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Abstract

Two-dimensional theories are crucial in commercial software for industrial applications,
serving as the standard for conducting mechanical analyses of thin-walled components.
Despite the ongoing advancement of computational resources, which aids in making full
three-dimensional analyses less time consuming, the necessity of shell elements persists.
This is especially true when it becomes necessary to explore a vast number of drafts with
low accuracy, such as in early stages of design, or when analyzing complex large structures
typical of transport industry. Notably, the integration of high-order theories augments
the precision of 2D analyses, producing results comparable to those derived from fully
3D analyses. In this context, the establishment of a unified framework that facilitates
the straightforward adjustment of kinematic order becomes paramount, especially when
progressing through different project stages, each demanding varying levels of accuracy.

In this thesis, various shell kinematics are employed in conjunction with methods
facilitating the construction of shell elements with high in-plane order. Specifically, the
discontinuous Galerkin (DG) and Isogeometric Analysis (IGA) methods are adopted.
The formulated approaches enable the modeling of generally-curved shells with arbitrary
lamination sequences.

Higher-order theories are combined with DG for both linear and non-linear mechanical
analyses of shells for the first time. Cut-outs are represented using the implicit mesh
technique, employing a level-set function to implicitly define the integration domain on
active elements. The discontinuous nature of DG basis functions is also exploited for
studying a damaged plate with a through-the-thickness crack.

For structures composed of multiple shells, IGA is applied, enforcing coupling between
patches and boundary conditions through a variationally consistent weak formulation
along conforming and trimmed boundaries. In this approach, the boundary of the em-
bedded domain is defined explicitly using trimming curves. Local refinement in critical
areas is achieved by either adopting auxiliary IGA boundary layers or implementing local
refinement with additional DG elements.

The thesis also provides the main implementation details of the proposed methods.
Numerical examples are presented to showcase the accuracy and efficiency of the proposed
approaches. The results of all tests are systematically compared with reference solutions
obtained either analytically or through commercially available FEM software.
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Chapter 1

Introduction

1.1 Motivation

In various industrial sectors, the performance of the final product can be influenced by
its weight. This effect is particularly evident in the transport industry, with notable
examples in aerospace, automotive, train, and naval sectors. A significant portion of the
overall weight can be attributed to the structural configuration. Here,“structure” refers to
the collective components that work together to transmit external forces throughout the
entire vehicle while also withstanding unforeseen stresses. The weight of these structural
elements is determined by a combination of factors, including the chosen materials and
the shape and arrangement of the structural components. Therefore, it is crucial to
optimize of the stiffness-to-weight ratio through meticulous structural and material design
for achieving high-performances. Typically, this involves adopting thin-walled structures
such as plates or shells.

On the material side, in recent decades composite multilayered laminates have been in-
creasingly becoming the preferred choice over their metallic counterparts in high-performance
demanding applications. This shift is attributed to the numerous possibilities for fine-
tuning that these materials offer. These include options such as selecting the stacking
sequence of the entire laminate, adjusting the lamination angle, choosing the materials
for the fibers and the matrix of the individual layers [1, 2].

Unlike plates, shells are distinguished by a non-flat mid-surface and exhibit what
is known as the curvature effect. This effect, as discussed in [3], results in structural
stiffening due to geometric curvature, leading to an intricate interplay between flexural
and membrane behaviors. This unique characteristic allows the shape of the surface to
be utilized as a design parameter. Conversely, there are instances where the necessity
for a curved surface arises from non-structural considerations, such as in the design of
aerodynamic components.

Nonetheless, even though curved laminate structures offer high versatility, the in-
terplay between the curved geometry and the discrete properties of the composite lay-
ers leads to a complex distribution of mechanical fields, including strains and stresses.
This complexity is particularly pronounced in the out-of-plane components and must be
meticulously resolved to ensure the safe utilization of generally curved composite shells
as load-bearing structures.

In general, the analysis of composite multilayered shells is a three-dimensional (3D)
problem, necessitating the use of computational methods. In fact, analytical solutions are
only available for a very limited number of special cases, as demonstrated, for example,
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2 CHAPTER 1. INTRODUCTION

in [4, 5, 6]. Fully 3D models offer high accuracy but can be computationally demanding
and inefficient for early design stages. To address this issue, an order reduction approach
involving two-dimensional (2D) theories can be applied. These theories are based on
reasonable assumptions regarding the mechanical fields’ behavior across the thickness of
the laminate. They offer a practical strategy for reducing computational complexity com-
pared to 3D models. It is worth noting that more refined assumptions yield more accurate
results, but at the cost of increased computational time. Therefore, comprehending the
possibilities and limitations of various two-dimensional theories is essential for their safe
and effective use as tools in mechanical analysis.

The physical model obtained using two-dimensional theories typically yields a set of
partial differential equations. These equations, due to their inherent complexity, require
numerical solutions. The computational time needed to attain a specific level of accu-
racy in the numerical solution can vary significantly depending on the chosen numerical
method, the discretization technique, the type and order of elements used. Consequently,
investigating the capabilities of various numerical methods is of paramount importance
and a subject of significant research interest.

The most simple type of mechanical analysis of structures consists in characterizing
their static mechanical response. Generally, thin-walled structures operate within the
realm of small displacements, and a linear elastic analysis may suffice to predict their
behavior. However, in advanced applications, these structures may experience significant
displacements, necessitating non-linear analysis to accurately describe their response.
Among various loading scenarios, it is well-established that dynamic loads can induce
larger strain and stress fields than those predicted by static analyses, especially when
they excite the natural frequencies of the structures in question. Additionally, loads that
induce compressive stress states can cause thin and slender structures to undergo sudden
geometric changes and fail at loads significantly lower than those predicted by linear
static analyses, a phenomenon referred to as buckling. Typically, in thin-walled metallic
components, buckling constitutes the main concern for failure. However, when dealing
with laminates, the complexity arising from intrinsic anisotropy and non-homogeneity
makes issues related to the material, such as fiber debonding, fiber microbuckling, and
layer delamination, among others, the primary failure mechanisms. The modeling and
analysis of all of these complex behaviors play a crucial role. These analyses must be both
accurate and computationally efficient to effectively address the complexities involved.

Shell structures typically consist of multiple patches, each associated with a specific
mapping of its mid-surface. Simple surfaces can be defined using analytical expressions,
while for more complex and generally curved shells, Computer-Aided Design (CAD)
software is a powerful tool. CAD software empowers designers to craft and manipulate
intricate surface geometries, spanning from basic planar ones to highly contoured shapes,
providing a comprehensive canvas for engineering design. To prevent undue complexity
in the surface definition, details like cut-outs can be incorporated into an underlying
surface, by properly describing only its boundary. A further challenge emerges when it
is necessary to integrate the geometric descriptions of different components to construct
the entire structure through the definition of interfaces between different patches. Hence,
it is of paramount importance to establish a seamless connection between the geometric
representation in the design phase and the discretized geometry in the numerical analysis
phase, ensuring that accuracy in the geometry description is preserved throughout the
process.

The objective of this thesis is to advance current models and methods relevant to
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the realm of shell structures, with the intention of fulfilling the necessities introduced
so far. This involves combining various components, extending to shell problems some
methods successfully applied to other contexts, and tackling associated challenges using
the most effective strategies documented in the literature. The desired outcome of this
work is the creation of novel and efficient modeling approaches implemented in algorithms
and routines that can serve as a foundation for the development of commercial software
tailored for commercial applications.

1.2 State of the art

The first two-dimensional theory proposed in the literature for the mechanical analysis
of shells is the Kirchhoff-Love (KL) shell theory. Originally formulated for plates in [7]
and later extended to shells in [8], this theory is also known as Classical Laminated
Theory (CLT) [9, 10] when applied to laminated structures. The core assumption of this
theory is that a unit segment perpendicular to the shell’s mid-surface remains straight and
perpendicular to the surface even after deformation. The Reissner-Mindlin theory (RM)
[11, 12], also referred to as the First-order Shear Deformation Theory (FSDT), relaxes the
assumption of perpendicularity, allowing for the modeling of out-of-plane strain and stress
components. As a result, it becomes more suitable for analyzing moderately thick shells.
Focusing on geometrically-nonlinear quasi-static behavior, the first model was developed
by von Kármán [13], who augmented the definition of the strain in classical KL theory
with nonlinear terms. Subsequently, various theories based on different geometrically-
nonlinear definition of the strain tensor have been explored, and a comprehensive review
of these can be found in the work by Chia [14].

The extensive use of multilayered composite plates and shells has highlighted the
need for a more detailed resolution of displacement, strain, and stress distributions at
the level of individual layers. To enhance modeling accuracy, researchers have enriched
the through-the-thickness assumptions and introduced what are known as higher-order
theories. These theories can be categorized into two main groups: Equivalent-Single-
Layer (ESL) theories [15, 16, 17], and Layer-Wise (LW) theories [18, 19, 20]. In the
ESL approach, the functions used to expand the displacement field along the thickness
are defined uniformly for the entire laminate. Consequently, the individual layers are
replaced by a single layer with equivalent mechanical properties. On the other hand,
Layer-Wise (LW) theories are based on a layer-by-layer expansion. This means that the
displacement field is described using piece-wise functions, and at the interfaces between
layers, they exhibit only a C0 continuity.

A unified description of high-order theories for plates and shells has been introduced
by Carrera through the Carrera Unified Formulation (CUF) [21, 22, 23]. This framework
enables a systematic construction of various structural theories because it allows for
flexibility in selecting the order of the approximation and the type of theory, making
them free parameters for analysis. However, it is important to note that increasing the
through-the-thickness resolution comes at the cost of increasing the number of primary
variables, leading to longer computational times. Finding the right balance between
computational efficiency and solution accuracy is not always straightforward. In this
context, an attempt to determine the most suitable 2D theory in terms of computational
efficiency versus solution accuracy for a given structural problem is presented in [24]. The
Kirchhoff-Love (KL) shell theory, for instance, requires only the displacement field in the
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mid-surface of the shell as the main variable. However, due to the fourth-order nature of
the resulting equations, the continuity of the approximation space needs to be C1. This
means that both the displacements and their first derivatives must be continuous across
element boundaries. In contrast, most two-dimensional theories lead to second-order
problems with standard C0 continuity requirements.

The governing equations that arise from two-dimensional theories for plates and shells
are typically strongly coupled partial differential equations (PDEs). Finding closed-form
solutions for these equations is exceptionally challenging and limited to very specific com-
binations of geometry, materials, and boundary conditions. In most instances, numerical
models based on these theories are tackled using Finite Element Methods (FEM) based
on continuous Galerkin approximations (CG) [25]. The FEM serves as the foundation
for many commercial software libraries, encompassing both 3D and 2D elements [26].

1.2.1 The discontinuous Galerkin method

Amongst the alternatives to CG-based FEM, the discontinuous Galerkin (DG) method is
a powerful numerical technique that was initially introduced for hyperbolic partial differ-
ential equations [27] and later extended to elliptic PDEs [28], including elasticity problems
[29, 30]. Similar to CG-based FEM, DG methods rely on a discretization, or mesh, of the
analysed domain. However, unlike most numerical schemes, the DG approach employs
an approximation of the solution using discontinuous basis functions over the mesh ele-
ments. It also utilizes suitably defined boundary integrals to ensure solution continuity
at inter-element interfaces and enforce boundary conditions, including both prescribed
displacements and traction fields. This unique feature of the DG method offers several ad-
vantages, including the use of nonstandard element and shape functions, the application
of non-conformal meshes, the utilization of high-order elements, the implementation of
meshing strategies like hierarchical refinement and adaptivity, scalability, and addressing
locking phenomena. These features make the DG method a robust approach for handling
complex geometries and loads commonly found in advanced lightweight structures.

Indeed, a thorough examination of the relevant literature reveals a growing interest
in DG method to the analysis of various thin-walled structures. Specifically, DG for-
mulations and investigations have been proposed for the linear analysis of: i) Plates,
where the Kirchhoff [31, 32, 33] and Reissner-Mindlin [34, 35, 36] first-order theories have
been employed; ii) Shells, including the Kirchhoff-Love [37], Koiter [38], and Reissner-
Mindlin [39] first-order theories; In the realm of non-linear analysis, DG methods have
been utilized for: i) Kirchhoff plates [40, 41, 42]; ii) Kirchhoff-Love shells [43, 44, 45]; iii)
Shear-flexible shells modeled using the first-order theory [46, 47]. Furthermore, refined
shell models have been proposed for both linear [48] and non-linear [49] analyses, based
on finite elements developed using a DG approach along the thickness direction. Gener-
ally, the reported formulations primarily pertain to isotropic and homogeneous sections,
although there are a few works focusing on multilayered structures [48, 49, 40].

For eigenvalue problems, the DG method has found application in various areas: i)
It has been used to solve the Laplace eigenproblem [50, 51]; ii) To compute the eigen-
frequencies of the Maxwell equations in a cavity [52, 53, 54]; iii) To study the hydro-
dynamic stability associated with the incompressible Navier–Stokes equations [55, 56].
In the realm of structural analysis for classical plate and shell theories, there have been
instances where a mixed continuous-discontinuous Galerkin method was applied. For
Kirchhoff plates, this approach has been used for both buckling analysis [57, 58] and
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free-vibration analysis [58].

Concerning the application of DG to problems related to damage and fracture me-
chanics, in [59], singular asymptotic crack tip fields are employed to create extended DG
elements weakly connected to the rest of the mesh, addressing two-dimensional elasticity
of domains including cracks. A different approach followed by [60] for KL shells and
by [47] for RM shells, based on a cohesive zone concept, consists in letting the crack
propagate through the elements’ boundaries, providing advantages in parallel solution
procedures.

In the context of high-order plates and shell theories, the DG method has been effec-
tively utilized for solving the governing equations of multilayered elastic plates modeled
by ESL and LW theories [61, 62]. This application extends to multilayered piezoelectric
plates modeled by LW theories [63]. Additionally, the DG method has been employed for
shells modeled by ESL theories, addressing linear static analysis [64], buckling analysis
[65], free-vibration and transient analysis [66], and nonlinear static analysis [67].

1.2.2 The Isogeometric Analysis method

Another particularly promising approach that has gained interest in recent literature is
the Isogeometric Analysis (IGA). In IGA, NURBS (Non-Uniform Rational B-Splines)
basis functions are used not only to define the surface of the shell but also to construct
the approximation space for the primary variables, following an isoparametric concept.
This approach facilitates a seamless connection between the design and analysis processes
[68], allowing for a geometrically-exact representation of the shell surface and a high-order
approximation for the variable of interest, e.g., the displacement field. In this sense,
IGA shares some features with the p-version of FEM [69], where, when applied to thin-
walled structures, hierarchical refinement of the degree of polynomial shape functions is
adopted to describe the geometry of the shell and to construct the trial function space
[70, 71, 72, 73]. Nevertheless, p-FEM is limited to C0 shape functions and does not
follow an isoparametric paradigm. Since its introduction [74], IGA has been successfully
applied to solve Kirchhoff-Love [75, 76], Reissner-Mindlin [77, 78, 79], and Higher-Order
[80] shell theories. One notable advantage of IGA is that NURBS functions can be
easily constructed with arbitrary continuity, making it straightforward to satisfy the C1

continuity requirement for the KL shell equations.

However, when dealing with complex shapes, multiple NURBS-based patches are
often required to accurately represent the desired geometry, and efficiently coupling these
patches becomes a critical issue. Various approaches have been proposed to enforce
coupling in a strong sense by directly merging corresponding degrees of freedom: For
example, in [81], IGA regions of the domain are connected in a strong sense with other
regions modeled with a mesh-free approach; in [82] patches meeting at G0 interfaces
are both connected in a strong sense to auxiliary bending strips that approximate the
kinks; in [83], the approximation functions for the displacement are continuous across
the patches with only the coupling of the rotation imposed in a weak sense; in [84], the
coupling approach relies on the Reissner-Mindlin theory where also rotation degrees of
freedom are directly available; the construction of C1 multi-patch approximation spaces,
as detailed in [85, 86], is used in [87] and [88] for the strong coupling of both displacement
and rotation for Kirchhoff-Love IGA patches, but limited to G1 geometries. However, all
of these approaches rely on a conforming requirement, meaning that the parameterization
of the common edge is the same for each of the patches to be coupled.
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For discretization involving IGA patches meeting at non-conforming interfaces, the
continuity of the displacement and rotation must be enforced with a weak method. In
fact, the main advantage of such approach is that the coupling condition, as well as the
boundary Dirichlet condition, does not need to be intrinsically satisfied by the solution
space, allowing more flexibility in its definition. In the literature, various methods have
been proposed to weakly enforce coupling between IGA patches for many model prob-
lems, including the Kirchhoff-Love equations. Examples of these methods include the
morthar type and Lagrange multipliers methods [89, 90, 91, 92, 93, 94, 95], the pure
penalty methods [96, 97, 98, 99, 100, 101], the projected super-penalty method [102, 103]
and the Nitsche-type methods [104, 105, 106, 107, 108, 109, 110, 111, 112]. Among these,
the Nitsche-type methods are particularly appealing as they do not require the introduc-
tion of additional degrees of freedom as in the Lagrange multipliers methods and, when
properly stabilized, do not suffer from the ill-conditioning issues typically seen in penalty
approaches. However, constructing a Nitsche-type method for the Kirchhoff-Love shell
equations requires computing the fluxes for the formulation, and the version typically
found in the literature [113], that tracks back to Koiter’s work [114], has been recently
found to be incorrect in [115].

1.2.3 Embedded description of surfaces

NURBS surfaces provide the potential to create any desired curvature profile. However,
handling complex structures that involve multiple intersecting surfaces, cut-outs, or local
features can be challenging when trying to reconstruct the geometry using only patches
that conform to the boundaries or interfaces. To simplify this task, the trimmed approach
allows for the definition of complex surfaces while also limiting the number of NURBS
patches required. This method involves embedding a trimming curve in the parametric
domain of a surface to delimit its outer boundary and identify active and non-active
regions. This increased flexibility comes with certain challenges. Specifically, after the
discretization of the embedded geometry, the presence of trimmed elements can raise
issues related to integration, conditioning of the linear system, and the stability of the
method. These same issues arise when coupling between two patches occurs at a trimmed
boundary, where one or both of the patches may be trimmed by the interface [108, 102].
Addressing these challenges is crucial to ensure the robustness and accuracy of method.

Regarding the integration over trimmed elements, several techniques have been pro-
posed in the literature, including: i) hierarchical finite cells: where trimmed elements are
subdivided into a hierarchy of smaller cells where a standard integration rule is applied
[108, 107]; ii) level-set function: that is applicable to domains where the boundary is
implicitly represented by the zero level-set of a reference function [116, 117]; iii) blending
functions: that are used to approximate the geometry of the trimmed element, enabling
efficient integration [118, 106]. In particular, recently, a robust and efficient algorithm
based on higher-order reparameterization of trimmed elements has been proposed in [119],
which allows dealing with explicitly defined domains. This algorithm has been used in
[120] for the Poisson problem with overlapping patches and in [121] for two-dimensional
elasticity.
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1.2.4 The Immersed Boundary-Conformal Method

Among the drawbacks of adopting a trimming approach for the definition of shell sur-
face, trimmed boundaries and interfaces are intrinsically non-conforming. Therefore, a
strong imposition of boundary and coupling conditions is not possible since this should
be embedded in the approximation space.

Nonetheless, a recent technique known as the Immersed Boundary-Conformal Method
(IBCM) has been introduced in the context of two-dimensional elasticity using IGA [121].
This method offers the capability to strongly enforce essential boundary and coupling con-
ditions by introducing auxiliary boundary-conformal layers. Furthermore, these bound-
ary layers enable the local refinement of the approximation space in regions where local
phenomena are more likely to occur.

1.3 Methodology and outline

This thesis includes author’s previous work across a number of different projects, encom-
passing findings from previously published peer-reviewed journal and conference articles
[64, 122, 65, 66, 67], as well as articles currently under preparation [123, 124].

This thesis aims to demonstrate the advantages of high-order approaches for the me-
chanical analysis of shells through the diligent use of DG and IGA methods. In particular,
two approaches that have never been investigated in the literature before the author’s
work in the realm of this thesis are proposed here: the combination of higher-order
kinematics and DG for shells and the coupling of IGA KL patches through the proper
definition of Interior Penalty integrals. Furthermore, the thesis introduces innovative ap-
plications, such as the application of IBCM to shells and the combination between IGA
and DG. It is acknowledged, however, that additional development is essential to fully
realize the potential of these approaches.

The various components that constitute the methods employed in this thesis, along
with the corresponding numerical results, are elaborated in the thesis chapters as de-
scribed as follows.

• Chapter 2 provides an overview of the general settings for the shell formulations
proposed in this work. It introduces the notation used for surface definition and
outlines strategies for embedded domain definition and discretization. Within this
chapter, two approaches to mitigate ill-conditioning arising from the trimmed ap-
proach are discussed: merging and preconditioning. Moreover, the chapter delves
into the differential geometry for surfaces and volumes adopted in the formulation.
Finally, it covers the fundamental concepts of the theory of elasticity, including the
definition of strain tensor, stress tensor, the constitutive relationship, and the weak
3D formulation for various linear and non-linear problems of interest.

• Chapter 3 focuses on the presentation of multiple shell theories. This section pro-
vides descriptions of the classical KL theory, the ESL theories, and the LW theories.
For each theory, the chapter outlines the kinematic assumptions and elaborates on
the corresponding strain tensor. The KL theory is presented specifically for linear
static analysis of laminated shells, in accordance with classical literature. The ESL
theory, on the other hand, involves obtaining two-dimensional equations through
model reduction from the three-dimensional formulation. It covers linear and non-
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linear static analysis, linear buckling, transient, and free-vibration analyses. Finally,
the extension to LW theory is also presented within this chapter.

• Chapter 4 introduces the first of the two approaches proposed in this work. This
approach begins with higher-order kinematic shell formulations and utilizes the DG
method for their solution. To prevent ill-conditioning of the linear system, the
merging technique is applied. This section covers all types of mechanical prob-
lems, addressing various linear analyses using the interior penalty formulation and
non-linear static analysis, where the pure penalty method is preferred to reduce
computational costs. The chapter also includes the presentation of published re-
sults to demonstrate the effectiveness of this approach.

• Chapter 5 delves into the linear elastic static analysis of KL shells using IGA.
The chapter commences by providing a description of spline basis functions, which
are used for constructing NURBS surfaces and to define approximation functions
in IGA. Next, the chapter introduces the interior penalty method for KL shells
and its application for connecting patches seamlessly. Additionally, the IBCM is
extended to KL shells to create conforming boundaries and interfaces. Finally, a
local refinment strategies that leverages the combination of a global IGA model
with local DG elements is introduced. Throughout this chapter, several numerical
tests are presented, alongside reference solutions, whether they are analytical or
obtained using FEM commercial software. These tests help to validate the proposed
methodology.

• Finally, Chapter 6 provides a comprehensive conclusion to the thesis that serves as
a summary of the findings and a guide for potential developments. It highlights the
contributions made by the different methods discussed in the earlier chapters. The
chapter also discusses the positive and negative aspects of each of these methods
and offers suggestions for further research directions, providing recommendations
for future work in this field.

1.4 Software details

The numerical results presented in this thesis have been obtained using various libraries
and tools, detailed as follows:

The DG-based approach described in Chapter 4 was implemented in an in-house
Python library, which includes some core functions specifically developed in FORTRAN
to enhance computational speed. For defining embedded cut-outs, the algorithm proposed
in [116, 117] was adopted. Algebraic linear system are solved using the Pardiso solver
[125], while algebraic eigenvalue problems are addressed using the SLEPc library [126].

The IGA-based approach in Chapter 5 makes use of the open-source MATLAB library
GeoPDEs. GeoPDEs is specifically designed for solving PDEs, including those related to
KL shells, using IGA. This library also supports the study of multi-patch scenarios. It
is used in conjunction with an in-house tool that implements the algorithms presented
in [119]. This tool facilitates the geometric description and meshing of trimmed domains
and relies on the open-source geometric modeling environment IRIT and the geometric
kernel OpenCASCADE. The linear systems arising from this method are solved using
MATLAB internal solver for sparse matrices.
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Many results obtained with the proposed approaches are compared with reference
FEM solutions. These reference solutions were obtained using Abaqus® commercial
software [26], which can construct reference solutions for both higher-order and lower-
order kinematic approaches, as it implements both 3D and 2D elements.
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Chapter 2

Problem description

2.1 Parametric description of a surface

The formulation adopted in this work starts form the characterization of the shell mid-
surface. The description of the geometry of a generally-curved surface can be provided in
several ways. One method involves expressing one of the coordinates as a function of the
other two, while another approach consists in approximating the surface as a collection
of planar shapes. However, to achieve a comprehensive, geometrically exact description
that still harnesses the advantages of a function-based characterization, it is opted for
the parametric approach in this work. Let Ω ∈ E3 be a generic oriented surface with E3

representing the three-dimensional Euclidean space. Let Ω be the image of the parametric
domain Ω̂ ∈ R2, accordingly to the map

x0 = x0(ξ1, ξ2) =

x01(ξ1, ξ2)
x02(ξ1, ξ2)
x03(ξ1, ξ2)

 , (2.1)

where ξ1, ξ2 denotes the set of curvilinear coordinates spamming Ω̂. The components of
the vector x0 refer to the standard basis e1e2e3 of the Euclidean space. Additionally, let
∂Ω̂ and ∂Ω be the boundary of Ω̂ and Ω, respectively.

It is important to highlight that no specific assumption is made about the nature
of the function x0(ξ1, ξ2). In this work, it is generally preferred employing analytical
expressions for simple geometries that permit such descriptions. Nevertheless, for more
intricate surfaces, it is leveraged the flexibility of NURBS functions.

In the reminder of the thesis, Greek letter indices take values in the set {1, 2}, Latin
letter indices take values in the set {1, 2, 3}, and repeated subscripts imply summation
unless explicitly stated otherwise.

2.2 Embedded parametric domain and respective dis-

cretization

No assumptions have been made regarding the shape of the parametric domain in the
geometry description. In fact, the formulation presented in this thesis is applicable to
shells of arbitrary mid-surface. The flexibility in shell geometry arises from our ability
to handle generally-curved surfaces using a generic mapping in curvilinear coordinates,

11
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combined with the freedom in defining the parametric domain. However, the commonly
employed approach to construct Ω̂ typically begins with a rectangular domain defined as

Π̂0 = [ξ1b, ξ1t]× [ξ2b, ξ2t] , (2.2)

where ξαb and ξαt denote the bottom and top limits, respectively, defining the interval
over which the curvilinear variable ξα ranges. The boundary of Π̂0 is denoted as ∂Π̂0.
For instance, when describing a shell surface using NURBS functions, Π̂0 is often defined
as the rectangular domain [0, 1]× [0, 1], [127, 128].

The parametric domain is derived from the reference rectangle by removing regions
that do not belong to the desired shape. This process divides the initial rectangular
domain into active and non-active regions, with the union of the active regions coinciding
with Ω̂. This approach offers the advantage of defining complex shapes using a single
geometric patch, comprising a parametric domain and a map. Figure (2.1a) shows an
example of a parametric domain (in grey) obtained starting from a reference rectangular
domain and trimming away the non-active regions (in white). In Fig.(2.1b) the parametric
domain is mapped into the final shape in the Euclidean space.

There are several alternative methods to address the generality of the parametric do-
main. For instance, one could partition the parametric domain into multiple patches, each
with a different geometric description, and then integrate them appropriately. However,
such an approach would add extra complexity to the geometry description.

To properly define the parametric domain, it is essential to employ a strategy for de-
lineating the boundary of the trimmed region and establishing criteria for distinguishing
between active and non-active regions. In this work, two distinct approaches are consid-
ered. The first approach employs an implicit definition of the domain using a level-set
function, while the second approach utilizes a Boundary Representation (B-Rep) of the
domain, involving the definition of a curve.

(a) (b)

Figure 2.1: Active (in grey) and non-active (in white) regions of the parametric (a) and physical (b)
domains.

2.2.1 Implicitly-defined cut-outs

In this work, the level-set technique is exclusively employed in numerical applications to
model cut-outs on the shell surface. However, the definitions presented in this section
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x2

x3
φ(x0) = 0

(a)

ξ1

ξ2

φ(x0(ξ1, ξ2)) = 0

(b)

Figure 2.2: (a) Intersection between the zero-contour of the level-set function and the shell mid-surface
in R3. (b) Shell reference domain Ω̂ implicitly defined by the level-set function of figure (a).

are also applicable to cases involving trimmed external boundaries. This approach begins
with a level-set function, denoted as ϕ(ξ1, ξ2), whose sign determines whether a point with
given curvilinear coordinates belongs to the active region of the surface. Typically, this
level-set function is defined using an analytical formula, along with its partial derivatives
with respect to the curvilinear coordinates. Consequently, the parametric domain Ω̂ for
the shell with cut-outs is defined as

Ω̂ =
{
(ξ1, ξ2) ∈ Π̂0 | ϕ(ξ1, ξ2) < 0

}
, (2.3)

while its boundary ∂Ω̂ is defined as

∂Ω̂ =
{
(ξ1, ξ2) ∈ ∂Π̂0 | ϕ(ξ1, ξ2) < 0

}
∪ ∂Ω̂, (2.4)

where ∂Ω̂ =
{
(ξ1, ξ2) ∈ Π̂0| ϕ(ξ1, ξ2) = 0

}
denotes the boundary of the cut-out. It is

clear that, for a shell without cut-outs, Ω̂ and ∂Ω̂ coincide with Π̂0 and ∂Π̂0, respectively.
Moreover, it is worth noting that the level-set function can also be defined in the Euclidean
space as ϕ = ϕ(x0) and then expressed in terms of the curvilinear coordinates using
Eq.(2.1), i.e. ϕ = ϕ(x0(ξ1, ξ2)) = ϕ(ξ1, ξ2). Figure (2.2a) shows an example of a case where
a cut-out is defined by intersecting a generally-curved surface with a level-set function
ϕ = ϕ(x0). The corresponding implicitly-defined reference domain Ω̂ is displayed in
Fig.(2.2b).

The implicit mesh technique

The discretization of Ω̂ is obtained by intersecting a structured background grid and
the level-set function ϕ = ϕ(ξ1, ξ2). Let Π̂e denote a generic cell of the background
grid generated for the reference rectangle Π̂0 and ∂Π̂e denote its boundary. Then, the
domain Ω̂e and the boundary ∂Ω̂e of the corresponding implicitly-defined mesh element
are defined as

Ω̂e = Π̂e ∩ Ω̂ , (2.5)

∂Ω̂e = (∂Π̂e ∩ Ω̂) ∪ (Π̂e ∩ ∂Ω̂) . (2.6)
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It follows that the implicitly-defined elements are classified into the following groups:

i) the group of entire elements, which fall completely inside Ω̂;

ii) the group of empty elements, that fall completely outside Ω̂;

iii) the group of partial elements, which are cut by ∂Ω̂.

The domain and the boundary integrals appearing in the formulation presented here
require suitable quadrature rules. For entire elements, which comprise the majority of
the mesh elements, these integrals are evaluated using high-order tensor-product Gauss-
Legendre quadrature rules. On the other hand, integration in the the domain and the
boundary integrals over partial elements and element boundaries is not trivial. In this
work, for domain defined using the level-set technique integrals are evaluated using the
high-order quadrature rules obtained using the algorithm developed by Saye [116].

In brief, this algorithm determines a primary integration direction between ξ1 and ξ2
and generates integration points along this direction using the Gauss-Legendre scheme.
For each of these integration points, it identifies the segment oriented in the orthogonal
direction, intersecting the element’s boundary (whether cut or not), through an iterative
process relying on the level-set function. Integration points are then located along this
segment. The algorithm outputs all integration points obtained in this manner, along with
their weights calculated using a technique based on Gauss-Legendre quadrature rules.
This approach, combined with a hierarchical decomposition of the element, ensures the
application of high-order integration rules, even for complex cut geometries. Ultimately,
as the algorithm identifies integration points and weights within the parametric domain,
it is essential to consider the appropriate transformation of volume, surface, and line
elements when performing integrations.

∂Π̂1

Π̂1

Π̂2

∂Π̂2

Ω̂
∂Π̂0

ξ1

ξ2

Figure 2.3: Example of a parametric domain defined through the Brep approach. The active region Π̂
(in grey) is obtained through the trimming operation by removing Π̂1 and Π̂2 from the original uncut
square domain.

2.2.2 Boundary representation of the domain

While the level-set technique is a powerful tool, its applicability is limited to cases where
the domain can be expressed through a relatively simple level-set function. Describing the
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generality of geometries of typical shell structures encountered in industrial applications
using the level-set method would be a challenging task.

In CAD software, the standard approach for describing cut surfaces is the Boundary
Representation technique (B-Rep). In this approach, the parametric domain is defined
by specifying one or multiple closed trimming curves, typically splines, that explicitly
identify its boundary. This approach is adopted for both external trimmed boundaries
and internal cut-outs. Each of these curves is associated with a region of the domain to
be trimmed, denoted as Π̂i, with its boundary ∂Π̂i coinciding with the trimming curve
itself. Given a set of trimming curves, the domain is defined as

Ω̂ = Π̂0 \
NΠ⋃
i=1

Π̂i , (2.7)

where NΠ is the number of regions of the domain to be cut. The boundary of the domain
is defined as

∂Ω̂ =

NΠ⋃
i=0

∂Π̂i \
NΠ⋃
i=1

Π̂i . (2.8)

Figure (2.3) shows a parametric domain defined using the Brep approach. The domain
Ω̂ (in grey) is obtained trimming the regions Π̂1 and Π̂2 from the reference rectangular
domain Π̂0.

One drawback of this approach is that trimming curves are typically defined in Eu-
clidean space. Since, in general, the inverse of Eq.(2.1) does not have a closed-form
solution, the trimming curves in the parametric domain are usually approximations, ac-
curate up to a specific geometric tolerance. When dealing with the coupling of multiple
surfaces defined by B-Rep, this can lead to non-watertight interfaces, meaning that the
common edge between the two patches does not coincide perfectly.

Discretization and integration over partial elements

The discretization of Ω̂ is achieved in a similar manner as described in the context of
the implicit mesh, starting with a background grid. The resulting elements are still
categorized as entire, partial, or empty, following the same rules.

However, when dealing with a B-Rep defined domain, integrating over partial elements
requires a different technique compared to the level-set approach. A robust and efficient
algorithm based on higher-order reparameterization of trimmed elements as B-spline sur-
faces has recently been proposed in [129, 119]. In essence, this algorithm reparameterizes
each partial element as a set of tiles, allowing standard Gauss-Lagrange quadrature to be
applied in the parametric space of each tile.

This reparameterization process begins with the boundary of the partial element,
using this information to determine its topology. Depending on the topology, various
decomposition strategies can be applied, resulting in an appropriate number of tiles that
best approximate the shape of the partial element. It is essential to note that the decom-
position of partial elements into tiles is solely used to obtain the coordinates and weights
for the integration points. From an analysis perspective, no new elements are created
through this decomposition.
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2.2.3 Strategies to address the ill-conditioning issue

Regardless of the strategy employed for defining the parametric domain, the presence of
arbitrary cutting lines can lead to partial elements, some of which have very small areas,
referred to as small elements. When the size difference between small elements and entire
elements spans several orders of magnitude, it can result in the ill-conditioning of the
final linear system, affecting the numerical stability of the solver.

To address this issue, as is customary in embedded approaches, strategies are needed
to mitigate these effects. In this work, two different approaches are utilized:

i) Merging: small elements are merged with nearby entire elements or partial elements
with a sufficiently large areas. Entire and partial elements used in the merging
strategy are then referred to as extended elements. Figure (2.4a) shows the element
classification when a 9×9 background grid is employed to initially subdivide the
reference rectangle Π̂0, whereas Fig.(2.4b) shows the corresponding implicitly-defined
mesh after the small elements have been merged with their neighbors. However, it
is important to note that this approach can alter the number and shape of elements
and requires additional implementation effort.

ii) Preconditioning: Small elements are kept unchanged, but a diagonal Jacobi precondi-
tioner [130] is applied to the final stiffness matrix. This approach is particularly easy
to implement and has demonstrated remarkable effectiveness despite its simplicity.

(a) (b)

Figure 2.4: (a) Cell classification according to their area. (b) Resulting implicitly defined mesh after the
cell-merging strategy.

2.3 Differential geometry

Starting from the map in Eq.(2.1), the local covariant basis on the shell mid-surface is
defined as

aα = x0,α(ξ1, ξ2) . (2.9)

Here, the comma preceding one or more Greek indices indicates a series of coordinate
derivatives in the specified sequence of curvilinear directions. It is important to note
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that the vectors of the covariant basis are tangential to the lines of constant curvilinear
coordinates and, therefore, lie on the plane that is locally tangent to the surface. The
unit normal vector a3, orthogonal to the shell mid-surface is computed as

a3(ξ1, ξ2) =
a1 × a2

|a1 × a2|
, (2.10)

where | • | is the standard Euclidean norm. It is worth noting that this definition ensures
the local orthogonality between vector a3 and the surface Ω through the cross product
in the numerator, while the presence of |a1 × a2| in the denominator ensures that the
resulting vector has a unit length.

Together with Eq.(2.1) and the additional curvilinear variable ξ3, Eq.(2.10) is used to
define the map of the shell volume as

x(ξ1, ξ2, ξ3) = x0(ξ1, ξ2) + ξ3a3(ξ1, ξ2), for (ξ1, ξ2, ξ3) ∈ V̂ , (2.11)

where V̂ = Ω̂× Î3 is the parametric volume of the shell, Î3 = [−τ/2, τ/2] is the interval
spanned by ξ3, and τ denotes the thickness of the shell assumed uniform over the whole
mid-surface. The volume of the shell is therefore the image of the map in Eq.(2.11) and
is denoted as V , while its boundary is ∂V

2.3.1 Differential geometry of the shell mid-surface

The covariant components of the surface metric tensor are defined as aαβ = aα · aβ,
where · denotes the dot product. The determinant of the surface metric tensor is denoted
as a. The contravariant components of the surface metric tensor are obtained from the
covariant components as

[aαβ] = [aαβ]
−1 (2.12)

and allow us to compute the contravariant basis vectors as

aα = aαβaβ , (2.13)

that satisfy the property aα · aβ = δβα, where δβα represents the Kronecker delta. Ad-
ditionally, it is introduces the covariant components and the mixed components of the
surface curvature tensor, defined respectively as

bαβ = a3 · aα,β , (2.14a)

bαβ = aαγbγβ . (2.14b)

Finally, Γγ
αβ represents the Christoffel symbols of the second kind which are defined as

Γγ
αβ = aγ · aα,β . (2.15)

In this thesis, it is adopted the convention of indicating covariant coordinates referring
to the contravariant basis with upper indices, as in vα, and contravariant coordinates
referring to the covariant basis with lower indices, as in vα. However, the use of sub-
scripts and superscripts strictly follows the lower and upper indices notation only when
differentiation between covariant and contravariant coordinates is necessary; in all other
cases, standard subscripts are used.

Furthermore, the notation vα|β denotes the covariant derivative of the α-th component
of the generic vector v along the direction β. This notation is extended to tensors as
well, where ταβ|γ represents the covariant derivative of the αβ component of the generic
tensor τ with respect to the γ direction.
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(a) (b)

Figure 2.5: (a) Parametric volume space spanned by the curvilinear coordinates {ξ1, ξ2, ξ3}. (b) Sample
mapped geometry showing the covariant basis at the generic point in the shell volume.

2.3.2 Differential geometry of the shell volume

By differentiating the map given in Eq.(2.11) with respect to the curvilinear coordinates,
it is possible to introduce:

i) The associated covariant basis, whose vectors are

gi = x,i , (2.16)

ii) the corresponding covariant and contravariant components of the metric tensor,
which are computed as

gij = gi · gj , (2.17)

[gij] = [gij]
−1 , (2.18)

iii) the contravariant basis, whose vectors gi are defined by

gi = gijgj (2.19)

and satisfy the property gi · gj = δij.

Here, it is adopted the notation that a subscript with a comma followed by a Latin
index indicates the derivative of the vector with respect to the correspondent Cartesian
coordinate.

A schematic representation of the parametric volume space spanned by the coordinates
{ξ1, ξ2, ξ3} is shown in Fig.(2.5a), whereas a sample mapped geometry and the vectors
of the associated covariant basis at a point x ∈ V are shown in Fig.(2.5b). Eventually,
given the map (2.11), the following relations hold [113]

dV =
√
g dV̂ , (2.20)

dΩ =
√
g
√

nigijnj dΩ̂ , (2.21)

where dV is the Cartesian volume element, dΩ is the Cartesian surface element, dV̂ is
the parametric volume element, dΩ̂ is the parametric surface element, g = det (gij) and
ni is the i-th Cartesian components of the outer unit normal at x ∈ ∂V . Moreover,
the relationship between the Cartesian components of a generic vector and its covariant
components collected in the 3 × 1 vectors v and vξ, respectively, can be written using
the following matrix notation

v = Rvξ, (2.22)

where R is a 3× 3 transformation matrix whose i-th column coincides with gi.
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2.4 Fundamentals of the theory of elasticity

Let’s consider that when external loads are applied to the structure, whether on its
volume or external surfaces, the initially undeformed geometry, referred to as the reference
configuration, undergoes a transformation into the deformed geometry known as the
actual configuration. Each material point within the volume V changes its position in
accordance with the displacement map u(ξ1, ξ2), and this relationship is expressed as

X(ξ1, ξ2) = x(ξ1, ξ2) + u(ξ1, ξ2) , (2.23)

where X(ξ1, ξ2) maps from the parametric volume to the actual shell configuration. The
convention employed here uses uppercase letters to denote quantities associated with the
actual configuration and lowercase letters for quantities related to the reference configu-
ration.

2.4.1 Strain measures

In the context of structural mechanics, a generic differential line dx in the reference
configuration undergoes deformation and becomes the differential line dX in the actual
configuration. This transformation is established through the use of the deformation
gradient F , represented as

dX = F dx . (2.24)

The deformation gradient is expressed as

F = ∇xX = I +∇xu , (2.25)

where I represents the identity tensor, and ∇x is the standard gradient operator in
Cartesian coordinates. An alternative expression for the deformation gradient, which is
based on the covariant basis in the actual configuration and the contravariant basis in
the reference configuration, is given as

F = Gi ⊗ gi , (2.26)

where Gi = X ,i represents the i-th covariant base vector in the actual configuration, and
the ⊗ operator denotes the tensor product.

In the context of finite displacement elasticity, various measures of strain can be
employed to formulate the non-linear governing equations. In this work, the Green-
Lagrange strain tensor is adopted and defined as

γ =
1

2
(F ⊺F − I) , (2.27)

where the definition of F to express the strain tensor depends on the chosen approach.

Strain tensor in Cartesian components and Voigt notation

For higher-order shell theories derived from fundamental three-dimensional principles, it
has been found advantageous to begin with Eq.(2.25) for defining the Green-Lagrange
strain. The Green-Lagrange strain tensor, rearranged in accordance with Voigt notation,
is expressed as follows

γ = {γ11 γ22 γ33 γ23 γ13 γ12 }⊺ , (2.28)
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where the mixed components of the strain tensor in Voigt notation are twice the corre-
sponding ones in tensor notation. In Voigt notation, Eq.(2.27) is equivalent to

γ =

(
I i +

1

2
W i

)
u,i (2.29)

where auxiliary matrices are introduced as follows

I1 =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 , I2 =


0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

 , I3 =


0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 , (2.30a)

W 1 =


u1,1 u2,1 u3,1

0 0 0
0 0 0
0 0 0

u1,3 u2,3 u3,3

u1,2 u2,2 u3,2

 , W 2 =


0 0 0

u1,2 u2,2 u3,2

0 0 0
u1,3 u2,3 u3,3

0 0 0
u1,1 u2,1 u3,1

 , W 3 =


0 0 0
0 0 0

u1,3 u2,3 u3,3

u1,2 u2,2 u3,2

u1,1 u2,1 u3,1

0 0 0

 ,

(2.30b)
where the derivatives expressed using comma notation refer to Cartesian coordinates. The
matrix definitions in Eq.(2.30) account for all the nonlinear terms arising in the strain
tensor definition, extending the notation introduced in [61] to the finite displacement
regime. It is important to note that additional assumptions in the definition of nonlinear
strain, such as the von Kármán approximation for plates, can be incorporated by suitably
modifying the matrices W i. A discussion regarding the effect of different definitions of
the strain tensor, along with recommendations regarding which definition to use and
when, can be found in [131].

Furthermore, to obtain the linear strain in the small displacements regime, linearizing
around the condition u = 0 in Eq.(2.29) involves neglecting the terms W i. In this case,
the definition is modified as

γ = I iu,i , (2.31)

which coincides with the expression proposed in [61].

Strain tensor in covariant components

In the context of the Kirchhoff-Love shell theory, the conventional approach involves
utilizing Eq.(2.26) to describe the strain tensor. This choice, when substituted into
Eq.(2.27), yields the following expression

γ =
1

2
((gi ⊗Gi)× (Gj ⊗ gj)− gijG

i ⊗Gj) =
1

2
(Gij − gij)G

i ⊗Gj . (2.32)

This formulation enables the computation of the covariant components of the Green-
Lagrange strain tensor as

γij =
1

2
(Gij − gij) , (2.33)

where γij represents the ij-th covariant component referred to the contravariant basis
tensor Gi ⊗Gj, which is entirely expressed in the reference configuration
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(a) (b)

Figure 2.6: (a) Schematic representation of a multilayered shell where the generic ℓ-th layer is shown in
darker color. (b) Fibers orientation at a slice x = x(ξ1, ξ2, ξ3 = const) of the ℓ-th lamina.

2.4.2 Laminate layout and constitutive behaviour

It is assumed here that the shell is a laminate built by stacking Nℓ fiber-reinforced layers,
which are modeled as homogeneous and orthotropic and perfectly bonded at their inter-
faces. A quantity referring to the ℓ-th layer is denoted by a superscript ⟨ℓ⟩; as such, the
volume occupied by the ℓ-th layer is denoted by V ⟨ℓ⟩, its boundary by ∂V ⟨ℓ⟩ and its fiber
deposition angle by θ⟨ℓ⟩. Each layer has uniform thickness τ ⟨ℓ⟩ and thus the thickness of
the whole laminate is

τ =

Nℓ∑
ℓ=1

τ ⟨ℓ⟩ . (2.34)

The volume of the shell V ⊂ R3 is obtained as V = ∪Nℓ
ℓ=1V

⟨ℓ⟩. The layers are stacked in
such a way that they follow the curvature of the shell surface as shown in Fig.(2.6a). More

specifically, given the coordinates τ
⟨ℓ⟩
b and τ

⟨ℓ⟩
t = τ

⟨ℓ⟩
b + τ ⟨ℓ⟩ of the ℓ-th layer’s bottom and

top reference surfaces, respectively, the volume V ⟨ℓ⟩ of the layer is assumed to coincide
with the points x = x(ξ1, ξ2, ξ3 ∈ Î

⟨ℓ⟩
3 ), being Î

⟨ℓ⟩
3 = [τ

⟨ℓ⟩
b , τ

⟨ℓ⟩
t ].

At each point x of the layer’s volume V ⟨ℓ⟩, it is possible to introduce the material local
reference system identified by the unit vectors m

⟨ℓ⟩
1 , m

⟨ℓ⟩
2 and m

⟨ℓ⟩
3 , which are defined as

m
⟨ℓ⟩
3 = a3 , (2.35)

m
⟨ℓ⟩
1 = Ra3

(
θ⟨ℓ⟩
) g1

|g1|
, (2.36)

m
⟨ℓ⟩
2 = m

⟨ℓ⟩
3 ×m

⟨ℓ⟩
1 , (2.37)

where Ra3 is a matrix that performs a rotation of the angle θ⟨ℓ⟩ around the axis a3,
being θ⟨ℓ⟩ the orientation associated to the fibers of ℓ-th lamina. It is worth noting
that for general curvilinear coordinates, the vectors m

⟨ℓ⟩
1 , m

⟨ℓ⟩
2 and m

⟨ℓ⟩
3 not only are

different from layer to layer but they continuously vary within each layer according to
the definition given in Eq.(2.35). Additionally, the superscript ⟨ℓ⟩ might be superfluous

for the vector m
⟨ℓ⟩
3 because m

⟨ℓ⟩
3 does not explicitly depend on θ⟨ℓ⟩; however, the present

notation has been used for the sake of consistency. As an example, Fig.(2.6b) shows the

material reference system and the angle between the vector g1 and the unit vector m
⟨ℓ⟩
1

that describes the fibers orientation for a slice x = x(ξ1, ξ2, ξ3 = const) of the ℓ-th lamina.
It is assumed that each layer obeys a generalized Hooke’s law, meaning that a linear

relationship between the second Piola–Kirchhoff stress tensor and the Green–Lagrange
strain tensor holds. In the reference system identified bym

⟨ℓ⟩
1 , m

⟨ℓ⟩
2 andm

⟨ℓ⟩
3 , the material

is governed by the constitutive relationship

σ̃⟨ℓ⟩ = c̃⟨ℓ⟩γ̃⟨ℓ⟩, (2.38)
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where γ̃⟨ℓ⟩ and σ̃⟨ℓ⟩ collects the strain and stress components in the local material reference
system according to the Voigt notation and c̃⟨ℓ⟩ is the 6 × 6 stiffness matrix of the
corresponding elastic coefficients, which are typically given in terms of Young’s moduli
E

⟨ℓ⟩
1 , E

⟨ℓ⟩
2 and E

⟨ℓ⟩
3 , shear moduli G

⟨ℓ⟩
12 , G

⟨ℓ⟩
13 and G

⟨ℓ⟩
23 and Poisson’s ratios ν

⟨ℓ⟩
12 , ν

⟨ℓ⟩
13 and ν

⟨ℓ⟩
23

[1]. Provided this quantities, the stiffness matrix is constructed as

c̃⟨ℓ⟩ =



1/E
⟨ℓ⟩
1 −ν⟨ℓ⟩

21 /E
⟨ℓ⟩
2 −ν⟨ℓ⟩

31 /E
⟨ℓ⟩
3 0 0 0

−ν⟨ℓ⟩
12 /E

⟨ℓ⟩
1 1/E

⟨ℓ⟩
2 −ν⟨ℓ⟩

32 /E
⟨ℓ⟩
3 0 0 0

−ν⟨ℓ⟩
13 /E

⟨ℓ⟩
1 −ν⟨ℓ⟩

23 /E
⟨ℓ⟩
2 1/E

⟨ℓ⟩
3 0 0 0

0 0 0 1/G
⟨ℓ⟩
23 0 0

0 0 0 0 1/G
⟨ℓ⟩
31 0

0 0 0 0 0 1/G
⟨ℓ⟩
12



−1

. (2.39)

Constitutive matrix in Cartesian reference system

The constitutive matrix c⟨ℓ⟩ expressed in the Cartesian reference system is deduced ap-
plying the 4-th rank tensor transformation of axes formulas [132] to c̃⟨ℓ⟩ obtaining

σ⟨ℓ⟩ = T c̃⟨ℓ⟩T ⊺γ⟨ℓ⟩ = c⟨ℓ⟩γ⟨ℓ⟩ , (2.40)

where σ⟨ℓ⟩ = {σ⟨ℓ⟩
11 σ

⟨ℓ⟩
22 σ

⟨ℓ⟩
33 σ

⟨ℓ⟩
23 σ

⟨ℓ⟩
13 σ

⟨ℓ⟩
12 }⊺ and γ⟨ℓ⟩ = {γ⟨ℓ⟩

11 γ
⟨ℓ⟩
22 γ

⟨ℓ⟩
33 γ

⟨ℓ⟩
23 γ

⟨ℓ⟩
13 γ

⟨ℓ⟩
12 }⊺ are

the vectors of the stress and strain components, respectively, in the Cartesian reference
system and the transformation matrix T is defined as

T =


λ2
11 λ2

12 λ2
13 2λ12λ13 2λ11λ13 2λ11λ12

λ2
21 λ2

22 λ2
23 2λ22λ23 2λ21λ23 2λ21λ22

λ2
31 λ2

32 λ2
33 2λ32λ33 2λ31λ33 2λ31λ32

λ21λ31 λ22λ32 λ23λ33 λ22λ33 + λ23λ32 λ21λ33 + λ23λ31 λ21λ32 + λ22λ31

λ11λ31 λ12λ32 λ13λ33 λ12λ33 + λ13λ32 λ11λ33 + λ13λ31 λ11λ32 + λ12λ31

λ11λ21 λ12λ22 λ13λ23 λ12λ23 + λ13λ22 λ11λ23 + λ13λ21 λ11λ22 + λ12λ21

 ,

(2.41)
where λij is the directional cosine of mi on ej.

Reduced constitutive matrix in an auxiliary local orthonormal reference sys-
tem

For the Kirchhoff-Love shell theory, the out-of-plane stress components are neglected,
leading to the consideration of a reduced stiffness matrix. This matrix is obtained by
eliminating the rows and columns corresponding to the out-of-plane components, resulting
in the following form

c̃
⟨ℓ⟩
R =

 1/E
⟨ℓ⟩
1 −ν⟨ℓ⟩

12 /E
⟨ℓ⟩
1 0

−ν⟨ℓ⟩
21 /E

⟨ℓ⟩
2 1/E

⟨ℓ⟩
2 0

0 0 1/G
⟨ℓ⟩
12


−1

. (2.42)

This reduced stiffness matrix is then transformed into an auxiliary local orthonormal
reference system n1 and n2, which are common for each layer and constructed from the
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local curvilinear bases of the shell mid-surface

n1 =
a1

|a1|
, (2.43a)

n2 =
a2

|a2| . (2.43b)

The rotation is carried out using the equation

c
⟨ℓ⟩
R = TRc̃

⟨ℓ⟩
R T ⊺

R , (2.44)

where the rotation matrix TR is defined as

TR =

 cos2 θ⟨ℓ⟩ sin2 θ⟨ℓ⟩ −2 sin θ⟨ℓ⟩ cos θ
sin2 θ⟨ℓ⟩ cos2 θ⟨ℓ⟩ 2 sin θ⟨ℓ⟩ cos θ⟨ℓ⟩

sin θ⟨ℓ⟩ cos θ⟨ℓ⟩ − sin θ⟨ℓ⟩ cos θ⟨ℓ⟩ cos2 θ⟨ℓ⟩ − sin2 θ⟨ℓ⟩

 . (2.45)

2.4.3 Three-dimensional formulations for mechanical problems

To develop two-dimensional formulations that accurately model the typical mechanical
behaviors of shell structures, the approach pursued in this thesis for higher-order theories
begins with a three-dimensional formulation. The two-dimensional version can then be
derived by introducing the kinematic hypothesis specific to the theory in question. The
three-dimensional theories are expressed in their weak form, which is represented by the
principle of virtual displacements (PVD) that expresses an energy balance between the
virtual work of the internal forces and the external forces.

In this section, it is specified the weak form of the three-dimensional governing equa-
tions for a multi-layered solid for various types of analyses, including nonlinear and linear
static analyses, buckling analyses, transient analyses, and free vibration analyses. These
variational statements are briefly discussed in the reminder of this section and summa-
rized in Tab.(2.1).

Static analysis

The static analysis aims to determine the equilibrium configuration of a structure sub-
jected to external loads and constrained by specific boundary conditions. In the context
of this problem, the PVD is formulated as follows

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺b
⟨ℓ⟩

dV +

Nℓ∑
ℓ=1

∫
∂V ⟨ℓ⟩

δu⟨ℓ⟩⊺t
⟨ℓ⟩

d∂V , (2.46)

where, b
⟨ℓ⟩

represents a vector containing the Cartesian components of the prescribed

volume forces acting within the volume of the ℓ-th layer, and t
⟨ℓ⟩

is a vector containing
the Cartesian components of the prescribed tractions applied to the surface of the ℓ-th
layer

It is important to note that Eq.(2.46) remains the same whether a linear or nonlinear
expression for the strain is considered. However, the nonlinear formulation results in a
nonlinear algebraic system that requires an iterative scheme for solving.
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Linear buckling analysis

A similar derivation to the one presented in the preceding section can be followed to
derive the variational statement for the linear buckling problem. The formulation for
the linear buckling analysis begins with a distribution of internal stresses, referred to
as pre-stress, typically obtained from a previous linear static analysis. Since the static
analysis is linear, the pre-stress scales linearly with a loading factor, denoted as λ. The
linear buckling problem seeks to find adjacent configurations, existing for some certain
values of λ, that are very close to the initial equilibrium state, allowing the quantities
involved to be linearized with respect to the adjacent displacement.

The adjacent configuration must satisfy the condition where the virtual work of the
adjacent stress with the adjacent strain is equal and opposite to the virtual work of the
pre-stress with the adjacent strain. When this condition is met, the critical buckling
instability occurs, and the structure may undergo sudden changes in shape without the
need for an increase in external forces.

The three-dimensional variational statement of Eulerian buckling, specified for a
multi-layered solid, is expressed as follows

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV = −λ
Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

σ
⟨ℓ⟩
ij δu

⟨ℓ⟩⊺
,i u

⟨ℓ⟩
,j dV , (2.47)

where the derivatives with the comma notation refer to the Cartesian coordinates, σ
⟨ℓ⟩
ij

is the ij-th component of the initial stress field, the vectors u⟨ℓ⟩, γ⟨ℓ⟩ and σ⟨ℓ⟩ are the
displacement, strain and stress fields, respectively, of the additional adjacent equilibrium
configuration, and λ is the eigenvalue of the buckling problem. Note that the vectors
u⟨ℓ⟩, γ⟨ℓ⟩ and σ⟨ℓ⟩ represent the eigenfunction associated with the eigenvector λ and have
a different meaning than the vectors appearing in Eq.(2.46). Eventually, the smallest
value of λ represents the critical multiplicative factor to be applied to the external loads
in order for the structure to buckle.

Linear transient analysis

The governing equations for the transient analysis of a multilayered shell are derived from
the weak form of the elasto-dynamic problem for a three-dimensional structure consisting
of Nℓ layers. The three-dimensional weak form is expressed as

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

(
δu⟨ℓ⟩⊺ρ⟨ℓ⟩ü⟨ℓ⟩ + δγ⟨ℓ⟩⊺σ⟨ℓ⟩) dV =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺b
⟨ℓ⟩
dV+

Nℓ∑
ℓ=1

∫
∂V ⟨ℓ⟩

δu⟨ℓ⟩⊺t
⟨ℓ⟩
d∂V .

(2.48)
In this equation, ρ⟨ℓ⟩ represents the density of the ℓ-th layer, γ⟨ℓ⟩ and σ⟨ℓ⟩ denote the
strain and stress fields in Voigt notation, respectively, ü⟨ℓ⟩ is the second derivative of u⟨ℓ⟩

with respect to time, t
⟨ℓ⟩

is the vector of prescribed tractions on the external surface, and

b
⟨ℓ⟩

is the vector of prescribed external volume forces.
It is important mentioning that while damping terms are not present in Eq.(2.48),

they will be introduced within the formulation using the Rayleigh damping method.

Linear free-vibration analysis

Similarly to the case discussed for transient analysis, the equations governing the free-
vibration analysis of a laminated shell are derived from the following weak form of a
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three-dimensional multilayered structure

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV = ω2

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺ρ⟨ℓ⟩u⟨ℓ⟩dV , (2.49)

where ω represents a generic natural frequency. This expression is derived from the weak
form of the elasto-dynamic problem, assuming no external forces are applied and the
equation of motion takes the form

ü⟨ℓ⟩ = −ω2u . (2.50)

Under these circumstances, Eq.(2.48) reduces to the eigenvalue problem shown in Eq.(2.49).

Table 2.1: Three-dimensional formulation for the mechanical problems investigated in this thesis

Static analysis

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺b
⟨ℓ⟩

dV +

Nℓ∑
ℓ=1

∫
∂V ⟨ℓ⟩

δu⟨ℓ⟩⊺t
⟨ℓ⟩

d∂V

Linear buckling analysis

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV = −λ
Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

σ
⟨ℓ⟩
ij δu

⟨ℓ⟩⊺
,i u

⟨ℓ⟩
,j dV

Linear transient analysis

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

(
δu⟨ℓ⟩⊺ρ⟨ℓ⟩ü⟨ℓ⟩ + δγ⟨ℓ⟩⊺σ⟨ℓ⟩

)
dV =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺b
⟨ℓ⟩
dV+

Nℓ∑
ℓ=1

∫
∂V ⟨ℓ⟩

δu⟨ℓ⟩⊺t
⟨ℓ⟩
d∂V

Linear free-vibration analysis

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV = ω2
Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺ρ⟨ℓ⟩u⟨ℓ⟩dV
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Chapter 3

Shell theories

3.1 The Kirchhoff-Love shell theory

In the context of the Kirchhoff-Love shell theory, which was originally proposed by Kirch-
hoff [7] for plates and extended to shells by Love [8], the only variable considered is the
displacement of the mid-surface, expressed in Cartesian coordinates. This theory is par-
ticularly suitable for thin shells where transverse shear effects are negligible and does not
pose a threat to structural integrity. The resulting formulation is a fourth-order problem,
necessitating C1 continuity for its solution. This means that both displacements and
their first derivatives must be continuous across element boundaries. In this section, we
will present the theory and provide definitions for all the relevant quantities involved.

3.1.1 The Kirchhoff hypothesis

The Kirchhoff-Love assumption is based on the idea that the thickness segment perpen-
dicular to the mid-surface in the reference configuration remains undeformed in length
and maintains its perpendicularity to the mid-surface in the actual configuration. This
assumption effectively neglects the out-of-plane components of the strain tensor, specifi-
cally γ13, γ23, and γ33 when expressed in covariant components. It is important to note
that this assumption holds true primarily for thin shells, where a shell is considered thin
when the radius of curvature is approximately 20 times the thickness of the shell. Given
the deformed mean surface defined by the mapping:

X0(ξ1, ξ2) = x0(ξ1, ξ2) + u(ξ1, ξ2) , (3.1)

for (ξ1, ξ2) ∈ Ω̂, the correspondent covariant basis vectors for the deformed mid-surface
are

Aα = X0,α . (3.2)

Additionally, the unit vector normal to the surface is defined as

A3 =
A1 ×A2

|A1 ×A2|
. (3.3)

3.1.2 Boundary conditions

The boundary of the mid-surface ∂Ω is divided into two distinct parts as ∂Ω = ∂ΩD1 ∪
∂ΩN1 , and as ∂Ω = ∂ΩD2 ∪ ∂ΩN2 .

27
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- ∂ΩD1 and ∂ΩD2 represent the portions of the boundary where Dirichlet displacement
and rotation boundary conditions are applied, respectively.

- ∂ΩN1 and ∂ΩN2 represent the portions of the boundary where Neumann force and
moment boundary conditions are applied, respectively.

It is important to mention that ∂ΩD1 and ∂ΩN1 are disjoint sets whose union coincide
with ∂Ω, and the same applies to ∂ΩD2 and ∂ΩN2 . It is also defined the set of corners
χ ∈ ∂Ω which is further divided into

- χD ∈ ∂ΩD1 where Dirichlet displacement boundary conditions are applied.

- χN ∈ ∂ΩN1 where Neumann force boundary conditions are applied.

The external force distributed on the shell surface is denoted as F̃ . Regarding the surface
boundary, the applied force is denoted as τ̃ , while the bending and twisting moments are
denoted as M̃nn and M̃nt, respectively. However, for the Kirchhoff-Love shell theory τ̃
and M̃nt cannot be imposed separately and both contribute to the equivalent ersatz force
applied on ∂ΩN1 . On the other hand, M̃nn is the only moment applied on ∂ΩN2 .

3.1.3 Weak form of Kirchhoff-Love shell equation

Focusing on a single patch shell, the weak form of the Kirchhoff-Love equation is stated
as: find u ∈ Vu such that

a(u,v) = f(v) ∀v ∈ Vv , (3.4)

where the choice of the vector spaces Vv and Vu depends on the specific boundary con-
ditions of the problem. In the discretized version of Eq.(3.4) the choice of the spaces
also takes into account whether the boundary condition are applied in a strong or a weak
sense. The bilinear and the linear forms in Eq.(3.4) are defined as

a(u,v) =

∫
S

ε(v) : N (u)dΩ +

∫
S

κ(v) : M (u)dΩ , (3.5a)

f(v) =

∫
S

v · F̃dΩ +

∫
∂ΩN1

v · T̃d∂Ω +

∫
∂ΩN2

θn(v)M̃nnd∂Ω +
∑
C∈χN

(
v3R̃

)∣∣∣
C
, (3.5b)

where ε and κ represent the membrane and bending strains, respectively, while N and
M represent the generalized force and moment, respectively. Since the Kirchhoff-Love
shell theory discards the out-of-plane components, these quantities are all rank-2 tensors,
and the following constitutive equations apply

Nαβ = Aαβγδεγδ + Bαβγδκγδ , (3.6a)

Mαβ = Cαβγδεγδ + Dαβγδκγδ , (3.6b)

where Nαβ and Mαβ represent the contravariant components of N and M , respectively,
while εγδ and κγδ are generic covariant components of ε and κ. Additionally, the coeffi-
cients introduced Aαβγδ, Bαβγδ, Cαβγδ, and Dαβγδ form the components of the generalized
stiffness tensors for a Kirchhoff-Love shell. Their values depend on both the material
and the geometry of the shell. A comprehensive description of how these coefficients are
obtained is provided in Sec. 3.1.6 for the sake of completeness. Furthermore, the com-
ponents of the membrane and bending strains, as well as the normal or bending rotation
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θn, are derived as linear combinations of the first and second coordinate derivatives of
the displacement vector. Detailed expressions for these quantities can be found in Sec.
3.1.5.

Regarding the terms related to the applied forces in Eq.(3.4), in addition to the
bending moment M̃nn and the surface force F̃ that were already described in Sec. 3.1.2,
two additional forces are introduced: the ersatz force T̃ and the corner force R̃. These
are defined, respectively, as

T̃ =
(
τ̃α − M̃ntbαβt

β
)
aα +

(
τ̃3 +

∂M̃nt

∂t

)
a3 , (3.7)

R̃ = lim
ϵ→0

(
M̃nt(x+ ϵt)− M̃nt(x− ϵt)

)
, (3.8)

where tα represents the α-th contravariant coordinate of the vector t, which is the unit
vector locally tangent to the counterclockwise-oriented boundary ∂Ω, τ̃α is the α-th co-
variant component of τ̃ , and τ̃3 refers to a3. Additionally, n = t × a3 is the outer unit
vector orthogonal to the boundary and lying in the local plane tangent to Ω. The compo-
nents of the applied moment M̃nn and M̃nt are referred to the basis formed by the vectors
n and t.

3.1.4 Extension to multi-patch structures

The variational statement in Eq.(3.4)applies to shell structures consisting on a single
patch. However, if the structure is composed ofNP patches that intersect atNI interfaces,
the problem becomes finding u ∈ Vu such that:

NP∑
p=1

ap(u,v) =

NP∑
p=1

fp(v) ∀v ∈ Vv , (3.9)

where ap(u,v) and fp(v) are defined as in Eq.(3.5)), but a superscript p is added to
indicate that they belong to the p-th patch. Additionally, Vu and Vv are vector spaces
defined over the union of the surfaces of the patches of the structure. These spaces have
to be defined in a way that, apart from satisfying the essential boundary conditions,
ensures the following conditions over each of the interfaces Γi:

[u] = 0 , (3.10a)

[θn] = 0 , (3.10b)

where [•] represents the jump operator, which calculates the difference between the quan-
tity of interest computed from the different patches at the interface.

In order to enforce this coupling condition in a strong sense, Eq.(3.10)should be em-
bedded in the spaces Vv and Vu. In practice, after discretization, it is relatively easy
to enforce Eq.(3.10a)in the case where the patches are conforming at the interface, but
is not straightforward to do the same for Eq.(3.10b)and this is restricted to G1 surfaces
[85, 87, 133]. However, in situations where the interface is generated in a non-conforming
manner, such as when two patches meet on a trimmed boundary, the coupling condition
can only be enforced in a weak sense. The same applies to essential boundary conditions
on the trimmed boundary of each patch.
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3.1.5 Membrane and bending strains

In this section the Kirchhoff-Love shell problem is completed by defining ε, κ and θn.
These definitions are derived through linearization of their non-linear expressions under
the condition of uniform zero displacement. For a more comprehensive understanding of
the fundamental concepts in continuum mechanics introduced in this section, interested
readers are encouraged to consult [113].

With reference to the deformed mid-surface mapping in Eq.(3.1), it is introduced the
covariant component of the metric tensor and the curvature tensor of the shell mid-surface
as follows

Aαβ = Aα ·Aβ , (3.11)

Bαβ = Aα,β ·A3 . (3.12)

Due to the Kirchhoff hypothesis, the volume of the shell in the deformed configuration
can still be expressed using the unit vector orthogonal to the deformed shell mid-surface
A3. As such, the following equation holds

X(ξ1, ξ2, ξ3) = X0(ξ1, ξ2) + ξ3A3(ξ1, ξ2) , (3.13)

with (ξ1, ξ2, ξ3) ∈ V̂ . Therefore, the covariant basis for the shell volume in the actual
configuration is introduced as

Gα = X ,α = Aα + ξ3A3,α . (3.14)

Whereas the covariant components of the metric tensor for the deformed shell volume
are computed as

Gαβ = Gα ·Gβ = (Aα + ξ3A3,α) · (Aβ + ξ3A3,β)

= Aαβ − 2ξ3Bαβ + ξ23A3,α ·A3,β .
(3.15)

In the thin shell hypothesis the term that multiply ξ23 is neglected, leading to the simplified
expression

Gαβ ≈ Aαβ − 2ξ3Bαβ . (3.16)

With this groundwork, the strain in covariant coordinates, specifically in the Kirchhoff-
Love hypothesis, are defined as

γαβ =
1

2
(Aαβ − aαβ) + ξ3(bαβ −Bαβ) , (3.17)

where γαβ represents the αβ-th covariant component of the Green-Lagrange strain tensor.
At this point, two distinct contributions can be discerned. The first contribution pertains
to the metric tensor of the shell mid-surface, and it provides a uniform contribution across
the thickness of the shell. The second contribution pertains to the curvature tensor of
the shell mid-surface, and it yields a contribution that varies linearly along the shell’s
thickness. These are further distinguished through the introduction of membrane and
bending strains, which are defined, respectively, as

εαβ =
1

2
(Aαβ − aαβ) , (3.18a)

καβ = bαβ −Bαβ . (3.18b)
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In this work, the Kirchhoff-Love shell theory is adopted only for linear static analysis.
Given this context, the expression presented in Equation (3.18) necessitates linearization
under the condition of uniform zero displacement. This linearization is achieved as follows

εαβ =
∂
(
1
2
(Aαβ − aαβ)

)
∂u

∣∣∣∣∣
0

· u+
∂
(
1
2
(Aαβ − aαβ)

)
∂u,γ

∣∣∣∣∣
0

· u,γ , (3.19a)

καβ =
∂(bαβ −Bαβ)

∂u

∣∣∣∣
0

· u+
∂(bαβ −Bαβ)

∂u,γ

∣∣∣∣
0

· u,γ +
∂(bαβ −Bαβ)

∂u,γδ

∣∣∣∣
0

· u,γδ , (3.19b)

where •|0 denotes the evaluation of the generic function • for u = u,α = u,αβ = 0. In
the membrane strain the derivatives with respect to u,γβ are discarded since it easy to
show that εαβ does not depend on u,γδ. After some algebra the previous expression are
simplified into

εαβ =
1

2
(aα · u,β + aβ · u,α) , (3.20a)

καβ = −a3 · u,αβ −
(
aα,β × a1

λ
+ aT

α,βMM1

)
· u,2 +

(
aα,β × a2

λ
+ aT

α,βMM2

)
· u,1 .

(3.20b)

In Eq.(3.20) the auxiliary matrices M and Mα have been introduced, these are defined
as

M =
a3a

T
3

λ
, (3.21a)

Mα = [e1 × aα e2 × aα e3 × aα] . (3.21b)

Likewise, the linear expression for the normal rotation is obtained from the non-linear
counterpart [99] as

θn =
∂ (t · (a3 × (A3 − a3)))

∂u,α

∣∣∣∣
0

· u,α , (3.22)

that leads to

θn =

(
(t× a3)× a1

λ
+ (t× a3)

TMM1

)
·u,2−

(
(t× a3)× a2

λ
+ (t× a3)

TMM2

)
·u,1 .

(3.23)
It is remarked that the expressions shown in Eq.(3.20) for the strain are equivalent to
those in [81]. However, the proposed notation is more convenient as it allows for the
introduction of some terms that are common with the definition of θn.

3.1.6 Generalized stiffness matrices in tensor notation

In the plane stress hypothesis, the in-plane contravariant components of the stress ten-
sor are related to the in-plane covariant components of the strain tensor through the
constitutive relationship

σ⟨ℓ⟩αβ = c
⟨ℓ⟩αβγδ
R γ

⟨ℓ⟩
γδ = c

⟨ℓ⟩αβγδ
R εγδ + ξ3c

⟨ℓ⟩αβγδ
R κγδ , (3.24)
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where c
⟨ℓ⟩αβγδ
R represents the stiffness coefficients relative to the covariant basis, with the

out-of-plane behavior being disregarded. With this definition, the generalized force and
moment can be expressed in terms of the membrane and bending strain as follows

Nαβ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

σ⟨ℓ⟩αβdξ3 = Aαβγδεγδ + Bαβγδκγδ , (3.25a)

Mαβ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

ξ3σ
⟨ℓ⟩αβdξ3 = Cαβγδεγδ + Dαβγδκγδ . (3.25b)

To obtain the generalized stiffness coefficients Aαβγδ, Bαβγδ, Cαβγδ, and Dαβγδ, it is per-
formed a through-the-thickness integration on the stiffness matrix c

⟨ℓ⟩
R expressed in the

auxiliary orthonormal basis n1,n2. The following generalized stiffness matrices are in-
troduced

Ā =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

c
⟨ℓ⟩
R dξ3 , (3.26a)

B̄ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

c
⟨ℓ⟩
R ξ3dξ3 , (3.26b)

D̄ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

c
⟨ℓ⟩
R ξ23dξ3 , (3.26c)

C̄ = B̄
T
, (3.26d)

These constitutive matrices, in Voigt notation, are employed to derive the constitutive
tensors. For instance, taking Ā as an example, the associated stiffness tensor notation
is established as Āαβγδ = Āab, using the correspondences αβ ←→ a and γδ ←→ b,
where the indices 11, 22, 12, and 21 correspond to 1, 2, 3, and 3, respectively. Finally,
the constitutive tensors in the local covariant basis are derived through the following
transformation law

Aα1β1γ1δ1 = Āα2β2γ2δ2 (nα2 · aα1)(nβ2 · aβ1)(nγ2 · aγ1)(nδ2 · aδ1) . (3.27)

3.2 The Equivalent-Single-Layer shell theories

While the Kirchhoff-Love shell theory offers simplicity with the fewest amount of pri-
mary variables among shell theories, it exhibits inaccuracies when dealing with thick
shells. These inaccuracies arise because out-of-plane strains become significant. Further-
more, the Kirchhoff hypothesis assumes a linear variation of the in-plane components and
a uniform out-of-plane component of the displacement vector across the shell thickness.
However, this assumption does not hold for thick shells, where the displacement distribu-
tion exhibits higher-order behavior. Furthermore, in the context of laminates, accurate
prediction of shear stresses becomes critically important. These shear stresses are closely
related to delamination, which is a primary cause of failure in multi-layered structures.

In this section, it is introduced the Equivalent-Single-Layer (ESL) approach. In ESL
theories, the displacement throughout the entire laminate is approximated as a higher-
degree function. This treatment allows to treat the entire laminate as a single layer
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with equivalent homogenized properties, hence the name of the approach. The two-
dimensional variational statements for various mechanical problems of interest are derived
in the reminder of this section and summarized in Tab.(3.1).

3.2.1 Shell kinematics

According to the geometrical description introduced in the previous Chapter, the shell
deformation can be described in terms of the displacement vector. This can be expressed
either in Cartesian components as u = {u1 u2 u3}⊺ or in covariant components as uξ =
{uξ1 uξ2 uξ3}⊺. The shell kinematics employed to develop the present formulation is
based on the expansion of the displacement components across the shell thickness through
known functions of ξ3. Thus, the covariant components uξi of the displacement vector
are expressed as

uξi(ξ1, ξ2, ξ3) =

Ni∑
k=0

Zik(ξ3)Uik(ξ1, ξ2) , (3.28)

where Ni is the order of the expansion assumed for uξi , Zik(ξ3) is the k-th function of the
expansion of uξi and Uik(ξ1, ξ2) are the unknown generalized displacements. It is worth
noting that, according to the Carrera Unified Formulation underlying principles [21], in
Eq.(3.28) Ni can be considered as parameters whose values allow to build different order
shell structural theories falling within the ESL approach. The shell theory corresponding
to the expansion orders N1, N2 and N3 is denoted as EDN1N2N3 . Collecting the generalized
displacements as elements of the vector U(ξ1, ξ2), having size NU = N1+N2+N3+3, and
consistently arranging the functions Zik as elements of the matrix Z(ξ3), the Eq.(3.28)
is compactly rewritten in matrix form as

uξ = Z(ξ3)U(ξ1, ξ2) . (3.29)

and, recalling that u = Ruξ, the displacement u in the Cartesian reference system is
obtained in terms of the generalized displacement vector U as

u = RZU . (3.30)

It is observed that the expansion functions Zik(ξ3) can be chosen without particular
restrictions (e.g polynomial, exponential, trigonometric). Here, they are taken either as
Legendre or Taylor polynomials having order k ≤ Ni and scaled in the interval Î3. As an
example, for the ED222 theory with Legendre polynomials, the matrix Z is obtained as

Z =

1 2ξ3/τ (2ξ3/τ)
2 0 0 0 0 0 0

0 0 0 1 2ξ3/τ (2ξ3/τ)
2 0 0 0

0 0 0 0 0 0 1 2ξ3/τ (2ξ3/τ)
2

 . (3.31)

3.2.2 Green-Lagrange strain for ESL

Recalling that the Green-Lagrange strain components vector, namely γ = {γ11 γ22 γ33 γ23 γ13 γ12 }⊺,
expressed in the Cartesian reference system is given by

γ =

(
I i +

1

2
W i

)
u,i , (3.32)
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where the following auxiliary matrices I i and W i are defined as

I1 =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 , I2 =


0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

 , I3 =


0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 , (3.33a)

W 1 =


u1,1 u2,1 u3,1

0 0 0
0 0 0
0 0 0

u1,3 u2,3 u3,3

u1,2 u2,2 u3,2

 , W 2 =


0 0 0

u1,2 u2,2 u3,2

0 0 0
u1,3 u2,3 u3,3

0 0 0
u1,1 u2,1 u3,1

 , W 3 =


0 0 0
0 0 0

u1,3 u2,3 u3,3

u1,2 u2,2 u3,2

u1,1 u2,1 u3,1

0 0 0

 ,

(3.33b)
and ui,j is the derivative of the i-th Cartesian component of the displacement vector with
respect to xj. Using Eq.(3.30) and applying the chain rule to express the derivatives in
the Cartesian reference system coordinates through those in the curvilinear coordinates,,
one obtains

u,i =
∂(Ruξ)

∂ξj
ξj,i = D0iU +DαiU ,α , (3.34)

where u,i = ∂u/∂xi, ξi,j = ∂ξj/∂xi corresponds to the ij-th component of R, and
U ,α = ∂U/∂ξα. Additionally,

D0i = ξj,iR,jZ + ξ3,iRZ ,3 , (3.35a)

Dαi = ξα,iRZ . (3.35b)

where R,i = ∂R/∂ξi, and Z ,3 = dZ/dξ3. Finally, upon introducing Eq.(3.34) in
Eqs.(3.32), the Green-Lagrange strains are expressed as

γ =

(
I i +

1

2
W i

)
(D0iU +DαiU ,α) . (3.36)

To what regards the strain in small displacement hypothesis, recalling the definition of
the linear strain Voigt vector

γ = I iu,i , (3.37)

upon substituting Eq.(3.34) the previous equation becomes

γ = I i (D0iU +DαiU ,α) . (3.38)

To conclude this section, it is worth noting that Eqs.(3.30) and (3.36) have been intro-
duced without using the superscript ⟨ℓ⟩ or mentioning the stacking sequence of the shell.
In fact, these equations are valid throughout the shell thickness and for each layer of the
shell. This is typical of ESL formulations and has the advantage that the continuity of the
displacement field at the interface between consecutive layers is automatically satisfied.
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Derivatives of the transformation matrix

The present formulation relies on the knowledge of the matrix R, whose columns are the
vectors gi of the contravariant basis, as well as its derivatives with respect to the curvilin-
ear variables ξ1 and ξ2. These quantities play a crucial role, as they enter the definitions
of the matrices D0i and Dαi as given in Eq.(3.35a). However, despite seemingly complex
expressions, obtaining R and R,i, requires knowledge of just the derivatives of the shell
mid-surface map with respect to ξ1 and ξ2 up to the third order. A set of easy-to-use
formulas to compute the quantities of interest for the present formulation are provided
here.

Let us introduce the derivatives of the map of the mid-surface with respect to ξ1 and
ξ2. Besides a1 and a2 already defined, ones has

a1,1 = x0,11 , (3.39a)

a1,2 = x0,12 , (3.39b)

a2,2 = x0,22 , (3.39c)

and

a1,11 = x0,111 , (3.40a)

a1,12 = x0,112 , (3.40b)

a1,22 = x0,122 , (3.40c)

a2,22 = x0,222 . (3.40d)

It is important to note that additional mixed derivatives are not explicitly defined, as
they satisfy the equality dictated by the Schwarz theorem. For instance, a2,1 = x0,21 =
x0,12 = a1,2, and a2,11 = x0,211 = x0,121 = a1,21.

To simplify our calculations, it is introduced an auxiliary vector p = a1 × a2. Com-
puting its first and second-order derivatives with respect to the curvilinear coordinates
can be achieved using the derivative rule for the product of functions

p,1 = a1,1 × a2 + a1 × a1,2, (3.41a)

p,2 = a1,2 × a2 + a1 × a2,2, (3.41b)

p,11 = a1,11 × a2 + 2a1,1 × a1,2 + a1 × a1,12, (3.41c)

p,12 = a1,12 × a2 + a1,1 × a2,2 + a1,2 × a1,2 + a1 × a1,22, (3.41d)

p,22 = a1,22 × a2 + 2a1,2 × a2,2 + a1 × a2,22. (3.41e)

Let us now introduce the scalar λ and the auxiliary matrix N as

λ = |p| , (3.42)

N =
1

λ
(I − a3a

⊺
3) , (3.43)

where it is recalled that a3 = p/λ is the mid-surface unit normal and I is the 3×3 identity
matrix. The derivatives of a3 are then computed in terms of the derivatives of p as

a3,α = Np,α , (3.44a)

a3,αβ = Np,αβ −
1

λ

(
N
(
a⊺
3p,β

)
+Np,βa

⊺
3 + a3p

⊺
,βN

)
p,α . (3.44b)
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Finally, upon introducing the matrix P , whose columns are the vectors gi of the covariant
basis, i.e.

P = [ g1 g2 g3 ] = [ a1 + ξ3a3,1 a2 + ξ3a3,2 a3 ] , (3.45)

one has

P ,1 = [ a1,1 + ξ3a3,11 a1,2 + ξ3a3,12 a3,1 ] , (3.46a)

P ,2 = [ a1,2 + ξ3a3,12 a2,2 + ξ3a3,22 a3,2 ] , (3.46b)

P ,3 = [ a3,1 a3,2 0 ] , (3.46c)

where the derivatives refer to the curvilinear coordinates. The derivatives of the trans-
formation matrix R are finally obtained as

R,i = −RP ⊺
,iR, (3.47)

where Eq.(3.47)is obtained by using R = P−⊺ [113].

3.2.3 Boundary conditions

Since the formulation for ESL theories is derived from the fully 3D principle of virtual
work, the boundary conditions are determined based on the applied traction and restraints
on the shell volume. The Neumann boundary conditions, applied to the part of the
boundary denoted as ∂Ω̂N , are obtained through a through-the-thickness integration of
the traction on the external surface, which is detailed in the following section.

On the other hand, Dirichlet boundary conditions, applied on ∂Ω̂D, must inherently
satisfy the assumptions of shell kinematics at the 3D level. If they do not, an L2 projection
of the displacement field onto the space of shell kinematics is necessary.

It is important to note that different components of the generalized displacement may
have different types of boundary conditions applied to the same edge. In other words, the
partition of ∂Ω̂ into ∂Ω̂N∪∂Ω̂D may not be uniform for each component of the generalized
displacement vector. This situation arises, for instance, when modeling mixed boundary
conditions, as is the case in simply-supported edges.

3.2.4 Static analysis

The governing equations for the introduced shell models are inferred from the principle
of virtual works that reads as

δLint = δLext , (3.48)

where δLint and δLext are the virtual work of the internal and external forces, respectively.
For a multilayered structure they are expressed as

δLint =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV , (3.49a)

δLext =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺b
⟨ℓ⟩
dV +

Nℓ∑
ℓ=1

∫
∂V ⟨ℓ⟩

δu⟨ℓ⟩⊺t
⟨ℓ⟩
d∂V , (3.49b)

where b
⟨ℓ⟩

and t
⟨ℓ⟩

are the volume forces acting on V ⟨ℓ⟩ and the applied tractions acting on
∂V ⟨ℓ⟩, respectively. It is straightforward to demonstrate from Eq.(3.32) that the virtual
strains are given by

δγ⟨ℓ⟩ = (I i +W
⟨ℓ⟩
i )δu

⟨ℓ⟩
,i , (3.50)
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where the i-th derivative is in Cartesian coordinates. Inserting Eqs.(3.50), (3.32) into
Eq.(3.49), and considering the constitutive relationship

σ⟨ℓ⟩ = c⟨ℓ⟩γ⟨ℓ⟩ , (3.51)

the virtual internal work is written as

δLint =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu
⟨ℓ⟩⊺
,i C

⟨ℓ⟩
ij u

⟨ℓ⟩
,j dV , (3.52)

where

C
⟨ℓ⟩
ij =

(
I⊺
i +W

⟨ℓ⟩⊺
i

)
c⟨ℓ⟩
(
I i +

1

2
W

⟨ℓ⟩
i

)
. (3.53)

Furthermore, introducing Eq.(3.34) into Eq.(3.52) and integrating along the thickness,
one obtains

δLint =

∫
Ω̂

[
δU ⊺

,α

(
QαβU ,β +Rα3U

)
+ δU ⊺ (R3αU ,α + S33U)

]
dΩ̂ , (3.54)

where the generalized stiffness matrices are introduced as

Qαβ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
αi C

⟨ℓ⟩
ij D

⟨ℓ⟩
βj

√
g dξ3 , (3.55a)

Rα3 =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
αi C

⟨ℓ⟩
ij D

⟨ℓ⟩
0j

√
g dξ3 , (3.55b)

R3α =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
0i C

⟨ℓ⟩
ij D

⟨ℓ⟩
αj

√
g dξ3 , (3.55c)

S33 =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
0i C

⟨ℓ⟩
ij D

⟨ℓ⟩
0j

√
g dξ3 , (3.55d)

being g the determinant of the metric tensor. Similarly, introducing Eq.(3.30) into
Eq.(3.49) and integrating along the thickness, for the virtual work of the external forces
one writes

δLext =

∫
Ω̂

δU ⊺B dΩ̂ +

∫
∂Ω̂

δU ⊺T d∂Ω̂ , (3.56)

where B and T are the generalized domain forces and the generalized boundary forces,
respectively. They are defined, as

B = Z⟨ℓ⟩⊺R⊺t
⟨ℓ⟩√

g
√

nigijnj

∣∣∣
ξ3=±τ/2

+

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

Z⟨ℓ⟩⊺R⊺b
⟨ℓ⟩√

g dξ3 , (3.57a)

T =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

Z⟨ℓ⟩⊺R⊺t
⟨ℓ⟩√

g
√

nigijnj dξ3 . (3.57b)

where the notation f |ξ3=ξ3
indicates evaluation of f at ξ3 = ξ3. Finally, the following ex-

pression of the principle of virtual works for the non-linear static analysis of multilayered
shells is obtained, which represents the weak form of the problem governing equations∫
Ω̂

[
δU ⊺

,α

(
QαβU ,β +Rα3U

)
+ δU ⊺ (R3αU ,α + S33U)

]
dΩ̂ =

∫
Ω̂

δU ⊺B dΩ̂+

∫
∂Ω̂

δU ⊺T d∂Ω̂ .

(3.58)
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As a final remark, it should be noted that Eq.(3.58) corresponds to a non-linear static
analysis. In cases where small displacements are expected, the linearized equation for
strain can be adopted. This simplification corresponds to neglecting the terms W i in the
all the equations of this section. Additionally, it is straightforward to prove that under
the small displacement assumption assumption, R3α = RT

α3.

Variation of the virtual work of the internal forces

Since the formulation proposed for statics relies on the geometrically non-linear expression
of the strain, the solving strategy must use an iterative scheme that requires the Jacobian
of the virtual work. Therefore, the variation in the virtual work of the internal forces is
written as

δ(δLint) =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δ(δγ⟨ℓ⟩⊺σ⟨ℓ⟩)dV . (3.59)

After some manipulations, accounting for Eqs.(3.32) and (3.51), Eq.(3.59) is written as

δ(δLint) =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu
⟨ℓ⟩⊺
,i C

⟨ℓ⟩J
ij δu

⟨ℓ⟩
,j dV . (3.60)

where the derivatives with the comma notation refer to the Cartesian coordinates. The
matrices C

⟨ℓ⟩J
ij are defined as

C
⟨ℓ⟩J
ij =

(
I i +W

⟨ℓ⟩
i

)⊺
c⟨ℓ⟩
(
Ij +W

⟨ℓ⟩
j

)
+ σ

⟨ℓ⟩
ij I , (3.61)

being I the 3 × 3 identity matrix. Using Eq.(3.34) and integrating over the thickness,
Eq.(3.60) becomes

δ(δLint) =

∫
Ω̂

[
δU ⊺

,α

(
QJ

αβδU ,β +RJ
α3δU

)
+ δU ⊺

(
RJ

3αδU ,α + SJ
33δU

)]
dΩ̂ , (3.62)

where the generalized tangent stiffness matrices are introduced as

QJ
αβ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
αi C

⟨ℓ⟩J
ij D

⟨ℓ⟩
βj

√
g dξ3 , (3.63a)

RJ
α3 =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
αi C

⟨ℓ⟩J
ij D

⟨ℓ⟩
0j

√
g dξ3 , (3.63b)

RJ
3α =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
0i C

⟨ℓ⟩J
ij D

⟨ℓ⟩
αj

√
g dξ3 , (3.63c)

SJ
33 =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
0i C

⟨ℓ⟩J
ij D

⟨ℓ⟩
0j

√
g dξ3 . (3.63d)

To conclude, it is worth mentioning that it is easy to demonstrate that RJ
3α = RJ⊺

3α.
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Strong form of the equations for statics

After integration by parts of the Eq.(3.58), ensuring that the resulting relation holds
for any virtual variation of the primary variables provides the following shell governing
equations and the associated natural boundary conditions

− ∂

∂ξα

(
QαβU ,β +Rα3U

)
+R3αU ,α + S33U = B in Ω̂ , (3.64a)

να
(
QαβU ,β +Rα3U

)
= T on ∂Ω̂N , (3.64b)

where να are the direction cosines of the outer unit normal defined over the part ∂Ω̂N of
the Ω̂ domain where natural boundary conditions are prescribed.

3.2.5 Buckling analysis

To obtain the two-dimensional formulation for linear buckling, the starting point is
the three-dimensional variational statement of the Eulerian buckling [134] introduced
in Chapter 2, and recalled here as

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV = −λ
Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

σ
⟨ℓ⟩
ij δu

⟨ℓ⟩⊺
,i u

⟨ℓ⟩
,j dV . (3.65)

The buckling problem is then expressed only in terms of the adjacent configuration of
the generalized displacement vector U by substituting Eqs.(3.34), (3.38), and (3.51) into
Eq.(3.65) to obtain∫

Ω̂

[
δU ⊺

,α

(
QαβU ,β +Rα3U

)
+ δU ⊺ (R⊺

α3U ,α + S33U )
]
dΩ̂ =

− λ

∫
Ω̂

[
δU ⊺

,α

(
QG

αβU ,β +RG
α3U

)
+ δU ⊺

(
RG⊺

α3U ,α + SG
33U

)]
dΩ̂ , (3.66)

where the matrices Qαβ, Rα3, and S33 have the same meaning of those appearing in

Eq.(3.58) and are given in Eq.(3.55), while the matrices QG
αβ, R

G
α3, and SG

33 represent the
generalized geometric stiffness matrices and are defined as follows

QG
αβ =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D⊺
αiσ

⟨ℓ⟩
ij Dβj

√
g dξ3 , (3.67a)

RG
α3 =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D⊺
αiσ

⟨ℓ⟩
ij D0j

√
g dξ3 , (3.67b)

SG
33 =

Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

D⊺
0iσ

⟨ℓ⟩
ij D0j

√
g dξ3 . (3.67c)

The problem stated in Eq.(3.66) aims at finding the smallest eigenvalue that would rep-
resent the first multiplicative factor to the external loads in order for the structure to
buckle. The associated eigenfunction U represent the shape of the deformed buckled
configuration.
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At this point, it is wort mentioning that the formulation presented does not pose
limitation on the definition of the mid-surface and the laminate employed. However, the
utility of a buckling analysis for shells with generic curvature and lamination sequences
is questionable. This is due to the coupling that appears in the general case between
membrane and flexural behaviours of the structure considered that make the buckling
phenomena not clearly identified, unless the loading condition does not excite this cou-
pling, which is a rather academic situation for a general laminated shell. However, when
the aforementioned coupling exists but is small, the buckling analysis would still be useful
to give indications regarding the values of the load for which the response of the structure
can drastically change. Keeping this in mind, it was decided not to impose limitation on
the shell geometry and the lamination sequence.

3.2.6 Transient analysis

The two-dimensional governing equations of transient analysis for shells are derived from
the weak form of the elasto-dynamic problem for a multi-layered solid, which reads

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

(
δu⟨ℓ⟩⊺ρ⟨ℓ⟩ü⟨ℓ⟩ + δγ⟨ℓ⟩⊺σ⟨ℓ⟩) dV =

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺b
⟨ℓ⟩
dV+

Nℓ∑
ℓ=1

∫
∂V ⟨ℓ⟩

δu⟨ℓ⟩⊺t
⟨ℓ⟩
d∂V ,

(3.68)
where ρ⟨ℓ⟩ is the density of the ℓ-th layer, ü⟨ℓ⟩ is the second derivative of u⟨ℓ⟩ with respect to
time. It is worth noting that the damping will be modeled through the Rayleigh method
directly on the final solving system. Using Eqs.(3.51), (3.38), (3.30) and (3.34), it is
possible to obtain the following weak formulation for the transient analysis of laminated
shells in terms of the vector of the generalized displacements U∫

Ω̂

δU ⊺MÜdΩ̂ +

∫
Ω̂

[
δU ⊺

,α

(
QαβU ,β +Rα3U

)
+ δU ⊺ (R⊺

α3U ,α + S33U)
]
dΩ̂ =

+

∫
Ω̂

δU ⊺B dΩ̂ +

∫
∂Ω̂

δU ⊺T d∂Ω̂ , (3.69)

where the matrices Qαβ, Rα3, are the same as those introduced for the static analysis

and Ü is the second time derivative of U . The matrix M is referred to as generalized
mass matrix and is defined as

M =

Nℓ∑
ℓ=1

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

Z⟨ℓ⟩⊺R⊺RZ⟨ℓ⟩ρ⟨ℓ⟩
√
g dξ3 . (3.70)

3.2.7 Free-vibration

Similarly to the preceding sections, the equations governing the free-vibration analysis
of a laminated shell are derived from the following variational statement that refers to
three-dimensional multilayered solid

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δγ⟨ℓ⟩⊺σ⟨ℓ⟩dV = ω2

Nℓ∑
ℓ=1

∫
V ⟨ℓ⟩

δu⟨ℓ⟩⊺ρ⟨ℓ⟩u⟨ℓ⟩dV , (3.71)



3.3. LAYER-WISE SHELL THEORIES 41

where ω is a generic natural frequency. Upon applying the same substitutions as in the
previous sections, the corresponding two-dimensional shell formulation is obtained∫

Ω̂

[
δU ⊺

,α

(
QαβU ,β +Rα3U

)
+ δU ⊺ (R⊺

α3U ,α + S33U)
]
dΩ̂ = ω2

∫
Ω̂

δU ⊺MUdΩ̂ .

(3.72)

Table 3.1: Two-dimensional formulation for the mechanical problems investigated in this thesis using
higher-order theories.

Static analysis

∫
Ω̂

[
δU⊺

,α

(
QαβU ,β +Rα3U

)
+ δU⊺ (R3αU ,α + S33U)

]
dΩ̂ =

+

∫
Ω̂
δU⊺B dΩ̂ +

∫
∂Ω̂

δU⊺T d∂Ω̂ .

Linear buckling analysis

∫
Ω̂

[
δU⊺

,α

(
QαβU ,β +Rα3U

)
+ δU⊺ (R⊺

α3U ,α + S33U)
]
dΩ̂ =

− λ

∫
Ω̂

[
δU⊺

,α

(
QG

αβU ,β +RG
α3U

)
+ δU⊺

(
RG⊺

α3U ,α + SG
33U

)]
dΩ̂,

Linear transient analysis

∫
Ω̂
δU⊺MÜdΩ̂ +

∫
Ω̂

[
δU⊺

,α

(
QαβU ,β +Rα3U

)
+ δU⊺ (R⊺

α3U ,α + S33U)
]
dΩ̂ =

+

∫
Ω̂
δU⊺B dΩ̂ +

∫
∂Ω̂

δU⊺T d∂Ω̂,

Linear free-vibration analysis

∫
Ω̂

[
δU⊺

,α

(
QαβU ,β +Rα3U

)
+ δU⊺ (R⊺

α3U ,α + S33U)
]
dΩ̂ = ω2

∫
Ω̂
δU⊺MUdΩ̂ .

3.3 Layer-Wise shell theories

The ESL approach excels at accurately capturing higher-order through-the-thickness be-
haviors in moderately thick shells. However, when dealing with laminates, the level of
accuracy might not suffices in certain applications. In fact, to ensure accurate analysis,
two critical condition must be met at the interfaces of adjacent layers:

i. The displacement vector field should be continuous in order to prevent voids or
interpenetration in the deformed configuration.
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ii. Equilibrium conditions must be met, particularly the continuous variation of out-of-
plane stress components across the thickness. This necessitates discontinuity in the
ξ3 derivative of the displacement field at the layers’ interfaces. In fact, the material
properties exhibit a discontinuity at these interfaces, and to maintain continuous
out-of-plane stress components, the strain, that is a linear combination of derivatives
of the displacement, must exhibit discontinuity.

In the ESL approach, the thickness functions are assumed to be C∞ (infinitely differen-
tiable). Consequently, while the first condition is automatically met, the second condition
is not guaranteed. This limitation can impact the accuracy in predicting the out-of-plane
stress components.

In this section, the Layer-Wise (LW) approach is introduced, which is designed to
tackle this issue by modifying the space for the thickness function in the kinematic hy-
pothesis. In the LW approach, C0 thickness functions are employed, which are continuous
but not necessarily differentiable. These thickness functions are designed such that the
points of non-differentiability coincide with the layers’ interfaces [135].

3.3.1 Shell kinematics

In the Layer-Wise LW approach, the shell kinematics relies on a per-layer expansion of
the displacement field throughout the shell thickness. This means that the covariant
components of the displacement vector can be expressed as follows

u
⟨ℓ⟩
ξi
(ξ1, ξ2, ξ3) =

Ni⟨ℓ⟩∑
k=0

Z
⟨ℓ⟩i
ik (ξ3)U

⟨ℓ⟩
ik (ξ1, ξ2) , (3.73)

whereN
⟨ℓ⟩
i represents the order of the expansion assumed for uξi , Z

⟨ℓ⟩
ik (ξ3) are the thickness

function and Uik(ξ1, ξ2) are the unknown generalized displacements for the ℓ-th layer. It
is worth noting that, when comparing Eq.(3.73) with Eq.(3.28) the generalized displace-

ments U
⟨ℓ⟩
ik as well as the thickness functions Z

⟨ℓ⟩
ik have been enriched with a superscript

⟨ℓ⟩. This superscript signifies their dependence on the laminate layer.

In the LW approach, the functions Z
⟨ℓ⟩
ik (ξ3) must be carefully chosen to ensure that

u
⟨ℓ⟩
ξi

remains C0 continuous, with points of non-differentiability positioned at the inter-
faces between layers. Various options are available for making this choice, with examples
including Lagrange functions [136] or spline functions [137]. In this work, a linear combi-
nation of Legendre polynomials scaled to the layers’ interval is employed. The functions
Z

⟨ℓ⟩
ik (ξ3) are thus expressed as

Z
⟨ℓ⟩
ik (ξ3) =


(L0(ζ

⟨ℓ⟩)− L1(ζ
⟨ℓ⟩))/2 when k = 0 ,

Lk+1(ζ
⟨ℓ⟩)− Lk−1(ζ

⟨ℓ⟩) when k = 1, ..., N
⟨ℓ⟩
i − 1 ,

(L0(ζ
⟨ℓ⟩) + L1(ζ

⟨ℓ⟩))/2 when k = N
⟨ℓ⟩
i ,

(3.74)

where Li is the i-th Legendre polynomial scaled in the interval Î
⟨ℓ⟩
3 and ζ⟨ℓ⟩ spans from

−1 to +1 within each interval Î
⟨ℓ⟩
3 where ξ3 spans. Specifically, ζ⟨ℓ⟩ is defined as

ζ⟨ℓ⟩ =
2ξ3 − τ

⟨ℓ⟩
b − τ

⟨ℓ⟩
t

τ
⟨ℓ⟩
t − τ

⟨ℓ⟩
b

. (3.75)



3.3. LAYER-WISE SHELL THEORIES 43

This choice ensures that

Z
⟨ℓ⟩
i0 (ζ⟨ℓ⟩ = 0) = 1 , (3.76)

Z
⟨ℓ⟩
ik (ζ⟨ℓ⟩ = 0) = 0 for k ̸= 0 , (3.77)

Z
⟨ℓ⟩
iN

⟨ℓ⟩
i

(ζ⟨ℓ⟩ = 1) = 1 , (3.78)

Z
⟨ℓ⟩
ik (ζ⟨ℓ⟩ = 1) = 0 for k ̸= N

⟨ℓ⟩
i . (3.79)

Hence, for each covariant component, the first and last generalized displacements directly
correspond to that component at τ

⟨ℓ⟩
b and τ

⟨ℓ⟩
t respectively. More specifically,

uξi(ζ
⟨ℓ⟩ = 0) = uξi(ξ3 = τ

⟨ℓ⟩
b ) = U

⟨ℓ⟩
i0 , (3.80a)

uξi(ζ
⟨ℓ⟩ = 1) = uξi(ξ3 = τ

⟨ℓ⟩
t ) = U

⟨ℓ⟩
iN

⟨ℓ⟩
i

. (3.80b)

The continuity of the displacement between nearby layers is therefore enforced by simply
imposing that U

⟨ℓ⟩
iN

⟨ℓ⟩
i

= U
⟨ℓ+1⟩
i0 . This means that for each interface, there are three condi-

tions (one for each covariant component of the displacement) that reduce the number of
independent generalized displacements. Collecting the generalized displacements of the
ℓ-th layer in the vector U ⟨ℓ⟩ in such a way that

u
⟨ℓ⟩
ξ = Z⟨ℓ⟩U ⟨ℓ⟩ , (3.81)

where Z⟨ℓ⟩ consistently collects the thickness function for the ℓ-th layer, one may write


U ⟨1⟩

U ⟨2⟩

...

U ⟨Nℓ⟩

H = U , (3.82)

where the matrix H contains only zeros and ones is such a way to link the generalized
displacements for each layer with the correspondent independent generalized displacement
at the laminate level.

In the LW approach, the orders for the expansion of the displacement are typically
taken the same for each component and for each layer. A generic LW theory is therefore
denoted as LDNp where Np is the common order of expansion. To exemplify, for a first

order LW theory L1, where N
⟨ℓ⟩
i = 1 for each component and for each layer, Eq.(3.82) is
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expressed with extended matrices as

U
⟨1⟩
1 0

U
⟨1⟩
2 0

U
⟨1⟩
3 0

U
⟨1⟩
1 1

U
⟨1⟩
2 1

U
⟨1⟩
3 1

U
⟨2⟩
1 0

U
⟨2⟩
2 0

U
⟨2⟩
3 0

U
⟨2⟩
1 1

U
⟨2⟩
2 1

U
⟨2⟩
3 1

U
⟨3⟩
1 0

U
⟨3⟩
2 0

U
⟨3⟩
3 0

U
⟨3⟩
1 1

U
⟨3⟩
2 1

U
⟨3⟩
3 1



=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1





U1

U2

U3

U4

U5

U6

U7

U8

U9

U10

U11

U12



.

3.3.2 Shell mechanics

In order to obtain a two-dimensional formulation for the mechanical problems discussed in
the previous section using the LW approximation, the approach followed here consists of
building the generalized matrices as described in Sec.3.2 using the polynomial expansion
presented in Eq.(3.74) for each layer and assembling them consistently with the continuity
condition enforced through Eq.(3.82).

For the sake of conciseness, this process is presented only for definition of the gener-
alized stiffness matrix Qαβ and the generalized external forces T and B. At a layer level,
the contribution to the generalized stiffness matrix is computed as

Q
⟨ℓ⟩
αβ =

∫ τ
⟨ℓ⟩
t

τ
⟨ℓ⟩
b

D
⟨ℓ⟩⊺
αi C

⟨ℓ⟩
ij D

⟨ℓ⟩
βj

√
g dξ3 . (3.83)

The contribute to the virtual work of the internal forces associated with δU ⟨ℓ⟩
,α and U

⟨ℓ⟩
,β

is written as

δLαβ
int =

Nℓ∑
ℓ=1

δU ⟨ℓ⟩
,α Q

⟨ℓ⟩
αβU

⟨ℓ⟩
,β , (3.84)

or equivalently

δLαβ
int =


δU ⟨1⟩⊺

δU ⟨2⟩⊺

...

δU ⟨Nℓ⟩⊺



Q

⟨1⟩
αβ 0 . . . 0

0 Q
⟨2⟩
αβ . . . 0

...
...

. . .
...

0 0 . . . Q
⟨Nℓ⟩
αβ



U ⟨1⟩

U ⟨2⟩

...

U ⟨Nℓ⟩

 . (3.85)
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The previous expression can be further modified through Eq.(3.82) in

δLαβ
int = δU ⊺H⊺QαβHδU , (3.86)

where the the generalized stiffness matrix Qαβ for the whole laminate is defined as

Qαβ = H⊺


Q

⟨1⟩
αβ 0 . . . 0

0 Q
⟨2⟩
αβ . . . 0

...
...

. . .
...

0 0 . . . Q
⟨Nℓ⟩
αβ

H . (3.87)

Similarly, the definition for the generalized domain and boundary external forces in the
LW case are, respectively,

B = H⊺





∫ τ
⟨1⟩
t

τ
⟨1⟩
b

Z⟨1⟩⊺R⊺b
⟨1⟩√

g dξ3∫ τ
⟨2⟩
t

τ
⟨2⟩
b

Z⟨2⟩⊺R⊺b
⟨2⟩√

g dξ3
...∫ τ

⟨Nℓ⟩
t

τ
⟨Nℓ⟩
b

ZNℓ⊺R⊺b
⟨Nℓ⟩√

g dξ3


+



Z⟨1⟩⊺R⊺t
⟨1⟩√

g
√

nigijnj

∣∣∣
ξ3=−τ/2

0

...

Z⟨Nℓ⟩⊺R⊺t
⟨Nℓ⟩√g

√
nigijnj

∣∣∣
ξ3=+τ/2




(3.88a)

T = H⊺



∫ τ
⟨1⟩
t

τ
⟨1⟩
b

Z⟨1⟩⊺R⊺t
⟨1⟩√

g
√
nigijnj dξ3∫ τ

⟨2⟩
t

τ
⟨2⟩
b

Z⟨2⟩⊺R⊺t
⟨2⟩√

g
√
nigijnj dξ3

...∫ τ
⟨Nℓ⟩
t

τ
⟨Nℓ⟩
b

Z⟨Nℓ⟩⊺R⊺t
⟨Nℓ⟩√g

√
nigijnj dξ3


(3.88b)

In a similar fashion, the definition of the remaining generalized matrices introduced in
Sec. 3.2 can be easily extended in the LW case. The variational statements can be built
in such a way that they have the same expressions as in Tab.(3.1), and they are not
reported here for the sake of conciseness.
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Chapter 4

The discontinuous Galerkin method

4.1 Discontinuous Galerkin formulation

In this section the principles of the discontinuous Galerkin method are introduced taking
as example the linear static analysis through the ESL approach, whose variational state-
ment was discussed in Chapter 3. The subsequent subsections provide a comprehensive
formulation tailored to address remaining the mechanical problems outlined in Chapter
3. In this thesis the DG method is used in combination with high-order shell theories,
whereas for the Kirchhoff-Love shell theory the Isogeometric Analysis method will be
adopted as discussed in Chapter 5. As customary in DG formulations [28], the governing
equations are transformed into a system of first-order partial differential equations. This
transformation involves the introduction of an auxiliary variable, which, is defined in Ref.
[61] as

Σα = QαβU ,β +Rα3U . (4.1)

This auxiliary variable enables the replacement of the governing equation with an equiv-
alent set, expressed as

−Σα,α +R⊺
α3U ,α + S33U = B , (4.2a)

Σα = QαβU ,β +Rα3U . (4.2b)

Upon discretization of the parametric domain Ω̂, these equations, as presented in Eqs.(4.2),
are formulated in a weak sense over each mesh element as∫

Ω̂e

[
V ⊺

,αΣhα + V ⊺ (R⊺
α3Uh,α + S33Uh)

]
dΩ̂ =

∫
∂Ω̂e

V ⊺Σ̂αναd∂Ω̂+

∫
Ω̂e

V ⊺BdΩ̂ , (4.3a)

∫
Ω̂e

Γ ⊺
αΣhαdΩ̂ =

∫
Ω̂e

Γ ⊺
α

(
QαβUh,β +Rα3Uh

)
dΩ̂+

+

∫
∂Ω̂e

(Γ ⊺
αQαβ + V ⊺R⊺

β3)(Û −Uh)νβd∂Ω̂ , (4.3b)

respectively, where: Σα and U have been replaced by their respective numerical ap-
proximations Σhα and Uh; Σ̂α and Û are the so-called numerical fluxes, whose explicit
expression will be given in Sec. 4.1.1; V and Γα are the test functions which are taken
from the space VNU

hp as discussed later in this section.
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ξ1

ξ2

Ω̂e

∂Ω̂e
I ∂Ω̂e

D ∪ ∂Ω̂e
N

ν = {να}

Figure 4.1: Sample 3× 3 mesh of a square domain with a generic element in darker color.

Mesh discretization

The domain discretization is carried out using the implicit mesh technique discussed in
Chapter 2. The domain Ω̂ is subdivided into Ne non-overlapping elements, such that
Ω̂h = ∪eΩ̂e, where Ω̂e denotes the domain of the generic e-th element and Ω̂h is an
approximation of Ω̂ following discretization. To illustrate, Fig.(4.1) shows a sample 3× 3
mesh of a square domain and the generic element Ω̂e (in darker color); the figure also shows
the element’s outer unit normal ν = {να} and its boundary ∂Ω̂e = ∂Ω̂e

I ∪ ∂Ω̂e
D ∪ ∂Ω̂e

N ,
which consists of the boundary ∂Ω̂e

I that the element shares with its neighboring elements,
the boundary ∂Ω̂e

D where kinematic boundary conditions are prescribed and the boundary
∂Ω̂e

N where mechanical boundary conditions are prescribed.

The boundary of Ω̂h is denoted as ∂Ω̂h, which can be partitioned into two parts:
∂Ω̂h

D = ∪e∂Ω̂e
D, where Dirichlet boundary conditions are enforced, and ∂Ω̂h

N = ∪e∂Ω̂e
N ,

where Neumann boundary conditions are applied. Additionally, in the meshing process,
Ni interfaces ∂Ω̂i

I = ∂Ω̂e
I ∩ ∂Ω̂e′

I are generated, connecting two neighboring elements e
and e′, where i denotes the generic i-th interface. The collective set of these interfaces is
referred to as ∂Ω̂h

I = ∪i∂Ω̂i
I ,often referred to as the mesh skeleton.

Average and jump operator

As commonly employed in DG formulations, {•} and [[•]]α are introduced as the so-called
average and jump operators, respectively, which are defined at the interface between the
elements e and e′ as

{•} = 1

2

(
•e + •e′

)
and [[•]]α = νe

α •e +νe′

α •e
′
. (4.4)

Here, νe
α represents the α-th component of the outer unit normal to the boundary of the

e-th element.
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Broken integrals

In the reminder of this section, integration over the discretized domain, its boundary,
and its skeleton is denoted using the so-called broken integrals, which are defined as

∫
Ω̂h

• =
Ne∑
e=1

∫
Ω̂e

•e dΩ̂ , (4.5a)

∫
∂Ω̂h

D

• =
Ne∑
e=1

∫
∂Ω̂e

D

•e d∂Ω̂ , (4.5b)

∫
∂Ω̂h

N

• =
Ne∑
e=1

∫
∂Ω̂e

N

•e d∂Ω̂ , (4.5c)

∫
∂Ω̂h

• =
Ne∑
e=1

∫
∂Ω̂e

D∪∂Ω̂e
N

•e d∂Ω̂ , (4.5d)

∫
∂Ω̂h

I

• =
Ni∑
i=1

∫
∂Ω̂i

I

•e d∂Ω̂ . (4.5e)

Furthermore, the following useful relationship is established

Ne∑
e=1

∫
∂Ω̂e

I

•̂e•̃eναdΩ̂ =

∫
∂Ω̂h

I

({•̂}[[•̃]]α + [[•̂]]α{•̃}) +
∫
∂Ω̂h

•̂•̃να , (4.6)

where •̂ and •̃ are two generic quantities defined over the discretized domain Ω̂h.

Space of discontinuous vector field

As elaborated in the following sections, the proposed formulation adopts test and trial
functions from the space VNU

hp of discontinuous vector fields defined as

VNU
hp =

{
v : Ω̂→ R | v|Ω̂e ∈ Pe

p ∀e = 1, ..., Ne

}NU

, (4.7)

where Pe
p is the space of tensor-product polynomials with degree p defined over the e-th

untrimmed mesh element Π̂e. Consistently with Chapter 2, it is worth reminding that
for entire elements, Π̂e corresponds to Ω̂e. As the mesh is constructed upon a rectangular
background grid, Π̂e is given by [ξe1b, ξ

e
1t]× [ξe2b, ξ

e
2t]. On the other hand, when dealing with

partial or extended elements, the domain for the definition of Pe
p is suitably restricted

or extended, as appropriate. This operation is always possible when using a polynomial
space for the test and trial functions. Additionally, it is worth mentioning that selecting
test and trial functions from the same space VNU

hp results in symmetric algebraic systems
for the formulations at hand.

Finally, it is important to note that the specific choice of the function space does not
impact the DG formulation significantly. DG formulations offer the advantage of allowing
for elements that differ in size, shape, approximation functions’ type, and approximation
functions’ order within the same mesh, as the continuity of the solution is restored in a
weak sense through penalty integrals.
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4.1.1 Discontinuous Galerkin schemes

The selection of different definitions of Σ̂α and Û results in distinct DG formulations
[28]. In this work, it is employed either the interior penalty formulation proposed in [61]
or the pure penalty formulation discussed in [62].

Interior penalty method

In the interior penalty formulation was originally proposed by [138] for the Poisson prob-
lem and extended to Reissner-Mindlin plates in [139] and to ESL plates in [62]. In
particular, following [61] for ESL plates and shells the numerical fluxes are specified as

Û =


{Uh}, on ∂Ω̂e

I

U , on ∂Ω̂e
D

Uh, on ∂Ω̂e
N

, (4.8a)


Σ̂α = {Σα(Uh)} − µ[[Uh]]α, on ∂Ω̂e

I

Σ̂α = Σα(Uh)− µ(Uh −U)να, on ∂Ω̂e
D

ναΣ̂α = T , on ∂Ω̂e
N

, (4.8b)

where U are the applied displacements over ∂Ωe
D. Additionally, the following relationship

is introduced

Σα(Uh) = QαβUh,β +Rα3Uh . (4.9)

The parameter µ is referred to as the penalty parameter and is a user-defined value that
requires careful consideration in its definition, as further elaborated in this section.

Pure penalty method

An alternative approach for solving the governing equations of the problem is the pure
penalty discontinuous Galerkin (DG) method. This method was originally introduced by
Babuška in [140] for the Poisson problem and in [141] for the Kirchhoff plate problem
with homogeneous boundary conditions. It was further extended by Gulizzi et al. in
[61, 62] to linear analysis of multilayered plates. In the pure penalty formulation, the
fluxes are specified as

Û =


{Uh}, on ∂Ω̂e

I

U , on ∂Ω̂e
D

Uh, on ∂Ω̂e
N

, (4.10a)


Σ̂α = −µ[[Uh]]α, on ∂Ω̂e

I

Σ̂α = −µ(Uh −U)να, on ∂Ω̂e
D

ναΣ̂α = T , on ∂Ω̂e
N

. (4.10b)

However, it is important to note that the proposed pure penalty method for static analysis
cannot be obtained simply by substituting the expressions for the fluxes. It necessitates
discarding certain integrals that would otherwise appear in the formulation.
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Choice of the penalty parameter

The choice of the penalty parameter µ is crucial for the efficiency of the method. Although
the penalty terms in Eqs.(4.8) and (4.10) are the same, their purposes differ in the interior
penalty and pure penalty methods:

i) In the interior penalty method, the penalty terms are introduced primarily to ensure
the stability of the method. In this case, a common choice for the penalty parameter
is µ = Q/h, where Q is typically a sufficiently large constant proportional to the
highest Young modulus of the structural materials, and h is a characteristic mesh
size.

ii) In the pure penalty method, the penalty terms are the sole components responsible
for enforcing the continuity of the solution among nearby elements. In the pure
penalty DG formulation, a typical choice for the penalty parameter is µ = Q/h2p,
where p is the degree of the polynomial basis used in the method.

A too small penalty value could lead to significant discontinuities of the solution across
element interfaces, while a too high penalty can result in an ill-conditioning of the linear
system being solved [142]. This ill-conditioning issue is particularly pronounced in the
pure penalty formulation, where the penalty parameter needs to be significantly higher
to ensure the same level of accuracy as in the interior penalty formulation.

One of the advantages of a pure penalty formulation over an interior penalty one
is that it eliminates the need to compute the terms Σα(Uh) at ∂Ωh

I and ∂Ωh
D. This

advantage becomes particularly apparent in nonlinear analysis, where Σα is not linear
with respect to Uh. A such, while in a pure penalty formulation, the integrals that
enforce continuity and essential boundary conditions are computed only once and can be
reused for each step of the nonlinear analysis, in an interior penalty formulation these
integrals are not linear with respect to Uh and their Jacobian needs to be recomputed
for each iteration.

4.1.2 DG for linear static analysis

In this thesis, for linear static analysis, an interior penalty formulation is utilized. The
corresponding DG variational statement is obtained by setting Γα = V ,α, combining Eqs.
(4.3) and (4.8), summing over all the mesh elements and using Eq.(4.6). This results in
the so-called primal form of the proposed method, which is expressed as follows: find
Uh ∈ VNU

hp such that

BK(V ,Uh) +BIP (V ,Uh) = FB(V ,B) + F T (V ,T ) + F IP (V ,U) ∀V ∈ VNU
hp .
(4.11)



52 CHAPTER 4. THE DISCONTINUOUS GALERKIN METHOD

The bilinear forms and the linear forms appearing in the previous equations are expressed
as

BK(V ,Uh) =

∫
Ω̂h

V ⊺
,αΣα(Uh) + V ⊺ (R3αUh,α + S33Uh) , (4.12)

BIP (V ,Uh) = −
∫
∂Ω̂h

I

[[V ]]⊺α{Σα(Uh)}+ {Σα(V )}⊺[[Uh]]α +

∫
∂Ω̂h

I

µ[[V ]]⊺α[[Uh]]α+

−
∫
∂Ω̂h

D

ναV
⊺Σα(Uh) +Σ ⊺

α(V )Uhνα +

∫
∂Ω̂h

D

µV ⊺Uh , (4.13)

FB(V ,B) =

∫
Ω̂h

V ⊺B , (4.14)

F T (V ,T ) =

∫
∂Ω̂h

N

V ⊺T , (4.15)

F IP (V ,U) = −
∫
∂Ω̂h

D

(
V ⊺

,αQαβ + V ⊺R⊺
β3

)
Uνβ +

∫
∂Ω̂h

D

µV ⊺U , (4.16)

where the following relationship is used

Σα(V ) = QαβV ,β +Rα3V . (4.17)

It is important to note that in Eqs.(4.13) and (4.16), the integrals on ∂Ω̂h
D are used to

enforce the Dirichlet boundary conditions in terms of prescribed displacements U , the
integrals on ∂Ω̂h

N are used to enforce the Neumann boundary conditions, and the integrals
on ∂Ω̂h

I are used to enforce the inter-element continuity.
Following the rules presented in Sec. 4.1.7 the bilinear forms BK , BIP are assembled

in the matrices KK , KIP as well as the linear forms FB, F T , F IP are assembled in the
vectors FB, FT , FIP . In such way the problem in Eq.(4.11) is reduced to the algebraic
problem

KX = F , (4.18)

where X is the vector collecting the problem unknowns, K = KK + KIP is the stiffness
matrix of the system and F = FB+FT +FIP is the vector that constitute the right-hand
side of the system.

4.1.3 DG for buckling analysis

The formulation presented in this work for addressing the linear buckling problem in
multilayered shells is derived from the corresponding two-dimensional variational state-
ment elucidated in Chapter 3. In particular, it is stated as follow: find the eigenfunction
Uh ∈ VNU

hp and the eigenvalue λh that satisfy

BK(V ,Uh) +BIP (V ,Uh) = −λhB
G(V ,Uh, σij), ∀V ∈ VNU

hp , (4.19)

where BK(V ,Uh) and BIP (V ,Uh) are given in Eq.(4.12) and (4.13), respectively, and
BG(V ,Uh, σij) is defined as

BG(V ,Uh, σij) =

∫
Ω̂h

V ⊺
,α

(
QG

αβUh,β +RG
α3Uh

)
+ V ⊺

(
RG⊺

α3Uh,α + SG
33Uh

)
. (4.20)
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The buckling DG formulation given in Eq.(4.19) employs the same bilinear formBIP (V ,Uh)
introduced for the static DG formulation given in Eq.(4.13) and including the boundary
terms defined over ∂Ω̂h

I and ∂Ω̂h
D. While it is clear that the boundary terms defined

over ∂Ω̂h
I are needed to ensure the continuity of the solution among the mesh elements,

it is worth noting that the boundary terms defined over ∂Ω̂h
D are also required because

the adjacent solution U must verify U = 0 on ∂Ω̂h
D. On the other hand, the bilinear

form BG(V ,Uh, σij) consists of the approximate version of the second integral appear-
ing in the two-dimensional ESL buckling formulation introduced in Chapter 3, without
additional boundary terms. As demonstrated by the corresponding numerical tests, the
DG formulation in Eq.(4.19) effectively yields accurate solutions for the linear buckling
problem in multilayered shells.

It is work noting that, in Eq.(4.19), the penalty parameter appears only in the defini-
tion of BIP (V ,Uh) to enforce the inter-element continuity and the homogeneous bound-
ary conditions, while it does not appear in the bilinear form BG(V ,Uh, σij), which is the
one related to the buckling problem. Although not explicitly shown in the results section,
the buckling eigenvalues and eigenvectors obtained from Eq.(4.19) were not influenced by
the choice of µ when this was selected following the same recommendations specified for
linear static analysis.

By assembling the bilinear form BG into the matrix G using the principles outlined
in Sec. 4.1.7, the problem in Eq.(4.19) can be reformulated as a generalized eigenvalue
algebraic problem, expressed as

KX = −λhGX , (4.21)

where K has the same definition introduced in Sec. 4.1.2. Due to the symmetry of
the interior penalty terms and the choice of test and trial functions, both K and G are
real and symmetric and therefore Hermitian. Additionally, K is positive defined. As
such, Eq.(4.21) can be easily turned into a generalized Hermitian eigenvalue problem by
introducing µh = −1/λh and looking for the highest eigenvalues µh. The solution is then
obtained through the SLEPc library [126] that implements a Krylov-Schur algorithm.

4.1.4 DG for transient analysis

The DG problem for transient dynamic analysis is derived from the two-dimensional
elasto-dynamic problem for a multi-layered solid. It is expressed as follows: find Uh ∈
VNU
hp such that

BM(V , Üh)+BK(V ,Uh)+BIP (V ,Uh) = FB(V ,B)+F T (V ,T )+F IP (V ,U) ∀V ∈ VNU
hp ,

(4.22)
where the bilinear form BM(V , Üh) is defined as

BM(V , Üh) =

∫
Ω̂h

V ⊺MÜh , (4.23)

and BK(V ,Uh), B
IP (V ,Uh), F

B(V ,B), F T (V ,T ), and F IP (V ,U) are defined in Sec.
4.1.2. Once the DG-based space discretization is introduced in Eq.(4.22), one obtains
the following linear system of second-order differential equations involving only time
derivatives

MẌ +DẊ +KX = F , (4.24)
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whereM, D and K are the mass matrix, the damping matrix and the stiffness matrix of
the system, respectively, Ẋ and Ẍ are the first and second time derivatives of the vector
of the unknowns X, respectively, and F is the right-hand side of the linear system. It is
worth mentioning that while K and F have the same definitions as in Sec. 4.1.2, andM
is obtained assembling the bilinear form BM , the second term in Eq.(4.24) does not come
directly from Eq.(4.22); instead, it is introduced to model the damping in the structure.
In this thesis this term is constructed using the Rayleigh damping method, as detailed
as follows.

Finally, the temporal time-stepping is solved employing the Newmark integration
scheme which, for the sake of conciseness, it is not reported here but may be found
in [25]. Unlike other direct integration methods, the Newmark scheme exhibits both
unconditional stability and remarkable accuracy when compared to other explicit and
implicit time integration schemes. These characteristics contribute to its widespread use
in structural analysis.

Rayleigh damping method

Using Rayleigh damping method, see e.g.[143], the matrix D is constructed as a linear
combination of the matricesM and K as

D = αM+ βK. (4.25)

where the coefficients α and β are obtained by specifying the damping ratios ζi and ζj
for the i-th and j-th mode and solving the system

1

2

[
1
ωi

ωi
1
ωj

ωj

][
α
β

]
=

[
ζi
ζj

]
. (4.26)

4.1.5 DG for free-vibration analysis

For free-vibration analysis, the DG statement becomes: find the eigenvalues λh = 1
ω2
h
and

the eigenfunctions Uh such that

BM(V ,Uh) = λh

(
BK(V ,Uh) +BIP (V ,Uh)

)
, ∀V ∈ VNU

hp , (4.27)

where ωh is an approximation of the free-vibration frequencies andBM(V ,Uh), B
K(V ,Uh),

and BIP (V ,Uh) have the same meaning as in the previous section. Assembling the bi-
linear forms in Eq.4.27, the following eigenvalues algebraic problem is obtained

MX = λhKX , (4.28)

whereM, K and X have already been defined.

4.1.6 DG for non-linear static analysis

For the geometrically non-linear static analysis the pure penalty method is adopted in
this work. The primal form is stated as: find Uh such that

BK(V ,Uh)+BPP (V ,Uh) = FB(V ,B)+F T (V ,T )+F PP (V ,U ) ∀V ∈ VU
hp , (4.29)
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where

BPP (V ,Uh) =

∫
∂Ω̂h

I

µ[[V ]]⊺α[[Uh]]α +

∫
∂Ω̂h

D

µV ⊺Uh , (4.30)

F PP (V ,U) =

∫
∂Ω̂h

D

µV ⊺U . (4.31)

It is important to note that while the definition for BK(V ,Uh) is formally the same as
in Eq.(4.12), the generalized stiffness matrices adopted in this case are nonlinear with
respect to Uh. Following the assembly procedure detailed in Sec. 4.1.7, from Eq.4.29 it
is obtained the following nonlinear algebraic system

K(X)X = F . (4.32)

Here, K(X) = KK(X) + KPP and F = FB + FT + FPP . It is worth noting that KK ,
in this case, depends on the unknowns X. Additionally, KPP and FPP result from the
assembly of BPP , and F PP , whereas the remaining quantities have the same definition
as introduced before.

The non-linear algebraic system in Eq.(4.32) is solved in this thesis using the Newton-
Raphson method with the path-following arc-length iteration scheme proposed by Cr-
isfield [144, 145]. To apply this solution procedure, the tangent stiffness matrix KT is
required, representing the Jacobian of the left-hand side of Eq.4.32.

The Jacobian of KK(X)X is assembled following the rules in Sec. 4.1.7, starting from
the discretized version of the variation of the virtual work of the internal forces introduced
in Chapter 3. The Jacobian of KPPX is simply KPP since, differently from the interior
penalty case, the contribute to the stiffness matrix arising from the pure penalty terms
is not a function of X. This property allows for computing the penalty integrals only
once, storing the result, and using it for each iteration in the arc-length iterative scheme,
making the analysis more efficient in terms of computational time.

4.1.7 Assembly of the algebraic systems

The DG primal forms introduced in previous sections are transformed into algebraic
systems by selecting appropriate approximations for the test function V and the primary
variable Uh within the space VNU

hp . Specifically, in this thesis the Legendre polynomials
are used as the basis for the in-plane expansion and the k-th components V e

k and U e
k of

the restriction V e and U e
h of the fields V and Uh to the e-th element are approximated

as

U e
k =

p∑
p1=0

p∑
p2=0

Le
p1
(ξ1)Le

p2
(ξ2)X

ek
p1p2

(4.33a)

V e
k =

p∑
p1=0

p∑
p2=0

Le
p1
(ξ1)Le

p2
(ξ2)δX

ek
p1p2

(4.33b)

where Le
pα(ξβ) represents the Legendre polynomial of order pα scaled in the interval

[ξeβb, ξ
e
βt], X

ek
p1p2

are the unknown expansion coefficients and δXek
p1p2

are the arbitrary pa-
rameters of the test function. Accordingly, in compact matrix form, one writes

U e
h = P e(ξ1, ξ2)X

e, (4.34a)
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V e = P e(ξ1, ξ2)δX
e (4.34b)

where the vectors Xe and δXe collect the unknowns Xek
p1p2

and the parameters of the
test function δXek

p1p2
, respectively, while the matrix P e(ξ1, ξ2) consistently collects the

functions used for the expansion of the elements of U e
h and V e. Using Eqs.(4.34) the

terms of the DG primal forms introduced in this section can be assembled in the final
matrices that transform the DG problems into algebraic problems. This process is carried
out using the following rules

i) The e-th element provides

- A contribution to the problem matrices that sums to the rows and columns
associated with the degrees of freedom of the e-th element, generated from
integrals over Ω̂e. E.g.

Ke
K =

∫
Ω̂e

[
P e⊺

,α

(
QαβP

e
,β +Rα3P

e
)
+ P e⊺

(
R3αP

e
,α + S33P

e
)]

dΩ̂ .

- A contribution to the problem vectors that sums to the rows associated with
the degrees of freedom of the e-th element, generated from integrals over Ω̂e.
E.g.

F e
B =

∫
Ω̂e

P ⊺B dΩ̂ .

- A contribution to the problem vectors that sums to the rows associated with
the degrees of freedom of the e-th element, generated from integrals over ∂Ω̂e

N

or ∂Ω̂e
D. E.g.

F e
T =

∫
∂Ω̂e

N

V ⊺T d∂Ω̂ .

- A contribution to the stiffness matrices that sums to the rows and columns
associated with the degrees of freedom of the e-th element, generated from
integrals over ∂Ω̂e

D. E.g.

Ke
PP =

∫
∂Ω̂e

D

µP e⊺P e d∂Ω̂ .

ii) The i-th interface between the elements e and e′ provides four contributions to the
corresponding stiffness matrix enforcing the inter-element continuity

- A contribution that sums to the rows and columns associated with the degrees
of freedom of the e-th element. E.g.

Kiee
PP =

∫
∂Ω̂i

I

µP e⊺P e d∂Ω̂ .

- A contribution that sums to the rows and columns associated with the degrees
of freedom of the e′-th element. E.g.

Kie′e′

PP =

∫
∂Ω̂i

I

µP e′⊺P e′ d∂Ω̂ .
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- A contribution that sums to the rows associated with the degrees of freedom
of the e-th element and columns associated with the degrees of freedom of the
e′-th element.E.g.

Kiee′

PP =

∫
∂Ω̂i

I

µP e⊺P e′ d∂Ω̂ .

- A contribution that sums to the rows associated with the degrees of freedom
of the e′-th element and columns associated with the degrees of freedom of the
e-th element.E.g.

Kie′e
PP =

∫
∂Ω̂i

I

µP e′⊺P e d∂Ω̂ .

4.2 Numerical results for static analysis

In this section, the capabilities of the proposed DG formulation for the linear static
analysis are assessed through several test cases involving isotropic, orthotropic and mul-
tilayered shells in various curved geometric configurations. For each test case, different
shell theories are considered and the theory corresponding to the choice of a specific order
of expansion is denoted, for the ESL approach, by EDN1N2N3 , where it is recalled that Ni

is the order of thickness expansion for the i-th covariant component of the displacement
field, and, for the LW approach, by LDNp , where Np is the common order of thickness
expansion for each component of the displacement field and each layer of the laminate.
The numerical tests are also performed using the FSDT, which is the most commonly
employed theory for laminated thin and moderately thick structures and can be consid-
ered as a special case of the theory ED110 where the stiffness coefficients are modified
according to the plane-stress assumption [1, 2].

Several test cases are presented: Secs. 4.2.1, 4.2.2 and 4.2.3 are devoted to the analysis
of cylindrical, toroidal and wing-shaped shells, respectively, and refer to geometries that
are parametrized via orthogonal curvilinear coordinates; Secs. 4.2.4 and 4.2.5 are devoted
to the analysis of a planar shell and a generally-shaped shell, respectively, and show
examples of geometries that are parametrized via non-orthogonal curvilinear coordinates;
Secs. 4.2.6 and 4.2.7 refer to geometries with internal cut-outs, more specifically, to a
fuselage panel and a generally-curved NURBS-based shell, respectively.

The last two tests are devoted to two special cases aimed at demonstrating the versa-
tility of the proposed method. In particular, in Sec. 4.2.8, a LW approach is adopted to
demonstrate the accuracy of the through-th-thickness resolution of LW expansion, and
in Sec. 4.2.9 the mechanical response of a damaged plate with a circular cut-out is ob-
tained leveraging the flexibility of the DG method when modeling discontinuities in the
geometry.

The materials considered for the numerical tests are grouped and reported in Tab.(4.1),
the properties of the considered shell sections are reported in Tab.(4.2) and the param-
eters entering the equations of shell mid-surfaces are given in Tab.(4.3). The geometries
of the shell without and with cut-outs are shown in Figs.(4.2) and (4.3), respectively.
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Table 4.1: Properties of the considered materials.

Material ID Property Component Value

M1 (Isotropic) Young’s modulus E 70 GPa
Poisson’s ratio ν 0.33

M2 (Orthotropic) Young’s moduli E1 100.0 GPa
E2, E3 4.0 GPa

Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23 0.8 GPa

G13, G12 2.0 GPa
M3 (Orthotropic) Young’s moduli E1 160.0 GPa

E2, E3 20.0 GPa
Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23 4 GPa

G13, G12 10.0 GPa
M4 (Isotropic) Young’s modulus E/Er 1

Poisson’s ratio ν 0.25
M5 (Orthotropic) Young’s moduli E1/Er 25

E2/Er, E3/Er 1
Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23/Er 0.2

G13/Er, G12/Er 0.5

Table 4.2: Properties of the considered shell sections.

Shell ID Material Layup Layer(s) thickness

C1 (Single-layer) M1 [0] 1 cm
C2 (Single-layer) M2 [0] 1 cm
C3 (Multilayered) M2 [0/90]4 0.125 cm
T1 (Single-layer) M1 [0] 1 cm
T2 (Single-layer) M2 [0] 1 cm
T3 (Multilayered) M2 [0/90]2 0.25 cm
W1 (Single-layer) M1 [0] 1 cm
W3 (Multilayered) M3 [0/90]s 0.25 cm
P2 (Single-layer) M2 [0] 1 cm
P3 (Multilayered) M2 [0/90/0/90]s 0.125 cm
G1 (Single-layer) M1 [0] 1 cm
F1 (Single-layer) M4 [0] 10 cm
F2 (Single-layer) M5 [0] 10 cm
F3 (Multilayered) M5 [0/90]s 0.25 mm
F4 (Multilayered) M5 [+45/− 45]2 0.25 mm
N1 (Single-layer) M4 [0] 1 mm
N2 (Multilayered) M5 [0/90]s 0.25 mm
L1 (Multilayered) M5 [−30/0/0/45] 2.5 cm
D1 (Multilayered) M5 [90/0]s 0.25 cm
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Table 4.3: Quantities entering the parametric equation of the considered shell mid-surfaces.

Cylinder Torus Wing Planar General Fuselage NURBS

Rc 1 m R1t 2 m xw 0.1 m bm 0.5 m ag 2 m Rf 3 m Hn 50 cm
θc π/4 R2t 0.5 m yw 0 m lm 0.5 m bg 1 m θf π/12 Dn 5 cm
Lc 1 m θ1t π/8 Lwa 10 m fg 0.44 Lf 60 cm Ln 60 cm

θ2t π/2 Lwb 20 m ∆g 4.0 af 15 cm an 8.5 cm
Rw 1.1 m Lg 8 m bf 22.5 cm dn 3

df 3 x1n 15 cm
x2n 12 cm
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Figure 4.2: Geometry, boundary conditions and load conditions of the considered geometries without
internal cut-outs. In particular: the considered cylindrical shells with Navier-type solution (a) and
without Navier-type solution (b); the considered toroidal shell (c); the considered wing-shaped shell (d);
the considered planar shell parametrized using a system of non-orthogonal curvilinear coordinates (e);
the considered generally-curved shell (f).
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Figure 4.3: Geometry, boundary conditions and load conditions of the considered geometries with internal
cut-outs. In particular: the considered fuselage panel with a window in three different views (a), (b),
and (c); the NURBS-based shell in three different views (d), (e), and (f).
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4.2.1 Cylindrical shell

In the first set of tests, the cylindrical shell shown in Fig.(4.2a) is considered. The mid-
surface of the shell is described by the equation

x0 =

 ξ2
Rc cos(ξ1)
Rc sin(ξ1)

 (4.35)

where ξ1 ∈ [0, θc], ξ2 ∈ [0, Lc] and Rc, θc and Lc are reported in the first column of
Tab.(4.3). The shell is subjected to simply supported boundary conditions, which are
prescribed in terms of generalized displacements as{

U2k = 0, for k = 0, . . . , N2

U3k = 0, for k = 0, . . . , N3
, at ξ1 = 0, θc, (4.36a)

{
U1k = 0, for k = 0, . . . , N1

U3k = 0, for k = 0, . . . , N3
, at ξ2 = 0, Lc. (4.36b)

The contribution to the vector T of the generalized boundary loads is zero, whereas the
only contribution to the vector B of the generalized domain loads is given by the traction
applied on the top surface of the shell as

t = −qc sin
(
π

θc
ξ1

)
sin

(
π

Lc

ξ2

)
g3, at ξ3 = τc/2, (4.37)

where qc = 10 MPa and τc is the thickness of the cylindrical shell. As regards the material
properties and the stacking sequences, the three shell sections denoted by C1, C2 and C3

in Tab.(4.2) are considered. It is noted that they all have the same thickness. These
settings have been chosen because they admit exact two-dimensional Navier solutions
[2] and allow to compute the solution of the corresponding three-dimensional elasticity
problem [4].

The reference domain Ω̂ of the shell is subdivided into n × n rectangular elements
such that the dimensions of each element is hθc × hLc, being h = 1/n a measure of the
element size. Given the existence of the Navier solutions, the following error measure is
introduced

e(Uh) =
|Uh −U ref |∞
|U ref |∞

, (4.38)

where Uh is the solution computed using the present interior interior formulation, U ref is
the exact Navier solution and |•|∞ is the∞-norm defined over Ω̂. Fig.(4.4) shows the hp-
convergence analyses in terms of the error given in Eq.(4.38) as a function of the element
size h and the polynomial order p. As it is possible to notice, the present formulation
allows to obtain optimal convergence for all the tested shell sections and shell theories.

The solution obtained using the present formulation with a 4 × 4 mesh, p = 6 and
the theories FSDT, ED111, ED222, ED333, ED444 is then compared with the corresponding
solution of three-dimensional elasticity [4]. The comparison is reported in Fig.(4.5) in the
terms of the non-dimensional through-the-thickness Cartesian displacement component
u1 and curvilinear covariant component uξ3 defined as

u1 = u1 ·
(
τ 2cE2

L3
cqc

)
and uξ3 = uξ3 ·

(
τ 3cE2

L4
cqc

)
. (4.39)
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The top, center and bottom rows of Fig.(4.5) refer to the isotropic shell C1, the orthotropic
shell C2 and the laminated shell C3, respectively, and show that the differences between
the 3D solution and the ESL theories are more pronounced for the covariant component
uξ3 rather than the Cartesian component u1. More specifically regarding uξ3 , Fig.(4.5b)
shows that all the considered ESL theories with the exception of the ED111 are able to
recover the 3D solution, Fig.(4.5d) shows that the ESL theories ED333 and ED444 are
able to fully recover the 3D solution and, eventually, Fig.(4.5f) shows that, although the
theories ED333 and ED444 provide a converged ESL solution, ESL theories are not able
to fully recover the 3D solution. The obtained results are consistent with the findings
reported in [61] for multilayered plates and, as expected, show that higher-order theories
provide a better response than low-order theories when employed for orthotropic and
laminated shells. They also suggest that layer-wise theories are generally required to
fully recover the 3D solution in laminated structures.

The accuracy of the present formulation is then tested against different configurations
of boundary conditions that lead to non-Navier-type solutions and for which analytical
methods have been recently proposed [146, 147]. The analysed shell is shown in Fig.(4.2b)
and its mid-surface is given by Eq.(4.35) where ξ1 ∈ [0, θcb] and θcb is reported in the first
column of Tab.(4.3); the remaining geometrical parameters are the same as those of the
cylindrical shell of Fig.4. However, unlike the simulations of the Navier-type solutions,
in this case the shell is subjected to clamped boundary conditions, i.e. U = 0 at ξ1 = 0,
θcb and ξ2 = Lc, and to simply-supported boundary conditions, as given in Eq.(4.36), at
ξ2 = 0. The contribution to the vector T is zero, whereas, as illustrated in Fig.(4.2b), the
contribution to the vector B is given by a uniform traction t = qcbg3 applied on the top
surface of the shell, where qcb = 1 kPa. To compare with the analytical results obtained
by Zheng et al. [146] via the Symplectic superposition method (SSM) and by An et
al. [147] via the Finite integral transform method (FITM), the shell section denoted by
C1b in Tab.(4.2) and having thickness τcb = 0.1 cm is considered. The numerical results
are computed in terms of non-dimensional longitudinal displacement uξ2 , circumferential
displacement uξ1 and radial displacement uξ3 defined as

uξ2 = uξ2 ·
(
107Eτ 3cb
qcbL4

c

)
, uξ1 = uξ1 ·

(
107Eτ 3cb
RqcbL4

c

)
and uξ3 = uξ3 ·

(
107Eτ 3cb
qcbL4

c

)
. (4.40)

and evaluated at different locations of the shell mid-surface. The comparison between
the results obtained with the present DG formulation using the FSDT, a 8 × 8 mesh
and polynomial order p = 7, and the results obtained with FEM [147], with SSM [146]
and with FITM [147], is reported in Tab.(4.4) and demonstrates that the present ap-
proach accurately reproduces the static response of cylindrical shells in non-Navier-type
configurations

4.2.2 Toroidal shell

In the second set of tests, the toroidal shell shown in Fig.(4.2c) is considered. The mid-
surface of the shell is described by the equation

x0 =

cos(ξ1)(R1t +R2t cos(ξ2))
sin(ξ1)(R1t +R2t cos(ξ2))

R2t sin(ξ2)

 (4.41)

where ξ1 ∈ [−θ1t, θ1t], ξ2 ∈ [−θ2t, θ2t] and R1t, R2t, θ1t and θ2t are reported in the second
column of Tab.(4.3). The shell is subjected to clamped boundary conditions, i.e. U = 0
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: hp-convergence analysis for the cylindrical shells shown in Fig.(4.2a). The figures in the
left and the right columns refer to the FSDT and the ED222 theory, respectively, whereas, from top to
bottom, the figures refer to the shell sections C1, C2 and C3 reported in Tab.(4.2). The slope of the
dashed lines is p+ 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Comparison between the 3D solution and the solution obtained with the present formulation
and different shell theories for the cylindrical shells shown in Fig.(4.2a).
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Table 4.4: Comparison between the results obtained with the present DG formulation and the results ob-
tained with FEM [147], with SSM [146] and with FITM [147] for the cylindrical shell shown in Fig.(4.2b)

for (ξ1, ξ2) ∈ ∂Ω̂, and to surface tractions over its top surface prescribed as

t = −qt cos
(

π

2θ1t
ξ1

)
cos

(
π

2θ2t
ξ2

)
g3, at ξ3 = τt/2, (4.42)

where qt = 100 MPa and τt is the shell thickness. The considered material properties and
the stacking sequences are those of the three shell sections denoted by T1, T2 and T3 in
Tab.(4.2).

Analytical solutions are not available for these tests. Therefore, the solution obtained
using the present formulation is compared with the solution computed using the FEM
software Abaqus® [26]. The comparison is performed in terms of the non-dimensional
covariant component uξ3 , defined as

uξ3 = uξ3 ·
(
τ 3t E2

R4
2tqt

)
, (4.43)

versus the number of total degrees of freedom of the algebraic system to be solved.
Figs.(4.6a), (4.6c) and (4.6e) show uξ3 evaluated at (ξ1, ξ2, ξ3) = (0, 0, τt/2) using the
present formulation with the FSDT and a polynomial order p = 3 and using Abaqus’ S4R
elements for the shell sections T1, T2 and T3, respectively. Similarly, Figs.(4.6b), (4.6d)
and (4.6e) show uξ3 evaluated at (ξ1, ξ2, ξ3) = (0, 0, τt/2) using the present formulation
with the ESL theory ED222 and a polynomial order p = 3 and the results obtained using
Abaqus’ C3D8R elements for the shell sections T1, T2 and T3, respectively. From the
figures, it is possible to note that the present formulation reproduces the FEM results
and, when using the ED222, offers a significant saving in terms of total number of degrees
of freedom with respect to the 3D model.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Comparison between the results obtained with the present formulation and the results
obtained with FEM for the toroidal shell shown in Fig.(4.2c).
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Table 4.5: Numerical values at convergence of Fig.(4.6).

Material Theory Value

Isotropic DG (FSDT) 1.5422
DG (ED222) 1.5352
S4R (Abaqus) 1.5375
C3D8R (Abaqus) 1.5375

Orthotropic DG (FSDT) 3.2539
DG (ED222) 3.2419
S4R (Abaqus) 3.2451
C3D8R (Abaqus) 3.2408

Laminated DG (FSDT) 3.4652
DG (ED222) 3.4595
S4R (Abaqus) 3.4522
C3D8R (Abaqus) 3.4607

4.2.3 Wing-shaped shell

In the tests discussed in this section, the wing-shaped shell shown in Fig.(4.2d) is consid-
ered. The profile of the wing is generated by means of a Joukowsky transformation [148]
and the mid-surface of the shell is described by the equation

x0 =

 ξ2
(Rw cos(ξ1)− xw)(1 + 1/ϕ(ξ1))
(Rw sin(ξ1) + yw)(1− 1/ϕ(ξ1))

 , (4.44)

with

ϕ(ξ1) = x2
w + y2w + 2Rw(−xw cos(ξ1) + yw sin(ξ1)) +R2

w, (4.45)

where ξ1 ∈ [0, 2π], ξ2 ∈ [0, Lw], being Lw equal to Lwa or Lwb whether a short wing or a
slender wing is considered, and xw, yw, Lwa, Lwb and Rw are reported in the third column
of Tab.(4.3). As sketched in Fig.(4.2d), the shell is clamped over the lateral surface
identified by the points x = x(ξ1, ξ2 = 0, ξ3) and is subjected to prescribed traction
t = qwe3 on the outer surface, i.e. the surface identified by x = x(ξ1, ξ2, ξ3 = τw/2), being
e3 = {0, 0, 1}⊺, qw = 10 kPa and τw the thickness of the shell. The remaining surfaces
are traction-free.

Eventually, the parameterization of the shell given by Eq.(4.44) is such that x0(ξ1, ξ2 =
0) = x0(ξ1, ξ2 = 2π), i.e. the mid-surface is a closed surface, albeit non-smooth at ξ2 = 0
and ξ2 = 2π. Therefore, to enforce the displacement continuity at the trailing edge of
the wing, the interior interior DG scheme is supplemented with an additional term the
penalizes the jump between the Cartesian components of the displacement field evaluated
at x0 = x0(ξ1, ξ2 = 0) and the Cartesian components of the displacement field evaluated
at x0 = x0(ξ1, ξ2 = 2π). It is worth noting that such an approach has been employed to
study assemblies of plates and shells, see e.g. [149, 150, 151] and has been implemented
only for this specific test case to show the flexibility of the proposed formulation. A
general treatment regarding the assembly of multilayered shells modeled using the ESL
approach is not treated in this work.

The two shell sections denoted by W1 and W3 in Tab.(4.2) are considered and the
results obtained with the present formulation are compared with those obtained using
FEM. The comparison is performed in terms of the non-dimensional Cartesian component
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(a) (b)

(c) (d)

Figure 4.7: Comparison between the FEM solution and the solution obtained by the present formulation
for the wing-shaped shell shown in Fig.(4.2d).

versus the number of total degrees of freedom of the algebraic system to be solved; u3 is
defined as

u3 = u3 ·
(
τws

2
wE2

L4
wqw

)
, (4.46)

where sw = 0.475 m represents the thickness of the wing profile. All numerical tests inves-
tigated in this section are performed using the FSDT. Figs.(4.7a) and (4.7c) refer to the
case of the short wing, i.e. Lw = Lwa, and show u3 evaluated at (ξ1, ξ2, ξ3) = (0, Lwa, τw/2)
using the present formulation with polynomial order p = 4 and using Abaqus’ S4R
elements for the shell sections W1 and W3, respectively. Similarly, Figs.(4.7b) and
(4.7d) refer to the case of the slender wing, i.e. Lw = Lwb, and show u3 evaluated at
(ξ1, ξ2, ξ3) = (0, Lwb, τw/2) using the present formulation with polynomial order p = 4
and using Abaqus’ S4R elements for the shell sections W1 and W3, respectively. In all
cases, it is possible to note that the present formulation reproduces the FEM results.

4.2.4 Planar elasticity using non-orthogonal curvilinear coordi-
nates

To test a case of a geometry described by a set of non-orthogonal curvilinear coordinates,
let us consider the planar geometry shown in Fig.(4.2e) and described by the equation

x =

2ξ1 cos(ξ2)ξ1 sin(ξ2)
0

 , (4.47)
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Table 4.6: Numerical values at convergence of Fig.(4.7).

Material Lenght Theory Value

Isotropic Short DG (FSDT) 1.2064
S4R (Abaqus) 1.1982

Long DG (FSDT) 1.1270
S4R (Abaqus) 1.1353

Laminated Short DG (FSDT) 3.6726
S4R (Abaqus) 3.6472

Long DG (FSDT) 2.9045
S4R (Abaqus) 2.9079

where ξ1 ∈ [bm, bm + lm], ξ2 ∈ [0, π/2] and bm and lm are reported in the fourth column
of Tab.(4.3). For this case, g1 · g2 ̸= 0. Let us also assume that the domain is subjected
to a constant strain γref = {ε,−ε, 0, 0, 0, 0}⊺, with ε = 0.01, generated by a displacement
field whose Cartesian components are uref = ε{x1,−x2, 0}⊺. The corresponding covariant
components of this displacement field are given as

uξ,ref = Ruref = ε

−ξ1(5 sin2(ξ2)− 4)
−5ξ21 sin(2ξ2)/2

0

 . (4.48)

For the problem at hand U contains the zero-th order generalized displacements only,
i.e. U = {U10, U20, U30}⊺, since the out-of-plane behavior is disregarded in this case, and
the boundary conditions are prescribed as U = U = uξ,ref . The considered shell sections
are those denoted by P2 and P3 in Tab.(4.2), and, for this case, the angle θ⟨ℓ⟩ is referred
to the Cartesian reference system rather than the curvilinear reference system.

The modeling domain Ω̂ of the shell is divided into n × n elements such that the
dimension of each element is hlm × hπ/2, being h = 1/n a measure of the element size.
The following error measure e(uh) is introduced

e(uh) =
|uh − uref |∞
|uref |∞

, (4.49)

where uh collects the Cartesian components of the displacement field computed with
the present formulation. Fig.(4.8) shows e(uh) as a function of the element size h and
the polynomial order p for the two considered shell sections. As it can be noted from
the figures, the present formulation offers optimal convergence also when a system of
non-orthogonal curvilinear coordinates is employed.

4.2.5 Generally-curved shell

In this set of tests, the shell shown in Fig.(4.2f) is considered. The shell consists of a
tapered elliptical cylinder swept toward the x2 axis. Its mid-surface is described by the
equation

x0 =

 ξ2
ag cos(ξ1)((fg − 1)ξ2/Lg + 1) + ∆gξ2/Lg

bg sin(ξ1)((fg − 1)ξ2/Lg + 1)

 (4.50)

where ξ1 ∈ [0, 2π], ξ2 ∈ [0, Lg] and ag, bg, fg, ∆g and Lg are reported in the fifth column
of Tab.(4.3). The considered shell section is the one denoted by G1 in Tab.(4.2). The
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(a) (b)

Figure 4.8: hp-convergence analysis for the planar domain shown in Fig.(4.2e).Figure (a) and (b) respec-
tively refer to the shell sections P2 and P3 reported in Tab.(4.2). The slope of the dashed lines is p+ 1.

shell is subjected to clamped boundary conditions on the lateral surface identified by
x = x(ξ1, ξ2 = 0, ξ3) and to prescribed tractions t = qge3 on its outer surface, i.e. the
surface identified by x = x(ξ1, ξ2, ξ3 = τg/2), being e3 = {0, 0, 1}⊺, qg = 1 MPa and τg
the thickness of the shell; the remaining surfaces are traction-free. Moreover, similarly
to the case of the wing-shaped shell, the parametrization given by Eq.(4.50) describes
a closed surface such that x(ξ1 = 0, ξ2, ξ3) = x(ξ1 = 2π, ξ2, ξ3). However, in this case,
the geometry is smooth and the present formulation can be employed without the need
for adding any additional penalization term provided that the domain Ω̂ is considered
periodic in the variable ξ1.

The results obtained using the present formulation are compared with the results
computed using Abaqus®. The comparison is performed in terms of the non-dimensional
Cartesian component u3, defined as

u3 = u3 ·
(
τgb

2
gE2

L4
gqg

)
, (4.51)

versus the number of total degrees of freedom of the algebraic system to be solved.

Fig.(4.9a) shows u3 evaluated at (ξ1, ξ2, ξ3) = (0, Lg, τg/2) using the present formu-
lation with the FSDT and a polynomial order p = 7 and using Abaqus’ S4R elements.
Similarly, Fig.(4.9b) show u3 evaluated at (ξ1, ξ2, ξ3) = (0, Lg, τg/2) using the present for-
mulation with the ESL theories ED222 and ED333 and using Abaqus’ C3D20R elements.
Consistently with the findings related to all the previous tests, the figures show that the
present formulation reproduces well the FEM results and offers a significant saving in
terms of the total number of degrees of freedom.

For the sake of completeness, Figs.(4.10a) and (4.10b) show the contour plots of the
displacement component u3 and the stress component σ11, respectively, which have been
computed using the present formulation with a 8×8 mesh of the reference domain Ω̂ and a

polynomial order p = 7. In the figures, u3 is given by Eq.(4.51) whereas σ11 = σ11 ·
(

τgbg
L2
gqg

)
.

4.2.6 Fuselage panel with window

The next geometry investigated is a cylindrical shell with a cut-out as shown in Figs.(4.3a),
(4.3b) and (4.3c). The dimensions and the level set are chosen in order to resemble a



4.2. NUMERICAL RESULTS FOR STATIC ANALYSIS 71

(a) (b)

Figure 4.9: Comparison between the FEM solution and the solution obtained by the present formulation
for the shell shown in Fig.(4.2f).

Table 4.7: Numerical values at convergence of Fig.(4.9).

Theory Value

DG (FSDT) 3.7500
DG (ED222) 3.7567
DG (ED333) 3.7568
S4R (Abaqus) 3.7375
C3D20R (Abaqus) 3.7563

x1

x3

u3

0 0.19 0.38

(a)

x1

x3

σ11 · 102

−3.25 0 3.25

(b)

Figure 4.10: Deformed shaped of the generally-curved shell problem shown in Fig.(4.2f) with superim-
posed contours of (a) the displacement component u3 and (b) the stress component σ11.
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fuselage panel with a window. The reference surface is mapped by the equation

x0 =

 ξ1
Rf sin(ξ2)
Rf cos(ξ2)

 , (4.52)

where ξ1 ∈ [−Lf/2,+Lf/2] and ξ2 ∈ [−θf ,+θf ] and Rf , Lf and θf are reported in
Tab.(4.3). The level set function used to define the cut-out is chosen as

ϕ(x0) = a
df
f − |x01|df −

∣∣∣∣ x02

bf/af

∣∣∣∣df , (4.53)

where af , bf and df are also reported in Tab.(4.3). The shell has clamped external
boundaries, traction-free boundary conditions along the cut-out, and is subjected to a
uniform pressure on the bottom surface identified by x = x(ξ1, ξ2,−τf/2) as

t = −qfg3. (4.54)

The four shell sections labelled as F1 to F4 in Tab.(4.2) are investigated, and the following
non-dimensional magnitude of the displacement is introduced

|u| ≡ |u| ·
(

τ 3fEr

(Lf/2)4qf

)
. (4.55)

Consider the point x∗ in Fig.(4.3c) corresponding to ξ1 = ξ3 = 0 and ξ2 = α =
arcsin (bf/Rf ). The value of |u| at x∗ is computed using the FSDT and the ED444

theory and a DG scheme with polynomial order p = 4, and is then compared with the
value evaluated at the same location computed using Abaqus S4R shell elements and
C3D20R brick elements. Figs.(4.11a), (4.11b), (4.11c) and (4.11d) report the obtained
results as functions of the overall number of degrees of freedom of the discrete system for
the shell sections F1, F2, F3 and F4, respectively, and show how the proposed scheme is
able to recover the FEM results. Moreover, by looking at Fig.(4.11a), which corresponds
to the case of the isotropic shell, one observes no noticeable difference in the values of
the displacement magnitude computed with the FSDT, the ED444 theory and the 3D
FEM model; differently, considering Fig.(4.11b), which corresponds to the case of the
orthotropic shell, it is clear how the high-order ED444 reproduces more adequately the
3D FEM solution with respect to the low-order FSDT.

The effect of the polynomial order p on the value of the non-dimensional displace-
ment magnitude |u| evaluated at the same point x∗ = x(0, α, 0) is shown in Fig.(4.12);
Fig.(4.12a) is referred to the shell section F2 modeled with the ED444 theory, while
Fig.(4.12b) is referred to the shell section F3 modeled with the FSDT. In both cases,
as expected, using p = 6 allows obtaining the converged solution with the smallest num-
ber of degrees of freedom, whereas using p = 2 shows the slowest convergence rate.

Fig.(4.13) shows the value of the non-dimensional displacement magnitude |u| as given
in Eq.(4.55) along the curve identified by varying ξ1 and by keeping constant ξ2 = α and
ξ3 = 0; the curve is indicated as r in Fig.(4.3c). Figs.(4.13a), (4.13b), (4.13c) and (4.13d)
are referred to the shell sections F1, F2, F3 and F4, respectively. In all figures, the results
referring to the present approach are obtained using the FSDT theory and a DG scheme
with polynomial order p = 4, whereas the reference solution (the dashed line in the
figure) is obtained using Abaqus’ S4R shell elements. Also in this case, the obtained
results confirm the accuracy of the proposed method.
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(a) (b)

(c) (d)

Figure 4.11: Comparison between the convergence of the FEM solution and the convergence of the
solution obtained by the present formulation for the fuselage panel.

The effect of the mesh size on the value of |u| evaluated along the same curve using the
FSDT theory and a DG scheme with polynomial order p = 2 is presented in Figs.(4.14a)
and (4.14b) for the shell sections F2 and F3, respectively. Here, it is interesting to note
that the multilayered shell displays a slower convergence rate as a function of the number
of cells in the background grid with respect to the case of the homogeneous orthotropic
shell.

As a concluding remark for the cylindrical shell test, the contour plots of the non-
dimensional displacement magnitude as given in Eq.(4.55) and two selected stress mea-
sures are shown in Fig.(4.15), where they are superimposed on the deformed shape of
the top surface of the shell. In particular, Fig.(4.15a) shows the contour plot of the
non-dimensional displacement magnitude for the shell sections F1, Fig.(4.15b) shows the
contour plot of the non-dimensional displacement magnitude for the shell sections F3,
Fig.(4.15c) shows the contour plot of the non-dimensional Von Mises stress σm for the
shell sections F1, and Fig.(4.15d) shows the contour plot of the non-dimensional stress
component σ11 for the shell sections F3. To compute the stress measures introduced
above, the stress components are non-dimensional accordingly to the equation

σij ≡ σij ·
(

τ 2f
(Lf/2)2qf

)
, (4.56)

where σij is a generic component of σ.
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(a) (b)

Figure 4.12: Comparison between the convergence of the solution obtained by the present formulation
for different polynomials orders p for the fuselage panel.

(a) (b)

(c) (d)

Figure 4.13: Comparison between the FEM solution and the solution obtained by the present formulation
for the fuselage panel.
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(a) (b)

Figure 4.14: Comparison between the solution obtained by the present formulation for different numbers
of mesh elements for the fuselage panel.

(a) (b)

(c) (d)

Figure 4.15: Deformed shape of the fuselage panel with superimposed contours of (a) the magnitude
of the displacement and (c) the Von Mises stress for the section F1, and (b) the magnitude of the
displacement and (d) the stress component σ11 for the section F3.
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4.2.7 Generally-curved NURBS-based shell

The next geometry investigated is defined in terms of NURBS functions as described in
the Chapter 5 where ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1], the control points P ij and their weights are
given in Tab.(4.8), and the open knot vector is {0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1, 1} for
both ξ1 and ξ2.

It is worth remarking that in this case the shell is represented by non-orthogonal
curvilinear coordinates. The cut-out is obtained through the level set

ϕ(x0) = adnn − |x01 − x1n|dn − |x02 − x2n|dn , (4.57)

where an, dn, x1n and x2n are reported in Tab.(4.3). The resulting shell geometry is
displayed in Figs.(4.3d), (4.3e), and (4.3f). The shell is subjected to clamped boundary
conditions on its lateral surfaces and traction free boundary conditions along the cut-out
boundary, while a uniform pressure t = qng

3 is applied on the bottom surface.
The two shell sections labelled as N1 and N2 in Tab.(4.2) are investigated. The

accuracy of the proposed method is assessed by comparing the solution computed with
the present approach using the FSDT theory and a DG scheme with polynomial order
p = 6 and the solution computed using Abaqus’ S3R shell elements. The comparison is
shown in Fig.(4.16) in terms of the non-dimensional displacement magnitude defined as

|u| ≡ |u| ·
(

τ 3nEr

(Ln/2)4qn

)
. (4.58)

The value of |u| is computed along the curve identified by the points x = x(β, ξ2, 0) and
along the curve identified by the points x = x(ξ1, α, 0), where β = 0.43 and α = 0.55.
The former curve is indicated as s in Fig.(4.3f), while the latter is indicated as t in
Fig.(4.3f). Figures (4.16a) and (4.16c) refer to the shell section N1, while Figs.(4.16b)
and (4.16d) refer to the shell section N2. The obtained results confirm the accuracy of
the proposed method also for a shell described by NURBS functions.

The effect of the mesh size on the value of |u| evaluated along the same curves using the
FSDT theory and a DG scheme with polynomial order p = 2 is presented in Figs.(4.17a)
and (4.17c) for the shell section N1 and in Figs.(4.17b) and (4.17d) for the shell section
N2. The same convergence behavior is observed for the considered shell sections.

To conclude, Fig.(4.18) shows the deformed shape of the top surface of the considered
shells with superimposed contour plots of the non-dimensional magnitude as given in
Eq.(4.58) and two selected stress measures, which are evaluated using the following non-
dimensional stress components

σij ≡ σij ·
(

τ 2n
(Ln/2)2qn

)
. (4.59)

The reported figures show the complex stress distribution induced by the interaction
between the curvature of the shell and the presence of the cut-out.

4.2.8 Layer-Wise investigation of a cylindrical shell with cut-
out

In this section, the proposed LW formulation is assessed through a numerical application
to the cylindrical shell shown in Fig.(4.19). The reference surface is defined using a
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(a) (b)

(c) (d)

Figure 4.16: Comparison between the FEM solution and the solution obtained by the present formulation
for the NURBS-based shell.

(a) (b)

(c) (d)

Figure 4.17: Comparison between the solution obtained by the present formulation for different numbers
of mesh elements for the NURBS-based shell.
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(a) (b)

(c) (d)

Figure 4.18: Deformed shape of the NURBS-based shell with superimposed contours of (a) the magnitude
of the displacement and (c) the Von Mises stress for the section N1, and (b) the magnitude of the
displacement and (d) the stress component σ22 for the section N2.

Table 4.8: List of control points for the NURBS surface in Fig.(4.3f). For each control point it is reported
the correspondent indices i and j, the coordinates x1, x2 and x3 in mm and the weight hij .
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Table 4.9: Control points for the cylindrical shell with cut-outs in Fig.(4.19)

i, j x1 x2 x3 hij
1,1 −l/2 −R sin θ R cos θ 1

1,2 −l/2 0 R
√
2

√
2/2

1,3 −l/2 R sin θ R cos θ 1
2,1 +l/2 −R sin θ R cos θ 1

2,2 +l/2 0 R
√
2

√
2/2

2,3 +l/2 R sin θ R cos θ 1

NURBS description with control points in Tab.(4.9). The shape functions correspond to
a knot vector [0, 0, 1, 1] and a degree of 1 in the ξ1 direction, as well as a knot vector
[0, 0, 0, 1, 1, 1] and a degree of 2 in the ξ2 direction. Additionally, the following level-set
function is used to model the circular cut-out

ϕ(x0) = r2 − |x01|2 − |x02|2 . (4.60)

Regarding the geometrical properties of the shell, the cylinder has a radius of R = 1 m,
a length of l = 1 m, a cut-out radius of r = 0.25 m, and the angle of the cylindrical
sector is θ = π/4 rad. The shell section, denoted as L1, has a thickness of τ = 0.1 m and
consists of three layers, with properties detailed in Tab.(4.2). The shell’s boundary is
fully clamped, and a uniform pressure q is applied to the external surface. The analysis
is performed using a fourth-order LW theory and a grid with 10 × 10 elements with a
polynomial order of p = 5. The results are compared with a three-dimensional solution
obtained using Abaqus’ C3D20R brick elements.

Fig.(4.20a) illustrates the behavior of the first Cartesian component of the non-
dimensional displacement vector u1 along the thickness at a point with curvilinear co-
ordinates ξ1 = β = 0.5500 and ξ2 = γ = 0.6510, as indicated in blue in Fig.(4.19c).
Fig.(4.20b) displays the behavior along a line obtained by varying ξ1 for ξ2 = α = 0.6534
and ξ3 = τ/2, as plotted in red in Fig.(4.19c). In both graphs, u1 is computed as

u1 =
τ 2Er

l3q
u1 . (4.61)

It is evident that the solution is well approximated in the reference domain. Moreover, the
use of a fourth-order LW theory enables an accurate reconstruction of the displacement
along the thickness, which a common FSDT cannot capture precisely. As a concluding
remark, Fig.(4.21) depicts the deformation of the shell and the contour plot of u1.

4.2.9 Damaged plate with circular cut-out

In this section, it is tested the versatility of the proposed method in analyzing damaged
plate structures, taking as example a plate with a circular central cut-out as illustrated
in Fig.(4.22). The square plate has a length of L = 1 m, and the internal circular cut-out
has a radius of R = 0.1 m. The parameterization of the plate surface is based on an
identical mapping

x0 =

ξ1ξ2
0

 , (4.62)
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(a) (b) (c)

Figure 4.19: Geometry of the cylindrical shell with cut-out modeled through LW expansion in three
different views.

(a) (b)

Figure 4.20: Comparison between the solution obtained to the problem shown in Fig.(4.19) with the
present formulation through a LW expansion and the 3D solution to the same problem obtained through
Abaqus’ C3D20R elements.

Figure 4.21: Deformation of the shell shown in Fig.(4.19) with superimposed contour of u1.
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x2

x1

u2 = +δ

u2 = −δ

L

2a

R

Figure 4.22: Geometry of the damaged plate with cut-out.

where (ξ1, ξ2) ∈ [−L/2,+L/2] × [−L/2,+L/2]. The shell is a laminate denoted as
S1, with details provided in Tab.(4.2). The boundaries corresponding to ξ1 = ±L/2 are
left free. At the boundary corresponding to ξ2 = +L/2, a displacement u = 0,+δ, 0T is
imposed, and at the boundary corresponding to ξ2 = −L/2, a displacement u = 0,−δ, 0T
is imposed. It is worth noting that, similar to the case investigated in Sec. 4.2.4, the
problem settings result in a purely membrane response, and the theory adopted is ED000,
which disregards the along-the-thickness variation of the displacement components. The
plate is assumed to be damaged by a fracture with a length of 2a = 0.5 m, centered
within the plate and crossing the cut-out while aligned with x1.

The internal cut-out is defined using the implicit technique, employing a level-set
function defined as

ϕ(ξ1, ξ2) = R2 − ξ21 − ξ22 . (4.63)

The domain is discretized using an 8× 8 mesh, with elements of order p = 5. Leveraging
the discontinuous nature of the DG approximation function, the fracture is modeled by
deactivating the integration in the internal interfaces that correspond to the the fracture
surface. In this way, the continuity among the corresponding elements is not enforced
anymore, allowing the fracture surface to open.

In Figs.(4.23a), (4.23b), and (4.23c), the contours of the non-dimensional magni-
tude of the displacement, the non-dimensional displacement component u2, and the non-
dimensional stress component σ22 are superimposed on the deformed plate configuration.
It can be easily noted how deactivating the integration on the corresponding elements
leads to a clear opening of the fracture surface. In Fig.(4.23), the non-dimensional dis-
placement and the non-dimensional stress are computed as

u =
u

δ
and σ =

σL

Erδ
. (4.64)

In Fig.(4.23c) and in the zoom in Fig.(4.23d), a typical stress concentration at the tip of
the fracture can be observed. This test demonstrates how the DG method easily lends
itself to the study of structures with fractures. However, using such an approach, the
interfaces between elements must conform to the fracture geometry, and for complex
fracture lines, more refined meshing strategies should be considered.



82 CHAPTER 4. THE DISCONTINUOUS GALERKIN METHOD

(a) (b)

(c) (d)

Figure 4.23: Contour of the non-dimensional magnitude of the displacement |u| (a), non-dimensional
component of the displacement u2 (b), and non-dimensional component of the stress tensor σ22 (c), with
zoom on the fracture tip (d).
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Table 4.10: Properties of the considered materials.

Material ID Property Component Value

M1 Young’s moduli E1/Er variable
E2/Er, E3/Er 1

Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23/Er 0.5

G13/Er, G12/Er 0.6
M2 Young’s moduli E1/Er 40

E2/Er, E3/Er 1
Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23/Er 0.6

G13/Er, G12/Er 0.5

Table 4.11: Properties of the considered shell sections.

Shell ID Material Layup Layer(s) thickness

P1 M1 [0/90/0] τ0 = τ/4, τ90 = τ/2
P2 M1 [0/90/0/90/0/90/0/90/0] τ0 = τ/10, τ90 = τ/8
C1 M2 [0/90/0/90/0] τ/5
C2 M2 [0/90/0] τ0 = τ/5, τ90 = 3τ/5
H1 M1 [(+30/− 30)2]s τ/8
N1 M2 [0/90/90/0] τ/4

4.3 Numerical results for buckling analysis

In this section the capabilities of the proposed buckling formulation are assessed through
several numerical tests. Four composite structures are investigated, namely, a laminated
plate, a laminated cylindrical shell, a laminated plate with a circular cutout, and a
laminated NURBS-based shell, under various geometrical and material configurations.
Various ESL theories are adopted as well as the FSDT as a special case of the ED110

theory combined with the plane stress assumption.
The engineering constants of the considered materials are listed in Tab.(4.10), while

the lamination sequences of the considered composite structures are reported in Tab.(4.11).
Legendre polynomials are employed as thickness functions and as basis functions for the
DG formulations.

4.3.1 Laminated plate

The first investigated composite structure is a multilayered square plate with simply-
supported edges as illustrated in Fig.(4.24a), i.e. uξ1 = uξ3 = 0 at ξ1 = (0, a) and
uξ2 = uξ3 = 0 at ξ2 = (0, a). The mean surface of the plate is defined through the simple
map

x0 =

ξ1ξ2
0

 , (4.65)

where (ξ1, ξ2) ∈ Ω̂ = [0, a]× [0, a]. A uniform initial stress state is assumed for each layer
and is defined by setting

σ
⟨ℓ⟩
11 = −c⟨ℓ⟩11 ε

0, and σ
⟨ℓ⟩
22 = −χc⟨ℓ⟩22 ε

0 (4.66)
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(a) (b)

(c)

x1

x2

x3

Applied

displacement

Clamped

(d)

Figure 4.24: Geometry and boundary conditions of the shells investigated in this section. In particular:
laminated plate (a), laminated cylindrical shell (b), laminated plate with circular cut-out (c), laminated
NURBS-based shell (d).
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Figure 4.25: Convergence of the non-dimensional buckling load for the multilayered square plate.

and all other components to zero. In Eq.(4.66) ε0 is a reference strain, c
⟨ℓ⟩
11 and c

⟨ℓ⟩
22 are

elements of the stiffness matrix of the ℓ-th layer and χ is a parameter that is equal to
0 for uniaxial compression and 1 for biaxial compression. The non-dimensional critical
buckling load is defined as follows

N cr = λ
a2

Erτ 3

Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

σ
⟨ℓ⟩
11 dξ3, (4.67)

where λ is the smallest eigenvalue obtained by solving the problem in Eq.(4.19).

It is initially considered the stacking sequence denoted by P1 in Tab.(4.11) with thick-
ness ratio a/τ = 20, orthotropy ratio E1/Er = 25 and χ = 0, and partition the modeling
domain of the plate using a simple structured grid consisting of Ne = n2

e elements, being
ne the number of elements per side of the modeling domain. The plate is modeled using
the FSDT. The value of the non-dimensional critical buckling load N cr given in Eq.(4.67)
is then computed as a function of the degree p of the basis functions and the number of
elements Ne. Figure (4.25) reports the obtained values of N cr as a function of the system
order defined as NeNpNU where Np = (1 + p)2. As depicted in the figure, higher-order
DG formulations show a faster convergence of the critical buckling load and use a smaller
number of degrees of freedom to obtain the converged result with respect to lower-order
formulations.

The value of N cr is then computed using a 4 × 4 grid and p = 6 polynomial basis
functions, and the effect of thickness ratio a/τ , the orthotropy ratio E1/Er, the biaxial
load parameter χ and the selected shell theory is investigated. Table (4.12) reports the
values of N cr as a function of the ESL theory and the ratio E1/Er for the stacking
sequences denoted by P1 and P2 in Tab.(4.11) with thickness ratio a/τ = 10. The effect
of the biaxial load parameter χ on the critical buckling load is reported in Tab.(4.13) for
five different values of the thickness ratio a/τ and for two ESL theories upon selecting an
orthotropy ratio equal to E1/Er = 25 and the stacking sequence P1. In both Tab.(4.12)
and (4.13), the results obtained with the present formulation are compared with those
obtained in [152] via a 3D model and those obtained in [153] using different ESL theories.
In all cases, an excellent agreement between the present DG formulation and the reference
models is observed. The largest differences might be noticed in the results obtained using
the FSDT and are due the adoption of the von Kármán hypotheses in the referenced
work. It is however worth noting that using the full set of non-linear strain components
also for the FSDT provides more accurate results if compared with the 3D solution.
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Table 4.12: Non-dimensional buckling load for multilayered plate as a function of the ESL theory, the
orthotropy ratio E1/Er and the stacking sequence. The results obtained in [152] using a 3D model are
also reported for comparison purposes. Here, the thickness ratio is a/τ = 10.

E1/Er = 3 10 20 30 40

P1

3D [152] 5.3044 9.7621 15.0191 19.3040 22.8807
ED333 [153] 5.3060 9.7720 15.0551 19.3785 23.0021
ED333 5.3058 9.7713 15.0536 19.3760 22.9986
ED222 [153] 5.3556 9.9945 15.6458 20.4027 24.4816
ED222 5.3554 9.9939 15.6441 20.3999 24.4775
FSDTV K [153] 5.3991 9.9653 15.3513 19.7566 23.4529
FSDT 5.2927 9.7578 15.0573 19.4104 23.0734

P2

3D [152] 5.3352 10.0417 15.9153 20.9614 25.3436
ED333 [153] 5.3385 10.0578 15.9629 21.0501 25.4786
ED333 5.3383 10.0572 15.9613 21.0474 25.4746
ED222 [153] 5.3810 10.2301 16.4245 21.8793 26.7207
ED222 5.3809 10.2294 16.4228 21.8763 26.7164
FSDTV K [153] 5.4126 10.1895 16.1459 21.2650 25.7152
FSDT 5.3261 10.0341 15.9295 21.0141 25.4462

Table 4.13: Non-dimensional uniaxial and biaxial buckling load as a function of two shell theories and
different thickness ratios a/τ . Here, the orthotropy ratio is E1/Er = 25 and the stacking sequence is P1.

a/τ = 10 20 25 50 100

χ = 0
ED444 [153] 17.3127 21.7304 22.4358 23.4593 23.7316
ED444 17.3106 21.7300 22.4356 23.4593 23.7316
FSDTV K [153] 17.6568 21.8687 22.5307 23.4855 23.7383
FSDT 17.3336 21.7344 22.4382 23.4599 23.7317

χ = 1
ED444 [153] 8.7057 10.8849 11.2314 11.7334 11.8668
ED444 8.7052 10.8848 11.2314 11.7334 11.8668
FSDTV K [153] 8.8284 10.9344 11.2654 11.7428 11.8692
FSDT 8.7324 10.8946 11.2380 11.7352 11.8672
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4.3.2 Laminated cylindrical shell

The second set of tests are referred to the cylindrical shell shown in Fig.(4.24b). The
shell mean surface is defined as

x0 =

 ξ1
R cos(ξ2)
R sin(ξ2)

 , (4.68)

where (ξ1, ξ2) ∈ Ω̂ = [0, a] × [0, θ] and θ = a/R. The shell is simply-supported and
subjected to a uniform initial stress state defined by setting

σ
⟨ℓ⟩
11 = −σ0 , (4.69)

and zero in all other components. In this case, the following non-dimensional critical
buckling load is employed

N cr = λ
σ0a2

Erτ 2
. (4.70)

The stacking sequence denoted by C1 in Tab.(4.11) is considered for this set of tests.
It is performed a similar convergence analysis to the one presented in Sec.4.3.1 for a
cylindrical shell characterized by a/τ = 20 and a/R = 1 and modeled using the ED333

theory and a cylindrical shell characterized by a/τ = 100 and a/R = 2 and modeled
using the FSDT theory. Figure (4.26) reports the computed value of the critical buckling
load given in Eq.(4.70) as a function of the system order and, similarly to what observed
in Fig.(4.25), shows the benefit of using higher-order methods in terms of convergence
rate and overall number of degrees of freedom.

The value of N cr is then computed using a 4 × 4 grid and p = 6 polynomial basis
functions for different ESL theories and different values of the ratios a/τ and a/R. Ta-
ble (4.14) reports the computed values of N cr as a function of various ESL theories and
the ratio a/τ for the cylindrical shell with a/R = 0.05. A similar parametric analysis
is reported in Tab.(4.15), where it is considered the FSDT and the ED444 theory and
change the ratios a/τ and a/R. Similarly to the plate case, Tab.(4.14) and (4.15) also
report the reference critical buckling load N cr obtained in [153], and confirm the accu-
racy of the present formulation. As an example, the first buckling mode of the cylindrical
shell characterized by a/R = 2 and a/τ = 50 and the cylindrical shell characterized by
a/R = 2 and a/τ = 100, both modeled by the FSDT theory, are displayed in Fig.(4.27).
By looking at Fig.(4.26), it is possible to notice that using high-order polynomials allows
achieving convergence of the buckling load with a smaller number of overall degrees of
freedom with respect to using low-order polynomials. This is valid for both buckling
eigenmodes that involve a small number and a large number of half waves throughout
the structure. Eventually, to further illustrate the advantages of using high-order approx-
imations, the error in first buckling load for the shell C1 with a/R = 0.05 and a/τ = 50
is plotted as a function of the computational time for different values of order p of the
polynomial basis functions and of number Ne of mesh elements. The obtained results are
reported in Figs.(4.28a) and (4.28b) for the FSDT and the ED333 theory, respectively,
and clearly show the superior performance of higher-order basis functions with respect
to low-order basis functions in terms of computational time required to achieve a given
level of accuracy. In other words, the results obtained for the considered numerical tests
suggest that using higher-order polynomial basis functions in combination with a coarser
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(a) (b)

Figure 4.26: Convergence of the non-dimensional buckling load for the multilayered cylindrical shell C1

with (a) a/τ = 20 and a/R = 1 and (b) a/τ = 100 and a/R = 2.

Table 4.14: Non-dimensional buckling load for the multilayered cylindrical shell C1 as a function of the
shell theory and the thickness ratio a/τ . Here, a/R = 0.05.

a/τ = 10 20 30 50 100

ED444 [153] 24.20 31.94 34.06 35.42 36.85
ED444 24.19 31.94 34.06 35.42 36.85
ED333 [153] 24.20 31.94 34.06 35.42 36.85
ED333 24.19 31.94 34.06 35.42 36.85
ED222 [153] 25.27 32.37 34.27 35.50 36.87
ED222 25.26 32.37 34.27 35.50 36.87
FSDTV K [153] 24.18 31.90 34.04 35.42 36.85
FSDT 23.95 31.78 33.97 35.39 36.84

mesh is preferable over low-order polynomials combined with a finer mesh, regardless of
the chosen through-the-thickness expansion.

As the last test on cylindrical shell structures, the advantage of employing higher-
order through-the-thickness approximations is investigated. The cylindrical shell C2 with
a/R = 0.5 and variable a/τ is considered. The shell is clamped at the surface corre-
sponding to ξ1 = 0, a pressure t1 = −q0 is applied on the surface corresponding to ξ1 = a,
while the other edges are kept free. In this test, the initial stress field σ

⟨ℓ⟩
ij is computed as

a result of the corresponding linear static analysis. The tests are carried out with a 2× 2
structured grid and a polynomial order p = 6. For these analyses, the non-dimensional
critical buckling load is computed as

N cr = λ
q0a2

Erτ 2
. (4.71)

Table (4.16) reports the computed values of the buckling load for three different ratios
a/τ and different shell theories, namely the FSDT, the ED333 and the ED444 theories. The
table also reports the buckling loads computed with a three-dimensional analysis using
the C3D20R elements implemented in Abaqus® [26]. The obtained results show that
the buckling load computed with the FSDT matches the three-dimensional result when
the shell is relatively thin but differs noticeably for larger values of the thickness. In the
latter case, high-order through-the-thickness expansions recover the three-dimensional
solutions and their use is recommended.
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(a) (b)

Figure 4.27: Sample buckling mode for the cylindrical shell C1 with (a) a/τ = 50 and a/R = 2 and (b)
a/τ = 100 and a/R = 2.

(a) (b)

Figure 4.28: Error in the first buckling load of the cylindrical shell C1 with a/R = 0.05 and a/τ = 50 as
function of the computational time for different values of the polynomial order and the number of mesh
elements. (a) FSDT and (b) ED333 theory.Computational time of the analysis for different numbers of
elements and orders of the polynomials.
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Table 4.15: Non-dimensional buckling load for the multilayered cylindrical shell C1 as a function of two
shell theories and the ratios a/τ and a/R.

a/τ = 10 20 50 100

a/R = 0.1
ED444 [153] 24.20 32.05 36.29 40.42
ED444 24.20 32.05 36.29 40.42
FSDTV K [153] 24.21 32.04 36.31 40.46
FSDT [153] 23.97 31.90 36.25 40.41
FSDT 23.96 31.90 36.26 40.42

a/R = 0.2
ED444 [153] 24.23 32.49 39.74 54.67
ED444 24.24 32.49 39.74 54.67
FSDTV K [153] 24.31 32.57 39.88 54.88
FSDT [153] 24.00 32.33 39.70 54.67
FSDT 24.00 32.34 39.71 54.67

a/R = 1
ED444 [153] 25.26 45.28 140.6 253.3
ED444 25.26 45.28 140.6 253.3
FSDTV K [153] 27.63 49.61 154.1 259.4
FSDT [153] 25.03 45.14 140.6 253.2
FSDT 25.11 45.26 140.7 253.4

a/R = 2
ED444 [153] 28.23 74.97 220.1 448.2
ED444 28.23 74.97 220.2 448.2
FSDTV K [153] 38.90 103.9 243.7 469.1
FSDT [153] 27.96 74.84 221.3 448.9
FSDT 28.08 75.02 223.1 450.2

Table 4.16: Non-dimensional buckling load for the multilayered cylindrical shell C2 as a function of the
shell theories and the ratio a/τ for a/R = 0.5.

a/τ = 20 10 5

FSDT 3.971 2.350 1.752
ED333 3.957 2.310 1.634
ED444 3.956 2.308 1.631
C3D20R elements [26] 3.965 2.309 1.631
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Figure 4.29: Sample buckling mode for the laminated plate with cut-out.

4.3.3 Laminated plate with circular cut-out

In the third set of tests, the critical buckling load is computed for the laminated plate with
a circular cut-out shown in Fig.(4.24c). For these tests, the implicit-mesh DG formulation
is employed. The shell mean surface is described by the map given in Eq.(4.65) with
(ξ1, ξ2) ∈ Ω̂ = [0, a] × [0, a]. The mesh of the domain is constructed starting from a
15× 15 background grid, while the space of basis functions uses p = 3 polynomials. The
modeling domain of the plate is implicitly-defined via the following level-set function

ϕ(ξ1, ξ2) =
D2

4
−
(
ξ1 −

a

2

)2
−
(
ξ2 −

a

2

)2
, (4.72)

where D is the diameter of the circular cut-out. The stacking sequence denoted by H1 in
Tab.(4.11) is considered for these tests.

Unlike the two previous sets of tests, where the initial stress was prescribed as a
constant field, the initial stress distribution for this test case is computed from a linear
elastic static analysis. The boundary condition of the static analysis are as follows: the
boundaries at ξ2 = 0 and ξ2 = a are simply supported, i.e. uξ2 = uξ3 = 0; the boundary
at ξ1 = 0 is clamped; and the boundary at ξ1 = a is subjected to a uniform displacement
given by uξ1 = −δ0 and uξ2 = uξ3 = 0. The non-dimensional critical value of the applied
displacement for which the buckling occurs is computed as

ucr = λ
δ0a

τ 2
. (4.73)

Tab.(4.17) reports the computed values of ucr as a function of the selected ESL theory, the
hole diameter D and the thickness ratio a/τ for the stacking sequence denoted by H1 in
Tab.(4.11). The obtained results and are compared with those obtained with Abaqus®

using the S4R elements and demonstrate the accuracy of the present DG formulation
combined with the implicitly-defined mesh technique. The first buckling mode for the
plate characterized by a/τ = 50 and D/a = 0.5 and modeled with the FSDT theory is
displayed in Fig.(4.29).

4.3.4 Laminated generally-curved NURBS-based shell

In the final set of tests, the present formulation is employed to perform the buckling
analysis of a generally-curved shell with and without a cut-out described as a NURBS
surface. The shell investigated is the same as in Sec. 4.2.7 and the associated geometric
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Table 4.17: Non-dimensional displacement at buckling for the multilayered plate with the circular cut-
out H1 as a function of different shell theories and the ratios a/τ and D/a.

a/τ = 20 50 100

D/a = 0
S4R elements [26] 3.231 4.093 4.268
FSDT 3.229 4.080 4.253
ED222 3.367 4.119 4.265
ED333 3.215 4.078 4.253
ED444 3.216 4.078 4.253

D/a = 0.1
S4R elements [26] 3.216 4.035 4.207
FSDT 3.217 4.035 4.208
ED222 3.350 4.074 4.221
ED333 3.203 4.032 4.208
ED444 3.204 4.033 4.209

D/a = 0.25
S4R elements [26] 3.770 4.716 4.914
FSDT 3.759 4.709 4.908
ED222 3.922 4.758 4.924
ED333 3.745 4.709 4.910
ED444 3.747 4.710 4.911

D/a = 0.5
S4R elements [26] 5.670 7.858 8.418
FSDT 5.626 7.850 8.427
ED222 5.977 7.986 8.481
ED333 5.576 7.848 8.435
ED444 5.581 7.850 8.436

D/a = 0.75
S4R elements [26] 9.836 17.318 19.748
FSDT 9.732 17.252 19.734
ED222 10.714 17.783 19.954
ED333 9.493 17.127 19.709
ED444 9.501 17.133 19.713
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Table 4.18: Non-dimensional displacement at buckling for the NURBS-based shell N1 with and without
the cut-out.

Shell geometry 1st (DG) 1st (FEM) 2nd (DG) 2nd (FEM) 5th (DG) 5th (FEM)

With cut-out 34.31 34.38 36.02 36.12 58.47 58.51
Without cut-out 61.75 62.09 62.42 62.77 70.35 70.76

properties are not reported here. Fig.(4.24d) shows the shell geometry with its boundary
conditions.

The shell is clamped at the surface corresponding to ξ2 = 1, while a uniform displace-
ment u = (0, δ0, 0) is applied at the surface ξ2 = 0; the other boundaries are kept free.
The considered shell section is the one denoted by N1 in Tab.(4.11), while the selected
shell theory is the FSDT. The eigenvalue problem is solved by the present DG formula-
tion using 10× 10 grid and a polynomial order p = 6. The same problem is solved by the
FEM software library Abaqus® using S3 elements and S4R elements for the shell with
the cut-out and without the cut-out, respectively.

The comparison between the obtained results is given in Tab.(4.18) in terms of the
1st, 2nd and 5th values of the following non-dimensional critical loading

ucr = λ
δ0H

τ 2
. (4.74)

An excellent agreement is observed for all values of the critical loading for the shell with
and without the cut-out. Eventually, the comparison between the eigenmodes obtained
with the present formulation and with Abaqus® and corresponding to the 1st, 2nd and
5th eigenvalues is reported in Fig.(4.30) for the shell with the cut-out and in Fig.(4.31) for
the shell without the cut-out. An excellent matching is also observed for the eigenmodes
of the problem.

4.4 Numerical results for transient and free-vibration

analysis

To validate the formulation presented regarding the linear transient and free-vibration
analysis, several tests are performed involving different geometries, high-order ESL the-
ories and order of the DG elements. The investigated geometries are a square plate, a
cylindrical shell, and a NURBS-based shell. Two different materials are taken into ac-
count, namely an isotropic material and an orthotropic material, whose properties are
reported in Tab.(4.19).

4.4.1 Square plate

The first investigated geometry is a square plate, whose mid-surface is defined as

x0 =

ξ1ξ2
0

 , (4.75)

where (ξ1, ξ2) ∈ [0, L] × [0, L], being L the length of the sides of the plate. Two plate
sections are considered here, an isotropic plate P1 and a laminated P2 whose properties
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(a) Mode 1 (DG) (b) Mode 2 (DG) (c) Mode 5 (DG)

(d) Mode 1 (Abaqus) (e) Mode 2 (Abaqus) (f) Mode 5 (Abaqus)

Figure 4.30: Buckling modes for the NURBS-based shell N1 with the cut-out in terms of the magnitude
of the displacement.

(a) Mode 1 (DG) (b) Mode 2 (DG) (c) Mode 5 (DG)

(d) Mode 1 (Abaqus) (e) Mode 2 (Abaqus) (f) Mode 5 (Abaqus)

Figure 4.31: Buckling modes for the NURBS-based shell N1 without the cut-out in terms of the magnitude
of the displacement.
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Table 4.19: Properties of the considered materials.

Material ID Property Component Value

M1 Young’s moduli E/Er 1
Poisson’s ratios ν 0.25
Density ρ/ρr 1

M2 Young’s moduli E1/Er 25
E2/Er, E3/Er 1

Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23/Er 0.2

G13/Er, G12/Er 0.5
Density ρ/ρr 1

Table 4.20: Properties of the considered shell sections.

Shell ID Material Layup Layer(s) thickness

P1 M1 [0] τ
P2 M2 [0/90/0/90] τ/4
C1 M1 [0] τ
C2 M2 [0/90/0/90] τ/4
N1 M2 [0/90/90/0] τ/4

are reported in Tab.(4.20). The plate has a thickness ratio of τ
L
= 1

100
and is subjected to

simply-supported boundary conditions. The characteristic dimension of the mesh element
h is then given by Le/L, where Le is the length of the side of each square elements.

Fig.(4.32) shows the convergence of the error on the first natural frequency and on
the first eigenfunction as for a given mesh size h and order p of the DG basis functions
using the FSDT. The errors are defined as

e(ωh) ≡
ωh − ωref

ωref

, (4.76a)

e(Uh) ≡
|Uh −U ref |∞
|U ref |∞

, (4.76b)

where the subscript ref denotes exact solution quantities and the subscript h denotes the
quantities computed with the proposed DG formulation.

Four different ESL theories are then taken into account and the corresponding first
ten non-dimensional frequencies are computed for the plate P2 using an order p = 6 of
the DG basis functions and a 4× 4 structured grid. The non-dimensional frequencies are
computed as

ω ≡ L2

π2

√
ρr

Erτ 2
ω, (4.77)

The obtained values are reported in Tab.(4.21) and compared with the analytical solu-
tions, showing excellent matching.

As the last test for this geometry, the transient response of the plate P2 is investi-
gated. The plate starts from an undeformed configuration and is subjected to simply-
supported boundary conditions and to a pressure on the lower surface whose expression
is q0 sin(πξ1/L) sin(πξ2/L)H(t), where H(t) is the Heaviside step function.
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(a) (b)

(c) (d)

Figure 4.32: hp-convergence of the error on the first natural frequency for the plate P1 (a) and P2 (b),
and on the first eigenfunction for the plate P1 (c) and P2 (d)

The transient response of the plate is reported in terms on the third non-dimensional
component uξ3 of the displacement vector defined as

uξ3 ≡
τ 3Er

L4q0
uξ3 . (4.78)

Figure (4.33) shows the computed value of uξ3 at the point of coordinates (L/2, L/2, 0)
as a function of time t and order p of the DG basis functions using a 2 × 2 structured
grid; in the figure, Tn is the period of free-vibration of the half-wave bending mode while
the dashed line denotes the exact solution, which is accurately recovered for p > 2.

4.4.2 Cylindrical shell

The second investigated geometry is a cylindrical shell. The map of the mid-surface is
given as

x0 =

R cos(ξ1)
R sin(ξ1)

ξ2

 , (4.79)

where R denotes the radius of the cylinder. The first curvilinear coordinate for this
geometry takes values in [0, α], being α = 1 rad, and the second one takes values in [0, L].
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Table 4.21: First ten natural frequencies for the plate P2.

FSDT FSDT ED111 ED111 ED222 ED222 ED333 ED333

(DG) (S.A.) (DG) (S.A.) (DG) (S.A.) (DG) (S.A.)

ω1 1.4211 1.4211 1.4311 1.4311 1.4214 1.4214 1.4207 1.4207
ω2 4.0147 4.0147 4.0398 4.0398 4.0181 4.0181 4.0108 4.0108
ω3 4.0147 4.0147 4.0398 4.0398 4.0181 4.0181 4.0108 4.0108
ω4 5.6537 5.6537 5.6981 5.6981 5.6593 5.6593 5.6483 5.6483
ω5 8.6321 8.6321 8.6899 8.6899 8.6481 8.6481 8.6125 8.6125
ω6 8.6321 8.6321 8.6899 8.6899 8.6481 8.6481 8.6125 8.6125
ω7 9.6535 9.6535 9.7320 9.7320 9.6710 9.6710 9.6343 9.6343
ω8 9.6535 9.6535 9.7320 9.7320 9.6710 9.6710 9.6343 9.6343
ω9 12.6091 12.6091 12.7243 12.7243 12.6363 12.6363 12.5823 12.5823
ω10 15.0412 15.0412 15.1619 15.1619 15.0891 15.0891 14.9808 14.9808

Figure 4.33: Dynamic response of the plate P2.
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(a) (b)

(c) (d)

Figure 4.34: hp-convergence of the error on the first natural frequency for the shell C1 (a) and C2 (b),
and on the first eigenfunction for the shell C1 (c) and C2 (d).

The considered shell sections are those denoted by C1 and C2 in Tab.(4.20) and consist
of an isotropic single-layer and a laminated cross-ply section, respectively. The thickness
ratio is τ

L
= 1

100
and the shell is subjected to simply supported boundary conditions.

Fig.(4.34) shows the convergence of the error on the first natural frequency and on the
first eigenfunction computed using Eq.(4.76) as functions of the order p of the DG basis
functions and the mesh size h. The shell theory used in these tests is the FSDT.

In the second set of tests, the values of the first ten non-dimensional natural fre-
quencies for the shell C2 are computed using an order p = 6 of the DG basis functions
and a 4 × 4 structured grid. The values are compared with those obtained analytically
in Tab.(4.22) showing excellent matching also in this case. The non-dimensional val-
ues of the frequencies are computed as in Eq.(4.77). For the last test, starting from an
undeformed configuration, the shell C2 is subjected to an internal pressure varying as
q0 sin(πξ1/α) sin(πξ2/L)H(t). The value of the non-dimensional third covariant compo-
nent of the displacement vector uξ3 is computed as a function of time using different order
of the DG basis functions and a 2× 2 grid. Fig.(4.35) shows the obtained results, which
match very well with the analytical solution for p > 2.
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Table 4.22: First ten natural frequencies for the shell C2.

FSDT FSDT ED111 ED111 ED222 ED222 ED333 ED333

(DG) (S.A.) (DG) (S.A.) (DG) (S.A.) (DG) (S.A.)

ω1 5.1031 5.1031 5.1210 5.1210 5.0987 5.0987 5.0933 5.0933
ω2 6.7424 6.7424 6.7442 6.7442 6.7418 6.7418 6.7417 6.7417
ω3 8.7785 8.7785 8.8269 8.8269 8.7801 8.7801 8.7456 8.7456
ω4 8.7999 8.7999 8.8317 8.8317 8.7999 8.7999 8.7931 8.7931
ω5 10.5801 10.5801 10.6484 10.6484 10.5852 10.5852 10.5522 10.5522
ω6 13.3841 13.3841 13.3911 13.3911 13.3852 13.3852 13.3832 13.3832
ω7 13.8991 13.8991 13.9523 13.9523 13.9102 13.9102 13.8851 13.8851
ω8 14.2770 14.2770 14.3763 14.3763 14.2946 14.2946 14.2474 14.2474
ω9 15.0348 15.0348 15.1503 15.1503 15.0621 15.0621 14.9537 14.9537
ω10 16.0497 16.0497 16.1837 16.1837 16.0801 16.0801 15.9738 15.9738

Figure 4.35: Dynamic response of the shell C2.
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4.4.3 NURBS-based shell

The last investigated geometry is a generally-curved NURBS-based shell with a cut-out.
The detailed description of the geometry can be found in Sec. 4.2.7, where the information
for the definition of the NURBS-surface, such as the coordinates of the control points or
the elements of the knot vector, is provided.

The shell is subjected to clamped boundary conditions on the external boundary
while the boundary of the cut-out is traction-free. In the first set of tests, the first six
free-vibration modes in terms of the magnitude of the displacement are evaluated using a
10×10 background grid and a p = 6 for the order of the DG basis functions. The obtained
results are compared with those computed using Abaqus’ S3 elements; the comparison is
reported in Fig.(4.36) showing the accuracy of the present approach.

The last set of tests concerns the transient response of the NURBS-based shell when
subjected to a uniform pressure q0H(t) applied onto the internal surface. In this case, a
damped analysis is considered and the damping ratios for the first and sixth free-vibration
mode are selected as ζ1 = ζ6 = 0.1. Figure (4.37) shows the non-dimensional magnitude
of the displacement for the point with curvilinear coordinates ξ1 = α = 0.3922 and
ξ2 = β = 0.5808 as a function of time 0 < t < 5Tn, where Tn is the period of the first
free-vibration frequency.

4.5 Numerical results for non-linear static analysis

To validate the proposed method for non-linear static analysis and assess its capabilities,
numerical tests are performed considering different plates and shells benchmark problems.
The material properties employed in the analyses are given in Table (4.23). The presented
results refer to three different theories, namely the EDNi,Ni,Ni

with Ni = 1, 2, 3. For the
EDNiNiNi

theory, each covariant component of the displacement vector is expanded using
Taylor’s polynomials up to the Ni–th order; for the ED111 the material stiffness matrix
is also modified according to the plane stress state hypothesis and to keep a shear stress
factor equal to 5/6.

Four tests are presented: the nonlinear bending of an isotropic plate, the post-buckling
analysis of an isotropic slender plate, the snap-back and snap-through of isotropic and
laminated cylindrical shells and the nonlinear response of a complex geometry composite
shell. The first three of these tests are popular benchmarks and they allow the present
results to be compared with solutions available in the literature. The last case is presented
to illustrate the method capabilities in dealing with complex, general shell geometries and
its solution is compared with finite elements results.

4.5.1 Isotropic plate nonlinear bending

The first validation test regards the nonlinear bending of a constant thickness, isotropic,
square plate referred to the x1x2x3 orthogonal coordinate system with origin in the mid-
plane at a plate corner, the x1 and x2 axes directed along the edges and the x3 axis directed
along the plate thickness. The plate is subjected to a uniform surface load q applied on
its upper surface and constantly oriented along the x3 axis during the deformation.

The map of the mid surface of the plate is obtained as x01 = ξ1, x02 = ξ2 and
x03 = 0, where (ξ1, ξ2) ∈ [0, L] × [0, L], being L = 1200 mm the plate edge length.
The plate consists of a single layer with material properties as M1 in Table (4.23) and
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(a) Mode 1 (DG) (b) Mode 2 (DG) (c) Mode 3 (DG)

(d) Mode 1 (Abaqus) (e) Mode 2 (Abaqus) (f) Mode 3 (Abaqus)

(g) Mode 4 (DG) (h) Mode 5 (DG) (i) Mode 6 (DG)

(j) Mode 4 (Abaqus) (k) Mode 5 (Abaqus) (l) Mode 6 (Abaqus)

Figure 4.36: First six free-vibration modes for the shell N1 computed using DG (a-c and g-i) and Abaqus
S3 elements (d-f and j-l).
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Figure 4.37: Dynamic response of the shell N1.

Table 4.23: Material properties.

Material ID Property Component Value

M1 Young’s modulus E 75000 MPa
Poisson’s ratios ν 0.3

M2 Young’s modulus E 75000 MPa
Poisson’s ratios ν 0.316

M3 Young’s modulus E 3102.75 MPa
Poisson’s ratios ν 0.3

M4 Young’s moduli E1 3300 MPa
E2, E3 1100 MPa

Poisson’s ratios ν23, ν13, ν12 0.25
Shear moduli G23 660 MPa

G13, G12 660 MPa
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thickness τ . Two different values for the thickness have been investigated corresponding
to a thin plate having thickness ratio τ/L = 0.02 and a moderately thick plate with
τ/L = 0.1. Two sets of boundary conditions are considered: i) all edges clamped, labeled
as CCCC, corresponding to uξ1 = uξ2 = uξ3 = 0 at the edge points of coordinates
(0, ξ2, ξ3), (ξ1, L, ξ3), (L, ξ2, ξ3) and (ξ1, 0, ξ3); ii) all edges simply-supported, labeled as
SSSS, where uξ1 = uξ2 = uξ3 = 0 at the edge points of coordinates (0, ξ2, 0), (ξ1, L, 0),
(L, ξ2, 0) and (ξ1, 0, 0).

To assess the efficiency of the method, the hp-convergence for different theories was
investigated. The reference solution U ref employed for the convergence studies has been
obtained by the present method with a 4 × 4 grid of elements with polynomial trial
function of order p = 7, which can be considered as converged. For the simply-supported
panel with τ/L = 0.1 and the ED111 and ED333 theories, Figs.(4.38a) and (4.38b) show
the solution error versus the element size measure h = 1/

√
Ne for different approximation

polynomial order p; the error is computed at the step corresponding to a non-dimensional
surface load q = qL4/(Eτ 4) = 400 as

e(Uh) =
|Uh −U ref |∞
|Uh|∞

(4.80)

where | · |∞ is the∞-norm defined over Ω̂. It is worth to note that the number of degrees
of freedom associated with the theory EDk1k2k3 is equal to (k1+k2+k3+3)(p+1)2Ne. The
data of Figs.(4.38a) and (4.38b) evidences that higher polynomial orders are characterized
by higher convergence rates and lower errors.

These findings are confirmed by similar studies carried out for different cases whose
results are not reported here for the sake of brevity. To complement the illustration of the
method convergence characteristics, Figs.(4.38c) and (4.38d) show the plate equilibrium
paths in terms of the non-dimensional surface load q = p0L

4/Eτ 4 and the transverse
displacement at the central point of the plate u3 = u3/τ .

They refer to the case of τ/L = 0.1 and simply-supported edges, analysed by the
ED111 theory. In particular, Fig.(4.38c) shows solutions for different polynomials orders
and fixed spatial discretisation, whereas Fig.(4.38d) reports the solutions for fixed approx-
imating polynomials order and different number of elements Ne arranged in an m × m
regular grid.

For the considered boundary conditions and thickness ratios, Fig.(4.39) shows the
plate equilibrium paths in terms of the non-dimensional surface load q = p0L

4/Eτ 4 and
transverse displacement at the central point of the plate u3 = u3/τ . The presented results
are computed through a 2× 2 mesh grid of quadrilateral elements with polynomial trial
functions of order p = 5 and they refer to the solution of the ED111 and ED333 models,
which consists of 864 and 1728 degrees of freedom, respectively. The results are compared
with those reported in Ref.[154], in which the FSDT with von Kármán geometrical non-
linearities is employed, and in Ref.[155] whose solution is based on a second order theory.
It is noticed that in general there is good agreement between the present and reference
results. In particular, for thick plates there is an excellent agreement for the high-order
theory whereas contained differences are observed for the FSDT case (Fig.(4.39b)). As
regard the case of thin plates (Fig.(4.39a)) excellent agreement is remarked for the simply-
supported boundary conditions whereas for the clamped plate the DG solution appears
less stiff.
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Figure 4.38: Convergence study for the simply-supported, isotropic, square plate. Convergence is assessed
with respect a reference solution (labeled as Ref. in the figures). (a) and (b) show the curves of the
solution error e(Uh) versus the element size h for the ED111 and the ED333 theories, respectively. Curves
correspond to different approximation polynomial order p. (c) and (d) show the convergence of the ED111

equilibrium path of the non-dimensional transverse displacement u3 = u3/τ at the plate central point for
different polynomial orders p and constant number of elements Ne and for different number of elements
Ne and fixed approximation polynomial order p, respectively.
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Figure 4.39: Nonlinear bending equilibrium paths of the isotropic square plate with different thickness
ratio τ/L and different boundary conditions, namely simply-supported (SSSS) and clamped (CCCC)
edges. The curves show the non-dimensional transverse displacement at the central point of the plate
versus the non-dimensional surface load. Present results are computed through a 2 × 2 mesh grid of
quadrilateral elements with order p = 5, and compared with literature solutions. (a) Thin plate case
with τ/L = 0.02. (b) Thick plate case with τ/L = 0.1.

4.5.2 Post-buckling of isotropic plate

The second test regards the post-buckling behaviour of an isotropic, slender, rectangular
plate with edge lengths a = 300 mm and b = 60 mm and thickness ratio τ/b = 0.1, see
Fig.(4.40a).

The material properties employed correspond to those of material M2 in Table (4.23).
The reference system x1x2x3 and the map of the plate are the same as in the previous case
with ξ1 ∈ [0, a] and ξ2 ∈ [0, b]. The plate is clamped on one edge, meaning uξ1 = uξ2 =
uξ3 = 0 at ξ1 = 0, while the other edges are free. A compression point load F is applied at
the coordinates (ξ1 = a, ξ2 = b/2, ξ3 = 0), being constantly directed along the direction of
x1. Additionally, in order to enforce post-buckling behaviour, a perturbation consisting
of a small concentrated load P directed along x3 is applied at the point of coordinates
ξ1 = a, ξ2 = b/2, ξ3 = τ/2. The results presented in the following have been obtained
through the ED222 theory solved by a 2× 2 mesh grid of elements with polynomial trial
function order p = 5, which provides a resolving system with 1296 degrees of freedom.
These results are reported and discussed as representative; indeed, similar accuracy can
be achieved with different combination of polynomials order and number of elements as
illustrated in the previous section. Fig.(4.40b) shows the equilibrium path of the plate
in terms of the non-dimensional load amplitude F = F (48a2)/(π2Ebτ 3) versus the non-
dimensional transverse displacement u3 = u3/a evaluated at the load application point.
The comparison of the present results with those of Ref.[155] evidences good agreement
with small differences noticeable for higher load levels, being the DG solution less stiff.
However, for both curves buckling starts in correspondence of very close load levels and
the agreement is very good for the first part of the post-buckling behaviour. To show the
evolution of the cantilever, slender plate kinematics with the applied load, some post-
buckling configurations are shown in Fig.(4.40c) for different equilibrium states, which
correspond to the load levels F = 0.0, 1.1, 1.72, 2.27, 2.75; the color map represents the
normalized displacement magnitude |u| /a.

Eventually, computation of stresses has been carried out and to complete the illustra-
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Figure 4.40: Post-buckling response of the cantilevered, isotropic, slender, rectangular plate with edge
lengths a = 300 mm and b = 60 mm and thickness ratio τ/b = 0.1 under the compression load F and
the perturbation load P . (a) Plate geometry, loads and boundary conditions. (b) Equilibrium path in
terms of non-dimensional transverse displacement u3 = u3/a at the compression load application point
versus the non-dimensional load amplitude F = F (48a2)/(π2Ebτ3). Results refer to the ED222 theory
solved by a 2 × 2 mesh grid of elements with polynomial trial function order p = 5. (c) Post-buckling
configurations of the plate for different equilibrium states corresponding to the following compression
loads F = 0.0, 1.1, 1.72, 2.27, 2.75. The color map represents the normalized displacement magnitude
|u| /a.

tion of the method capabilities, and representative results are presented. They refer to the
cantilevered slender plate modeled by the ED333 theory solved with the same discretiza-
tion described above, resulting in 1728 degrees of freedom. Figs.(4.41a) and (4.41b) show
the normal stress σ11 and the transverse shear stress σ13 through-the-thickness distribu-
tions at different load amplitudes F . The through-the-thickness stress distributions are
plotted at the plate reference domain points of coordinates ξ2 = b/2 and ξ1 = a/3, a/2.
It is worth to note the characteristic of a third-order model to inherently describe the
quadratic distributions of the transverse shear stress.

4.5.3 Snap-back and snap-through of cylindrical shells

The third test focuses on the study of a cylindrical shell under loads and boundary con-
ditions that result in a snap-back or snap-through behaviour of the structure. Fig.(4.42a)
shows the geometry, boundary conditions and loads of the cylindrical shell along with
the orthogonal reference system x1x2x3. Only a quarter of the structure is modeled for
symmetry conditions.

The mean surface of the shell is mapped as x01 = R sin(ξ1), x02 = ξ2 and x03 =
R cos(ξ1) where ξ1 ∈ [−θ, 0], ξ2 ∈ [0, L], L = 254 mm, R = 2540 mm and θ = 0.1 rad.
Three different shell sections have been considered: i) a single-layer section of material
M3 (see Table (4.23)) and thickness τ = 6.35mm, which is labeled as C1 case (thin shell);
ii) a single-layer section of material M3 (see Table (4.23)) and thickness τ = 12.7mm,
which is labeled as C2 case (moderately thick shell); iii) a three-layer section with [0/90/0]
layup of 4.233 mm thick plies having properties as M4 material in Table (4.23)), which
is labeled as C3 case. The boundary conditions of the first edge correspond to simply-
supported, that is uξ1 = uξ2 = uξ3 = 0 at the points of coordinates (−θ, ξ2, 0); the edge
corresponding to ξ2 = 0 is free, while the boundary conditions on the other two edges
are used to enforce symmetry restraints, meaning uξ1 = 0 at the points of coordinates
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Figure 4.41: Through-the-thickness stress distributions at the reference domain points of coordinates ξ1 =
a/3, a/2 and ξ2 = b/2 for the cantilevered slender plate with edge lengths a = 300 mm and b = 60 mm and
thickness ratio τ/b = 0.01. Stress distributions computed by the ED333 theory are plotted for different
equilibrium states corresponding to the following compression loads F = 0.0, 1.1, 1.72, 2.27, 2.75. (a)
non-dimensional normal stress σ11a/Eτ ; (b) non-dimensional transverse shear stress σ13a

2/Ebτ .

(0, ξ2, 0) and uξ2 = 0 at the points of coordinates (ξ1, L, 0). A transverse point load
with amplitude F is applied at the coordinates ξ1 = 0, ξ2 = L, ξ3 = τ/2.

Fig. (4.42b) shows the response of the analysed shells computed using the ED222 the-
ory and a 2×2 mesh grid of elements with polynomial trial function order p = 5 resulting
in 1296 degrees of freedom. Once again, it is remarked that the results obtained by this
discretisation are representative and the same accuracy has been achieved with different
combinations of mesh and elements approximation order. The curves of Fig.(4.42b) plots
the value of the load amplitude F as a function of the transverse displacement u3 at the
load application point. Figs. from (4.42c) to (4.42l) show the shell configurations for
selected equilibrium states. In particular, for the C1 section shell, Figs. from (4.42c)
to (4.42g) show the shell deformed shape at the load levels F = 0.283, −0.315, 0.185,
1.576, 3.0 [kN], whereas Figs. from (4.42h) to (4.42l) illustrate the behaviour of the C3

section shell showing its configurations at F = 1.043, 1.661, 0.861, 1.803, 3.045, [kN]. The
shell configurations of Figs. from (4.42c) to (4.42l) are supplemented by the displacement
magnitude |u| maps. Clearly, snap-back or snap-through behaviour occurs depending on
the shell thickness ratio and the comparison of the present results with those available
from Refs.[156], [157] and [158] shows good agreement for both isotropic and multilayered
cases.

Fig.(4.43) illustrate the through-the-thickness distribution of representative stress
components computed for the C3 section shell at the point ξ1 = θ/4 and ξ2 = L/4.
These are computed for the equilibrium states corresponding to F = 1.043, 1.661, 0.861,
1.803, 3.045, [kN] by using both the ED222 and ED333 models with the same domain
discretization described above. As expected, the results shows that both the employed
models are able to capture the in-plane stress distribution with the same accuracy level
as illustrated by Fig.(4.43a) where the σ11 curves are almost coincident for the two shell
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Figure 4.42: Cylindrical shells with snap-back and snap-through behaviour. (a) Geometry, boundary
conditions and applied load: L = 254 mm, R = 2540 mm and θ = 0.1 rad. (b) Nonlinear equilibrium
path in terms of load amplitude F versus the transverse displacement u3 at the load application point
for the three examined shell sections: i) a 6.35mm thin homogeneous section of material M3, labeled as
C1, ii) a 12.7mm moderately thick homogeneous section of material M3, labeled as C2, and iii) a 12.7mm
thick layered section with [0/90/0] layup of M4 material, equal thickness plies, labeled as C3. M3 and
M4 material properties are given in Table (4.23). Results are obtained using the ED222 theory solved
by a 2× 2 mesh grid of elements with polynomial trial function order p = 5. (c-g) show the C1 section
shell configurations for different equilibrium states corresponding to F = 0.283,−0.315, 0.185, 1.576, 3.0
[kN]. (h-l) show the C3 section shell configurations for different equilibrium states corresponding to
F = 1.043, 1.661, 0.861 1.803, 3.045 [kN]. The color maps represent the displacement magnitude |u|.

theories employed. As regard the transverse shear stresses, Fig.(4.43b) shows the σ13

stress results. These indicate that the ED222 model is not able to provide reliable shear
stress distributions as the traction-free boundary condition is not ensured; on the other
hand the ED333 theory generally give physically reliable and sound distributions. These
results illustrate the capabilities of the proposed method to deal with complex nonlinear
behaviour of shells.

4.5.4 NURBS-based laminated shell

In the last test, a generally-curved shell is considered, whose geometry is shown in
Fig.(4.44) being L = 600 mm, H = 500 mm and D = 50 mm.

The shell geometry is described via NURBS functions and for its data, including the
coordinates of the control points, the degree of the basis functions and the knot vectors,
the reader is referred to Sec. 4.2.7. The shell section is a four layers laminate with
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Figure 4.43: Through-the-thickness stress distributions for the pinched cylindrical shell with radius
R = 2540 mm, central half-angle θ = 0.1 rad, half-length L = 254 mm and [0/90/0] layup with
4.233 mm thick plies of M4 material (see Table (4.23)). Stress distributions at the reference domain
points of coordinates ξ1 = θ/4 and ξ2 = L/4 are plotted for different equilibrium states corresponding
to the load amplitudes F = 1.043, 1.661, 0.861, 1.803, 3.045 [kN]. (a) non-dimensional normal stress
σ11L/E2τ ; (b) non-dimensional transverse shear stress σ13L

2/E2τ
2, being E2 the M4 material transverse

Young’s module and τ the shell thickness.

1 mm thick plies of material M4 (see Table (4.23)) and [0, 30, 60, 90] layup. The shell is
clamped on the edge corresponding to ξ2 = 1 and it is subjected on the opposite edge to
an uniform, compression displacement u2 directed along x2. The shell is modeled with
the ED222 theory and the simulation has been carried out using a 10×10 grid of elements
with polynomial order p = 4 resulting in 22500 degrees of freedom.

Fig. (4.45a) shows the shell load-end displacement curve in terms of the average
x2-directed edge force resultant per unit length, namely Nav

22 , versus the applied edge
displacement u2. The curve is compared with that obtained by finite elements using the
Abaqus® software [26] evidencing very good agreement.

Additionally, Figs. from (4.45b) to (4.45g) show the contour maps of the displacement
vector magnitude |u| of the reference surface points at the loading steps corresponding to
1%, 20%, 40%, 60%, 80% and 100% of the maximum applied compression displacement
u2max . It is evidenced the complex behaviour of the investigated shell which experiences
coupling effects related to its geometry and layup. It is worth to note that a thin shell
has been used in this test. This allows to consider accurate the finite element solution
obtained with the first order shear deformation theory whereas a second order theory has
been employed in the DG modelization, so as to validate the proposed refined approach
in the framework of such a complex shell geometry.
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Figure 4.44: Geometry and loading conditions of NURBS-based shell undergoing compression loading.

Figure 4.45: NURBS-based shell undergoing compression loading. (a) Equilibrium path in terms of the
average x2-directed edge force resultant per unit length Nav

22 versus the applied edge displacement u2.
Color maps of the non-dimensional displacement vector magnitude |u| /u2max at the reference surface
points are also shown at the following percentage levels of the loading: (b) 1%, (c) 20%, (d) 40%, (e)
60%, (f) 80%, (g) 100%; they refer to the colorbar where u2max

is the maximum loading amplitude.



Chapter 5

The Isogeometric Analysis method

5.1 The basis functions for Isogeometric Analysis

In this section, an overview of B-splines and NURBS functions is given. In the context
of IGA methods, they are utilized to construct both surfaces of shells and to discretize
their displacement field. In this thesis, shell surfaces are eventually represented using a
trimming approach. This approach begins with a simple background surface that follows a
tensor product structure. The surface is then trimmed by defining its boundary through
some additional curves. The details of this trimming operations are provided in the
following sections.

5.1.1 The B-splines functions

Univariate B-splines are created based on a polynomial order p and a knot vector, which
is a sequence of non-decreasing knot values Ξ = {ξ1, ξ2, ..., ξn+p+1}. These parameters are
used to construct n basis functions Np

i (ξ), where ξ ∈ [ξ1, ξ2] is the curvilinear coordinate
and i = 1, 2, ..., n. The Cox-de Boor recursion formula is employed to generate these basis
functions [127]. A B-spline curve embedded in R3 can be constructed by multiplying the
basis functions by some control points P i ∈ R3 and summing up as

F(ξ) =
n∑

i=1

Np
i (ξ)P i . (5.1)

It is important to highlight the following aspects of B-splines:

i) From the knot vector Ξ, the vector Θ = [η1, η2, . . . , ηr] is constructed taking only the
consecutive, non-repeating values ηi in such a way that in the intervals [ηi, ηi+1] the
partition of unity property of the spline basis functions is satisfied. It is worth noting
that the number of elements of Θ, here denoted by r, depends on the specificity of
Ξ. The B-spline function is therefore defined piece-wise in the intervals [ηi, ηi+1].

ii) Within each interval, the B-spline function is infinitely differentiable (C∞). However,
at the knots, the continuity is at most Cp−1 and is reduced of one unity for every
repetition of the knot value.

iii) The piece-wise nature of the B-spline naturally leads to a mesh-like structure, where
each element corresponds to a different interval.

111
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From univariate B-splines basis functions, their bivariate counterparts are constructed
using a tensor product approach as

Bij(ξ1, ξ2) = Np
i (ξ1)N

p
j (ξ2) , (5.2)

where, for the sake of simplicity, it is assumed the same polynomial degree in both curvi-
linear direction ξ1 and ξ2. Additionally, N

p
i (ξ1) and Np

j (ξ2) are univariate basis functions

constructed from the knot vectors Ξ1 = {ξ11 , ξ21 , ..., ξn+p+1
1 } and Ξ2 = {ξ12 , ξ22 , ..., ξm+p+1

2 },
respectively. Therefore, a B-spline surface is constructed as

F(ξ1, ξ2) =
n∑

i=1

m∑
j=1

Bij(ξ1, ξ2)P ij , (5.3)

where P ij ∈ R3 is a generic control point. The knot vectors in a B-spline identify the
parametric domain. When open knot vectors are adopted, the parametric domain before
trimming is defined as Π̂0 = [ξ11 , ξ

n+p+1
1 ] × [ξ12 , ξ

m+p+1
2 ], meaning that (ξ1, ξ2) ∈ Π̂0. The

bivariate splines inherit the piece-wise definition property from univariate ones through
the tensor product structure. Therefore, a rectangular Bezier grid is identified in Π̂0 and
the domain of a generic cell is denoted as Π̂e = [ηi1, η

i+1
1 ] × [ηj2, η

j+1
2 ], where [ηiα, η

i+1
α ]

denotes the i-th interval of definition of the univariate basis functions corresponding to
ξα.

For more details on 1D and 2D B-splines, together with the extension to NURBS
curves and surfaces, that is not reported here for the sake of conciseness, the interest
reader is referred to [127, 128].

5.1.2 Space of trimmed splines

When adopting an immersed boundary representation to describe a complex geometry,
the surface of the shell, as well as its corresponding parametric domain, are divided into
an active and a non-active region. In particular, it is reminded that the active part of the
domain is denoted by Ω̂ ⊂ Π̂0. If, after the trimming of the domain, some of the B-splines
have a support that does not intersect the parametric domain anymore, they are excluded
from the basis of the function space used for approximating the variable problems. The
space of bivariate B-splines used for the displacement approximation becomes

Sh = span{Bij ◦F−1 : i ∈ {1, ..., n}, j ∈ {1, ...,m}, supp{Bij} ∩ Ω̂ ̸= 0} (5.4)

It is worth mentioning that as long as the trimming process does not result in empty
elements, Sh is equal to span{Bij}. Additionally, depending on the degree selected for
the elements of the analysis, the support of the bivariate B-spline may extend to multiple
elements. Therefore, even if some of the elements are empty, Sh might still coincide with
span{Bij}. The space of vector field used to approximate displacement vector is then
defined as

Vh = Sh3 . (5.5)

5.2 The interior penalty coupling for Kirchhoff-Love

shells

In this section, the Kirchhoff-Love shell problem, presented in a continuous framework
in Chapter 3, is discretized by selecting appropriate spaces Vu and Vv for a single patch
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problem and Vu and Vv for a multi-patch problem. In an IGA approach, these spaces
are constructed starting from the trimmed B-spline space introduced in Sec. 5.1.2. In
this thesis, Dirichlet boundary conditions for KL shells are applied in either a weak or a
strong sense, depending on the specific problem being investigated.

For a single patch shell, in order to impose Dirichlet boundary conditions in a strong
sense, it is necessary to ensure that the test and trial functions uh and vh of Vu

h and Vv
h ,

respectively, satisfy uh = ũ and vh = 0 on ∂Ωh
D1

and θn(uh) = θ̃n and θ(vh) = 0 on
∂Ωh

D2
. Displacement boundary conditions can be imposed strongly only on conforming

edges. However, if Dirichlet boundary conditions are enforced in a weak sense, these
requirements no longer need to be satisfied. The same principles apply when considering
shell structures composed of multiple patches. More specifically, regarding the coupling
conditions, this work adopts exclusively a weak imposition, as explained in the following
sections. Additionally, similarly to other fourth-order equations, in the Kirchhoff-Love
one there is a continuity requirement on the trial functions of at least C1 [115, 159].

Different methods are available in literature to apply boundary conditions and cou-
pling conditions in a weak sense. In this work, the symmetric stabilized Nitsche method
[115], also known as the interior penalty method [28] in the context of coupling condi-
tions, is employed. This method requires the computation of the fluxes of the formulation
obtained as explained in Sec. 5.2.1.

5.2.1 The fluxes for the Kirchhoff-Love problem

Due to the complexity of the Kirchhoff-Love shell equations, the computation of the fluxes
is not a trivial task. In fact, the initially proposed expression for the fluxes by Koiter
[114] was found to be incorrect, as discussed in [115]. For a complete derivation of their
expression, interested readers are referred to this source. However, the correct definition
is also provided here for the sake of completeness.

Recalling the outer-facing unit normal n introduced in Chapter 3, in this direction,
the fluxes associated with the problem are of two types: those corresponding to the ersatz
force and those corresponding to the bending moment. Respectively, their definitions are

T (u) = Tαaα + T 3a3 , (5.6a)

Mnn(u) = Mαβnαnβ , (5.6b)

where nα is the component of n referred to aα, and the components of the vector T are
defined as

Tα = Nαβnβ − bαγM
γβnβ −Mntb

α
γ t

γ , (5.7a)

T 3 = Mαβ
|β nα + (Mαβnαtβ),t , (5.7b)

where with the notation (•),t it is denoted the arc-lenght derivative along the curve that
identified t.

Details on the computation of the fluxes

The covariant and contravariant component of the vector t are obtained as tα = t ·aα and
tα = t · aα, respectively. The same applies to the vector n. The bending and twisting
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moments are derived from Mnn = Mαβnαnβ and Mnt = Mαβnαtβ, respectively. The
covariant derivative of the moment tensor is obtained as

Mαβ
|γ = Mαβ

,γ + Γα
λγM

λβ + Γβ
λγM

αλ , (5.8)

where Γγ
αβ represents the Christoffel symbols of the second kind which are defined as

Γγ
αβ = aγ · aα,β . (5.9)

Recalling the generalized constitutive relationship for a KL shell, the coordinate derivative
of the moment tensor is computed as

Mαβ
,ρ = Cαβγδ

,ρ εγδ + Cαβγδ εαβ,ρ + Dαβγδ
,ρ κγδ + Dαβγδ καβ,ρ . (5.10)

The derivatives appearing in Eq.(5.10) are not reported here for the sake of conciseness.
However, their computation through the chain rule is straightforward, albeit somewhat
laborious. To what regards the second term in Eq.(5.7b), the following relationship holds:

(Mαβnαtβ),t = (Mαβ),tnαtβ +Mαβ(nα),ttβ +Mαβnα(tβ),t , (5.11)

Let us suppose that this curve is known in the Euclidean space through a map y = y(τ),
being τ an auxiliary curvilinear direction. Then, the tangent unit vector is computed as
t =

y,τ

|y,τ |
, while its derivative with respect to τ is

t,τ =
(I − tt⊺)

|y,τ |
y,ττ , (5.12)

where I is the identity 3× 3 tensor. The arc-length derivative of t is further obtained as

(t),t =
t,τ
|y,τ |

. (5.13)

To what regards the normal vector n = t× a3, its arc-length derivative is computed as

(n),t = (t),t × a3 + t× (a3),t . (5.14)

However, it is worth noting that when dealing with shells coupling, the relative orientation
of t, n and a3 may be such that n = a3 × t, which implies a straightfoward adaptation
of Eq.(5.14). The arc-length derivative of a3 is computed as (a3),t = a3,γt

γ, where,
introducing the vector p = a1 × a2, a3,γ is obtained as

a3,γ =
(I − a3a

⊺
3)

λ
p,γ , (5.15)

and p,γ is computed through the chain rule. The arc-length derivatives of the covariant
components of t and n are obtained as (tα),t = (t),t · aα and (nα),t = (n),t · aα. Finally,

the arc-length derivative of Mαβ is obtained as (Mαβ),t = Mαβ
|γ tγ.
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5.2.2 The Nitsche’s method for Dirichlet boundary conditions

When a strong imposition of Dirichlet boundary conditions is not possible, the symmetric
stabilized Nitsche’s method [115] is employed. For a single-patch shell, the discretized
Kirchhoff-Love variational statement is formulated as follows: find uh ∈ Vu

h such that

ah(uh,vh) + an(uh,vh) + as(uh,vh) = fh(vh) + fn(vh) + fs(vh) ∀v ∈ Vv
h . (5.16)

Where Vu
h , and Vv

h are constructed from the space of B-splines defined over Ω̂ and their
exact definition depends on whether the boundary conditions are imposed strongly in a
portion of the boundary. In the equations presented in this section, it is assumed that
essential boundary conditions are applied in a weak sense in the entire ∂Ωh

D1
and ∂Ωh

D2
,

whereas in the results presented in Sec. 5.3 it is preferred, when possible, to enforce them
in a strong sense. Both the bilinear form on the left-hand side and the linear form on the
right-hand side of Eq.(5.16) are constructed by summing three contributions. As for the
terms with a subscript h, they are defined as follows:

ah(uh,vh) =

∫
Ωh

ε(vh) : N (uh)dΩ +

∫
Ωh

κ(vh) : M (uh)dΩ , (5.17a)

fh(vh) =

∫
Ωh

v · F̃dΩ +

∫
∂Ωh

N1

vh · T̃d∂Ω +

∫
∂Ωh

N2

θn(vh)M̃nnd∂Ω +
∑
C∈χh

N

(
v3hR̃

)∣∣∣
C
,

(5.17b)

and constitute the discretized version of the KL shell equations. As such, Ωh, ∂Ωh
N1
,

∂Ωh
N2
, and χh

N are the approximated versions after discretization of ∂ΩN1 , ∂ΩN2 , and
χN , respectively. The terms with a subscript n are the symmetric Nitsche terms, which
include the fluxes described in Sec. 5.2.1. These terms are defined as

an(vh,uh) = −
∫
∂Ωh

D1

(T (vh) · uh + vh · T (uh)) d∂Ω

−
∫
∂Ωh

D2

(Mnn(vh)θn(uh) + θn(vh)Mnn(uh)) d∂Ω−
∑
C∈χh

D

(R(vh)u3h + v3hR(uh))|C ,

(5.18a)

fn(vh) = −
∫
∂Ωh

D1

T (vh) · ũd∂Ω−
∫
∂Ωh

D2

Mnn(vh)θ̃nd∂Ω−
∑
C∈χh

D

(R(vh)ũ3)|C , (5.18b)

where ũ and θ̃n are the applied displacement and normal rotation, respectively and ∂Ωh
D1
,

∂Ωh
D2
, and χh

D are the approximated versions of ∂ΩD1 , ∂ΩD2 , and χD, respectively. The
subscript 3 in u3h and v3h denotes the component of the respective vector relative to
a3 = a3. Additionally, the following definition has been employed:

R = lim
ϵ→0

(Mnt(x+ ϵt)−Mnt(x− ϵt)) , (5.19)

where Mnt = Mαβnαtβ and tβ is the component of t along aβ. Both an(vh,uh) and
fn(vh) are composed of three terms. The first and second terms correspond to the
displacements and rotation boundary conditions, respectively. The third term, which
involves the displacements at the corners, is introduced to ensure optimal convergence,
as discussed in [115]. Each of the three contributes are constructed from a consistency
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term (e.g., vh · T (uh)) and a symmetry term (e.g., T (vh) · uh and T (vh) · ũ). Finally,
the stabilization terms in Eq.(5.16), denoted by a subscript s, are defined as

as(vh,uh) =

∫
∂Ωh

D1

µb
Dvh · uhd∂Ω +

∫
∂Ωh

D2

µb
Rθn(vh)θn(uh)d∂Ω+

+

∫
∂Ωh

D1

µb
3v3hu3hd∂Ω +

∑
C∈χh

D

(
µb
Cv3hu3h

)∣∣
C
, (5.20a)

fs(vh) =

∫
∂Ωh

D1

µb
Dvh · ũd∂Ω +

∫
∂Ωh

D2

µb
Rθn(vh)θ̃nd∂Ω+

+

∫
∂Ωh

D1

µb
3v3hũ3d∂Ω +

∑
C∈χh

D

(
µb
Cv3hũ3

)∣∣
C
, (5.20b)

where µb
D, µ

b
R, µ

b
3, and µb

C are the so-called penalty parameters, which play a crucial role
in the weak imposition of boundary and coupling conditions, since they provide stability
to the method. The choice of these parameters is still an open question and depends on
the specific problem at hand. A discussion on the importance of these parameters, some
guidelines on how to choose them, and the approach adopted in this thesis is presented
in Sec. 5.2.4.

5.2.3 The interior penalty method for coupling IGA patches

The framework presented in Sec. 5.2.2 focuses on a single-patch shell. However, when
dealing with structures composed of multiple shells that intersect at common interfaces,
the formulation needs to be extended to address the coupling conditions. To achieve this,
the terms in Eq.(5.16) are enriched with a superscript p to indicate that they belong to
the p-th patch. Then, the following forms are defined:

ap(uh,vh) = aph(uh,vh) + apn(uh,vh) + aps(uh,vh) , (5.21a)

fp(vh) = fp
h(vh) + fp

n(vh) + fp
s (vh) . (5.21b)

The discretized version of the Kirchhoff-Love shell equation for multi-patch structures
becomes: find uh in Vu

h such that

NP∑
p=1

ap(uh,vh) +

NI∑
i=1

bi(uh,vh) =

NP∑
p=1

fp(vh) ∀vh ∈ Vv
h , (5.22)

where Vu
h and Vv

h are the discretized spaces correspondent to Vu and Vv, respectively, and
bi(uh,vh) is the contribute to the variational statement ensuring the coupling between
the patches intersecting at the i-th interface. These terms are obtained as

bi(uh,vh) = bin(uh,vh) + bis(uh,vh) . (5.23)
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Once again, Nitsche and stabilization terms have been introduced, denoted by the sub-
scripts n and s, respectively. The definitions of these terms are

bin(uh,vh) =

∫
Γh
i

({T (vh)} · [uh] + {Mnn(vh)}[θn(uh)]) dΓ+

+ γ1

∫
Γh
i

([vh] · {T (uh)}+ [θn(vh)]{Mnn(uh)}) dΓ , (5.24a)

bis(uh,vh) =

∫
Γh
i

(µc
D[vh] · [uh]) dΓ +

∫
Γh
i

(µc
R[θn(vh)][θn(uh)]) dΓ . (5.24b)

Where Γh
i denotes the approximation of the i-th interface Γi. The penalty terms µc

D and
µc
R, associated to the displacement and the rotation coupling conditions, respectively,

have been introduced. Their choice is discussed together with their counterparts for
boundary conditions in Sec. 5.2.4. {•} and [•] are the average and jump operators,
defined as

{•} = γ2 •+ +(1− γ2) •− , (5.25a)

[•] = •+ − •− , (5.25b)

where • denotes a generic quantity defined over both patches at the same point on the
interface Γi. The superscript + and − are used to distinguish between the two patches.
The parameters γ1 and γ2 are used to differentiate amongst the Nitsche type methods.
Their meaning and effect on the stabilization of the method is discussed in Sec. 5.2.4.
In this contribute, these are chosen as γ1 = 1 and γ2 = 0.5 that leads to a symmetric
interior penalty formulation.

In this formulation, it is assumed that the curves in the Euclidean space describing
the i-th interface are known explicitly. Consequently, the unit vector t tangent to the
interface is also assumed to be known. t denotes the tangent vector to both the external
boundaries of the patch and the interface between two patches. Moreover, since an
interface is common to both the intersecting patches that generate it, the unit vector t
is also the same for both patches. The context always makes it clear which condition is
being referred to, whether a boundary or a coupling one. However, in the case of the
coupling condition, the requirement of t to be oriented in a counter-clockwise direction
is discarded, and whether the orientation is clockwise or counter-clockwise depends on
the relative position between t, a3, and n for each specific patch, being n the outer unit
vector normal to the interface, lying on the plane locally tangent to the patch surface.

As a result, n+ and n− can be different. In the simplest case, they lie in the same
direction, either coinciding or being opposite. But, if the patches meet at an angle, their
directions differ. The formulation presented in this thesis is capable of handling every
possible case. However, in order to properly compute the average, the fluxes for the
second patch (in contrast to the first patch) are obtained with respect to a normal vector
entering the surface domain.

5.2.4 Choice of the parameters of the methods

In order to weakly enforce essential boundary and coupling conditions, various methods
have been investigated in literature. In particular, different penalty and Nitsche’s meth-
ods can be constructed based on the presence of Nitsche and/or stabilization terms, the
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presence and the sign of the symmetry terms, and the definition of the average operator.
The unified formulation proposed in [160] introduces the parameters γ1 and γ2, which
allow for the construction of different Nitsche type methods. When no Nitsche terms are
present in the formulation, the resulting method is the pure penalty [161, 96, 97, 98, 99,
101]. The symmetric interior penalty method [105, 106, 107, 111] is constructed adopting
γ1 = 1 and γ2 = 0.5, requiring the introduction of penalty terms to ensure stability. The
skew Nitsche’s method [108] is obtained with γ1 = −1 and γ2 = 0.5 without adding sta-
bilization terms. This choice leads to a skew-symmetric solving linear system and has the
advantage of being parameter-free. Taking γ1 = −1 and γ2 ̸= 0.5 leads to the weighted
non-symmetric Nitsche’s method [162, 163, 109, 110]. This method provides increased
stability compared to other Nitsche’s methods but at the expense of losing any symmetry
of the linear system.

In pure penalty methods, which rely solely on penalty integrals, the choice of the
penalty parameter can significantly impact the accuracy of the method, setting a lower
bound on the achievable error corresponding to that particular value of the penalty pa-
rameter [101]. If the value is too low, it results in a weak enforcement of the bound-
ary/coupling condition. Conversely, if the value is too high, it leads to ill-conditioning of
the linear system and can induce spurious locking. When employing a Nitsche’s method
that includes the flux terms, the penalty terms are used solely for stabilization purposes.
In this case, the minimum value of the penalty parameter required to achieve optimal con-
vergence is lower than that needed for pure penalty methods, allowing for more flexibility
in its selection.

In this work, the symmetric Nitsche terms defined in Eq.(5.18) and Eq.(5.24a) offer
the advantage, compared to other Nitsche’s methods, of resulting in symmetric positive-
defined linear systems. This property can be beneficial in terms of computational ef-
ficiency, allowing the use of efficient algorithms for hermitian positive-defined matrices
such as the one based on a Cholesky decomposition implemented in the MATLAB in-
ternal solver. For this method, the values of the penalty parameters can be bounded by
solving an eigenvalue problem [164, 104, 165, 108]. However, this approach can signifi-
cantly increase computational time and lead to high penalty parameters in some critical
scenarios such as coupling of patches with different constitutive properties or when deal-
ing with trimmed domains. In these cases, choosing a different value of γ2 to compute
the average of the fluxes can lead to a more stable formulation, as shown in [120], with
the drawbacks of loosing symmetry of the linear system. Fortunately, for the symmetric
Nitsche’s method, penalty parameters that ensure optimal convergence while preserving
a reasonable condition number of the system matrix span a wide range. In this thesis,
the chosen approach takes advantage of this property and follows the recommendations
already available in the literature for the choice of the penalty parameters. More sophis-
ticated techniques to achieve stability follow out of the scope of this contribution.

To properly scale the penalty terms with respect to the problem parameters, a typical
construction involves multiplying a problem-independent constant, a problem-dependent
term, and a mesh-size-dependent term, that might be raised to a mesh-order-dependent
power, accordingly to the problem at hand and the method adopted. Following [115], and
extending the construction of the penalty parameters to interface coupling, the penalty
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parameters are chosen as:

µb
D = µc

D = βElτ/h , (5.26a)

µb
R = µc

R = βElτ
3/h , (5.26b)

µb
3 = βElτ

3/h3 , (5.26c)

µb
C = βElτ

2/h2 , (5.26d)

where µb
D and µc

D are employed for displacement boundary and coupling conditions, re-
spectively. Similarly, µb

R and µc
R are employed for rotation boundary and coupling condi-

tions, respectively. The parameters µb
3 and µb

C relate the component of the displacement
vector along a3 at the boundaries and at the corners, respectively. The corresponding
integrals to these last two penalty terms in Eq.(5.20) are proven to be necessary for
achieving optimal convergence in [115]. In Eq.(5.26), El represents the maximum Young
modulus of the laminate, and h is a measure of the mesh size. The problem-independent
parameter β is taken here as either 10, 102, or 103 for all the penalty terms, as specified in
the tests of Sec. 5.3. This choice helps balance the enforcement of the boundary/coupling
conditions while maintaining a well-conditioned system.

5.3 Numerical Results for IGA coupling

In this section, the performances of the proposed method are evaluated through var-
ious numerical experiments on benchmark problems involving isotropic and laminated
plates and shells. The structures in the proposed tests are loaded by domain forces and
subjected to various boundary conditions, including homogeneous and non-homogeneous
Dirichlet conditions. The application of these boundary conditions varies depending on
the cases, with some being enforced in a strong manner, while others are applied weakly.
When available, the numerical solution are compared with analytical ones. These are
manufactured computing the applied domain force from the desired distribution of the
displacement field by using the strong form of the Kirchhoff-Love shell equations, as
presented in [115].

To what concerns software, the open-source MATLAB® library GeoPDEs [166, 167] is
utilized, with additional functions implemented for the coupling. High-order integration
over trimmed elements and their boundaries is achieved using the algorithm presented in
[129, 121], which is based on a reparameterization of the trimmed elements.

As typical for immersed boundary approaches, a huge difference in element size can
appear in certain refinement level of the discretization. If not treated properly, this
problem could cause a severe ill-conditioning of the solving linear systems. To mitigate
this issue, the approach used in this work is the utilization of a Jacobi preconditioner [168]
that, despite its simplicity, has demonstrated remarkable efficacy. Additionally, it is worth
mentioning that the proposed interior penalty formulation may lead to stability issues
when using a fixed penalty parameter with small cut elements. As a possible solution the
minimal stabilization method was proposed in [169] for trimmed IGA patches, however,
no extension to KL equations is available in the literature. For KL shells, a more stable
formulation would include skew-symmetric Nitsche coupling terms and non-symmetric
average operator [162], resulting in non-symmetric linear systems, which is rather avoided
in this work. However, no evident stability issues arose in the examples presented here.

The coupling strategy is tested on multi-patch geometries connected at non-conforming
trimming interfaces with problems having an analytical solution. The convergence of the
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proposed coupling strategy in the L2 norm and H1 seminorm is assessed by comparison
with those obtained from single patch discretizations, which are considered as reference
solutions. Furthermore, results involving a complex geometry of multiple intersecting
laminated cylindrical shells showcase the method’s potential for industrial problems.

5.3.1 Square Kirchhoff plate

In this test, the mechanical response of an isotropic plate structure is modeled using two
trimmed planar patches coupled along a non-conforming interface. The main geometrical
features of the structure are depicted in Fig.(5.1a) and the two patches for a specific
refinement level are illustrated in Fig.(5.1b). The map of the shell is constructed to
ensure that the lines of constant curvilinear coordinates are curved in the physical space,
making in such way this example more significant.

To create a non-conforming interface, an additional knot is inserted in each patch,
specifically (0.5, 0.5) for the first patch and (0.45, 0.53) for the second patch. After trim-
ming both patches using the same trimming curve, which is also constructed to be curved
in the physical domain, they are joined together. This configuration ensures that subse-
quent dyadic refinements of the discretization maintain the non-conforming nature of the
coupling interface.

As a reference for efficiency comparison, Fig.(5.1c) displays the same structure mod-
eled with a single patch, which corresponds to the untrimmed left patch of the multi-patch
configuration. The material used for the analysis is characterized by a Young modulus
E = 70 GPa and a Poisson ratio ν = 0.3. The plate has a square mid-surface with an
edge length L = 1 m and three values of the thickness are considered, namely τ = 0.1 m,
τ = 0.01 m, and τ = 0.001 m. Simply-supported boundary conditions are applied, with
homogeneous displacements Dirichlet boundary conditions enforced in a strong manner
along the entire external boundaries. A distributed surface force is applied in the direction
e3 to reproduce the manufactured smooth solution:

uref = U0 sin

(
2πx

L

)
sin

(
2πy

L

)
e3 , (5.27)

where U0 = 0.1 m is the maximum absolute value of the displacement. Regarding the
choice of the penalty parameters, the arbitrary coefficient in Eq.(5.26) is selected as
β = 102.

In Fig.(5.2), the convergence behavior of L2 norm and H1 seminorm of the error for
different polynomial values, plate thickness, and discretization approaches in the pre-
sented test case is illustrated. The dashed lines represent the convergence curves for the
single-patch case, serving as a reference for optimal convergence relative to that specific
polynomial order. The solid lines correspond to the interior penalty method discussed in
Sec. 5.2.3, showing how accurately they follow the reference convergence curves. On the
other hand, the dotted lines depict the convergence results for the pure penalty method,
where only the stabilization terms in Eq.(5.24) are considered.

Consistently with the findings in [101], the pure penalty method fails to ensure opti-
mal convergence due to the choice of the penalty parameters. Achieving optimal conver-
gence with the pure penalty method would require super-penalization, where the penalty
parameters scales with powers of the mesh size that depends on the order of the poly-
nomials [103]. However, such high penalty values typically lead to ill-conditioning of the
linear system, especially for high-order polynomials. This underscores the advantage of
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(a) (b) (c)

Figure 5.1: Geometry of the Kirchhoff plate described in Sec. 5.3.1 (a). Discretization of the plate
employing two non-conforming IGA patches (b) and a single IGA patch (c).

the interior penalty method, which achieves accurate convergence without facing severe
ill-conditioning issues and therefore ensuring accurate results without compromising nu-
merical stability, although some locking phenomena can still be observed in the curves
for p = 2 and p = 3 when τ = 0.001 m. The triangles in the graphs show the optimal
convergence rates expected for the Kirchhoff-Love theory [115]. It is worth noting that,
consistently with the expected theoretical prediction [115, 159], in our results the optimal
convergence rate in L2 norm for p = 2 is equal to p and not p+ 1.

As a final observation, Fig.(5.3) depicts the plate’s bent structure. The mesh lines
and the contour of the displacement vector’s magnitude are presented superimposed on
the deformed surface of the plate. It is important to note that some of the lines in the
image are merely used to visualise trimmed elements and do not actually delimit any
actual elements.

The geometry depicted in Fig.(5.1a) is also utilized for conducting a laminate test,
with its multi-patch and single-patch configurations presented in Fig.(5.4). In the multi-
patch discretization, a knot is inserted in the position (0.5, 0.5) for the left patch and
(0.45, 0.53) for the right one. The laminate is constructed using orthotropic laminae

with the following properties: longitudinal Young’s modulus E
⟨ℓ⟩
1 = 25 GPa, transversal

Young’s modulus E
⟨ℓ⟩
2 = 1 GPa, Poisson’s ratio ν

⟨ℓ⟩
12 = 0.25, shear modulus G

⟨ℓ⟩
12 = 0.4

GPa and thickness τ ⟨ℓ⟩ = 0.0025 m. The lamination sequence employed is [0, 90]s. The
boundary conditions are identical to those of the isotropic case, while the force applied to
the shell surface is modified in order to manufacture the distribution of the displacement
in Eq.(5.27) with the different material properties. The L2 and H1 convergence curves for
this laminated test are depicted in Fig.(5.5). Similar to the isotropic case, the observations
regarding the convergence properties of the methods investigated hold true also in this
scenario.

5.3.2 Hyperbolic paraboloid Kirchhoff-Love shell

The second set of numerical experiments focuses on a curved isotropic shell with a mid-
surface represented by a hyperbolic paraboloid. This example is derived from the shell
obstacle course introduced in [115], which offers a collection of tests having analytical
solutions. These tests serve as an appropriate benchmark to assess the performance
of the proposed coupling method by evaluating the convergence curve based on the L2
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(a) τ = 0.1 m (b) τ = 0.1 m

(c) τ = 0.01 m (d) τ = 0.01 m

(e) τ = 0.001 m (f) τ = 0.001 m

Figure 5.2: L2 convergence (a), (c) and (e), and H1 convergence (b), (d), and (f) associated with the
Kirchhoff plate shown in Sec. 5.3.1, for different values of the thickness τ .
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Figure 5.3: Deformed configuration for the plate in in Fig.(5.1a) with superimposed contour of the
magnitude of the displacements and mesh elements.

(a) (b)

Figure 5.4: Discretization of the Kirchhoff laminate in a non-conforming multi-patch (a) and a single-
patch (b) setting.

(a) τ = 0.01 m (b) τ = 0.01 m

Figure 5.5: L2 norm convergence (a) and H1 seminorm convergence (b) correspondent to the Kirchhoff
laminate.
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norm of the solution error. This allows for a rigorous evaluation of the accuracy and
convergence properties of the coupling approach.

In this test, three values of the shell thickness are taken into account τ = 0.1 m,
τ = 0.01 m, and τ = 0.001 m, and the complete definition of the mid-surface can be
found in [115]. However, for a better understanding, the geometry of the shell and the
coordinates of the vertices are illustrated in Fig.(5.6a). The material is isotropic with a
Young’s modulus of E = 70 GPa and a Poisson ratio of ν = 0.3. The shell is subjected to
non-homogeneous Dirichlet boundary conditions that for the displacement are enforced
strongly assigning values directly to the degrees of freedom after the L2 projection of
the displacement field in the spline space of the corresponding edges. Conversely, the
bending rotation corresponding to the reference displacement field is weakly imposed at
the boundary using the interior penalty method described in Sec. 5.2.3, using in Eq.(5.24)
only the terms corresponding to the bending rotation. The boundary conditions and the
domain force are chosen to manufacture the reference displacement field:

uref = U0ξ2 sin
(π
2
ξ2

)
e1 + U0ξ2 sin

(π
2
ξ2

)
e2, (5.28)

where U0 = 1 m. Similarly to the previous test, the shell is modeled using a two-patch
configuration (see Fig.(5.6b)) as well as a single patch configuration (see Fig.(5.6c)) which
serves as a reference for the convergence curves. To make the two patches in the multi-
patch configuration non-conforming at the interface, a knot is inserted in each patch
at the curvilinear coordinates (0.5, 0.5) and (0.54, 0.43), respectively. In such way, even
after subsequent dyadic refinements of the discretization, the non-conforming nature of
the interface is maintained.

Fig.(5.7) shows the L2 convergence for the proposed test, considering different values
of the shell thickness, the parameter β that appears in the penalty terms in Eq.(5.26),
the polynomial order, and the approximation approach. Three different approaches are
compared: a single-patch, a two-patch configuration coupled through a pure penalty
method, and a two-patch configuration coupled through the interior penalty method. It
can be observed that the curves corresponding to the interior penalty approach closely
follow the convergence of the reference curve for the single patch. In contrast, the pure
penalty method exhibits poor performance when the penalty value is small and not
properly scaled with the mesh size. Once again, it is important to note that the scaling
required for the pure penalty approach to achieve optimal convergence leads to premature
ill-conditioning of the linear system for high-order polynomial values. However, due to
the combination of trimming and high-degree polynomials also in the case of the interior
penalty coupling a too high condition number of the linear system is obtained for the
last refinement level of the curves corresponding to p = 4 and, as a result, convergence is
lost. Constructing a preconditioner more efficient than the simple Jacobi one would be
beneficial to solve this issue. Despite this would constitute an interesting direction for
further research, it falls outside the scope of this work.

Another noteworthy observation is that higher values of β result in increased errors
for the interior penalty method. This effect is expected since the non-conforming nature
of the coupling interface leads to a locking effect due to the stabilization terms in the inte-
grals in Eq.(5.24b). In fact, the discrete approximation spaces of the displacement fields
for the two patches are unable to perfectly match at the interface for non-trivial distri-
bution, causing spurious locking phenomena. Further increasing the penalty exacerbates
this issue.
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(a) (b) (c)

Figure 5.6: Geometry of the hyperbolic paraboloid described in Sec. 5.3.2 (a). Discretization of the
shell employing two non-conforming IGA patches (b) and a single IGA patch (c), shown for a certain
refinement level.

It is worth noting that the proposed method still achieves optimal convergence rates
for a wide range of thickness values. However, it is important to highlight that the
Kirchhoff-Love shell equation may not be suitable for thickness ratios that are too high.
In such cases, higher-order theories should be employed to accurately capture the behavior
of the shells.

Lastly, for the sake of completeness, in Fig.(5.8) it is shown the contour of the mag-
nitude of the displacement vector superimposed to the shell mid-surface, together with
the mesh edges. However, it should be noted that some of the lines are only utilised for
visualization purposes of reparameterized trimmed elements but do not correspond to
actual edges.

5.3.3 Coupling of intersecting cylindrical shells

The final test aims to demonstrate the efficiency and robustness of the proposed method,
as well as the effectiveness of the trimming and coupling algorithms. This test involves a
geometry with a complexity level comparable to that encountered in real-world industrial
applications, consisting of multiple patches intersecting at variable angles. The structure
under investigation consists of five intersecting cylinders, as depicted in Fig.(5.9a). The
main cylinder has a length of L = 8 m and a radius of R = 1 m, while the remaining
cylinders have an untrimmed length of L = 4 m and a radius of R = 0.8. The complete
geometrical description of the structure is not provided here for the sake of conciseness.

Figs.(5.9b) to (5.9f) illustrate the trimmed parametric domains of the corresponding
cylindrical patches in Fig.(5.9a). It is noteworthy that the intersecting curves, both in
the physical and parametric domains, consist of multiple segments connected in general
with C0 continuity. For such geometric configurations, the robustness of the algorithm
for identifying quadrature points with high-order precision becomes crucial.

The cylinders in the structure are simply-supported at the external edges, and the
structure is subjected to a uniformly applied domain traction given by F̃ = {105, 105, 105}T
Pa. The material used is a laminate with layers made of the same orthotropic material
as described in Sec. 5.3.1, with a thickness of τ ⟨ℓ⟩ = 0.0025 m, and lamination sequence
[90, 0, 0, 90];

In each patch, the continuity along the circumferential directions between the edges
corresponding to the first and last values of the knot vector is enforced here using periodic
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(a) β = 10, τ = 0.1 m (b) β = 103, τ = 0.1 m

(c) β = 10, τ = 0.01 m (d) β = 103, τ = 0.01 m

(e) β = 10, τ = 0.001 m (f) β = 103, τ = 0.001 m

Figure 5.7: L2 convergence associated with the shell shown in Fig.(5.6a), for different values of the
thickness τ and arbitrary parameter β.
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Figure 5.8: Undeformed configuration for the shell in in Fig.(5.6a) with superimposed contour of the
magnitude of the displacements and mesh elements.

boundary conditions obtained adopting periodic spline spaces [127]. It is worth noting
that along these edges, a weak imposition of the coupling condition could also be applied
by considering an interface with both edges coming from the same patch. However, using
periodic boundary conditions allows for a reduction in the overall number of degrees
of freedom in the analysis. The cylindrical patches meet at interfaces with non-zero
angles, and the proposed formulation can easily manage this, as it is not limited to G1

surfaces. The polynomial degree used for each patch in each direction is p = 6, that can
be easily adopted thanks to the straightforward construction of B-spline basis functions.
It is worth mentioning that to properly integrate in the trimmed elements and their
respective boundaries nine Gaussian points were adopted in each direction.

Fig.(5.10) presents the contour plot of the magnitude of the displacement from two
different views. The results obtained using the formulation described in this thesis (a) and
(b) are compared with those obtained using triangular elements (STRI3) in the Abaqus®

software [26], (c) and (d). The close agreement between the two approaches highlights
the competitiveness of the proposed method with the available finite element software,
affirming its accuracy and reliability even for complex geometries consisting of patches
intersecting at a variable angle.

5.4 The immersed boundary conformal method for

IGA shells

The method presented so far allows one to study trimmed surfaces, which increases the
flexibility in defining the shell surface while retaining the simplicity of an embedded
approach. However, two main issues arise when dealing with trimmed boundaries:

i) Dirichlet boundary conditions can only be applied in a weak sense on the trimmed
boundaries.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Geometry of the test described in Sec. 5.3.3 with superimposed mesh (a). Parametric domain
of each of the trimmed patches (b) to (f).
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(a) (b)

(c) (d)

Figure 5.10: Two different views of the contour of the magnitude of the displacement for the structure
described in Sec. 5.3.3 obtained with the method presented here (a) and (b), and with the elements
STRI3 in Abaqus® (c) and (d).
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ii) Increasing the resolution at the surface boundary, where localized phenomena tend
to occur, is not straightforward.

To model localized behavior, such as stress concentration, one possible strategy involves
using H-splines [170]. This approach, however, still requires a weak imposition of essential
boundary conditions. An alternative approach is the Immersed Boundary Conformal
Method (IBCM), which was recently proposed in the context of IGA in [121], where
it is applied to Poisson’s problems and two-dimensional linear elasticity problems. This
approach involves creating auxiliary boundary conforming layers with the advantages of a
strong enforcing of Dirichlet boundary conditions, and a natural refinement strategy near
the boundaries. These boundary layers are then coupled in a weak way with the main
patch in a region further inside the domain where localized phenomena are less likely to
occur. Here, the IBCM is extended for the first time to the KL shell equations. In the
following section, the details on how to create these boundary layers are provided together
with some preliminary applications to demonstrate the efficiency of this approach.

5.4.1 Construction of boundary conforming patches

It is reminded that the parametric domain and its boundary are denoted as Ω̂ and ∂Ω̂,
respectively. It is assumed that a trimming approach is used in the definition of shell
surface, and therefore ∂Ω̂ is constructed as

∂Ω̂ =

NΓ⋃
i=1

Γ̂[i]′ . (5.29)

Here, NΓ represents the number of curves involved in defining ∂Ω̂. It is assumed here,
without loss of generality, that each of the curves Γ̂[i]′ is described as a closed univariate
B-splines in R2 using the auxiliary coordinate τ [i] ∈ [0, 1], meaning that Γ̂[i]′ = Γ̂[i]′(τ [i]).
Then, for each Γ̂[i]′ , an offset curve Γ̂[i] is constructed in a region more internal to the
parametric domain using the same curvilinear coordinates τ [i]. Although a detailed de-
scription of the offset curve’s construction is not provided here, various approaches can be
adopted. For example, one can create a curve that approximates a uniform distance con-
dition from the main one or opt for a simpler curve with an easier definition that does not
necessarily follow the geometrical features of the boundary. However, as demonstrated
in [121], this choice does not significantly affect the accuracy of the method.

The boundary layers are created as ruled domains Ω̂[i] ∈ R2 using the algorithm
described in [127], taking as generating curves Γ̂[i](τ [i]) and Γ̂[i]′(τ [i]). Accordingly, two

auxiliary coordinates are introduced: η
[i]
1 = τ [i] that follows the boundary curve direction,

and η
[i]
2 ∈ [0, 1] that goes along the offset direction. The map of the i-th boundary layer

from Ω̃[i] to Ω̂[i] is

ξ = ξ[i]
(
η
[i]
1 , η

[i]
2

)
(5.30)

where ξ = {ξ1, ξ1}⊺ are the curvilinear coordinates of the main patch, and Ω̃[i] =
[0, 1] × [0, 1]. Figs.(5.11a), (5.11c), and (5.11e) show the step-by-step construction of
the boundary layers in the parametric domain. The untrimmed reference domain Π̂0 is
shown in Fig.(5.11a), which is then trimmed into Ω̂ in Fig.(5.11b) by defining the external
boundary and introducing an internal cut-out. Finally, following the procedure described
above, two boundary layers are introduced in Fig.(5.11c).
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The parametric domain of the main patch (restricted by the contruction of the bound-
ary layers) and its boundary are finally redefined as

Ω̂[0] = Ω̂ \
NΓ⋃
i=1

Ω̂[i] , (5.31)

∂Ω̂[0] =

NΓ⋃
i=1

Γ̂[i] . (5.32)

5.4.2 Composition of maps

To describe the boundary layers in Euclidean space, the maps in Eq.(5.30) need to be
composed with the map of the main patch. Therefore, for the i-th boundary layer the
mapping from Ω̃[i] to Ω[i] is obtained as

x0

(
η
[i]
1 , η

[i]
2

)
= x0(ξ1, ξ2) ◦ ξ[i]

(
η
[i]
1 , η

[i]
2

)
. (5.33)

Figs.(5.11b), (5.11d), and (5.11f) show the different steps in the construction of the
boundary layers in the Euclidean space. It is worth mentioning that, for the construction
adopted here, the curves Γ̂[i] that constitute the boundaries of ∂Ω̂[0] are mapped into the
interfaces Γi between the main patch Ω[0] and the boundary layers Ω[i] in Euclidean space.

The KL formulation adopted in this work requires the derivatives of the map up to
the third order. As such, for the sake of completeness, these derivatives are reported here

∂x0

∂ηα
=

∂x0

∂ξλ

∂ξλ
∂ηα

, (5.34a)

∂2x0

∂ηα∂ηβ
=

∂2x0

∂ξλ∂ξµ

∂ξλ
∂ηα

∂ξµ
∂ηβ

+
∂x0

∂ξλ

∂2ξλ
∂ηα∂ηβ

, (5.34b)

∂3x0

∂ηα∂ηβ∂ηγ
=

∂3x0

∂ξλ∂ξµ∂ξν

∂ξλ
∂ηα

∂ξµ
∂ηβ

∂ξν
∂ηγ

+
∂2x0

∂ξλ∂ξµ

∂2ξλ
∂ηα∂ηγ

∂ξµ
∂ηβ

+
∂2x0

∂ξλ∂ξµ

∂ξλ
∂ηα

∂2ξµ
∂ηβηγ

+

+
∂2x0

∂ξλ

∂2ξλ
∂ηα∂ηβ

∂ξµ
∂ηγ

+
∂x0

∂ξλ

∂3ξλ
∂ηα∂ηβ∂ηµ

, (5.34c)

where the superscript [i] of the auxiliary curvilinear variables η
[1]
1 and η

[2]
1 has been dis-

carded to enhance readability. It is important to mention that for the boundary layers,
the definition of the space for the trial and test functions remains the same as presented
in Eq.(5.4), except that in this case, the map F is now obtained as a composition of two

maps, and the bivariate B-splines are defined as function of η
[1]
1 and η

[2]
1 in the domain

Ω̃[i]. Therefore, for these auxiliary patches, the isoparametric concept of using the same
spline space for both geometry description and trial function definition is discarded. One
might argue that this approach deviates from the principles of IGA. The author acknowl-
edges this concern. However, he believes that the advantages offered by the creation of
arbitrarily refinable conforming boundary layers outweigh this drawback and deserves
further investigation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Step-by-step construction of the boundary layers in the parametric domain Ω̂ (a), (c), and
(e), and correspondent mapping in the Euclidean space (b), (d), and (f). Untrimmed reference domain
Π̂0 (a) and correspondent untrimmed surface Π0 (b). Parametric domain Ω̂ (c) and shell surface Ω (d),
obtained trimming the reference domain Π0 with the curves Γ̂[1]′ and Γ̂[2]′ . New parametric domain of
the main patch Ω̂[0] and boundary layers Ω̂[1] and Ω̂[2] obtained as ruled domains from Γ̂[1]′ and Γ̂[1],
and Γ̂[2]′ and Γ̂[2] (e). Corresponding patches Ω[0], Ω[1], and Ω[2] in the Euclidean space with interfaces
between patches denoted as Γ1 and Γ2 (e).
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5.5 Numerical results for the IBCM

In this section, various applications of the IBCM are conducted to showcase the method’s
efficiency. These tests can be divided into three sets: i) a set involving a plate with a
pseudo cut-out, constructed in such a way to retain an analytical solution to rigorously
assess the convergence of the error; ii) a set involving structures with multiple cut-outs
where displacement boundary conditions can imposed strongly through the construction
of boundary layers; iii) a case involving two intersecting cylindrical shells that are coupled
through boundary layers conforming at the interface.

5.5.1 Square Kirchhoff plate with pseudo cut-outs

The first series of tests for the IBCM involves a square Kirchhoff plate as shown in
Fig.(5.12). The geometry, loads, and boundary conditions for these tests are the same
as those described in Sec. 5.3.1. In particular, the applied distributed force is tailored
to replicate the analytical solution presented in Eq.(5.27). However, homogeneous dis-
placement boundary conditions to model a simply-supported scenario are applied here
in a weak sense. The plate’s mapping is achieved using a bivariate B-spline through the
following steps: i) a simple identity map is initially created with a spline of degree p = 3;
ii) a knot is inserted at the position (0.29, 0.31); iii) the positions of the internal control
points are changed. In such way, the parametric domain in Fig.(5.12a) is mapped into
the plate surface in Fig.(5.12b). This description of the plate doesn’t alter the surface Ω
but introduces two lines ξ1 = 0.29 and ξ2 = 0.31 with reduced continuity C2 on its map.

Two pseudo cut-outs are created. These cut-outs are referred to as pseudo because
they are filled with auxiliary patches, eliminating the need to impose essential boundary
conditions within the internal boundaries and easily retrieving the analytical solution. For
each of them two patches are created in the parametric domain: a ring-shaped one having
center in (ξ1C , ξ2C) that extend from an internal radius Rint to an external one Rext, and a
second patch internal to the pseudo cut-out and trimmed in a circular shape thought the
internal circle that delimits the correspondent ring-shaped patch. Tab.(5.1) reports the
values for the construction of the additional patches for the analysis. Fig.(5.12b) shows
how the shape of the patches is modified by the composition with the map of the main
patch.

The contour plot in Fig.(5.12c) shows the magnitude of the non-dimensional displace-
ment |u3| = |u3/U0|, with superimposed mesh grid from the discretization in Fig.(5.12b).
Fig.(5.12d) displays the same contour with the shell’s deformed configuration. Both im-
ages demonstrate the smoothness of the solution at the interfaces between patches, with
no artifacts introduced by the discretization.

To demonstrate that this discretization does not affect the analysis’s convergence
properties, Fig.(5.13) illustrates the convergence of the error in L2 norm and H1 semi-
norm. The curves are plotted for different values of the penalty parameter and for varying
degrees of the spline, p. The value of h is computed as 1/2s, where s = 0, 1, 2, . . . denotes
the dyadic refinement level, and is used as a measure of the mesh size. For reference, each
curve also includes the convergence for a discretization involving only the primary patch.
It is worth noting that the convergence curves for the single patches are still influenced
by the penalty parameter due to the weak imposition of boundary conditions. The re-
sults indicate that the convergence curves for the chosen discretization closely follow the
reference one.
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Table 5.1: Values for defining the auxiliary cut-out patches in the parametric domain of the main patch
as described in Sec. 5.5.1.

ξ1C ξ2C Rint Rext

0.25 0.250 0.08 0.20
0.75 0.750 0.08 0.20

It is wort saying that the map due to the composition of x0(ξ1, ξ2) and ξ[i]
(
η
[i]
1 , η

[i]
2

)
,

lines with reduced continuity appear across the domain of some elements of the auxiliary
patches. For this reason, the error in L2 norm is expected in the asymptotic regime
to converge with rates associated with the maximum continuity of the map, meaning
p = 2 in this case, even for higher degree of the elements. However, the convergence
analysis results demonstrate that, in the pre-asymptotic regime, the rate of convergence
is comparable to the reference one achieved with a single patch with the same polynomial
degree.

5.5.2 Plate and shell with multiple cut-outs

The next geometry investigated is a plate, as shown in Fig.(5.14a), characterized by a
parametric space consisting of a main patch and five additional boundary ring-shaped
layers. Their respective center coordinates, internal, and external radii are provided in
Tab.(5.2).

The mapping is constructed using a bivariate B-spline that reproduces the equations:
x10 = ξ1L, x20 = 2ξ2L, and x30 = 0, where L = 1 m resulting in the plate shown in
Fig.(5.14b). The shell section has a thickness of τ = 10 cm and is made of an isotropic
material with a Poisson’s ratio of ν = 0.3 and a Young modulus of 100 GPa;

The external boundaries of the main patch are subjected to simply-supported bound-
ary conditions, u = 0. On the internal boundary of the cut-outs, a uniform displacement
in the x3 direction is applied. The values of the applied displacement for each patch are
reported in the last column of Tab.(5.2). It is important to note that, thanks to the
construction of the boundary conforming patches, the displacement boundary conditions
can be applied in a strong sense in this test. Figs.(5.15a) and (5.15b) display the plate’s
undeformed configuration with superimposed discretization and the deformed configura-
tion with superimposed contour of the magnitude of the displacement, respectively. It
is evident that the solution is smooth, and no artifacts are introduced by the boundary
layers.

In Fig.(5.15c), the geometry is obtained by randomly moving the control points of the
surface shown in Fig.(5.15a) along the x3 axis. In this test, the internal boundaries of the
cut-outs are left free, and a surface force τ = {1, 1, 1}⊺ kPa is applied on the shell. Here
too, a smooth coupling between the main patch and the boundary patches is evident in
the contour of the displacement’s magnitude displayed in Fig.(5.15d).

5.5.3 Conforming coupling of cylindrical patches

In the next test, an approach based on the IBCM is employed to create conforming
interfaces between two intersecting cylindrical patches. In this case, the cylindrical shells
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(a) (b)

(c) (d)

Figure 5.12: Mesh discretization for the Kirchhoff plate described in Sec. 5.5.1 in the parametric domain
of the main patch (a) and in the Euclidean space (b). Contour of the magnitude of the displacement
with superimposed mesh (c), and deformed configuration of the plate with superimposed contour of the
magnitude of the displacement.

Table 5.2: Values for defining the auxiliary cut-out layers in the parametric domain of the main patch
as described in Sec. 5.5.2 and corresponding applied displacement.

ξ1C ξ2C Rint Rext u3
0.25 0.750 0.10 0.20 0.1
0.75 0.750 0.08 0.14 0.2
0.60 0.500 0.04 0.09 0.3
0.25 0.250 0.05 0.10 0.4
0.75 0.255 0.01 0.05 0.5
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(a) β = 10 (b) β = 10

(c) β = 102 (d) β = 102

(e) β = 103 (f) β = 103

Figure 5.13: L2 convergence (a), (c) and (e), and H1 convergence (b), (d), and (f) associated with
the Kirchhoff plate shown in Sec. 5.5.1, for different values of the penalty parameter and for different
polynomial degrees.
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(a) (b)

Figure 5.14: Mesh discretization for the Kirchhoff plate described in Sec. 5.5.2 in the parametric domain
of the main patch (a) and in the Euclidean space (b).

(a) (b)

(c) (d)

Figure 5.15: Geometry of the plate (a) and the shell (c) structures with cut-outs as described in Sec.
5.5.2 with superimposed discretization. Deformed configuration of the plate (b) and the shell (d) with
superimposed contour of the displacement magnitude.
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are described using analytical functions. In particular the map of first shell is

xa
0 =

−Ra cos ξ
a
1

−Ra sin ξ
a
1

ξ2

 , (5.35)

where (ξa1 , ξ
a
2) ∈ Ω̂a = [0, 2π]× [−L,L], and the map of the second one is

xb
0 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

−Rb cos ξ
b
1

−Rb sin ξ
b
1

ξb2

 , (5.36)

where (ξb1, ξ
b
2) ∈ Ω̂b = [0, 2π]× [0, L]. The parameters for the geometry are set as follows:

L = 4 m, Ra = 1 m, Rb = 0.6 m, and θ = −π/3 rad. Fig.(5.16) displays the geometry
of the structure from two different views, highlighting the intersection between the two
cylinders, which creates an interface Γ0.

The shell section has a thickness τ = 10 cm and is composed of a single isotropic layer
with a Young’s modulus of E = 100 GPa and a Poisson’s ratio of ν = 0.3. A uniform
surface force of τ = {10, 10, 10}⊺ Pa is applied on the surfaces of the shells, while the
external boundaries are simply-supported (u = 0 at ξa2 = ±L/2 and ξb2 = L). To create
the conforming interface layers, the following steps are carried out:

i) A cloud of points is created in the Euclidean space at the intersection of the two
cylinders. This is achieved by finding the intersection of lines from the second cylinder
corresponding to uniform values of ξb2 with the surface of the first cylinder. This
operation can be easily solved analytically.

ii) The cloud of points is projected onto the parametric domains of the two cylinders.
This is also straightforward since the curvilinear coordinates correspond to the cylin-
drical ones.

iii) An auxiliary chord-length coordinate τ , approximating the true arc-length at the
interface, is defined, and a value of this coordinate is associated with each point of
the cloud.

iv) The curves in the parametric domains of the two cylinders are obtained with an
L2 projection into the same univariate spline space. This ensures that each value
of the auxiliary interface coordinate τ corresponds (ξa1 , ξ

a
2) and (ξb1, ξ

b
2) that when

composed with the correspondent maps lead to an approximation of the same point
in Euclidean space.

v) The curves in each parametric space are used to define its trimmed boundary.

vi) The boundary layers are then created for each main cylindrical patch following the
procedure described above in this section. It is worth noting that, by refining the
auxiliary layers with the same number of elements along the interface’s curvilinear
direction, the interface remains conforming.

Fig.(5.17) illustrates the parametric domains of the cylindrical patches each consti-
tuted by a main patch and a boundary layer. The boundary layer Ω̂[2] is constructed as a
ruled domain between the projection of the interface in the parametric domain of the first
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(a) (b)

Figure 5.16: Geometry of the test described in Sec. 5.5.3 in two different views. The intersection of the
two cylinders generates the interface denoted as Γ0.

cylinder Γ̂[1]′ and the offset curve Γ̂[1]. Similarly, the boundary layer Ω̂[4] is constructed as
a ruled domain between the the projection of the interface in the parametric domain of
the second cylinder Γ̂[2]′ and the offset curve Γ̂[2]. Furthermore, the patch Ω̂[1] is obtained
from the parametric domain Ω̂a subtracting the domain of the corresponding boundary
layer Ω̂[2], the patch Ω̂[3] is obtained from the parametric domain Ω̂b subtracting the
domain of the corresponding boundary layer Ω̂[4].

Fig.(5.18a) shows the mapping in Euclidean space, highlighting the conforming nature
of the interface layers, allowing the displacement interface continuity condition to be
imposed in a strong sense. However, rotational continuity still needs to be imposed
in a weak manner through the interior penalty formulation. Fig.(5.18b) displays the
deformed configuration of the structure with a superimposed map of the magnitude of the
displacement. It can be observed the smoothness of the contour map at the intersection
between the cylinders.

5.6 A mixed IGA-DG local refinement strategy

As a concluding remark, the mixed IGA-DG refinement strategy is presented. This in-
novative approach combines IGA to model the majority of the domain, while leveraging
a novel DG-based refinement strategy in areas where local phenomena are expected. El-
ements in proximity to the local feature are disconnected from the rest of the domain.
This disconnection allows to replace these areas with elements having discontinuous shape
functions that are more flexible when it comes to local mesh refinement. The proposed
approach is based on a hierarchical dyadic subdivision of DG elements. Each rectangular
element in the parametric domain is divided into four smaller, geometrically similar rect-
angular elements that are connected to each other and to neighboring elements through



140 CHAPTER 5. THE ISOGEOMETRIC ANALYSIS METHOD

(a) (b)

Figure 5.17: Parametric domain of the two cylinders of the test in Sec. 5.5.3. Each parametric domain
consists of a trimmed main patch (Ω̂[1] and Ω̂[3]) and a boundary layer (Ω̂[2] and Ω̂[4]). In (a) there are
also shown the projections of the interface in the parametric domain of the first cylinder Γ̂[1]′ , and the
offset curve Γ̂[1] that defines Ω̂[1]. Similarly, in (b) there are shown the projections of the interface in the
parametric domain of the second cylinder Γ̂[2]′ , and the offset curve Γ̂[2] that trims the domain Ω̂[2].

(a) (b)

Figure 5.18: Discretization of the cylinders in the Euclidean space (a), with interfaces between patches Γ0,
Γ[1], and Γ[2]. Deformed configuration with superimposed contour of the magnitude of the displacement
and mesh (b).
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the interior penalty strategy introduced in Sec. 5.2. The polynomial degree of the el-
ements is kept unchanged throughout this process. However, in the area approximated
using DG elements, implementing a p refinement would be straightforward.

5.6.1 Isotropic Kirchhoff plate with internal damage

The feasibility of the mixed IGA-DG local refinement strategy is tested on a square
isotropic Kirchhoff plate with an internal damage. The geometry for this test is shown
in Fig.(5.19). The mid-plate surface is described using a B-spline, and the curvilinear
coordinates take values in Π̂ = [0, 1]× [0, 1]. The length of the plate is denoted as L, and
the through-the-thickness crack is characterized by the dimensions: 2a/L = 0.375 and
a/b = 60. The material for this test is characterized by a Poisson’s ratio of ν = 0.3. It is
important to note that in the linear elasticity theory for the given problem settings, the
results are not dependent on Young’s modulus. The plate thickness ratio is L/τ = 1600.
The boundaries corresponding to ξ1 = 0 and and ξ1 = 1 are kept free, while an external
displacement is applied to the boundary at ξ2 = 0 with a value of u2 = −δ, and to the
boundary at ξ2 = 1 with a value of u2 = +δ.

The initial discretization is achieved using an original background grid consisting of 4×
4 IGA elements with a polynomial degree of p = 3. Subsequent refinements are performed
exclusively on the elements directly adjacent to the cut-out. These refinements involve
disconnecting the element from the main patch and dividing it into four smaller elements.
Fig.(5.20) displays the grids obtained for three different levels of local refinement and
the corresponding contours of the non-dimensional displacement magnitude, denoted as
|u| = |u|/δ.

It is important to note that, due to the embedded approach and the fact that the local
feature is smaller than the characteristic size of the mesh elements, the continuity of the
underlying spline space is not modified in the first refinement level. As such the space of
trial functions is not capable of reproducing the typical deformation that characterizes a
through-the-thickness crack under tensile stress. This issue is sometimes addressed in the
literature by introducing additional discontinuous shape functions within each element
where damage is present. In the context of FEM, this is known as Extended Finite
Element Method (XFEM) [171]. In the method proposed here, a discontinuity in the
approximation space is only allowed after local refinement through DG elements, leading
to more accurate results.
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Figure 5.19: The geometry and boundary conditions of the Kirchhoff plate in Sec. 5.6.1 are presented.
It is worth noting that the dimensions of the damage have been enlarged for visualization purposes.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: The test in Sec. 5.6.1 utilizes three hierarchically refined grid levels denoted as (a), (b),
and (c). For each refinement level, the contour of the non-dimensional magnitude of the displacement
is superimposed onto the deformed configuration. It is worth mentioning that the diagonal lines in the
grid do not correspond to actual interfaces but are included solely for visualization purposes, a result of
the integration algorithm adopted.
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Chapter 6

Concluding remarks

6.1 Scientific contributions

The scientific contributions in this thesis are based on the articles [64, 122, 65, 67] that
have already been published, and the articles [123, 124] that are still under preparation.
In this section, the main results obtained in this thesis are highlighted.

6.1.1 Contributions to the DG method for shells

In this work, the study of laminated shells was first conducted using the discontinuous
Galerkin (DG) method and the main features are reported as follows:

• The DG approach was employed in combination with higher-order shell theories.
Starting from the three-dimensional variational statement for the problem of inter-
est, the shell equation in weak form was obtained replacing the kinematic assump-
tions, and integrating through the thickness of the shell.

• Within the Equivalent Single Layer (ESL) approach, the covariant components
of the displacement field were expressed as a series of generalized displacements
throughout the shell’s thickness, leading to the definition of a layer of equiva-
lent properties for the entire laminate. This approach allowed the development
of multiple theories with different through-the-thickness resolutions, including the
First-Order Shear Deformation Theory (FSDT) as a special case.

• The DG method was also utilized in combination with Layer-Wise (LW) theories
based on a discontinuous expansion of the displacement field components through
the thickness. The continuity condition of the displacement is then used to connect
the generalized stiffness matrices of each individual layer allowing to treat the theory
as two-dimensional.

• To handle generally-curved shells, the mid-surface was described using both ana-
lytically defined surfaces and Non-Uniform Rational B-Spline (NURBS) surfaces.
Analytical descriptions were useful for testing on simple shapes, while NURBS
surfaces, commonly used in CAD design, allowed for the description of complex ge-
ometries. The formulation proposed handles non-orthogonal curvilinear coordinate
systems.

145
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• To account for the presence of cut-outs, such as in a fuselage panels with a window,
the DG scheme was implemented in conjunction with the implicitly-defined mesh
technique, whereby the shell modeling domain is implicitly represented via a level
set function and the mesh elements are constructed by intersecting an easy-to-
generate background grid and the implicitly-defined domain, increasing the range
of geometries that can be treated.

• To handle small cut elements and prevent ill-conditioning, the merging technique
was adopted, were small elements degrees of freedom are discarded and their domain
is merged with nearby non-small elements referred to as extended.

• The two-dimensional variational formulation was developed for different mechanical
problems, including linear and geometrically non-linear static analysis, linear free-
vibration analysis, linear transient analysis, and linear buckling analysis.

• The two-dimensional equations were solved with the DG method that is based on
a discontinuous representation of the approximated solution throughout the mesh
elements and on the use of suitably defined interface and boundary integrals to
enforce the inter-element solution continuity and the boundary conditions.

• The interior penalty DG method was used for all the linear analyses. This method
allowed for the weak enforcement of continuity and boundary conditions through
appropriate interface and boundary integrals. The high flexibility of the interior
penalty in the choice of the penalty parameter makes the method more robust then
the pure penalty one.

• For the non-linear static analysis, the pure penalty method was preferred, motivated
by the possibility to compute the penalty integrals only at the beginning of the
analysis and not at each iteration. The resulting nonlinear algebraic system is
solved with a Newton-Raphson arc-length scheme.

• Extensive testing was conducted on various shell geometries, including singly curved,
doubly curved, and generally-curved shapes, both with and without cut-outs. Dif-
ferent types of shell sections, such as homogeneous isotropic shells, homogeneous
orthotropic shells, and laminated composite shells, were tested. The structures
were subjected to a variety of loads and boundary conditions, including surface and
boundary loads and simply-supported, clamped, applied displacement, and mixed
boundary conditions.

• In cases where analytical solutions were available, they were used as a reference to
compute convergence curves. Various numerical tests were conducted to investi-
gate the effect of the material, geometry, mesh size, and polynomial order on the
computed solutions. The method proved to provide optimal convergence with re-
spect to the number of degrees of freedom in the linear static analysis and showed
good convergence in all other cases. Convergence tests regarding the analysis time
were also conducted for buckling analysis; similar behavior was observed for other
analyses and is not reported here.

• Results were compared with those from the literature and with simulations using
the Finite Element Method (FEM) software Abaqus®. Comparisons were made
between FSDT and FEM shell elements, as well as higher-order theories and FEM
3D elements to highlight the differences in resolution between the approaches.
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6.1.2 Contributions to the IGA method for shells

A different approach used here for the linear elastic static analysis for isotropic and lam-
inated plates and shells relied on the Isogeometric Analysis (IGA) to solve the Kirchhoff-
Love (KL) shell theory. The main feature of the method are reported as follows:

• Differently form other two-dimensional shell theories the KL equations imposes a
C1 continuity requirement on the solution space to which the IGA offered seamless
solution by simply using high-degree splines.

• The proposed method is capable of handling structures formed by multiple IGA
patches meeting at interfaces that may not necessarily be conforming and might
even intersect at an angle.

• The software adopted was capable of importing directly STEP files, making it a
powerful tool for mechanical analysis.

• To address the ill-conditioning issue, a simple Jacobi preconditioning was adopted.

• It was employed the symmetric interior penalty method to weakly impose the cou-
pling conditions and the Dirichlet conditions on cut boundaries.

• A variationally consistent expression for the fluxes used to apply coupling condi-
tions and essential boundary conditions was adopted. The method proved optimal
convergence, although for high refinement level and for high polynomials some ill-
conditioning of the linear system appeared.

• In the numerical results, various multi-patch discretization with non conforming
interfaces were tested. Isotropic and laminated shell sections with uniform thickness
were considered.

• The error norms showed optimal convergence in the asymptotic regime, in agree-
ment with expected theoretical rates, and proved to be competitive respect to single
patch discretizations.

• Comparisons with solution obtained with FEM proved the efficiency of the method
also for more complex geometries.

• To enforce displacement Dirichlet boundary and interface conditions on cut edges,
the Immersed Boundary Conformal (IBCM) was adopted. This method relies on
the construction of additional conformal boundary patches.

• A mixed IGA-DG refinement strategy was introduced and tested on a damaged
Kirchhoff plate. The domain was modeled mainly through a IGA discretization,
while hierarchically refined DG elements were employed for local enrichment of the
approximation space nearby the geometrical discontinuity.

6.1.3 Benefits and drawbacks of the investigated approaches

The two approaches presented here are somehow similar but differs in many aspects. To
summarize, the pros and cons are listed here as:
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• Utilizing higher-order polynomial approximations for partial differential equations
leads to faster convergence rates, compensating for increased degrees of freedom.

• Higher-order theories can offer more accurate solutions through the shell thickness,
making them a valid alternative to full three-dimensional analysis and leading to
significant computational savings. However, for small thickness and single-layer
shell sections the use of higher-order theories is not motivated since the accuracy
of KL and FSDT is acceptable.

• IGA is particularly effective in achieving higher-degree elements due to the higher
continuity properties of spline basis functions. This results in a significant reduction
in the number of degrees of freedom when compared to DG. However, the DG
method lands itself to intuitive refinement strategy and easiness to construct non
conforming meshes.

• The use of NURBS basis functions for shell geometries allows for high-fidelity rep-
resentation of complex structures encountered in practical industrial applications.
The use of NURBS ensures that the elements built are geometrically exact, as they
precisely matches the output of the CAD.

• All kinematic theories presented (KL, ESL, and LW), supported generally-curved
curvilinear coordinates, enabling the use of various mappings, even with non-
orthogonal curvilinear coordinates.

• The higher-order kinematics theories started from the components of displacement
in covariant coordinates, while KL theory was based on Cartesian coordinates.
Using a through-the-thickness expansion that starts from a local basis has the
advantage to deduce the FSDT as a special case of the ESL. On the opposite,
the use of Cartesian components simplifies significantly the differential geometry
involved.

• The embedded domain approach allows for modeling internal and external cuts
while maintaining a simple description of the underlying surface. Among the strate-
gies presented, the implicit domain is limited to geometries described through a
level-set function, but leads to faster algorithms, the trimmed boundary has virtu-
ally no limits in terms of boundaries representation, but the involved routines are
generally slower.

• The proposed strategies for applying boundary conditions and enforcing continuity
conditions relied on weak enforcement using the interior penalty formulation. This
approach provided flexibility in choosing the penalty parameter and ensured opti-
mal convergence, even with low penalty values. The pure penalty leads to a less
stable formulation, but for non-linear analysis allows for the penalty integrals to be
computed only once. Both formulation lead to symmetric linear systems.

• Imposing boundary and continuity conditions weakly eliminates the necessity to
embed them in the solution space, facilitating the use of trimmed geometries. How-
ever, with the IBCM method strong imposition of displacement conditions can be
still achieved.
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• Two approaches were suggested to handle small cut elements. The merging tech-
nique is very effective to make the linear system well conditioned, but involves more
complex algorithms. A simpler alternative that also demonstrates to be efficient
involves applying a diagonal Jacobi preconditioner.

• The software used was capable of directly importing STEP files, making it a pow-
erful tool for the mechanical analysis of complex shell structures.

• The combined IGA-DG approach seamlessly integrates the advantages of a high-
order globally IGA model with the flexibility of the DG method when used for local
refinement of critical areas of the domain.

6.2 Future research directions

This work represents merely a glimpse into the potential of higher-order methods for
modeling shell structures. Nonetheless, it offers a foundation for potential research direc-
tions. These directions can be categorized into two distinct groups: those related to the
physical model and those associated with the numerical model.

6.2.1 Extension to more complex physical model

A compelling direction for further exploration lies in extending the proposed formulations
to address various mechanical problems. Specifically, for the DG approach, addressing
into the nonlinear dynamic response of shells presents an intriguing challange.

Regarding the IGA approach, the analysis was limited to linear static scenarios. Con-
sequently, the formulation could be extended to linear buckling, linear transient dynamics,
free-vibration analysis, as well as non-linear static and transient analysis. Additionally,
further investigation is needed regarding the application of IGA to high-order kinematic
shells.

On the material front, exploring laminates with variable thickness and lamination
angles holds substantial research potential. Another interesting direction would involve
the incorporation of a hyper-elastic model, facilitating the study of shell structures with
relevance in various sectors, such as biomechanical tissues.

Another realm of mechanical challenges pertains to the analysis of damaged struc-
tures. While two examples were presented in the context of linear static analysis, the DG
method offers a unique opportunity to further investigate through-the-thickness cracks
by disconnecting certain elements and discarding the corresponding integrals. Further
prospects also include the utilization of additional shape functions to model discontinu-
ities for intra-element cracks.

Furthermore, addressing delamination could be accomplished through a combination
of a Layer-Wise formulation and a through-the-thickness DG approach, wherein DG
would be used for continuity between both layers and elements.

Finally, utilizing the methods presented here for modeling thin-walled structural com-
ponents would confer considerable advantages in computational efficiency in multi-physics
problems where analysis time is a primary concern, e.g. fluid-structure interaction.
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6.2.2 Development of the numerical modeling techniques

From the method perspective, an intriguing path involves further explore the integration
of the IGA method with the DG method. The DG, in particular, serves as a valuable tool
for localized hp refinement, as well as for modeling regions of the domain that require
extended shape functions or the introduction of local solution discontinuities.

Expanding the IGA approach presented here to encompass Reissner-Mindlin theory
and higher-order theories presents another promising avenue for further research.

Exploring the limitations of the interior penalty method and devising efficient strate-
gies to address potential stability issues and ill-conditioning problems, particularly in the
context of trimmed patches, should also be a priority.

An additional compelling direction would be the development of an efficient strategy
for modeling the connection of patches employing higher-order kinematics that meet at
a kink. Such an approach might involve the creation of a three-dimensional object along
the interface, serving as a higher-order connection between patches

For geometrically continuous patches, it would be valuable to develop an efficient
strategy for connecting patches modeled with different through-the-thickness resolutions.
This could be achieved by penalizing jumps in the relevant components of generalized
displacements.
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