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Abstract. Some multiplicity results for a parametric nonlinear Dirichlet prob-

lem involving a nonhomogeneous differential operator of p-Laplacian type are

given. Via variational methods, the article furnishes new contributions and
completes some previous results obtained for problems considering other types

of differential operators and/or nonlinear terms satisfying different asymptotic

conditions.

1. Introduction

Let Ω ⊂ IRN (N ≥ 2) be a bounded domain with a smooth boundary ∂Ω and
consider the following problem{

−divA(x,∇u) = λf(x, u) in Ω,
u = 0 on ∂Ω,

(Pλ)

where A : Ω× IRN → IRN is a function admitting a potential and satisfying some
natural conditions such that the differential operator divA(x,∇(·)) includes the
usual p-Laplacian (p > 1), λ is a positive parameter, while f : Ω × IR → IR is a
suitable Carathéodory function.
There is a wide literature dealing with parameter dependent Dirichlet nonlinear
problems. As is natural, such kind of problems have been studied starting with the
case when the differential operator reduces to the classical Laplacian (semilinear
case), then the interest has been focused on equations driven by the p-Laplacian
and finally the more general nonhomogeneous framework has been treated.
The papers [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16], and the references therein, can
help to have an essential idea about the remarkable developments of the research
on this topic. In particular, in [1, 2, 3, 10, 11, 14, 15, 16] existence, non existence
and multiplicity of solutions of the considered Dirichlet problem have been studied
requiring that the reaction term exhibits a so-called ‘concave-convex’ behaviour. In
[5], a perturbation of the p-Laplacian eigenvalue problem is treated, considering the
cases when the perturbing term is either (p−1)-sublinear or (p−1)-superlinear both
near at zero and near at infinity. The paper [9] introduced the notion of uniformly
convex functional in order to establish the existence and the multiplicity of solutions
to a class of nonlinear elliptic problem involving a differential operator that is
more general than the classical p-Laplacian, provided that p ≥ 2; moreover, the
assumptions on the nonlinear term make use of the usual Ambrosetti-Rabinowitz
condition and a suitable (p − 1)-linearity at zero. In [12] the authors considered
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a counterpart of the case treated in [9] and allow the reaction term to be (p − 1)-
sublinear near at infinity and (p− 1)-superlinear near at zero. In their arguments,
the presence of the parameter plays a crucial role in proving the existence of at
least three solutions for equations that are of p-Laplacian type, but the condition
p ≥ 2 persists. This restriction was removed in [8] where a more general class of
elliptic differential operators has been considered, so that ∆p can be covered for all
p > 1.

In the present paper, inspired by [8] and [12], we study problem (Pλ) when A

admits a potential A : Ω̄× IRN → IR, such that

(A) A = A (x, ξ) is a continuous function on Ω̄ × IRN , with a continuous
derivative with respect to ξ and A = ∂ξA . Moreover

(i) A (x, 0) = 0 and A (x, ξ) = A (x,−ξ) for every x ∈ Ω and ξ ∈ IRN .

(ii) A (x, ·) is strictly convex in IRN for all x ∈ Ω.
(iii) There exist two constants a1, a2, with 0 < a1 ≤ a2 such that

A(x, ξ) · ξ ≥ a1|ξ|p and |A(x, ξ)| ≤ a2|ξ|p−1

for every (x, ξ) ∈ Ω× IRN .

Our reaction term f is not assumed to satisfy the classical Ambrosetti-Rabinowitz
condition. Moreover, as a relevant novelty with respect to the most part of the
already known results in the literature, in the more general cases that we treat,
explicit asymptotic conditions at zero are avoided in order to establish a concrete
interval Λ of parameters for which (Pλ) admits at least three (weak) solutions (see
Theorem 3.1). Indeed, as a particular situation, we can study the case when f is
(p− 1)-superlinear at zero, obtaining a more precise conclusion (see Theorem 3.3)
with respect to that of [12] where a multiplicity theorem was established, but the
interval Λ was estimated, but not explicitly computed.
In [8], the authors studied the problem{

−divA(x,∇u) = λ(a(x)|u|p−2u+ f(x, u)) in Ω,
u = 0 on ∂Ω,

where a ∈ Lα(Ω) is a positive weight and f is (p − 1)-sublinear at infinity and
(p−1)-superlinear at zero. Our approach allows us to give a multiplicity result also
in this framework (see Theorem 3.5) and, as a consequence, to furnish a complement
to a non existence theorem proved in [8] when λ ∈ [0, λ?) for a suitable λ?, since a
simpler estimate from above of λ? is here established.

Finally, we wish to point out that our main results are given in Section 3 and
their proofs are fully based on variational methods. In particular, a very important
tool is a suitable version of a critical point theorem, proved in [4], that is here
recalled in Section 2, as well as some other preliminaries.

2. Basic notations and auxiliary results

Throughout the paper Ω, is a bounded domain of IRN , 1 < p < N , W 1,p
0 (Ω) is

the usual Sobolev space endowed with the norm

‖u‖ = ‖∇u‖p
and W−1,p′(Ω) is its dual space. It is well known that, if 1 < p < N and p∗ = Np

N−p
there is a constant T = T (N, p) such that

‖u‖p∗ ≤ T‖u‖ (2.1)
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for every u ∈W 1,p
0 (Ω). Such a constant has been sharply determined by Talenti in

[18] by the formula

T = π−1/2N−1/p

(
p− 1

N − p

)1−1/p{
Γ(1 +N/2)Γ(N)

Γ(N/p)Γ(1 +N −N/p)

}1/N

, (2.2)

where Γ is the gamma function. Clearly, (2.1), in conjunction with the Hölder’s
inequality, implies that for every s ∈ [1, p∗]

‖u‖s ≤ T |Ω|(p
∗−s)/(p∗s)‖u‖ (2.3)

for all u ∈ X, where |Ω| is the Lebesgue measure of Ω and the embeddingW 1,p
0 (Ω) ↪→

Ls(Ω) is compact provided s ∈ [1, p∗[.

Following [8], we will assume that A : Ω× IRN → IRN is a function admitting a

smooth potential A : Ω̄× IRN → IR as given in the Introduction.
In [8], it has been explicitly observed that the preceding assumptions (A)(i) and
(A)(iii) imply that

a1|ξ|p ≤ pA (x, ξ) ≤ a2|ξ|p (2.4)

for every (x, ξ) ∈ Ω× IRN . Moreover, it is possible to obtain the following

Lemma 2.1. [8, Lemma 2.5] Let A satisfy (A)(i)–(A)(iii). Then the functional

Φ : W 1,p
0 (Ω)→ IR defined by

Φ(u) =

∫
Ω

A (x,∇u(x)) dx (2.5)

is convex, weakly lower semicontinuous and of class C1 in W 1,p
0 (Ω), being

Φ′(u)(v) =

∫
Ω

A(x,∇u) · ∇v dx

for every u, v ∈W 1,p
0 (Ω).

Moreover, Φ′ : W 1,p
0 (Ω)→W−1,p′(Ω) satisfies the (S+) condition, i.e., for every

sequence {un} in W 1,p
0 (Ω) such that un ⇀ u weakly in W 1,p

0 (Ω) and

lim sup
n→∞

∫
Ω

A(x,∇un) · (∇un −∇u) dx ≤ 0,

then un → u strongly in W 1,p
0 (Ω).

Given a Carathéodory function f : Ω× IR → IR, a positive function a ∈ Lα(Ω),
α > N/p, and 1 < q ≤ p, we say that f is of type (Gf,a,q) if it satisfies the following
growth condition

(Gf,a,q) There exist two positive constants M1 and M2 such that

|f(x, t)| ≤ a(x)(M1 +M2|t|q−1) for a.a. x ∈ Ω and all t ∈ IR.

According to [8, Lemma 3.2] one can state the following

Lemma 2.2. Assume that f is of type (Gf,a,q) and put F (x, t) =
∫ t

0
f(x, s) ds.

Then, the functionals Ψ1, Ψ2 : W 1,p
0 (Ω)→ IR defined by

Ψ1(u) =
1

p

∫
Ω

a(x)|u(x)|p dx, Ψ2,f (u) =

∫
Ω

F (x, u(x)) dx (2.6)
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are of class C1 being

Ψ′1(u)(v) =

∫
Ω

a(x)|u(x)|p−2u(x)v(x) dx, Ψ′2,f (u)(v) =

∫
Ω

f(x, u(x))v(x) dx.

Moreover the operators Ψ′1, Ψ′2,f : W 1,p
0 (Ω)→W−1,p′(Ω) are compact and Ψ1, Ψ2,f

are sequentially weakly continuous in W 1,p
0 (Ω).

Remark 2.1. In Lemma 3.2 of [8] the compactness of Ψ′2,f is proved when 1 <
q < p, but the same arguments can be adopted in order to still assure the same
property also if the case q = p occurs.

We explicitly recall that, if f is a function of type (Gf,a,q), a weak solution of

problem (Pλ) is any u ∈W 1,p
0 (Ω) such that∫

Ω

A(x,∇u(x)) · ∇v(x) dx− λ
∫

Ω

f(x, u(x))v(x) dx = 0

for every v ∈ W 1,p
0 (Ω). Hence, in view of Lemma 2.1 and Lemma 2.2, if for λ > 0

we consider the functional Iλ : W 1,p
0 (Ω)→ IR defined by Iλ(u) = Φ(u)− λΨ2(u),

it is obvious that

The critical points of Iλ are weak solutions of problem (Pλ). (2.7)

Let us conclude this section stating the main tool that we will use in studying
problem (Pλ). It is a critical point result and represents a suitable version of
Theorem 7.1 of [4], since it can be derived immediately from [4, Remark 7.1].

Theorem 2.1. Let X be a real Banach space and let Φ, Ψ : X → IR be two
continuously Gâteaux differentiable functionals with Φ bounded from below. Assume
that Φ(0) = Ψ(0) = 0 and there exist r > 0 and ū ∈ X, with Φ(ū) > r, such that

supΦ(u)≤r Ψ(u)

r
<

Ψ(ū)

Φ(ū)
. (2.8)

Moreover, for each λ ∈
]

Φ(ū)
Ψ(ū) ,

r
supΦ(u)≤r Ψ(u)

[
the functional Iλ = Φ−λΨ is bounded

from below and satisfies (PS)-condition.

Then, for each λ ∈
]

Φ(ū)
Ψ(ū) ,

r
supΦ(u)≤r Ψ(u)

[
the functional Iλ admits at least three

critical points.

3. Main results

In the present section, we are going to show some multiplicity results for problem
(Pλ) when different conditions about the behavior at infinity of f are considered
coupled with some suitable local assumptions.

Let us first introduce few further notations. Let R : Ω→ [0,+∞[ be the function
defined by R(x) = d(x, ∂Ω) for each x ∈ Ω. Thus, for every fixed x0 ∈ Ω one has
B(x0,R(x0)) = {x ∈ Ω : |x − x0| < R(x0)} ⊆ Ω and, for a ∈ Lα(Ω) (with
α > N/p), we put

κ = κ(x0) =
T

|Ω|1/p∗

[(
R(x0)

2

)(N−p)

(2N − 1)|B(0, 1)|

]1/p

(3.1)
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and

H = H (x0) =
a2‖a‖α(2T )p(2N − 1)|Ω|(p∗−α′p)/(α′p∗)

a1[R(x0)]p
, (3.2)

where T is the Talenti’s constant introduced in (2.2), a1 and a2 are the constants
considered in (A)(iii), |B(0, 1)| is the Lebesgue measure of the N -dimensional unit
ball and α′ is the conjugate exponent of α.

Here is our first main result.

Theorem 3.1. Assume that f : Ω × IR → IR fulfils (Gf,a,q) and that there exist
x0 ∈ Ω and c, d > 0 with

c < κd, (3.3)

such that

(H1) F (x, t) ≥ 0 for a.a. x ∈ B(x0,R(x0)) and for every t ∈ [0, d]

(H2) H

(
M1c

1−p +
M2

q
cq−p

)
<

essinfx∈B(x0,R(x0)/2)F (x, d)

dp
.

Put

λ∗ =
a22p(2N − 1)

p[R(x0)]p
dp

essinfx∈B(x0,R(x0)/2)F (x, d)
(3.4)

and

λ∗ =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(α′p∗)
1

M1c1−p + M2

q c
q−p

. (3.5)

Then, for each λ ∈]λ∗, λ
∗[ problem (Pλ) admits at least three weak solutions.

Proof. For the sake of completeness, first of all let us explicitly observe that λ∗ < λ∗.
Indeed, from (H2) and the definition of H one has

a2‖a‖α(2T )p(2N − 1)|Ω|(p∗−α′p)/(α′p∗)

a1[R(x0)]p

(
M1c

1−p +
M2

q
cq−p

)
<

essinfx∈B(x0,R(x0)/2)F (x, d)

dp

hence

‖a‖αT p|Ω|(p
∗−α′p)/(α′p∗)

a1

(
M1c

1−p +
M2

q
cq−p

)
<

[R(x0)]p

a22p(2N − 1)

essinfx∈B(x0,R(x0)/2)F (x, d)

dp
,

that is
1

pλ∗
<

1

pλ∗
,

namely λ∗ < λ∗.
We apply Theorem 2.1 with X = W 1,p

0 (Ω), Φ : X → IR as defined in (2.5) and
Ψ = Ψ2,f as introduced in (2.6).

Lemma 2.1 and Lemma 2.2 establish that Φ and Ψ are of class C1, while condition
(2.4) assures the following control for Φ

a1

p
‖u‖p ≤ Φ(u) ≤ a2

p
‖u‖p (3.6)

for every u ∈ X and Φ is bounded from below. Clearly Φ(0) = Ψ(0) = 0.
Consider the function ud ∈ X defined by

ud(x) =


0 if x ∈ Ω \ B̄(x0,R(x0))

2d
R(x0) (R(x0)− |x− x0|) if x ∈ B(x0,R(x0)) \ B̄(x0,R(x0)/2)

d if x ∈ B(x0,R(x0)/2),
(3.7)
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and put

r =
a1|Ω|p/p

∗

pT p
cp.

A direct computation based on (3.6) and (3.3) shows that

Φ(ud) ≥ a1

p

2p

[R(x0)]p
|B(x0,R(x0)) \ B̄(x0,R(x0)/2)|dp

=
a1

p

2p

[R(x0)]p
|B(0, 1)|([R(x0)]N − [R(x0)/2]N )dp

=
a1

p

(
R(x0)

2

)N−p
(2N − 1)|B(0, 1)|dp

>
a1|Ω|p/p

∗

pT p
cp = r.

Moreover

Φ(ud) ≤
a2

p

(
R(x0)

2

)N−p
(2N − 1)|B(0, 1)|dp, (3.8)

as well as, in view of assumption (H1), one has

Ψ(ud) =

∫
Ω

F (x, ud(x)) dx

≥
∫
B(x0,R(x0)/2)

F (x, d)dx

≥ |B(x0,R(x0)/2)| essinfB(x0,R(x0)/2)F (x, d) (3.9)

=

(
R(x0)

2

)N
|B(0, 1)| essinfB(x0,R(x0)/2)F (x, d).

From (3.8) and (3.9) one infers

Ψ(ud)

Φ(ud)
≥ p[R(x0)]p

a22p(2N − 1)

essinfB(x0,R(x0)/2)F (x, d)

dp
=

1

λ∗
. (3.10)

On the other hand, since α > N/p implies that 1 < α′ < α′q ≤ α′p < p∗, condition
(Gf,a,q), the Hölder’s inequality and (2.3) lead to

Ψ(u) ≤ M1

∫
Ω

a(x)|u(x)| dx+
M2

q

∫
Ω

a(x)|u(x)|q dx

≤ M1‖a‖α‖u‖α′ +
M2

q
‖a‖α‖u‖qα′q (3.11)

≤ M1‖a‖αT |Ω|(p
∗−α′)/(p∗α′)‖u‖+

M2

q
‖a‖αT q|Ω|(p

∗−α′q)/(p∗α′)‖u‖q

for every u ∈ X. Hence, observed that in view of (3.6)

{u ∈ X : Φ(u) ≤ r} ⊆

{
u ∈ X : ‖u‖ ≤

(
pr

a1

)1/p
}
, (3.12)

condition (3.11) assures that

sup
Φ(u)≤r

Ψ(u) ≤M1‖a‖αT |Ω|(p
∗−α′)/(p∗α′)

(
pr

a1

)1/p

+
M2

q
‖a‖αT q|Ω|(p

∗−α′q)/(p∗α′)
(
pr

a1

)q/p
.
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Thus,

supΦ(u)≤r Ψ(u)

r
≤ M1‖a‖αT |Ω|(p

∗−α′)/(p∗α′)
(
p

a1

)1/p

r1/p−1 +

+
M2

q
‖a‖αT q|Ω|(p

∗−α′q)/(p∗α′)
(
p

a1

)q/p
rq/p−1

= ‖a‖α
p

a1
T p|Ω|(p

∗−α′p)/(p∗α′)

[
M1

(
T ppr

a1|Ω|p/p∗
)(1−p)/p

+

+
M2

q

(
T ppr

a1|Ω|p/p∗
)(q−p)/p

]

= ‖a‖α
p

a1
T p|Ω|(p

∗−α′p)/(p∗α′)
[
M1c

1−p +
M2

q
cq−p

]
=

1

λ∗
. (3.13)

Putting together (3.13) and (3.10) one achieves

supΦ(u)≤r Ψ(u)

r
≤ 1

λ∗
<

1

λ∗
≤ Ψ(ud)

Φ(ud)
,

namely assumption (2.8) of Theorem 2.1 is verified with ū = ud and, in particular,
one has

]λ∗, λ
∗[⊆

]
Φ(ud)

Ψ(ud)
,

r

supΦ(u)≤r Ψ(u)

[
. (3.14)

Finally, let us proof that for every λ ∈ [0, λ∗[ the functional Iλ = Φ−λΨ is bounded
from below and satisfies the (PS)-condition. Indeed, when 1 < q < p, conditions
(3.6) and (3.11) assures that for every λ ≥ 0 the functional Iλ is coercive.
Otherwise, if q = p, one has

Iλ(u) ≥ a1

p
‖u‖p − λM1‖a‖αT |Ω|(p

∗−α′)/(p∗α′)‖u‖+

−λM2

p
‖a‖αT p|Ω|(p

∗−α′p)/(p∗α′)‖u‖p

=
1

p

(
a1 − λM2‖a‖αT p|Ω|(p

∗−α′p)/(p∗α′)
)
‖u‖p + (3.15)

−λM1‖a‖αT |Ω|(p
∗−α′)/(p∗α′)‖u‖

that implies the coercivity also in this case, being

λ < λ∗ =
a1

‖a‖αpT p|Ω|(p∗−α′p)/(α′p∗)
1

M1c1−p + M2

p

<
a1

M2‖a‖αT p|Ω|(p∗−α′p)/(α′p∗)
.

Since Iλ is sequentially weakly lower semicontinuous (see Lemma 2.1 and Lemma
2.2), it is bounded from below. Fix {un} in X such that {Iλ(un)} is bounded
and I ′λ(un) → 0 in X∗. Thus, {un} is bounded and the reflexivity of X as well
as the compactness of Ψ′ (see Remark 2.1) assures that un ⇀ u weakly in X and
Ψ′(un) → S∗ in X∗, where a subsequence is considered if necessary. Hence, for
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every n ∈ IN

Φ′(un)(un − u) = I ′λ(un)(un − u) + λΨ′(un)(un − u)

≤ ‖I ′λ(un)‖X∗‖un − u‖+ λΨ′(un)(un − u)

≤ ‖I ′λ(un)‖X∗‖un − u‖+ λ‖Ψ′(un)− S∗‖X∗‖un − u‖+ λS∗(un − u).

Passing to the limsup in the preceding inequality, one has

lim sup
n→∞

Φ′(un)(un − u) ≤ 0,

and the conclusion is obtained because Φ′ satisfies the (S+) condition (see Lemma
2.1).

At this point, all the assumptions of Theorem 2.1 are fulfilled, hence, taking in
mind (3.14), for every λ ∈]λ∗, λ

∗[ the functional Iλ admits at least three critical
points, namely, because of claim (2.7), problem (Pλ) admits at least three weak
solutions and the proof is complete. �

Let x0 ∈ Ω be such that R(x0) = maxx∈Ω R(x) and put

Θ = Θ(x0) =
a2(2T )p(2N − 1)|Ω|(p∗−p)/(p∗)

a1[R(x0)]p
.

If f : IR→ IR is a continuous and nonnegative function and there exist M1, M2 >
0 and 1 < q ≤ p such that

|f(t)| ≤M1 +M2|t|q−1 (3.16)

for every t ∈ IR, the previous result takes the following form.

Corollary 3.1. Put F (t) =
∫ t

0
f(s) ds for every t ∈ IR and assume that there exist

c, d > 0 satisfying (3.3) such that

Θ

(
M1c

1−p +
M2

q
cq−p

)
<
F (d)

dp
. (3.17)

Then, for every λ ∈ Λ =

]
a22p(2N−1)
p[R(x0)]p

dp

F (d) ,
a1

pTp|Ω|(p∗−α′p)/(α′p∗)
1

M1c1−p+
M2
q cq−p

,

[
the

problem {
−divA(x,∇u) = λf(u) in Ω,
u = 0 on ∂Ω,

admits at least three weak solutions.

Proof. It is enough to apply Theorem 3.1 with a ≡ 1, α =∞, α′ = 1 and observing
that the sign condition on f assures in particular that F (t) ≥ 0 for every t ∈ IR. �

Remark 3.1. Because of the choice of R(x0) in the preceding corollary, one can
observe that the interval Λ of parameters is the largest that the technique involving
the function ud permits to obtain. To the best of our knowledge in paper [6], for the
first time, such a kind of ud has been introduced for studying a Dirichlet problem
with the p-Laplacian.

A careful analysis of the crucial assumption (H2) permits to use Theorem 3.1 in
order to obtain multiple solutions of problem (Pλ) when Ω is any fixed ball with
radius large enough. To be precise, one can state the following
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Theorem 3.2. Let f : IRN × IR→ IR be a nonnegative Carathéodory function, with
f 6≡ 0, let a ∈ Lα(IRN ), α > N/p, be a positive function and assume that there
exist two positive constants M1, M2 and q ∈]1, p] such that

|f(x, t)| ≤ a(x)(M1 +M2|t|q−1)

for a. a. x ∈ IRN and for all t ∈ IR. Moreover, assume that there exists d̄ > 0 such
that

essinfx∈IRF (x, d̄) > 0.

Then there exists R̄ = R̄(d̄) > 0 such that, for every R > R̄ there exist τ∗ =

τ∗(R), τ∗ = τ∗(R) > 0 with τ∗ < τ∗ such that for every x0 ∈ IRN and every
λ ∈]τ∗, τ

∗[ the problem{
−divA(x,∇u) = λf(x, u) in B(x0, R),
u = 0 on ∂B(x0, R),

(3.18)

admits at least three weak solutions.

Proof. First, for R > 0 put

H̃R =
a2‖a‖Lα(IRN)(2T )p(2N − 1)|B(0, 1)|(p∗−α′p)/(α′p∗)

a1

R[N(p∗−α′p)]/(α′p∗)

Rp

and observe that

N
p∗ − α′p
α′p∗

< p.

Indeed,

N
p∗ − α′p
α′p∗

= N
p∗ − α

α−1p
α
α−1p

∗

= N
αp∗ − p∗ − αp

αp∗

= N

(
1− 1

α
− p

p∗

)
= N −N

(
1

α
+

p

p∗

)
= N − p−N

(
1

α
+

p

p∗

)
+ p

= N

[
N − p
N

−
(

1

α
+

p

p∗

)]
+ p

= N

[
p

p∗
−
(

1

α
+

p

p∗

)]
+ p

= p− N

α
< p.

Hence, it is clear that

lim
R→+∞

H̃R = 0. (3.19)
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Let d = d(d̄) be a positive number such that

d > max

{
d̄,

1

T |B(0, 1)|(p∗−p)/(p∗p)

(
2N−p

2N − 1

)1/p
}
. (3.20)

Obviously one has that

essinfIRF (x, d)

dp
≥ essinfIRF (x, d̄)

dp
> 0,

and, in view of (3.19), there exists R̄ = R̄(d̄) large enough such that

H̃R

(
M1 +

M2

q

)
<

essinfIRF (x, d)

dp
≤

essinfx∈B(x0,R/2)F (x, d)

dp
(3.21)

for every R > R̄ and for every x0 ∈ IRN .
Hence, fixed R > R̄ and x0 ∈ IRN , we can apply Theorem 3.1 with R(x0) = R,

Ω = B(x0, R), c = 1 and d as considered above. Indeed, a ∈ Lα(Ω), the restriction
of f on Ω× IR satisfies condition (Gf,a,q) and assumption (H1) is trivially satisfied
because of the nonnegativity of f . Recalling (3.1), one has

κ =
T

|Ω|1/p∗

[(
R(x0)

2

)(N−p)

(2N − 1)|B(0, 1)|

]1/p

=
T

RN/p∗ |B(0, 1)|1/p∗
R(N−p)/p

[
2N − 1

2N−p
|B(0, 1)|

]1/p

= T

[
2N − 1

2N−p

]1/p

|B(0, 1)|(p
∗−p)/(p∗p).

Condition (3.20) assures that d > 1/κ, namely c = 1 < κd and (3.3) holds. More-
over, from (3.2) and the positivity of a, one has

H =
a2‖a‖Lα(Ω)(2T )p(2N − 1)|Ω|(p∗−α′p)/(α′p∗)

a1[R(x0)]p

=
a2‖a‖Lα(B(x0,R))(2T )p(2N − 1)|B(0, 1)|(p∗−α′p)/(α′p∗)

a1

R[N(p∗−α′p)]/(α′p∗)

Rp

<
a2‖a‖Lα(IRN)(2T )p(2N − 1)|B(0, 1)|(p∗−α′p)/(α′p∗)

a1

R[N(p∗−α′p)]/(α′p∗)

Rp

= H̃R,

namely, taking in mind (3.21)

H

(
M1 +

M2

q

)
< H̃R

(
M1 +

M2

q

)
<

essinfIRF (x, d)

dp
≤

essinfx∈B(x0,R/2)F (x, d)

dp

and (H2) holds. All the assumptions of Theorem 3.1 are satisfied and if we put

τ∗ =
a22p(2N − 1)

pRp
dp

essinfx∈B(x0,R/2)F (x, d)
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and

τ∗ =
a1

‖a‖Lα(B(x0,R))pT p(RN |B(0, 1)|)(p∗−α′p)/(α′p∗)
1

M1 + M2

q

,

it is clear that τ∗ = λ∗ and τ∗ = λ∗, where λ∗ and λ∗ are the constant defined in
(3.4) and (3.5) respectively, so that the conclusion follows at once. �

Remark 3.2. Looking at the proof of the preceding theorem, the definition of H̃R

as well as conditions (3.20) and (3.21) give an estimate of the size of the constant
R̄ and, as a consequence, of the largeness of the balls that can be considered as well
as of the interval of parameters λ.

We can observe that the assumptions of Theorem 3.1 do not require any partic-
ular behavior of f(x, ·) at zero. If one adds a kind of (p− 1)-superlinearity at zero
it is possible to obtain an unbounded interval of λ for which problem (Pλ) admits
multiple solutions. More precisely, the following result holds

Theorem 3.3. Assume that f : Ω × IR → IR satisfies condition (Gf,a,q) with
1 < q < p and that there exist x0 ∈ Ω, d > 0 such that (H1) holds in addition to

(H2)′ essinfx∈B(x0,R(x0)/2)F (x, d) > 0.

Moreover, suppose that

(H3) limt→0
f(x,t)

a(x)|t|p−1 = 0 uniformly a.e. in Ω.

Then, for every λ > λ∗ (with λ∗ defined in (3.4)) problem (Pλ) admits at least
two non trivial weak solutions.

Proof. First observe that, in view of (H2)′, λ∗ > 0. Fix λ̄ ∈]λ∗,+∞[. Because of
claim (2.7) it will be enough to prove that Iλ̄ = Φ − λ̄Ψ admits at least three
critical points, where Φ and Ψ = Ψ2,f as defined in (2.5) and (2.6) respectively.

Let us begin pointing out that, adapting the arguments of the proof of [12,
Lemma 3.3], assumption (H3) and (Gf,a,q) assure that

lim
r→0+

supΦ(u)≤r Ψ(u)

r
= 0. (3.22)

Indeed, fixed ε > 0 from (H3) there exists δ = δ(ε) ∈]0, 1[ such that

|f(x, t)| ≤ εa(x)|t|p−1 (3.23)

a.e. in Ω and for every t ∈]− δ, δ[.
Thus, if γ ∈]p, p∗/α′[ and M3 = max

{
ε, M1+M2

δγ−1

}
, we can verify that

|f(x, t)| ≤ εa(x)|t|p−1 +M3a(x)|t|γ−1 (3.24)

a.e. in Ω and for every t ∈ IR. Indeed, if |t| < δ condition (3.24) follows immediately
from (3.23). If δ ≤ |t| < 1 from (Gf,a,q) one has

|f(x, t)| ≤ a(x)(M1 +M2) = a(x)
M1 +M2

|t|γ−1
|t|γ−1 ≤ a(x)

M1 +M2

δγ−1
|t|γ−1,

a.e. in Ω and (3.24) holds. While if |t| ≥ 1, again from (Gf,a,q) one has

|f(x, t)| ≤ a(x)

(
M1

|t|q−1
+M2

)
|t|q−1 ≤ a(x)(M1+M2)|t|q−1 ≤ a(x)(M1+M2)|t|γ−1

a.e. in Ω, so that also in this case (3.24) is satisfied.
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Since α′γ < p∗, from (3.24) and the Hölder’s inequality one has

Ψ(u) ≤ ε

p

∫
Ω

a(x)|u(x)|p dx+
M3

γ

∫
Ω

a(x)|u(x)|γ dx

≤ ε

p
‖a‖α‖u‖pα′p +

M3

γ
‖a‖α‖u‖γα′γ (3.25)

≤ ε

p
‖a‖αT p|Ω|(p

∗−α′p)/(p∗α′)‖u‖p +
M3

γ
‖a‖αT γ |Ω|(p

∗−α′γ)/(p∗α′)‖u‖γ

for every u ∈ X. Putting together (3.12) and (3.25) one has that for every r > 0

supΦ(u)≤r Ψ(u)

r
≤ ε

a1
‖a‖αT p|Ω|(p

∗−α′p)/(p∗α′) +

+
M3

γ
‖a‖αT γ |Ω|(p

∗−α′γ)/(p∗α′)

(
p

a1

)γ/p
r(γ−p)/p.

Taking in mind that γ > p, the preceding condition assures that

lim sup
r→0+

supΦ(u)≤r Ψ(u)

r
≤ ε

a1
‖a‖αT p|Ω|(p

∗−α′p)/(p∗α′)

and, in view of the arbitrary of ε > 0 it is clear that (3.22) holds.
Hence, if ud ∈ X is the function defined in (3.7), in correspondence of the fixed

λ̄ ∈]λ∗,+∞[ there exists r̄ = r̄(λ̄) ∈]0,Φ(ud)[ small enough such that

supΦ(u)≤r̄ Ψ(u)

r̄
<

1

λ̄
<

1

λ∗

=
p[R(x0)]p

a22p(2N − 1)

essinfB(x0,R(x0)/2)F (x, d)

dp
(3.26)

≤ Ψ(ud)

Φ(ud)
,

where, thanks to assumption (H1), we have also used condition (3.10). Thus,
condition (2.8) is satisfied with r = r̄ and ū = ud. Moreover, in the proof of
Theorem 3.1 it has been already observed that when 1 < q < p the functional
Iλ is coercive for every λ ≥ 0, hence it is bounded from below and satisfies
the (PS)-condition . Finally, we can apply Theorem 3.1 and conclude that for

every λ ∈
]

Φ(ud)
Ψ(ud) ,

r̄
supΦ(u)≤r̄ Ψ(u)

[
the functional Iλ admits at least three criti-

cal points. The proof is completed once observed that (3.26) implies that λ̄ ∈]
Φ(ud)
Ψ(ud) ,

r̄
supΦ(u)≤r̄ Ψ(u)

[
. �

A particular version of Theorem 3.3 is now pointed out when the non linearity f
does not depend on x and, for simplicity, it is assumed to satisfy a sign condition.

Corollary 3.2. Let f : IR → IR be a continuous function such that f(t) ≥ 0 for
every t ∈ [0,+∞[, with f 6≡ 0, and there exist M1, M2 > 0 and q ∈]1, p[ such that

f(t) ≤M1 +M2|t|q−1

for every t ∈ IR. Assume that

lim
t→0+

f(t)

tp−1
= 0. (3.27)
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Put F (t) =
∫ t

0
f(s) ds for every t ∈ IR and let d > 0 be such that

F (d)

dp
= max
t∈]0,+∞[

F (t)

tp
.

Moreover, let x0 ∈ Ω such that R(x0) = maxx∈Ω R(x).

Then, for every λ > β∗ =
a22p(2N − 1)

p[R(x0)]p
dp

F (d)
the problem{

−divA(x,∇u) = λf(u) in Ω,
u = 0 on ∂Ω,

(3.28)

admits at least two positive solutions.

Proof. Put

f+(x, t) =

{
f(t) if (x, t) ∈ Ω× [0,+∞[
0 if (x, t) ∈ Ω×]−∞, 0[

and F+(x, t) =
∫ t

0
f(x, s) ds for every (x, t) ∈ Ω × IR. It is very simple to verify

that f+ and F+ satisfy all the assumptions of Theorem 3.3 with a ≡ 1. Hence, for
every λ > β∗ the following problem{

−divA(x,∇u) = λf+(x, u) in Ω,
u = 0 on ∂Ω

(3.29)

admits at least two nontrivial weak solutions. We can conclude the proof once we
point out that every nontrivial weak solution of (3.29) is positive in Ω, hence, in
view of the definition of f+, it also solves (3.28).

First, observe that if u is a nontrivial solution of (3.29), then it must be nonneg-
ative. Indeed, since∫

Ω

A(x,∇u(x)) · ∇v(x) dx = λ

∫
Ω

f+(x, u(x))v(x) dx

for every v ∈W 1,p
0 (Ω), taking v = −u− and exploiting (A)(i), (A)(iii) one has

a1‖u−‖p ≤
∫

Ω

A(x,−∇u−(x)) · (−∇u−(x)) dx

=

∫
Ω

A(x,∇u(x)) · (−∇u−(x))

= −λ
∫

Ω

f+(x, u(x))u−(x) dx

= −λf(0)

∫
Ω

u−(x) dx = 0,

namely u ≥ 0 a.e. in Ω. Taking in mind [13, Theorem 7.1, pag. 286] and [13,
Theorem 1.1, pag. 251] one has that u is continuous and applying the strong
maximum principle as in [17, Theorem 11.1] the conclusion follows. �

Remark 3.3. The preceding Corollary 3.2 suggests a comparison with Theorem
2.1 of the very nice paper [12], where the existence of multiple solutions of problem
(3.28) is studied, being the differential operator of p-Laplacian type with p ≥ 2.
In particular, in [12] the authors require that the continuous function f is both
super (p− 1)-linear at zero and sub (p− 1)-linear at infinity, while F is positive at
some s0 > 0 in order to state the existence of a bounded interval, that is localized,
but not explicitly determined, of positive parameters for which the problem under
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examination has at least three distinct weak solutions that, in addition, satisfy an a
priori estimate. Here, under the more restrictive sign condition on f the multiplicity
result is still assured, but the interval of parameters is computed and unbounded,
while the solutions are positive.

From a carefully read of the proofs of Theorem 3.3 one can observe that a
further multiplicity result can be stated when f(x, ·) is super (p− 1)-linear at zero
and (p− 1)-linear, as it is shown in the following

Theorem 3.4. Assume that f : Ω × IR → IR satisfies condition (Gf,a,p) and that
there exist x0 ∈ Ω, d > 0 such that (H1) holds in addition to

(H2)′′
M2

p
H <

essinfx∈B(x0,R(x0)/2)F (x, d)

dp
,

where H is the constant defined in (3.2). Moreover, suppose that f satisfies (H3).
Put

λ∗∗ =
a1

M2‖a‖αT p|Ω|(p∗−α′p)/(α′p∗)
.

Then, for every λ ∈]λ∗, λ
∗∗[ problem (Pλ) admits at least two non trivial weak

solutions.

Proof. Assumption (H2)′′ means

M2a2‖a‖α(2T )p(2N − 1)|Ω|(p∗−α′p)/(α′p∗)

pa1[R(x0)]p
<

essinfx∈B(x0,R(x0)/2)F (x, d)

dp
,

so that

1

λ∗
=

p[R(x0)]p

a22p(2N − 1)

essinfB(x0,R(x0)/2)F (x, d)

dp

>
M2‖a‖αT p|Ω|(p

∗−α′p)/(α′p∗)

a1
=

1

λ∗∗
,

namely 0 < λ∗ < λ∗∗. Fix λ̄ ∈]λ∗, λ
∗∗[ and, arguing as in Theorem 3.3, let us verify

that Iλ̄ = Φ− λ̄Ψ admits at least three critical points.
Reasoning in analogy with the proof of Theorem 3.3 one can find r̄ = r̄(λ∗∗) ∈

]0,Φ(ud)[ small enough such that

supΦ(u)≤r̄ Ψ(u)

r̄
<

1

λ∗∗
<

1

λ̄
<

1

λ∗

=
p[R(x0)]p

a22p(2N − 1)

essinfB(x0,R(x0)/2)F (x, d)

dp

≤ Ψ(ud)

Φ(ud)
.

Moreover, from (3.15) it follows that for every λ ∈ [0, λ∗∗[ the functional Iλ is
bounded from below and satisfies the (PS)-condition, because it is coercive. Hence,

we can apply Theorem 2.1 and conclude that for every λ ∈
]

Φ(ud)
Ψ(ud) ,

r̄
supΦ(u)≤r̄ Ψ(u)

[
the functional Iλ admits at least three critical points. The proof is complete

observing that, in particular, λ̄ ∈
]

Φ(ud)
Ψ(ud) ,

r̄
supΦ(u)≤r̄ Ψ(u)

[
. �

Inspired by [8], we wish to conclude this note considering a case when the non-
linear term of problem (Pλ) has a suitable structure that implies its (p−1)-linearity
both at zero and at infinity.
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Theorem 3.5. Let f : Ω× IR→ IR be a function satisfying condition (Gf,a,q) with
1 < q < p and assume that there exist x0 ∈ Ω and d > 0 such that (H1) and (H3)
hold in addition to

(H2)′′′
1

p

(
H − essinfx∈B(x0,R(x0)/2)a(x)

)
<

essinfx∈B(x0,R(x0)/2)F (x, d)

dp
,

where H is the constant defined in (3.2). Put

µ∗ =

[
[R(x0)]p

a22p(2N − 1)
ess inf

x∈B(x0,R(x0)/2)
a(x) +

p[R(x0)]p

a22p(2N − 1)

essinfx∈B(x0,R(x0)/2)L(x, d)

dp

]−1

and

µ∗ =
a1

‖a‖αT p|Ω|(p∗−α′p)/(α′p∗)
.

Then, for every λ ∈]µ∗, µ
∗[ problem{

−divA(x,∇u) = λ(a(x)|u|p−2u+ f(x, u)) in Ω,
u = 0 on ∂Ω,

admits at least two non trivial weak solutions.

Proof. First of all, let us point out that 0 < µ∗ < µ∗. Indeed, from assumption
(H2)′′′ and the definition of H one has

p
essinfx∈B(x0,R(x0)/2)F (x, d)

dp
>

a2‖a‖α(2T )p(2N − 1)|Ω|(p∗−α′p)/(α′p∗)

a1[R(x0)]p
+

−essinfx∈B(x0,R(x0)/2)a(x),

so that

p[R(x0)]p

a22p(2N − 1)

essinfx∈B(x0,R(x0)/2)F (x, d)

dp
>
‖a‖αT p|Ω|(p

∗−α′p)/(α′p∗)

a1
+

− [R(x0)]p

a22p(2N − 1)
ess inf

x∈B(x0,R(x0)/2)
a(x).

Hence,

1

µ∗
=

[R(x0)]p

a22p(2N − 1)
essinf

x∈B(x0,R(x0)/2)
a(x) +

p[R(x0)]p

a22p(2N − 1)

essinfx∈B(x0,R(x0)/2)F (x, d)

dp

>
‖a‖αT p|Ω|(p

∗−α′p)/(α′p∗)

a1
=

1

µ∗
> 0

that is 0 < µ∗ < µ∗. Fix now λ̄ ∈]µ∗, µ
∗[ and let us prove that Iλ̄ = Φ− λ̄Ψ, where

Φ is as in (2.5) and Ψ = Ψ1 + Ψ2,f according to (2.6), admits at least three critical
points. Lemma 2.2 assures that Ψ′ is a compact operator and that Ψ is of class C1

as well as sequentially weakly continuous.
Assumption (H3) implies condition (3.24). Hence, following the reasoning adopted

in (3.25) one has

Ψ(u) ≤ 1 + ε

p

∫
Ω

a(x)|u(x)|p dx+
M3

γ

∫
Ω

a(x)|u(x)|γ dx (3.30)

≤ 1 + ε

p
‖a‖αT p|Ω|(p

∗−α′p)/(α′p∗)‖u‖p +
M3

γ
‖a‖αT γ |Ω|(p

∗−α′γ)/(α′p∗)‖u‖γ .
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Hence, for every r > 0, in view of (3.6), one has

supΦ(u)≤r Ψ(u)

r
≤ (1 + ε)

‖a‖αT p|Ω|(p
∗−α′p)/(α′p∗)

a1
+

+
M3

γ
‖a‖αT γ |Ω|(p

∗−α′γ)/(α′p∗)

(
p

a1

)γ/p
r(γ−p)/p.

Thus, passing to the limsup as r → 0+ and then exploiting the arbitrary of ε > 0,

lim sup
r→0+

supΦ(u)≤r Ψ(u)

r
≤ ‖a‖αT

p|Ω|(p∗−α′p)/(α′p∗)

pa1
=

1

µ∗
<

1

λ̄
.

If ud ∈ X is the function defined in (3.7), one can find r̄ = r̄(λ̄) ∈]0,Φ(ud)[ such
that

supΦ(u)≤r̄ Ψ(u)

r̄
<

1

λ̄
. (3.31)

Moreover, a computation based on assumption (H1) shows that

Ψ(ud) =
1

p

∫
Ω

a(x)|ud(x)|p dx+

∫
Ω

F (x, ud(x)) dx

≥ |B(x0,R(x0)/2)|
[
dp

p
essinfx∈B(x0,R(x0)/2)a(x) + essinfB(x0,R(x0)/2)F (x, d)

]
=

(
R(x0)

2

)N
|B(0, 1)|

[
dp

p
essinfx∈B(x0,R(x0)/2)a(x) + essinfB(x0,R(x0)/2)F (x, d)

]
.

Putting together (3.8) and the preceding inequality, one has

Ψ(ud)

Φ(ud)
≥

(
R(x0)

2

)N
|B(0, 1)|

[
dp

p essinfx∈B(x0,R(x0)/2)a(x) + essinfB(x0,R(x0)/2)F (x, d)
]

a2

p

(
R(x0)

2

)N−p
(2N − 1)|B(0, 1)|dp

=
1

µ∗
>

1

λ̄
. (3.32)

Hence, from (3.31) and (3.32) it follows that assumption (2.8) holds with ū = ud
and r = r̄.

Arguing as in (3.15) one has that for every λ ∈ [0, µ∗[ the functional Iλ is
coercive, so that it is bounded from below. Indeed, from (3.6) and (Gf,a,q)

Iλ(u) ≥ 1

p

(
a1 − λ‖a‖αT p|Ω|(p

∗−α′p)/(α′p∗)
)
‖u‖p − λM1‖a‖αT |Ω|(p

∗−α′)/(p∗α′)‖u‖+

−λM2

q
‖a‖αT q|Ω|(p

∗−α′q)/(p∗α′)‖u‖q

and the coercivity is verified, being a1 − λ‖a‖αT p|Ω|(p
∗−α′p)/(α′p∗) > 0 and 1 <

q < p. The same arguments exploited in the proof of Theorem 3.1, based on the
coercivity of Iλ, the compactness of Ψ′ and the (S+) condition, assure that Iλ

satisfies the (PS)-condition for every λ ∈ [0, µ∗[. Hence, all the assumptions of

Theorem 2.1 hold and one has that for all λ ∈
]

Φ(ud)
Ψ(ud) ,

r̄
supΦ(u)≤r̄ Ψ(u)

[
the functional

Iλ admits at least three critical points. Since from (3.31) and (3.32) it follows that

λ̄ ∈
]

Φ(ud)
Ψ(ud) ,

r̄
supΦ(u)≤r̄ Ψ(u)

[
, the proof can be considered complete. �
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Remark 3.4. In [8], the problem{
−divA(x,∇u) = λ(a(x)|u|p−2u+ f(x, u)) in Ω,
u = 0 on ∂Ω,

has been studied when f satisfies (Gf,a,q) with 1 < q < p, in addition to

lim sup
t→0

|f(x, t)|
a(x)|t|γ−1

<∞, (3.33)

for some γ ∈ (p, p∗/α′), uniformly a.e. in Ω and∫
Ω

F (x, u1(x)) dx >
1

p

(
a2

a1
− 1

)
, (3.34)

where a1, a2 are the constants given in (A)(iii), while u1 is the eigenfunction (with∫
Ω
a(x)|u1|p dx = 1) related to the first eigenvalue of the problem

−∆pu = λa(x)up−2u

in W 1,p
0 (Ω), namely

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|p dx∫

Ω
a(x)|u|p dx

.

In particular, among the others, in [8], two technical positive constants λ?, λ
?,

with λ? ≤ λ? < a1λ1, and λ? depending on λ1, are considered in such a way that
the Dirichlet problem has only the zero solution if λ ∈ [0, λ?), while there are at
least two nontrivial solutions if λ ∈ (λ?, a1λ1).

Hence, we can observe that condition (3.33) implies our assumption (H3) so that
Theorem 3.5 is compatible with the result in [8] and it could represent a concrete
tool for estimating the constant λ? in all the cases when it is not simple to compute
λ1.
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