurite extension [222]

ArhGEF6 KO Increased neurite length [184]
ArhGEF7 Cortex-specific KO Impaired axon formation [193]

ArhGAP15 KO Decreased neurite length and branching [172,375]
TRIO Neuron-specific KO Decreased axon length [376]
Tiam1 KO Decreased neurite length [211]

NOMA-GAP KO Decreased dendritic branching [176]
OPHN1 KO Decreased dendritic tree complexity, i.e., branching [377]
Cofilin KO Inhibited neurite outgrowth [378]

Profilin1 KD Impaired axon elongation [349]

Profilin1
Mutation of the actin-binding

domain
Decreased of neurite length [265]

Formin KO Impaired axon elongation [379]
Shootin1 KD Inhibited polarization [380]

(1) Gene mutations referred to in in vitro and in vivo models.

The in silico KO is achieved by fixing the state of a particular node to 0 throughout the
simulation. The results of these analyses show that, in all cases, the effects of KO observed
in real models were confirmed in silico (Figure 4C).

Despite the apparent oversimplification of the Boolean models, they have been suc-
cessfully used to analyze the dynamics of various biological networks, especially in re-
verse engineering of regulatory networks and in analyzing complex mutant expression
data [62,381–383], improving the design of bench experiments.
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Figure 4. Boolean network. (A). Flow chart of the procedure to follow in order to construct a Boolean model. (B). Attractor

analysis of the Boolean network for the study of neurite extension (Table 1). Comparison of five representative attractor

profiles: (1) fixed-point attractor of the WT network (active phenotypic node); (2) fixed-point attractor of the WT network

(inactive phenotypic node); (3) multi-state cyclic attractor of the WT network (inactive phenotypic node); (4) fixed-point

attractor of the RHOA-KO network (active phenotypic node); (5) fixed-point attractor of the Cofilin-KO network (inactive

phenotypic node). Red boxes correspond to inactive nodes and green boxes to active nodes. (C). In silico mutagenesis for

the validation of the Boolean network (Table 1) using published experimental data from KO models (Table 2). Red bars refer

to the total number of attractors obtained. The green part of each bar corresponds to the number of attractors with an active

phenotypic node computed over all attractors obtained in each simulation.

6. Therapeutic Opportunities for Cytoskeleton-Related Forms of ID and
Related Conditions

Cognitive deficits in ID are the results of alterations in many cellular processes includ-
ing neurogenesis, migration, and, consequently, neuronal connectivity. This pathology
has its onset during brain development, as high-confidence ID genes are preferentially
expressed from early fetal to late mid-fetal stages [14]. Although their expression has a
big impact during neuronal development, most of them continue to be expressed during
adulthood (e.g., the ones mutated in cytoskeleton-related forms of ID, Figure 2B,C), thus
suggesting that they may continue to contribute to the pathological phenotype.

For many years, ID and the other cognitive disorders were thought to be irreversible,
especially in adults, and treatments were focused only on personalized educational plans
and co-morbidity alleviation, except for a few syndromic forms of ID, for which specific
treatments, like enzyme replacement therapy, are used and result in intellectual improve-
ments [384]. Nonetheless, recent studies on specific forms of ID and other NDDs provide
evidence that neurological impairments can be reversed, even in postnatal life, thanks
to the retained ability of local neuronal circuitries to undergo plastic reorganization and
balance excitatory vs. inhibitory synaptic density. Notable examples of targeted treatments
on models of NDDs are provided:
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(1) Starting from the hypothesis that learning deficits in NF1 (neurofibromatosis 1)
are caused by an excess of RAS activity and by the consequent increase in GABA-
mediated inhibition, Nf1+/− mice (a model of NF1) were treated with both farnesyl-
transferase and HMG-CoA reductase inhibitors to decrease RAS activity; the treatment
was successful in rescuing spatial memory and attention deficits [385,386].

(2) The observation that the hippocampal signaling through postsynaptic GABA re-
ceptors was significantly increased in Ts65Dn mice (a model of DS) prompted the
testing of selective GABAB and GABAA receptor antagonists; both treatments rescued
memory in novel place and object recognition tests and contextual fear conditioning
tasks [387–389]. It was later shown that GABAA receptor signaling is excitatory rather
than inhibitory in Ts65Dn mice and DS patients, because of an increased hippocam-
pal expression of the cation chloride cotransporter SLC12A2 (solute carrier family
12 member 2). Its inhibitor, bumetanide, a common diuretic, was able to restore
synaptic plasticity and hippocampus-dependent memory in adult Ts65Dn mice [390].
Recently, the discovery that the over-activation of microglia plays a role in the DS phe-
notype widened our knowledge about this pathology, as it has resulted in successful
testing of anti-inflammatory drugs to rescue cognitive impairments [391].

(3) As the mutation in CREBBP (CREB-binding protein) is considered the most signifi-
cant mutation in Rubinstein–Taybi syndrome, pharmacological strategies to enhance
CREBBP-dependent gene expression were investigated. Crebbp+/− mice (a model of
Rubinstein–Taybi syndrome) treated with either PDE4 inhibitor (to enhance cAMP
signaling) or HDAC inhibitor (to halt the counterpart of the histone acetylation func-
tion of CREBBP) were rescued for long-term memory deficit [392,393]. Similarly,
Kmt2d+/βGeo mice (a model of Kabuki syndrome) were rescued by the treatment with
HDAC inhibitors [394].

(4) Hyperactivity of MTOR signaling is observed in several neurodevelopmental dis-
orders, the so-called “mTORopathies”; therefore, it is not surprising that MTOR
inhibitors were extensively tested. Heterozygous mutations in either TSC1 or TSC2
that form an MTOR-inhibiting complex can cause tuberous sclerosis by hyperactivat-
ing MTOR signaling. Tsc2+/− and Tsc1 homozygous mutant mice (a model of tuberous
sclerosis), were treated with rapamycin, rescuing spatial learning and context discrim-
ination deficits together with neurological findings [395,396]. Rapamycin prevented
seizures and rescued defective cortical lamination and heterotopia in Strada-KO model,
an upstream inhibitor of MTORC1, in a rare NDD called Pretzel syndrome [397]. In-
terestingly, MTOR inhibitors are currently in clinical trials as antiepileptic agents [398].
This class of drugs was also tested to revert neuronal hypertrophy caused by PTEN de-
ficiency in Lhermitte–Duclose and Cowden syndromes [27] and is seen as a promising
approach for the treatment of ASD [399].

(5) Fmr1−/− mice (a model of FXS) were used to study the GABAAergic deficit that un-
derlies FXS; treatment with a mGluR5 antagonist rescued associative learning [400], as
well as treatments with positive allosteric modulators of GABAA receptors in animal
models [401] and GABAB receptor agonists, which, in patients, seemed to rescue be-
havioral functions [20]. Additionally, the antibiotic minocycline, a metalloproteinase
inhibitor, appeared to be effective in patients [402].

Although ID genetic heterogeneity sets a limit on individual treatment, these studies
have the merit to demonstrate that ID is potentially responsive to therapeutic interventions.
The identification of common disrupted molecular and cellular mechanisms will help in
finding flexible therapies, targeting central nodes more than individual genes. One of these
nodes is represented by the cytoskeleton under the control of Rho GTPases signaling.

6.1. Pharmacological Stabilization of Microtubules

Several genes associated with ID code for proteins acting on microtubules’ formation
and regulation [288]. Likewise, alterations of the microtubule cytoskeleton have been
linked to ASD, schizophrenia, DS, and major depression disorders [403,404].
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Microtubule stabilizers were mostly studied in neurodegenerative disorders character-
ized by compromised MAPT (microtubule-associated protein tau, or simply tau) functions.
According to the hypothesis that microtubule-stabilizing drugs could offset the loss of
normal tau functions [405], taxane microtubule stabilizers were tested. Paclitaxel was
tested on a mouse model presenting tau pathology in spinal motor neurons [406], restoring
fast axonal transport and ameliorating motor impairments. Another taxol, Epothilone
D, able to cross the blood–brain barrier, was tested in mouse models of both tauopathy
and schizophrenia [407,408], reducing axonal dysfunction, cognitive deficits, and synaptic
transmission. Indeed, although taxanes are well-known chemotherapy medications [409],
at nanomolar concentrations they appeared safe, eliciting only beneficial effects [407].

Microtubule stabilization can be achieved also by targeting microtubule-binding
proteins. The neurosteroid pregnenolone (PREG) was shown to induce CLIP1 active
conformation and to restore its association with microtubules in Cdkl5-deficient neurons
rescuing morphological defects [313].

Another solution was provided by small peptides able to act out the activity of
microtubule-associated proteins. NAP (NAPVSIPQ), alias Davunetide, is a neuroprotec-
tive peptide snipped by ADNP (activity-dependent neuroprotector homeobox). ADNP
haploinsufficiency results in increased tau phosphorylation and memory impairments in
neurodegenerative diseases, including Alzheimer’s disease [410]. ADNP mutations have
been linked also to ASD and ID [411]. In preclinical studies, NAP was found to reduce
tau hyperphosphorylation and to interact with MAPRE1-3, enhancing microtubule assem-
bly [412]. Interestingly, Risperidone, an atypical antipsychotic, interacts with MAPRE1-3,
competing with NAP. Risperidone treatment in schizophrenia and ASD patients improved
their cognitive functions and mitigated their disruptive behavior [413,414].

Several other compounds are under investigation for their activity over microtubules
and microtubule-related proteins, e.g., blood–brain barrier-penetrant heterocyclic molecules
able to stabilize microtubules, and calpain inhibitors, which, by protecting the protein LIS1
(platelet-activating factor acetylhydrolase 1b regulatory subunit 1) against proteolysis, are
able to recover retrograde transport and network formation in LIS1+/- mice (a model of
lissencephaly) [415,416].

6.2. Pharmacological Modulation of Actin Dynamics

Altered actin polymerization kinetics features most of the ID models presenting muta-
tions on genes involved in actin-reorganizing signaling pathways. Yet, the phenomenon
was characterized only in ASD and schizophrenia patients, in which a defective actin
polymerization was observed [52,56].

Because of its ubiquitous expression, directly targeting actin raises many concerns.
Conversely, a more appealing possibility is ABPs’ or upstream regulators’ targeting, which
are largely brain-specific, e.g., CTTNBP2 (cortactin binding protein 2) [417], particularly
enriched in specific brain areas, e.g., PAK1 in the prefrontal cortex (Figure 2B) or KALRN
in the cortex and hippocampus [418], or specific to neuronal compartments, e.g., KLHL17
(kelch-like family member 17, also known as actinfillin) at the PSD [419].

The validity of such an approach was demonstrated in a study on a Shank3-deficient
mouse model [280]. First, this study correlated the NMDA receptor hypofunction to an
impaired actin polymerization caused by the increased level of active ADF/cofilin, which
was in turn caused by the decreased RAC1/PAK1/LIMK1 signaling. Then, it showed how
the inhibition of ADF/cofilin through a competitor peptide rescued ASD-like behaviors,
improving the F-actin/G-actin ratio and restoring NMDA receptor function in mice.

Actin dissociation/association rate can also be affected by the presence of other natural
actin ligands, fungal and bacterial toxins, and cytotoxic macrolides derived from marine
sponges. As for ABPs, actin ligands are classified according to their activities and roughly
divided into actin stabilizers, e.g., phalloidin, jasplakinolide, and miurenamide A, and
destabilizers, e.g., latrunculin, cytochalasin D, and kabiramide C. Both stabilizing and
destabilizing agents are intended in their proper meaning only in vitro, while in vivo
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they are expected to affect the cytoskeleton dynamics only by delaying or accelerating
them. These compounds have been largely used as a cell biology tool, like phalloidin in
conjugation with fluorophores, overlooking their ability to compete with specific ABPs
in a biomimetic mode. Trisoxazole macrolides, e.g., kabiramide C, are small biomimetic
molecules promoting actin filament severing and capping by competing specifically with
Gelsolin [420]. Analogously, the myxobacterial compound miuraenamide A binds to and
stabilizes F-actin by competing with ADF/cofilin for its binding site [421]. Interestingly,
low-dose treatment of SKOV3 and HUVECs cells with miuraenamide A showed no effects
on cell viability and proliferation, while actin structure was initially subtly changed, but
recovered subsequently [422].

Since the reorganization of the cell cytoskeleton is an essential process during metas-
tasis formation, this class of molecules has always been seen as a good candidate for
anticancer drug development. However, they could be a starting point in the creation of
new compounds that do not influence actin polymerization per se but selectively antago-
nize specific ABPs.

6.3. Modulation of Small GTPases Activity

Several forms of ID are caused by mutations that either increase or decrease Rho
GTPases’ signaling. However, it is important to note that both hyper- and hypo-activation
of these signaling pathways led to similar phenotypes. A good example is provided by
the mouse model bearing RAC1 conditional inactivation at the hippocampal level, which
resembles the phenotypic abnormalities reported for the FXS model, which in contrast
shows a massive activation of RAC1 [10,423]. This comparison stresses the importance
of tight control on GTPases functioning and encourages the research of both positive and
negative pharmaceutical modulators.

Several compounds were characterized for their inhibitory activity toward RAC1,
which is of particular interest in cancer research. Most of them act by interfering with RAC1-
GEF PPI, such as NSC23766 and EHop-016 (which interfere with TRIO and TIAM1) [424,425]
and AZA1 (which inhibits both CDC42 and RAC1) [426], or by promoting GTP unloading,
such as EHT1864 [427]. Peptide-based approaches have also shown early promise [428].

A striking example of such a pharmacological treatment is provided by the Ophn1-KO
model of ID, which exhibits hyperactive RHOA signaling. In these mice, the administration
of the ROCK/PKA inhibitor Fasudil rescued spine density, hippocampal hyperexcitability,
ventricular enlargement, and behavioral abnormalities [170,429]. Fasudil was also able to
rescue the decreased neurogenic potential and impaired neurite elongation in OPHN1-
deficient human iPSCs [171].

In other cases, the opposite approach is required, i.e., positive modulation of the
GTPase activity. Hyper-activation of RAC1 through the inoculation of the bacterial toxin
CNF1 has been shown to improve the behavioral phenotype of a mouse model of Rett
syndrome and to reverse the astrocytic deficits, which were assumed to have an impact
on dendritic maturation [430]. CNF1 activates Rho GTPases through a single glutamine
deamidation [431,432], allowing the reshape of the actin cytoskeleton and consequently pro-
moting neurotransmission and synaptic plasticity. CNF1 was shown to enhance working
memory for object location and discrimination also in WT mice [433,434].

7. Concluding Remarks

Current treatments of ID are largely based on psychosocial measures, environmental
enrichment, dedicated educational plans, and motor activity, while pharmacotherapies
are lagging. Recent evidence suggests that some phenotypes associated with cognitive
disabilities can be reversed, through either genetic approaches [435] or pharmacotherapy.
At present, whether these provide a realistic opportunity for treatment remains to be
defined.

One obstacle is represented by the high genetic variability observed in ID. SB ap-
proaches and integrative tools are beginning to deconvolute and model the core biological
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processes responsible for the altered circuitry and synaptic dysfunctions in ID. One of these
processes is the regulation of cytoskeleton dynamics, whose hubs are the small GTPases of
the Rho class. A relevant outcome of our current knowledge is the possibility to leverage
the wealth of experimental and mutational data to derive a computational model, through
which we will learn more about the behavior of the system.

Rho class GTPases are promising targets for pharmacological intervention and can
be positively or negatively modulated by acting upstream, on the regulatory partners,
or downstream, on actin stability. To achieve a brain-specific, GTPase-specific, modest,
and controlled remodulation, a full characterization of the PPI between GTPases and their
regulatory partners is required. Current knowledge led to the identification of several
potentially valid compounds, some of which are well characterized for their biological
activity, while others still need a proper characterization.

Future efforts should focus on completing our knowledge about the cytoskeleton core
regulatory network, considering that relevant elements might still be missing or have been
overlooked. Proteomic analyses focused on the human neuronal cytoskeleton are needed,
intending to identify novel druggable elements participating in the GTPase regulatory
network or neurodevelopmental processes, i.e., neurite elongation, neuronal migration,
and adhesion.

Since most of the current knowledge is based on animal models, an area of strong
interest is the generation and validation of cellular models of ID based on human neurons.
Such models should recapitulate the cortical and hippocampal endophenotype of human
ID and offer the possibility to examine the excitatory/inhibitory balance. In light of these
observations, human iPSCs offer a valid model to identify new valuable readouts and to
start screening compounds able to alleviate ID [436].
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Abbreviations

ID Intellectual Disability

SB Systems Biology

NDD Neurodevelopmental Disorder

XLID X-linked Intellectual Disability

PPI Protein::Protein Interaction

GO Gene Ontology

GDD Global Developmental Delay

ASD Autism Spectrum Disorder
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LTD Long Term Depression,

DS Down syndrome

G-actin Glomerular actin

F-actin Fibrous actin

GAP GTPase Activating Protein

GEF Guanine Exchange Factor

KD Knock-Down

ABP Actin Binding Protein

NPF Nucleation Promoting Factor

WRC WAVE Regulatory Complex

PSD Postsynaptic Density

+TIP Microtubule Plus End Tracking Protein

CLIP Cytoplasmic Linker Protein
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