BMVC 2022 Submission # 636

Abstract

We propose a multi-layer variational autoencoder method, we call HR-VQVAE, that learns hierarchical discrete representations of the data. By utilizing a novel objective function, each layer in HR-VQVAE learns a discrete representation of the residual from previous layers through a vector quantized encoder. Furthermore, the representations at each layer are hierarchically linked to those at previous layers. We evaluate our method on the tasks of image reconstruction and generation. Experimental results demonstrate that the discrete representations learned by HR-VQVAE enable the decoder to reconstruct high-quality images with less distortion than the baseline methods, namely VQVAE and VQVAE-2. HR-VQVAE can also generate high-quality and diverse images that outperform state-of-the-art generative models, providing further verification of the efficiency of the learned representations. The hierarchical nature of HR-VQVAE i) reduces the decoding search time, making the method particularly suitable for high-load tasks and ii) allows to increase the codebook size without incurring the codebook collapse problem.

1 Introduction

028 029 030 031 032 033 034 035 036 Deep generative modeling has shown impressive results for the application of unsupervised learning in many domains, e.g., image super-resolution $[14]$, image generation $[21]$, and future video frame prediction [15]. Variational autoencoders (VAEs) [26], which are the focus of this work, compute continuous-valued representations by compressing information into a dense, distributed embedding [26]. However, studies on human cognition emphasize the importance of discretization in representation learning. Discrete symbolic representations contribute to reasoning, understanding, generalization, and efficient learning [2]. Discrete representations can also significantly reduce the computational complexity and improve interpretability by illustrating which terms contributed to the solution [17].

037 038 039 040 041 042 043 Rolfe et al. [19] proposed a discrete VAE to train a class of probabilistic models with discrete latent variables. By combining undirected discrete component and a directed hierarchical continuous component, the model efficiently learns both the class of objects in an image and their specific realization in pixels in an unsupervised fashion. Oord et al. [23] proposed the vector quantized VAE (VQVAE), a discrete latent VAE model that relies on a vector quantization layer to model discrete latent variables, which quantizes encoder outputs with on-line *k*-means clustering. The discrete latent variables allow the use of a powerful

⁰⁴⁴ © 2022. The copyright of this document resides with its authors.

⁰⁴⁵ It may be distributed unchanged freely in print or electronic forms.

053 054 055 056 057 058 (a) FFHQ (b) Imagenet (c) CIFAR10 (d) MNIST Figure 1: Reconstructions obtained with HR-VQVAE. First row contains the original images. Second row contains reconstructions using all three layers. Third row indicates reconstructions using the second and third layers. Last row is the reconstructions using only the third layer. Each layer adds extra details to the final reconstruction.

autoregressive model that avoids the posterior collapse problem. Moreover, the model can 059 considerably reduce the amount of information required to reconstruct an image. However, 060 **061** VQVAE suffers from the problem of *codebook collapse* [7]: At some point during training, some portion of the codebook may fall out of use and the model no longer uses the full $_{062}$ capacity of the discrete representations, resulting in a poor reconstruction [12]. One of the ₀₆₃ explanations of codebook collapse can be found in the typical *k*-means issues [12] concerning its sensitivity to initialization and non-stationarity of clustered neural activations during ₀₆₅ **066 067** training. Moreover, *k*-means issues become more severe with the increase of centroids, and the ability to encode the input with a broad number of discrete codes decreases [4].

More recently, several attempts have been made at introducing hierarchical quantized ₀₆₈ architectures. In the hierarchical quantized autoencoder [24], low-resolution discrete rep-**070 071 072 073 074 075 076 077 078 079** resentations are decoded to match high-resolution representations and again quantized with a stochastic assignment. For example, Takahashi et al. [20] proposed a hierarchical representation learning based on VQVAE that enables learning disentangled representations with multiple resolutions independently. Razavi et al. [18] proposed a hierarchical VOVAE, namely VQVAE-2, which extends VQVAE by employing several layers (e.g., top, middle, and bottom layers) of quantized representations to handle hierarchical information in images. Then, two autoregressive convolutional networks [1] were used to model structural and textural information, respectively, to generate new images. Different layers, however, share the same objective function. This does not encourage the layers to encode complementary information, and results in inefficient use of the codebooks, as we will show in this paper. Furthermore, VQVAE-2 also suffers from the codebook collapse issue [5, 27].

080 081 082 083 084 085 086 087 088 089 090 091 In this study, we propose a hierarchical residual learning based vector quantized variational autoencoder (HR-VQVAE) for the image reconstruction and generation tasks. The first contribution is a novel hierarchical vector quantization encoding scheme. In contrast with previous research, our scheme maps the continuous latent representations to several layers of discrete representations through hierarchical codebooks. Moreover, a novel objective function is proposed to provide contrastive learning by pushing each layer to extract information not learned by its preceding layers. At the same time, the objective optimizes the output image from the combination of representations obtained from all layers (see Fig. [1\)](#page-1-0). The hierarchical nature of HR-VQVAE allows us to increase the size of the codebooks without incurring in the codebook collapse problem, resulting in higher quality images. It also provides local access to the codebook layers, thus reducing the search time per layer and speeding up the entire search process. With experiments on well-known image datasets, we

103 Figure 2: The HR-VQVAE method (only two consecutive layers are shown for simplicity).

104 105 106 107 show that our model can reconstruct images with higher levels of details and is an order of magnitude faster than state-of-the-art methods (i.e., VQVAE [19] and VQVAE-2 [18]). Moreover, we show that HR-VQVAE can generate high-quality images that challenge some state-of-the-art approaches (i.e., VDVAE [3] and VOGAN [8]).

108 109 110 The rest of this work is organized as follows. First, we introduce the background in Section [2.](#page-2-0) Then, we present the proposed approach in Section [3.](#page-3-0) Subsequently, experiments and discussion are given in Section [4.](#page-4-0) Finally, we conclude our work in Section [5.](#page-7-0)

112 113 2 Background

114 115 116 117 118 119 120 In this section, we describe aspects of the VQVAE [23] and VQVAE-2 [18] models that are necessary to understand the proposed method. VQVAE first encodes the input image $\mathbf{x} \in \mathbb{R}^{H_I \times W_I \times 3}$ into a continuous latent vector $\mathbf{z} = E(\mathbf{x}) \in \mathbb{R}^{H_I \times W \times D}$ using a non-linear transformation $E(\cdot)$. Next, each element $\mathbf{z}_{hw} \in \mathbb{R}^D$, $h \in [1, H]$, $w \in [1, W]$ in the continuous latent representation **z** is quantized to the nearest codebook vector (i.e. codeword) $e_k \in \mathbb{R}^p$, $k \in 1,...,m$ by

$$
Quantize(\mathbf{z}_{hw}) = \mathbf{e}_k \text{ where } k = \arg\min_j ||\mathbf{z}_{hw} - \mathbf{e}_j||_2,
$$
\n(1)

122 123 124 125 126 as illustrated in Fig. 3 (left). The quantized vectors corresponding to each element z_{hw} are then recombined into the quantized representation $\mathbf{e} \in \mathbb{R}^{H \times W \times D}$ to form the input to a decoder that reconstructs the original image through a non-linear function $\mathcal{D}(\cdot)$. The encoder $E(\cdot)$, the codeword $\{e_k\}$, and the decoder $\mathcal{D}(\cdot)$ are learned from data by optimizing the objective function

$$
127
$$

121

111

$$
\mathcal{L}(\mathbf{x}, \mathcal{D}(\mathbf{e})) = \|\mathbf{x} - \mathcal{D}(\mathbf{e})\|_2^2 + \|\mathbf{s}\mathbf{g}[\mathbf{z}] - \mathbf{e}\|_2^2 + \beta \|\mathbf{s}\mathbf{g}[\mathbf{e}] - \mathbf{z}\|_2^2.
$$
 (2)

128 129 130 131 132 This function aims at minimizing the reconstruction error $||\mathbf{x} - \mathcal{D}(\mathbf{e})||_2$ whilst minimizing the quantization error $||\mathbf{z} - \mathbf{e}||_2$. In Eq. [2,](#page-2-1) sg(.) refers to a stop-gradient operator that cuts the gradient flow through its argument during the backpropagation, and β is a hyperparameter which controls the reluctance to change the latent representation corresponding to the encoder output.

133 134 135 136 137 VQVAE-2 extends VQVAE to attain a hierarchy of vector quantized codes. It compresses images into several latent spaces, from the *top* layer (smaller size) to the *bottom* layer (larger size), which is conditioned on the top layer in order for the top layer to extract general information from the image and the bottom layer to add more detail in the image reconstruction. The codebooks at different layers, however, are not related by a hierarchy.

178

Figure 3: Illustration of vector quantization for 1-layer HR-VQVAE (or VQVAE, left) and ¹⁴⁷ **148** 3-layer HR-VQVAE (right). Different colors refer to different layers. For each layer, the **149** Voronoi cell for one centroid is shaded and annotated as an example (See Eq. [1](#page-2-2) and [3\)](#page-3-2).

3 Proposed Approach

152 153 154 155 from VQVAE, however, these embeddings are then iteratively quantized into *n* hierarchical **156** layers of discrete latent variables. Assuming the first layer has a codebook of size *m*, the **157** second layer will have *m* codebooks of size *m*, and so on for subsequent layers. In general, layer *i* has m^{i-1} codebooks of size *m*, for a total of m^i codewords. However, only one of those 158 codebooks is used in each layer depending on which codewords where chosen in the previous 159 layers. This is illustrated in Fig. [2](#page-2-3) where the vector selected within C_{bottom} determines the ₁₆₀ codebook that is activated in the top layer (in this case $C_{top}(2)$). Such a hierarchical searching $\frac{161}{161}$ procedure provides the advantage of local access to codebook indexes, which dramatically ₁₆₂ reduces search time. Fig. [3](#page-3-1) (right) exemplifies this structure where the number of layers ₁₆₃ $n = 3$ and the codebook size $m = 4$. The resulting Voronoi cells are shown in red, green and 164 **165** The architecture of the proposed HR-VQVAE is illustrated in Fig. [2,](#page-2-3) where we only show two consecutive layers for simplicity. As in VQVAE, the original image x is first encoded into continuous embeddings that we call $\xi^0 = E(\mathbf{x})$ by a non-linear encoder. Differently blue for the first, second and third layer, respectively.

166 167 In each layer *i*, the codebook is optimized to minimize the error between the codewords $e^i_k \in \mathbb{R}^p$ and the elements $\xi_{hw}^{i-1} \in \mathbb{R}^p$ of the residual error from the previous layer:

Quantize^{*i*}(
$$
\xi_{hw}^{i-1}
$$
) = \mathbf{e}_k^i where $k = \arg \min_j ||\xi_{hw}^{i-1} - \mathbf{e}_j^i||_2$, (3) $\frac{168}{169}$

170 171 and e^i_k belongs to one of the possible codebooks $C_i(t)$ for layer *i*. Which codebook is used is determined by the codeword e_t^{i-1} selected at the previous layer.

172 173 174 175 Within each layer, the codewords e^i_k are combined to form the tensor $e^i \in \mathbb{R}^{H \times W \times D}$. Across the different layers, we then combine the tensors e^i to form the "combined" discrete representation e_C which, in turn, is fed into the decoder that reconstructs the image x .

$$
\mathbf{e}_C = \sum_{i=1}^n \mathbf{e}^i, \tag{4}
$$

179 180 181 By doing this, we allow the combined discrete latent representation e_C to incorporate different aspects of the image, depending on the area that we try to reconstruct. The objective function used to train the system is:

$$
\mathcal{L}(\mathbf{x}, \mathcal{D}(\mathbf{e}_C)) = \|\mathbf{x} - \mathcal{D}(\mathbf{e}_C)\|_2^2 + \|\mathbf{s}\mathbf{g}[\xi^0] - \mathbf{e}_C\|_2^2 + \beta_0 \|\mathbf{s}\mathbf{g}[\mathbf{e}_C] - \xi^0\|_2^2 + \sum_{i=1}^n \mathcal{L}(\xi^{i-1}, \mathbf{e}^i), \quad (5) \frac{182}{183}
$$

AUTHOR(S): HR-VQVAE 5

184

188 189

190 191 192 {64} ${8, 64}$ {4, 16, 64} ${2, 4, 8, 16, 32, 64}$ Figure 4: Reconstructions obtained with HR-VQVAE models with different depths (i.e., number of layers). The latent maps are 32×32 , and the number of codewords for each layer is specified from bottom to top in order from right to left for each model.

193 with

194 195 196

209

211

$$
\mathcal{L}(\xi^{i-1}, \mathbf{e}^i) = ||sg[\xi^{i-1}] - \mathbf{e}^i||_2^2 + \beta_i ||sg[\mathbf{e}^i] - \xi^{i-1}||_2^2,
$$
 (6)

197 198 where β_i are hyperparameters which control the reluctance to change the code corresponding to the encoder output.

199 200 201 202 203 The main goal of Eqs. 5 , and 6 is to make a hierarchical mapping of input data in which each layer of quantization extracts residual concepts from its bottom layers. In this regard, ξ *i* (Eq. [6\)](#page-4-1) plays an essential role in making the hierarchically learning of layers which makes the main differences between our model and the VQVAE-2 model. It should be noted that both VQ encoder and decoder share the same hierarchical codebooks.

204 205 206 207 208 Finally, as in VQVAE, for each e_C we fit a prior distribution to all training samples using an autoregressive model (PixelCNN [22]). Such a model factorizes the joint probability distribution over the input space into a product of conditional distributions for each dimension of the sample. For generation of new images we use ancestral sampling taking advantage of the chain rule of probability.

210 4 Experiments and Discussion

212 213 214 215 216 217 218 219 220 221 222 223 We conducted our experiments on four well-known datasets, FFHO [9] (256 \times 256), ImageNet [6] (128 × 128), CIFAR10 [11] (32 × 32) and MNIST [13] (28 × 28). We start this section by investigating the effect of varying the depth of the hierarchy in our model. To this end, we defined models with *n* layers and *m* codewords per codebook. As explained in Sec. [3,](#page-3-0) the number of codewords in each layer i is m^i , and, therefore the layers will have ${m, m^2, \ldots, m^n}$ codewords. To ensure the same level of resolution among the models we compare models with the same number of codewords in the final layer, which corresponds to the maximum resolution. Fig. [4,](#page-4-2) shows HR-VQVAE reconstructions with different numbers of layers, namely from one to six. Although all configurations have 64 codewords in the final layer, we observe that increasing the depth of the model results in reconstructions with more details (zoom into the pdf version). A possible explanation for such an improvement is that the hierarchical nature of the codebooks acts as regularization during training and allows the model to allocate codewords more efficiently.

224 225 226 227 228 229 Fig. [5](#page-5-0) provides a comparison with VQVAE-2 on the effect of the model depth (i.e., number of layers) in terms of the reconstruction mean square error (MSE) [25]. The results demonstrate that increasing the model depth leads to better performance of HR-VQVAE compared to VQVAE-2. Furthermore, the performance of HR-VQVAE improves consistently for all datasets with the increase in the number of layers. However, increasing the number of layers does not improve the performance of VQVAE-2 (for Imagenet and FFHQ)

6 AUTHOR(S): HR-VQVAE

Figure 5: The effect of model depth (number of layers) on image reconstruction.

248 249 from a certain point, and in some cases (MNIST and CIFAR10), the performance decreases. In the following experiments, we will use three layers in HR-VQVAE to be able to compare with VQVAE-2 which also uses three layers, while VQVAE uses a single layer.

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 collapse. On the contrary, HR-VQVAE can take full advantage of the increased complexity **266** We first compare the effect of increasing the codebook size in our model as well as VQVAE and VQVAE-2. Fig. [6](#page-6-0) illustrates the behavior of HR-VQVAE and the baseline models with different numbers of codewords. As it can be seen, by increasing the number of codewords up to a certain number, the performance of all models improves, whereas HR-VQVAE shows higher performance. However, the efficiency of the baseline models starts decreasing from a certain point with increasing the number of codewords, while the efficiency of HR-VQVAE continuously increases for all datasets. This means that not only HR-VQVAE does not suffer from the codebook collapse problem, but it can also benefit from increasing the number of codebooks to improve performance. Fig. [7](#page-6-1) provides a visual example for Fig. [6.](#page-6-0) Fig. [7](#page-6-1) (b) shows reconstructions where the size of codebooks is 512 for VQVAE, {512,512,512} for VQVAE-2 and {8,64,512} for HR-VQVAE. Similarly to Fig. [4,](#page-4-2) HR-VQVAE produces superior details than VQVAE with the same codebook size (zoom into the pdf version). VQVAE-2 produces a very smooth image but misses some of the details. More interesting is to study what happens if we increase the codebook size in all the models. Fig. 7 (c) shows that both VQVAE and VQVAE-2 are affected by codebook and produces the best reconstruction of this list.

267 268 269 270 271 code different information about the image; whereas the information in VQVAE-2 is strongly **272** Fig. [8](#page-6-2) compares 3-layers HR-VQVAE and 3-layer VQVAE-2 to illustrate the different information encoded in different layers in the two models. HR-VQVAE image reconstructions (first row) attain a better reconstruction quality with more details than VQVAE-2 (second row). One possible explanation is that HR-VQVAE encourages the different layers to enoverlapping. This may result in a less efficient latent representation.

273 274 275 Table [1](#page-7-1) reports the mean squared error (MSE) and fréchet inception distance (FID) [16] results for HR-VQVAE, VQVAE, VQVAE-2 for image reconstructions. The reported scores confirm all the results presented so far. Our proposed HR-VQVAE is able to outperform

293 294 295 Figure 6: Average MSE vs number of codewords for different datasets and methods. Both VQVAE and VQVAE-2 collapse when the codebook size is increased over a certain limit. However, HR-VQVAE continues improving as shown in the zoom windows inside each plot.

305 Figure 7: Reconstructions obtained with HR-VQVAE, VQVAE-2 and VQVAE. Number of codewords per layer are given for each model. Both VQVAE and VQVAE-2 are clearly affected by the codebook collapse problem.

329

331 332

335

Table 2: Time for reconstructing 10000 samples using HR-VQVAE, VQVAE-2 and VQVAE. 334

336 337 the baseline models for image reconstructions on all datasets in terms of both MSE and FID score, which is further evidence of the efficiency of our model.

As mentioned in the introduction, the hierarchical structure of the codebooks in HR- 338 **339 340 341 342 343 344 345 346 347 348 349 350** VQVAE provides fast access to codebook indexes across layers which significantly reduces the search time during decoding. Table [2](#page-7-2) reports a comparison of execution time for the highquality reconstructions of 10000 samples for HR-VQVAE as well as VQVAE and VQVAE-2. The input images are compressed to quantized latent codes of size 32×32 for FFHQ and Imagenet and 16×16 for CIFAR10 and MNIST in HR-VQVAE and VQVAE. For the VQVAE-2 model, the images are compressed into latent codes of size $\{32\times32, 16\times16, 8\times8\}$ for the bottom, middle, and top layers, respectively for FFHQ and Imagenet and $\{16\times16, 8\times8,$ 4×4}, respectively for CIFAR10 and MNIST. Table [2](#page-7-2) reports that HR-VQVAE reaches an over ten-fold increase in reconstruction speed compared to VQVAE-2, and a large improvement with respect to VQVAE. Although HR-VQVAE has codebook sizes of $\{m, m^2, \ldots, m^n\}$ in the different layers, it only needs to search through $n \times m$ such vectors due to its hierarchical structure.

351 352 353 354 355 356 357 358 359 360 361 Fig. [9](#page-8-0) presents random samples generated by HR-VQVAE and VQVAE-2. It can be seen that the proposed HR-VQVAE can generate more realistic samples showing the superiority of our model. Table [3](#page-7-3) reports the FID results for generated samples with different models. HR-VQVAE reaches lower FID than the baseline models (VQVAE and VQVAE-2). Furthermore, on FFHQ HR-VQVAE (with PixelCNN for sampling), shows a better performance (17.45) than VDVAE [3] and VQGAN [8] (with PixelCNN for sampling) which reported FIDs 28.50 and 21.93, respectively, but fails against VQGAN (with Transformer [10] for sampling) with FID 11.44 which uses a pre-trained autoregressive Transformer to predict rasterized image tokens on the FFHQ dataset. It is worth noting that when VQGAN uses PixelCNN to generate samples, its efficiency is considerably reduced, raising directions for future work.

Table 3: Generation results using HR-VQVAE, VQVAE-2 and VQVAE.

(a) FFHQ (b) Imagenet (c) CIFAR10 (d) MNIST Figure 9: Random samples generated by HR-VQVAE and VQVAE-2.

5 Conclusion

 In this paper, we proposed a novel multi-layer variational autoencoder method for image modeling that we call HR-VQVAE. The model learns discrete representations in an iterative and hierarchical fashion. The loss function that we introduce to train the model is designed to encourage different layers to encode different aspects of an image. Through experimental evidence, we show how this model can reconstruct images with a higher level of details than state-of-the-art models with similar complexity. We also show that we can increase the size of the codebooks without incurring the codebook collapse problem that is observed in methods such as VQVAE and VQVAE-2. We visualize the internal representations in the model in an attempt to explain its superior performance. Finally, we show that the hierarchical nature of the codebook design allows to dramatically reduce computation time in decoding.

 We believe this model has potential interest for the community both for image reconstruction and generation, particularly in high-load tasks. This is because i) it dramatically compresses the input samples, ii) each layer captures different levels of abstractions, which allows modeling different aspects of the images in parallel, and iii) the search process is sped up by the hierarchical structure of the codebooks.

References

- [1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional neural network. In *2017 International Conference on Engineering and Technology (ICET)*, pages 1–6. Ieee, 2017.
-

 [2] Ruben Cartuyvels, Graham Spinks, and Marie-Francine Moens. Discrete and contin-

- **460 461 462** [15] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. Dual motion gan for future-flow embedded video prediction. In *proceedings of the IEEE international conference on computer vision*, pages 1744–1752, 2017.
- **463 464 465 466** [16] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans created equal? a large-scale study. *Advances in neural information processing systems*, 31, 2018.
- **467 468 469** [17] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations. In *Thirty-second AAAI conference on artificial intelligence*, 2018.
- **470 471 472 473** [18] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. In *Advances in neural information processing systems*, pages 14866–14876, 2019.
- **474 475** [19] Jason Tyler Rolfe. Discrete variational autoencoders. *arXiv preprint arXiv:1609.02200*, 2016.
- **477 478 479** [20] Naoya Takahashi, Mayank Kumar Singh, and Yuki Mitsufuji. Hierarchical disentangled representation learning for singing voice conversion. *arXiv preprint arXiv:2101.06842*, 2021.
- **480 481 482** [21] L Theis, A van den Oord, and M Bethge. A note on the evaluation of generative models. In *International Conference on Learning Representations (ICLR 2016)*, pages 1–10, 2016.
- **484 485 486** [22] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional image generation with pixelcnn decoders. *Advances in neural information processing systems*, 29, 2016.
- **487 488** [23] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In *Advances in Neural Information Processing Systems*, pages 6306–6315, 2017.
- **490 491 492** [24] Will Williams, Sam Ringer, Tom Ash, John Hughes, David MacLeod, and Jamie Dougherty. Hierarchical quantized autoencoders. *arXiv preprint arXiv:2002.08111*, 2020.
- **493 494 495** [25] Lei Zhang and Xiaolin Wu. Color demosaicking via directional linear minimum mean square-error estimation. *IEEE Transactions on Image Processing*, 14(12):2167–2178, 2005.
- **497 498** [26] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Towards deeper understanding of variational autoencoding models. *arXiv preprint arXiv:1702.08658*, 2017.
- **499 500 501** [27] Yang Zhao, Ping Yu, Suchismit Mahapatra, Qinliang Su, and Changyou Chen. Improve variational autoencoder for text generation with discrete latent bottleneck. *arXiv preprint arXiv:2004.10603*, 2020.
- **502**

476

483

489

- **503**
- **504**
- **505**