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Abstract
This work aims to implement an automated data-driven model for breast cancer detection in mammograms to support physi-
cians’ decision process within a breast cancer screening or detection program. The public available CBIS-DDSM and the 
INbreast datasets were used as sources to implement the transfer learning technique on full-field digital mammography pro-
prietary dataset. The proprietary dataset reflects a real heterogeneous case study, consisting of 190 masses, 46 asymmetries, 
and 71 distortions. Several Yolo architectures were compared, including YoloV3, YoloV5, and YoloV5-Transformer. In 
addition, Eigen-CAM was implemented for model introspection and outputs explanation by highlighting all the suspicious 
regions of interest within the mammogram. The small YoloV5 model resulted in the best developed solution obtaining an 
mAP of 0.621 on proprietary dataset. The saliency maps computed via Eigen-CAM have proven capable solution reporting 
all regions of interest also on incorrect prediction scenarios. In particular, Eigen-CAM produces a substantial reduction in 
the incidence of false negatives, although accompanied by an increase in false positives. Despite the presence of hard-to-
recognize anomalies such as asymmetries and distortions on the proprietary dataset, the trained model showed encouraging 
detection capabilities. The combination of Yolo predictions and the generated saliency maps represent two complementary 
outputs for the reduction of false negatives. Nevertheless, it is imperative to regard these outputs as qualitative tools that 
invariably necessitate clinical radiologic evaluation. In this view, the model represents a trusted predictive system to support 
cognitive and decision-making, encouraging its integration into real clinical practice.
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Introduction

Breast cancer is the most common worldwide tumor in 
the female population [1]. Previous randomized trials and 
incidence-based mortality studies have demonstrated a sig-
nificant reduction in breast cancer mortality associated with 
participation in breast screening programs [2]. However, the 
problem of false positives and false negatives persists as 
a concern. Most of these errors can be attributed to dense 
breasts (masking effect), as well as human factors such 
as radiologist perception and erroneous decision-making 
behaviors. Additionally, the inherent imaging characteristics 
of tumors contribute to the issue, with benign masses often 
resembling malignant ones and malignant masses sometimes 
mimicking benign ones [3]. During the breast cancer diag-
nosis process, the physician aims to detect all the regions of 
interest (ROIs) in the whole mammogram: masses, calcifi-
cations, distortions, etc. Detection in the early stage of the 
disease is critical for planning new examinations, therapies, 
or lines of intervention. A missed detection, on the other 
hand, may result in irreversible injury to the patient. For 
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this reason, breast cancer detection is the most complicated 
but also the most important task. Unfortunately, several pro-
posed solutions in the literature do not aim to analyze the 
entire image, but rather limit detection to patch classifica-
tion: the ROIs are first manually selected and cropped, and 
then the classifiers are trained to distinguish the crops. How-
ever, to support and imitate the physician’s diagnostic pro-
cess, an architecture capable of detecting all ROIs within the 
whole mammogram is required. Faster R-CNN, RetinaNet, 
and Yolo have encouraged the development of systems for 
breast cancer detection [4–7]. These frameworks certainly 
introduce two main difficulties: (1) the models have to learn 
the features of the whole mammogram, and the image resiz-
ing required for training may result in the loss of critical 
details; (2) since the model has to detect all ROIs among all 
patches of healthy tissue (i.e., non-ROIs), an unavoidable 
increase in the error rate must be faced. However, Yolo has 
proven to be an excellent tool in numerous scenarios, achiev-
ing higher accuracy and inference speed rates than its object 
detector competitors [8].

In [9], a comparison and evaluation of YoloV5 nano, 
small, medium, and large models using the CBIS-DDSM 
and INbreast datasets was performed. However, several 
aspects have not yet been considered. The issue of explain-
ability was not addressed. Nevertheless, in critical domains 
like medical applications, ensuring model explainability is 
an essential prerequisite. Furthermore, it has not been exam-
ined whether the utilization of deeper architectures such as 
YoloV3 can enhance detection performance in the case of 
small datasets. Additionally, the potential advantages of 
incorporating a Transformer block into Yolo, considering 
their generalization capability, have not been investigated. 
In this work, a YoloV5-based model was proposed for breast 
cancer detection to support the physician’s diagnostic pro-
cess. A comparison between other feature extractors such as 
Darknet53 proposed in YoloV3 [10] and the Vision Trans-
former [11] was performed.

Given the need for large databases to facilitate deep 
training [12], the transfer learning (TL) technique was 
used. In fact, it has also recently been shown that training 
with small datasets by exploiting pre-trainings represents 
a future direction to provide a trusted system supporting 
cognitive and decision-making processes in the medical 
domain [13]. For this reason, the CBIS-DDSM [14] and 
INbreast [15] datasets were used as source datasets and a 
proprietary dataset as target. In contrast to CBIS-DDSM 
and INbreast, the proprietary dataset includes lesions that 
are more challenging to recognize, such as asymmetries and 
distortions, which hold significant clinical importance [16]. 
The proprietary dataset was acquired and annotated at the 
Radiology Section of the University Hospital “Paolo Giac-
cone” (Palermo, Italy). The workflow of the experiments 
performed is shown in Fig. 1.

However, despite the high performance of the deep learn-
ing models, their actual use is inhibited by their black-box 
nature, i.e., the internal logic is incomprehensible to users 
[17]. This has raised some critical issues about their use such 
as legal aspects, user acceptance, and trust [18, 19]. For this 
reason, in order to encourage the integration of these sys-
tems into real clinical practice, the problem of their explain-
ability needs to be addressed. The gradient-free method 
Eigen-CAM [20] was used for saliency maps computation 
and compared with the occlusion sensitivity method. The 
saliency maps were employed to verify the learning model 
and to highlight the most important pixel involved in the 
prediction process. We believe that reporting regions in the 
form of heat maps can guide the physician’s attention much 
more than ROIs prediction: ROIs are predicted and shown 
only above a certain confidence threshold, and the hardest-
to-find regions may not exceed this threshold. In this way, 
the complicated, tedious, and exhausting process of mam-
mogram evaluation can be supported by guiding the physi-
cian’s attention to different ROIs.

The main contributions on the current manuscript are as 
follows:

• The first novelty falls within the field of explainable 
artificial intelligence (XAI). While data-driven methods 
have demonstrated high performance in various medical 
scenarios, their lack of transparency creates skepticism 
among both physicians and patients regarding these new 
technologies. This skepticism is particularly prominent 
in the development of clinical decision support systems 
(CDSS), where understanding the decision-making pro-
cess and ensuring system reliability are crucial prerequi-
sites for facilitating the diagnostic process. Conventional 
machine learning approaches are inadequate in meeting 
these demands and fail to provide justifications for the 
decisions made by the systems. Introducing explainabil-
ity for breast cancer detection is of utmost importance  
due to the potential for early detection of invasive dis-
eases in mammography screening. Quite frequently, these 
lesions may not be readily apparent and may fail to meet the  
confidence threshold established in Yolo to return the detec-
tion. Conversely, gradient-free XAI methods could remain 
unaffected by the final output and can provide valuable 
 assistance in the diagnostic process, even in situations 
involving inaccurate or low confidence predictions. The  
saliency maps have been proposed as a valuable tool to 
enhance the predictions of YoloV5.

• A proprietary dataset was acquired during daily clini-
cal sessions from the Radiology Section of the Univer-
sity Hospital “Paolo Giaccone” (Palermo, Italy) for 
model evaluation. Unlike CBIS-DDSM and INbreast, 
this dataset comprises a real clinical dataset contain-
ing numerous lesions that present greater complexity 
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in recognition, including asymmetries and distortions. 
These challenging cases hold an important clinical 
significance [16]. Furthermore, the training process 
involved the utilization of three datasets, enabling the 
final model to incorporate the knowledge acquired from 
CBIS-DDSM and INbreast datasets.

• The article presents a comparison of several Yolo-based 
models. In addition, we evaluated the integration of 
Transformers [11] inside Yolo. Transformers have had an 
enormous impact on large language models and computer 
vision tasks. However, the authors [11] acknowledge that 
Transformers lack certain inherent biases found in con-
volutional neural networks (CNNs), such as translation 
equivariance and locality. Consequently, Transformers 
may not generalize well when trained on limited amounts 
of data. This phenomenon is starting to be discussed in 
other studies [21]. In the context of mammograms and 
transfer learning, the generalizability of these findings 
remains uncertain.

This article is organized as follows: “Related Work” provides 
the related works on breast cancer classification both using 
patch-based classification and exploiting the whole mam-
mogram. Section “Materials and Methods” describes the 
open-source CBIS-DDSM, the INbreast, and the proprietary 

datasets. The same section explains the three main used 
architectures of Yolo, their training, and the methods for 
saliency maps computation. Section “Results” shows the 
achieved results, and “Discussion”, their discussion. Finally, 
in “Conclusions”, the main conclusions are reported.

Related Work

Given the incidence of breast cancer, many works have been 
proposed to support the physician’s diagnostic process. 
Muduli et al. [22] and Mahmood et al. [23] have compared 
their own CNN architecture with state-of-the-art networks 
for malignant and benign ROIs classification. Soulami et al. 
[24] have also proposed a CNN, called CapsNet, to address 
the classification of ROIs. They showed that the classifica-
tion of breast masses into normal, benign, and malignant 
is certainly more complex than a binary classification of 
masses into normal and abnormal. Also, Ragab et al. [25] 
have addressed breast cancer classification at patch-level, 
using AlexNet, GoogleNet, and ResNet-18-50-101 as feature 
extractors and a support vector machine as classifier. They 
also evaluated classification through deep feature fusion 
and a subsequent application of principal component analy-
sis. Yu et al. [26] have explored several methods and CNN 

Fig. 1  The overall architecture. The CBIS-DDSM dataset was used as 
source to evaluate several Yolo-based architectures (YoloV3, YoloV5 
(n, s, m, l), and YoloV5-Transformer) on the INbreast target data-
set. Then, the best trained architecture (YoloV5s) was used for mass 

detection on a proprietary dataset. A data augmentation procedure 
was performed before the training phase for class balancing as well as 
during the training. The output comprises bounding-box predictions 
and a heat map that highlights all the ROIs within the mammogram
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architectures for tumor or normal ROIs classification. Two 
deep fusion models based on VGG16 were used to classify 
different patches extracted from the original ROI, to obtain 
the final prediction using a majority voting. In Agarwal et al. 
[27], a sliding window approach is used to scan the whole 
breast and extract all the possible cancer patches from the 
image. Several patch-based CNN (VGG16, ResNet50, and 
InceptionV3) were trained for breast cancer detection, that 
is the classification between positive and negative patches.

The aforementioned works train convolutional models 
that can distinguish ROIs, without dealing with recognizing 
them. However, at the breast screening stage, it is crucial to 
detect all ROIs and subsequently plan new lines of interven-
tion. Jung et al. [7] used RetinaNet as object detector for the 
automatic localization of masses (both benign and malig-
nant) in the whole mammogram. A dual-view deep convo-
lutional neural network (DV-DCNN) for matching detected 
masses was proposed by AlGhamdi and Abdel-Mottaleb 
[28]. The authors used RetinaNet [29] for mass detection 
and the DV-DCNN architecture to determine if two patches 
from the craniocaudal (CC) and mediolateral oblique (MLO) 
views of the same breast represent the same mass, i.e., a 
positive pair. In [4] a Yolo-based Computer-Aided Diagnosis 
(CAD) was proposed for mass detection and classification, 
proving that the system works also where the masses exist 
over the pectoral muscles or dense regions. Aly et al. [5] 
define the evaluation process of screening mammograms as 
very monotonous, tiring, lengthy, costly, and significantly 
prone to errors for human readers. In fact, a YoloV3 model 
was proposed for mass detection and classification. They 
obtained the fairest and most accurate performance using 
an augmented dataset.

In this work, new feature extractors for breast cancer 
detection were considered. The YoloV5 architecture was 
compared with the previous YoloV3 model and considering 
also the Vision Transformer block. In addition, Eigen-CAM 
was used as explainable AI algorithm [30, 31] to provide a 
post hoc explanation. The Eigen-CAM method was com-
pared with occlusion sensitivity. The generated saliency 
maps were used for two main reasons: (1) as explanatory 
debugging tool for preventing inadequate outputs [32, 33] 
and (2) to guide physicians’ attention even on incorrect pre-
diction scenarios.

Materials and Methods

Datasets

The CBIS‑DDSM Dataset

The CBIS-DDSM dataset [14] is the curated version of the 
Digital Database for Screening Mammography (DDSM) 

dataset and is composed of scanned film mammograms. 
Focusing on masses, 1514 images with a total of 1618 
lesions (850 benign and 768 malignant) were included. Of 
the total 1696 lesions, 78 were discarded due to a mismatch 
between the size of the image and its mask, generating ROIs 
that did not match a lesion.

The INbreast Dataset

The INbreast [15] dataset consists of 410 full-field digital 
mammograms (FFDM) classified into normal, benign, and 
malignant. Only the 107 positive images were selected, and 
lesions with Bi-Rads > 3 were considered malignant; the 
others were labeled as benign. Considering that some images 
contain multiple lesions, a total of 40 benign and 75 malig-
nant ROIs were identified.

The Proprietary Dataset

The dataset consists of 278 FFDMs containing a total of 
307 lesions, annotated by expert radiologists dealing with 
the identification of abnormal regions. The images were 
acquired by a Fujifilm Full Field Digital at the Radiol-
ogy Section of the University Hospital “Paolo Giaccone” 
(Palermo, Italy). Images have spatial resolution and pixel 
size of 5928 × 4728 and 50 µm, respectively. The image 
annotations were saved in grayscale softcopy presentation 
state (GSPS) format, compliant with the DICOM standard. 
All identified by radiologist ROIs were annotated by a cir-
cumscribed circle, and then the coordinates of the bounding-
boxes used for Yolo input were calculated as the coordinates 
of the square circumscribed by the circle. The dataset used 
in our study was obtained from the real clinical practice at 
University Hospital “Paolo Giaccone” (Palermo, Italy). Spe-
cifically, the data was collected from the outpatient breast 
clinic, which specializes in second-level diagnostics. As a 
result, the acquired case series are heavily skewed towards 
more severe breast cancer lesions including distortions and 
asymmetries. Detecting and diagnosing distortions can be 
particularly challenging, as they are characterized by the 
presence of spicules radiating from a point, focal retractions, 
or straightening at the edges of the parenchyma [34]. Con-
sequently, distortions are among the most commonly over-
looked abnormalities [35]. Asymmetries refer to unilateral 
deposits of fibroglandular tissue that do not meet the criteria 
for being classified as masses. They can be further catego-
rized as asymmetry, focal asymmetry, global asymmetry, or 
developing asymmetry. It has been estimated that around 
20% of asymmetry cases are associated with malignancy, 
making them an important area of research [16]. The benign 
lesions represent 17.6% of the dataset (54 samples), and the 
82.4% (253 samples) are malignant. The dataset reflects 
a real clinical scenario; in fact, it is composed of masses 
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(62%), asymmetries (%15), and distortions (23%). Given the 
large class imbalance, the proprietary dataset was used only 
for detection.

Data Pre‑Processing

For the CBIS-DDSM and INbreast datasets, the coordi-
nates of the ROIs bounding box required for Yolo training 
were calculated considering the coordinates of the small-
est rectangle containing the segmented lesion. Instead, the 
ROI coordinates for the proprietary dataset were computed 
from the square region that inscribes the circle containing 
the ROI. The CBIS-DDSM dataset has an acceptable size 
for deep learning architecture training. However, it is com-
posed of scanned film mammograms, much noisier and less 
detailed than FFDM. For this reason, only for the CBIS-
DDSM dataset, the contrast limited adaptive histogram 
equalization (CLAHE) was applied for image enhancement 
[23], with the following setting: 1 as contrast limit, 2 × 2 as 
grid size, followed by a 3 × 3 Gaussian filter. For all data-
sets, the gray levels were scaled in the range 0–255, and the 
images were resized to 640 × 640 using the Lanczos filter 
[36, 37]. The CBIS-DDSM dataset was splitted randomly 
considering 70% training, 15% validation, and 15% test 
set. Conversely, the INbreast and the proprietary datasets 
were split into training (80%) and test set (20%), respec-
tively. Considering the small size of the two datasets and the 
unbalanced issue, the next “Data Augmentation” discusses 
data augmentation for class balancing and generation of the 
validation set “Techniques for Class Balancing Before the 
Training Phase”, as well as the procedure to improve the 
training “Techniques Used During the Training Phase”.

Data Augmentation

Techniques for Class Balancing Before the Training Phase

Due to the excessive imbalance classes for the INbreast and 
proprietary dataset, the minority class images (benign) of 

the training set were augmented. Although the main pur-
pose of the work is to evaluate the detection performance 
on the proprietary dataset (regardless of lesion class), the 
following data augmentation procedure was applied to the 
proprietary dataset before the training phase. Figure 2 sum-
marizes the transformation considered. In particular, 180◦ 
rotation and 180◦ rotation + flip upper-down (UD) were 
applied for benign images. The other transformations were 
applied during the training of Yolo, as discussed in the next 
subsection “Techniques Used During the Training Phase”. 
In addition, according to [5], the remaining test dataset was 
augmented to obtain the validation set. In fact, flip UD, 
180◦ rotation + flip UD, flip left-right (LR) and 180◦ rota-
tion were applied on benign images, and Flip LR for malig-
nant images. Considering the smaller difference between 
the classes, on INbreast, also, 180◦ rotations for malignant 
masses were considered [9].

This procedure resulted in the generation of a balanced 
validation set. In addition, the discussed procedure for 
INbreast and the proprietary datasets was repeated consid-
ering 5 different splitting of training and test sets (5-fold 
cross-validation).

Techniques Used During the Training Phase

Transformations not considered in the previous step were 
performed during Yolo training. In particular, three differ-
ent data augmentation configurations were chosen: low, 
medium, and high. In all cases, image translation, rotation, 
scale, shear, flip UD, flip LR, and also HSV augmentation 
were considered. In addition, although it is a common sce-
nario for breast cancer, all three datasets contain few multi-
lesion images. Therefore, to improve the model’s capability 
to detect multiple lesions in the same image, the mosaic 
technique was used. The mosaic augmentation method con-
sists of the generation of a 2 × 2 grid image, containing the 
considered image and three random images of the dataset. 
The mosaic technique improves training for two main rea-
sons: (1) merging 4 images results in multiple ROIs in the 

Fig. 2  Transformations for 
class balancing and validation 
set creation. The procedure 
was repeated implementing the 
5-fold cross-validation
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same image, and the model improves in recognizing multiple 
ROIs simultaneously; (2) to achieve the same input size, the 
4 merged images and their respective ROIs are downsized, 
improving the detection of smaller lesions.

Table 1 shows the parameter set for each configuration. 
The values reported HSV, translation, rotation, scale, and 
shear indicate the range considered for the random transfor-
mation. For flip and mosaic, the value indicates the prob-
ability of performing the transformation, so 0.5 is considered 
a higher level of augmentation because both augmented and 
non-augmented images are considered for training.

Yolo Architectures Training

Like other single-stage object detectors, Yolo consists of 
three parts: backbone, neck, and head. The backbone part 
is a CNN that extracts and aggregates image features. The 
neck part allows for features extraction optimized for small, 
medium, and large object detection. In the end, the three 
feature maps for small, medium, and large object detec-
tion are given as input to the head part, thus composed of 
convolutional layers for the final prediction. Yolo requires 
that the image is divided into a grid, then makes a predic-
tion for each grid cell. The prediction consists of a 6-tuple 
y = (pc, bx, by, bh, bw, c) , where (bx, by, bh, bw) identify coor-
dinates (x, y) and sizes (height, width) of the predicted 
bounding-box, pc represent the probability that there is an 
object in the cell, and c represent the predicted class. The 
mechanism of anchors is also used, to allow multiple object 
detection in the same grid cell. For this reason, the predic-
tion is the 6-tuple discussed for each specified anchor. Each 
version of Yolo has its own peculiarities, which mainly 
concern the structure of the feature extractor, that is, the 
backbone.

YoloV3 Model

YoloV3 is much deeper than the previous two versions 
and is more accurate but requires more time and data for 
training. In YoloV3, the Darknet53 was used as backbone 
[10]. Darknet53 is a hybrid approach between Darknet19 
(used in YoloV2 [38]) and residual network elements (e.g., 
BottleNeck) [39], proposed to improve the Darknet19 and 
the efficiency of ResNet-101/152. The short-cut connec-
tions allow getting more fine-grained information, lead-
ing to better performance for small objects. The feature 

pyramids network (FPN) [40] is used as neck, allowing to 
learn objects of different sizes: it specializes in detecting 
large and small objects. In addition, the non-maximum sup-
pression to select one bounding box out of many overlap-
ping bounding boxes is used.

YoloV5 Model

YoloV5 uses CSPDarknet53 as its backbone: it exploits 
the architecture Darknet53 proposed in [10] and employs 
a CSPNet [41] strategy to partition the feature map of the 
base layer into two parts and then merges them through a 
cross-stage hierarchy. In the neck part, PAnet [42] is used to 
generate the feature pyramids network (FPN) and allow the 
extraction of multi-scale feature maps. This structure allows 
the extraction of features optimized for small, medium, and 
large object detection. YoloV5 was released in nano, small, 
medium, large, and extra-large versions. The versions differ 
in the number of convolutional kernels used and thus the 
number of parameters. In this paper, a comparison between 
nano, small, medium, and large versions was performed.

YoloV5‑Transformer

In contrast to convolutional networks, Transformer are able 
to model the relationships among various small patches in 
the image. The Transformer block assumes the image is 
split into a sequence of patches, where each patch is flat-
tened to a vector. These flattened image patches are used to 
create lower-dimensional linear embeddings and fed into a 
Transformer encoder, composed by a multi-head attention 
to find local and global dependencies in the image. It has 
been shown that the introduction of a Transformer block to 
convolutional networks can improve efficiency and overall  
accuracy [43]. In YoloV5, the Transformer block was embed-
ded in the penultimate layer of the backbone, that is, among 
the three convolutional layers preceding the spatial pyramid 
pooling layer.

Models Training

Considering the small size of both INbreast and proprietary 
datasets, training a deep architecture such as Yolo may harm 
the reliability of the trained models. Therefore, despite it 
being composed of scanned film mammograms, the CBIS-
DDSM is employed as source dataset for initial training. The 

Table 1  Setting for data 
augmentation during the 
training phase

Level H,S,V Translation Rotation Scale Shear Flip (UD, LR) Mosaic

Low 0.0, 0.0, 0.0 0.1 5.0 0.1 5.0 (0.5, 0.5) 0.0
Med 0.007, 0.35, 0.2 0.3 10.0 0.3 5.0 (0.5, 0.5) 1.0
High 0.015, 0.7, 0.4 0.3 20.0 0.3 10.0 (0.5, 0.5) 0.5
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above setup allows the TL technique on the INbreast and 
proprietary target datasets. Considering that both source and 
target datasets are labeled, the performed TL was inductive 
transfer learning [44]. Since Yolo simultaneously solves a 
regression task to predict bounding box coordinates, and two 
classification tasks to predict objectiveness and class score, 
two different loss functions were employed. For regression, 
complete Intersection over Union (IoU) loss was used; for 
classification, binary cross-entropy with logits loss function 
was used in both cases.

Performance Evaluation

The results obtained were presented considering the most com-
mon indexes for object detection tasks such as precision, recall, 
and average precision. The average precision (AP) is defined 
as the area under the precision-recall curve. The IoU was set 
to 0.5. For CBIS-DDSM and INbreast datasets, AP was calcu-
lated for detecting malignant (M AP) and benign (B AP) lesions 
separately, as well as the mean of the two classes (mAP).

Models Explanation: Eigen‑CAM

Examining trained models is essential before incorporating 
them into actual clinical practice. As a result, our system 
produces prediction explanations as the second output to 
fulfill this requirement. Saliency maps have the capability 
to reveal the pixels or regions that played a significant role 
in the decision-making process of the system. This effec-
tively highlights all potential ROIs to the physician. Several 
gradient-based methods such as CAM [45], Grad-CAM [46], 
and GradCAM++ [47] have been proposed to implement 
interpretability and transparency of deep learning models. In 
particular, they are class discriminative visualization meth-
ods and require the class probability score for the gradient 
computations. However, gradient-based methods suffer from 
this problem: backpropagating any quantity requires addi-
tional computational overhead and assumes that classifiers 
produced correct decisions, and whenever a wrong decision 
is made, all mentioned methods will produce wrong or dis-
torted visualizations [20]. For this reason, the localization 
accuracy of the above methods remains weak, especially 
in the case of incorrect predictions. In addition, while tra-
ditional CNNs provide class distributions for each sample, 
YOLO’s output includes bounding box coordinates, object 
presence probabilities in each cell, and class distributions. 
These issues often make the output non-differentiable and 
impractical to implement gradient-based algorithms. As a 
result, many object detection studies employing Yolo rely on 
Eigen-CAM for architecture interpretation [48–50]. Eigen-
CAM is preferred due to its gradient-free nature and prin-
cipal components use from the extracted feature maps. It 
should be noted that gradient-based methods, which rely on 

output and activation maps, can produce distorted visualiza-
tions when predictions are incorrect. To address these issues, 
this study presents Eigen-CAM for saliency map computa-
tion and compares it with the occlusion sensitivity method.

Eigen-CAM is a gradient-free method that computes and 
visualizes the principal components of the learned features/
representations from the convolutional layers, resulting in 
intuitive and compatible with all the deep learning mod-
els. In Eigen-CAM, it is assumed that all relevant spatial 
features learned over the hierarchy of the CNN model will 
be preserved during the optimization process, and non-
relevant features will be regularized or smoothed out. The 
Eigen-CAM is computed considering the input image I of 
size i × j projected onto the last convolutional layer L = K 
and is given by OL=K = WT

L=K
I . The matrix OL=K = UΣVT is 

factorized using the singular value decomposition to obtain 
the principal components. The activation map is given by 
the projection on the first eigenvector LEigen−CAM = OL=KV1 , 
where V1 is the first eigenvector in the V matrix. Similar to 
Eigen-CAM, Occlusion sensitivity can be linked to image 
detection tasks, and it is gradient-free and independent of the 
specific architecture used. It assesses changes in activations 
resulting from occluding different regions of the image [51].

The saliency maps have been proposed as a valuable tool 
to enhance the predictions of YoloV5, which can assist phy-
sicians in the diagnostic process, especially when the model 
fails to make accurate predictions. YoloV5 only provides 
predictions if they surpass a certain confidence threshold. 
The purpose of saliency maps is to identify all ROIs and mit-
igate false negative issues. It has been observed that many 
cancer types progress to an invasive stage due to the failure 
of early prediction also with preliminary signs. Therefore, 
in contrast to YoloV5’s predictions, saliency maps offer all 
potential ROIs, even with low confidence. This inevitably 
leads to an increase in false positives. Considering this, phy-
sicians receive two outputs: firstly, the conventional YoloV5 
output that balances precision and recall, providing only 
ROIs that exceed a certain confidence level. In addition, 
saliency maps propose all potential ROIs, which may serve 
as early cancer indications, even if their probability of being 
lesions (i.e., not exceeding the threshold) is low. Thus, a 
simple predictive model transforms into a decision-support 
system, as physicians receive not only a definitive decision 

Table 2  Comparison of the nano, small, medium, and large architec-
tures of YoloV5 on the CBIS-DDSM dataset, considering all default 
hyperparameters

Model B AP M AP Precision Recall mAP

n 0.257 0.479 0.473 0.408 0.368
s 0.257 0.518 0.447 0.427 0.387
m 0.280 0.514 0.489 0.403 0.397
l 0.239 0.488 0.491 0.377 0.364
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but also suggestions of lesions that the system recommends 
paying attention to.

Results

The experiments were performed in Google Colaboratory 
Pro, using Python 3 environment. The PyTorch implemen-
tation proposed by Ultralytics [52] was exploited, and the 
Weights & Biases platform [53] was used to monitor the 
training process. The trainings were performed for 100 
epochs and 16 as batch. The validation mAP was used for 
model selection, considering the best model as a weighted 
combination of mAP@0.5, mAP@0.5:0.95 metrics, respec-
tively 0.9 and 0.1.

CBIS‑DDSM Results and Data‑Augmentation 
Improvements

The CBIS-DDSM dataset was used to evaluate the opti-
mal YoloV5 architecture and for hyperparameters opti-
mization, considering the nano, small, medium, and 
large versions. Then, it was exploited as source dataset to 
implement inductive TL and improve the generalization 
capabilities on INbreast and proprietary FFDM images. 
For this reason, given the huge amount of hyperparam-
eters, an initial analysis was performed using all the pro-
posed default values for each model. Table 2 shows the 
achieved results for each version of YoloV5. The nano 
and large versions have a lower mAP than the small and 
medium versions. Conversely, the small model, compared 
with the medium model, results in a more balanced preci-
sion and recall pair, while it contains about one-third of 

its parameters. Therefore, all subsequent experiments were 
carried out only considering the small model.

Table 3 shows that the histogram equalization speci-
fied in the data pre-processing section improves the model 
performance. In addition, the Adam optimizer using 0.001 
as learning rate outperforms the default stochastic gradi-
ent descent (SGD) optimizer with learning rate of 0.01. 
Therefore, experiments to evaluate the impact of data aug-
mentation were carried out using the equalized dataset and 
Adam optimizer. Table 3 shows how the results improve as 
data augmentation increases. The extensive data augmen-
tation employed emphasizes the necessity for substantial 
amounts of data when training this deep architecture, con-
firming the choice of using the CBIS-DDSM dataset to 
perform TL on INbreast and proprietary datasets.

Inbreast Results and Transfer Learning Evaluation

Exploiting the optimized hyperparameters for the CBIS-
DDSM dataset, YoloV3 and YoloV5-Transformer models 
were also trained on the CBIS-DDSM dataset, to imple-
ment the TL technique on the INbreast target dataset. 
Table  4 shows the achieved results. Considering the 
dataset size, the performance was calculated in 5-fold 
cross validation, and mean and standard deviation were 
reported for each metric. The best training protocol for 
the CBIS-DDSM, that is, Adam optimizer, high data aug-
mentation, and 16 as batch, was used for all the experi-
ments. In addition, INbreast was also trained from scratch 
to show the difference in accuracy with and without 
TL. The YoloV5s model outperforms its previous ver-
sion YoloV3 and also the YoloV5-Transformer. YoloV3 
contains a feature extractor with more parameters than 
YoloV5s and Transformer (about 61 vs. 7 million) and 
therefore needs a larger amount of data for their train-
ing. In addition, the YoloV5-Transformer version showed 
lower performance while it has a comparable number 
of parameters to YoloV5s. Comparing YoloV5s training 
from scratch and with TL on the INbreast, an increase 
of 0.061 mAP and 0.119 of B AP was calculated. The 
imbalance of the dataset clearly reflects the model per-
formance: the benign lesions detection rate, which is the 
minority class, is lower than malignant lesions for each 
considered model.

Table 3  Performance of YoloV5 small version, considering the 
equalized CBIS-DDSM dataset, Adam optimizer, and the three data 
augmentation configurations

Hyps B AP M AP Precision Recall mAP

Equal 0.300 0.501 0.487 0.408 0.400
Adam+equal 0.321 0.555 0.487 0.464 0.438
aug-low 0.241 0.49 0.46 0.394 0.366
aug-med 0.337 0.549 0.497 0.487 0.433
aug-high 0.361 0.634 0.566 0.482 0.498

Table 4  5-fold results for 
the three used architectures 
on INbreast dataset (Tr is 
for Transformer; NoTL is 
the training without transfer 
learning)

Model B AP M AP Precision Recall mAP

YoloV3 0.585 ± 0.093 0.890 ± 0.036 0.785 ± 0.012 0.695 ± 0.104 0.738 ± 0.061

YoloV5s-Tr 0.642 ± 0.060 0.894 ± 0.054 0.799 ± 0.118 0.742 ± 0.146 0.771 ± 0.048

YoloV5s-NoTL 0.652 ± 0.051 0.890 ± 0.047 0.835 ± 0.059 0.713 ± 0.770 0.771 ± 0.038

YoloV5s 0.771 ± 0.131 0.898 ± 0.069 0.854 ± 0.097 0.729 ± 0.100 0.835 ± 0.098



Cognitive Computation 

1 3

Proprietary Dataset Results and Transfer  
Learning Evaluation

The YoloV5s model was the most accurate for the two open-
source datasets and was used for lesion detection on propri-
etary dataset. The trained model using the CBIS-DDSM as 
source dataset and INbreast as target dataset was the check-
point to start training on the proprietary dataset. For this rea-
son, the model trained on the proprietary dataset brings the 
knowledge learned on CBIS-DDSM and INbreast. Figure 3 
shows the difference in validation mAP calculated during 
training with and without transfer learning. In particular, 
higher initial mAP, faster mAP growth in the early epochs, 
and higher mAP asymptote was calculated using transfer 
learning [54]. The result was confirmed in the test set, with 
an mAP of 0.561 and 0.61 without and with transfer learn-
ing, respectively. Table 5 shows the results computed within 
the 5-Fold Cross Validation strategy.

Explainability Results

To evaluate the performance using XAI methods, we con-
ducted a manual analysis on a proprietary dataset subset 
consisting of 50 images and 56 lesions. No healthy images 
were considered. Our focus was evaluating the differences in 
false positives and false negatives using two XAI techniques: 
Eigen-CAM and occlusion sensitivity. Through a qualita-
tive analysis, the generated saliency maps do not exhibit 

complete overlap as shown in Figs. 4 and 5. However, a poor 
overlap between saliency maps calculated through different 
methods has been widely shown in the literature [55–57]. 
More specifically, it has been observed that when consider-
ing occlusion sensitivity, the regions linked to lesions appear 
to be slightly illuminated compared to Eigen-CAM, where 
they are more prominently highlighted. In addition, the 
quantitative analysis showed the superiority of Eigen-CAM 
for this object detection task in mammography. Table 6 sum-
marizes the results. In the selected subset, the Yolo model 
correctly detected 41 lesions, but missed 15 lesions (false 
negatives) and incorrectly identified 19 non-existent lesions 
(false positives). However, when we employed Eigen-CAM, 
we observed better results. Out of the 56 lesions, 52 were 
correctly detected, reducing the false negatives to just 4. 
However, the use of Eigen-CAM led to an increase in false 
positives, with a total of 34. On the other hand, the occlusion 
sensitivity method did not perform as well as Eigen-CAM, 
showing an increase in false negatives to 20 and false posi-
tive of 55.

Discussion

Performance and Transfer Learning Importance

The proposed work for breast cancer detection introduces 
several novelties and advantages. Three different data-
sets were considered. The CBIS-DDSM is the largest and 
therefore the most appropriate for deep training. However, 
it is composed of scanned film mammograms, resulting in 
images that are notably distinct from the FFDM images. 
Conversely, the INbreast and the proprietary FFDM data-
sets can be considered a good benchmark for testing Yolo 
on real clinical practice images. For this reason, the CBIS-
DDSM dataset was used to obtain an optimized pre-training 

Table 5  5-Fold results on the proprietary dataset, considering the 
training with and without transfer learning

Model Precision Recall mAP

YoloV5s no-TL 0.665 ± 0.054 0.541 ± 0.043 0.561 ± 0.053

YoloV5s TL 0.726 ± 0.110 0.591 ± 0.063 0.621 ± 0.035

Fig. 3  Training performance with (green) and without (red) transfer learning on the proprietary dataset
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compared with the common COCO dataset (that is the 
benchmark for Yolo). In fact, the COCO dataset is used for 
the recognition of objects, cars, people, etc., on real-life 
images. In each case, with a significantly different distribu-
tion than breast cancer in mammograms. Then, for all exper-
iments, the transfer learning technique was exploited using 
the CBIS-DDSM as source dataset, and different Yolo archi-
tectures were compared. Considering that Yolo architectures 
evolve to improve both accuracy and inference speeds, it was 
not obvious to find YoloV5 more accurate than YoloV3. 
Moreover, among the various versions of YoloV5, the 
small version was the most accurate, also compared with 
the YoloV5s-Transformer. The performance obtained on 
the proprietary dataset was lower than on INbreast. How-
ever, our dataset contains three times the number of lesions, 
allowing for a more accurate evaluation of the models. Also, 
although both are datasets for breast cancer analysis, it is 
natural that the distributions, and consequently the training, 

differ. In fact, INbreast was acquired with a MammoNova-
tion Siemens FFDM machine with a pixel size of 70 µm and 
our dataset with a Fujifilm FFDM with a pixel size of 50 
µm. The spatial resolution is also very different: for INbreast 
3328×4084 or 2560×3328 and for the proprietary dataset 
5928×4728. Moreover, the main difference lies in the het-
erogeneity of the datasets. In fact, for INbreast, the 107 con-
sidered abnormalities are only masses, with 2 asymmetries. 
In contrast, our dataset is mainly composed of masses (62%), 
but also of asymmetries (15%) and distortions (23%). The 
presence of these types of lesions, which account for 38% 
of our dataset, poses an additional challenge for accurate 
detection. In fact, according to BI-RADS [58], the term 
architectural distortion (AD) is used when normal architec-
ture is distorted with a non-definite visible mass. AD is not 
always a sign of cancer and may represent different benign 
processes and high-risk lesions [59], and it is responsible 
for 12 to 45% of breast cancer missed during screening [60]. 

Fig. 4  Example of a bounding-box prediction on the left and the respective saliency map on the right. The ROI is correctly predicted with a con-
fidence index of 0.6. However, other suspicious areas are also highlighted on the saliency map

Fig. 5  Example of wrong prediction on the left and the respective saliency map on the right. Despite the error, the saliency map calculated via 
Eigen-Cam provides several suspicious ROIs, as well as the miss-detected lesion (marked with the white bounding-box)
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Asymmetries are areas of fibroglandular tissue visible on 
only one mammographic projection, mostly caused by the 
superimposition of normal breast tissue. There are different 
types of asymmetries: for example, the developing asym-
metry has a 15% risk of malignancy [61], and the global 
symmetry instead is mostly a normal variant. Although this 
introduces a significant level of complexity, it moves the sys-
tem towards the real-world clinical scenario. For this reason, 
the achieved results are encouraging and demonstrate that 
breast cancer detection can be addressed without reducing 
the task to patch classification.

Comparison

An accurate comparison with other studies is complex 
because of different datasets, pre-processing, and training 
protocols. However, Table 7 shows some similar works. In 
[62], OPTIMAM dataset (OMI-H), composed of about 5300 
mammograms, was used as source dataset to perform TL 
on INbreast dataset. Using the faster R-CNN architecture, 
they obtained an AUC-ROC of 0.79 and 0.95 for benign 
and malignant lesion detection. YoloV1 was used in [4], 
resulting in 99.5 and 99.9 for benign and malignant lesion 
detection in the DDSM dataset. Yolo9000 (e.g., YoloV2) 
is used in [63]: in contrast to our system, localization and 
classification performance were evaluated separately on the 
INbreast dataset. In particular, first, the lesions are localized, 
and then only the localized ones are classified, resulting in 
a detection accuracy of 97.2 and a classification accuracy 
of 95.3. The most similar work to ours in terms of evalua-
tion protocol and workflow was proposed by Aly et al. [5]. 
Using YoloV3, they obtained an AP of 94.2 and 84.6 for 
benign and malignant detection, respectively. However the 
reported best results are computed using a higher image spa-
tial resolution (832×832 vs. our 640×640), and the results 
were reported in 5-fold cross-validation only for 448×448 

spatial resolution. In fact, comparing our result on the best 
fold with their result on 608×608 images, we obtained an AP 
of 88.5 (vs. their 87.5) and 92.2 (vs. their 80.8) for benign 
and malignant detection, respectively, illustrated in Aly 
et al. [5], increasing the image size proves beneficial for the 
learning process. However, the disparity between experi-
ments conducted with sizes of 448×448 vs. 608×608 is quite 
substantial, but it diminishes significantly when consider-
ing the size of 832×832. This finding suggests that larger 
image sizes may yield slightly improved results, while the 
increased complexity of models and the associated optimiza-
tion could pose a considerably increased computational cost.

Explainability Discussion

Despite the encouraging performance, the system must be 
both accurate and trusted by physicians for its integration 
into real clinical practice. Therefore, an introspection and 
explanation of the trained model were conducted via Eigen-
CAM. Figures 4 and  5 show two generated saliency maps 
via Eigen-CAM and occlusion sensitivity methods. In par-
ticular, the former image represents a correct prediction and 
the latter an incorrect prediction. In Fig. 4, the Eigen-CAM 
heat-map results most brightly around the predicted lesion, 
but it is suggested that the physician should also pay atten-
tion to other areas of the image. In Fig. 5, instead, the model 
makes an error in prediction (missed detection). In this fig-
ure, the advantage of using a gradient-free method can be 
seen. In fact, the generated Eigen-CAM heat map identifies 
several salient areas that demand the physician’s attention.

In addition, the saliency maps depicted in Figs. 4 and 5 
indicate that the activations primarily concentrate on the 
breast region. Any minimal activations observed outside this 
area (in the Eigen-CAM maps) can be attributed to artifacts 
and are not considered confounding factors for the physi-
cian. It is possible to speculate that the slight activations at 
the black edges of the images might assist in aligning the 
coordinates of the bounding boxes predicted in the opposite 
area of the image, where only the background is present. 
The obtained saliency maps are class-independent as con-
firmed by clinical literature findings, where mammography 
is typically employed as a screening examination aimed at 
identifying certain abnormalities. On the other hand, other 
examination modalities, such as MRI, are more informative 

Table 6  Performance variation through the use of saliency maps

Model Lesions # TP FP FN

Yolo-based 56 41 19 15
Eigen-CAM 56 52 34 4
OS 56 36 55 20

Table 7  Comparison between 
the proposed and other breast 
cancer detection works, 
considering the INbreast 
dataset. (Det, detection; Cls, 
classification; Acc, accuracy; 
AP, average precision; → is for 
TL from dataset1 to dataset2)

Paper Architecture Dataset Performance

[62] Faster R-CNN Optimam → INbreast AUC B: 0.79; M: 0.95
[4] YoloV1 DDSM AUC B: 99.5; M: 99.9
[63] YoloV2 DDSM & INbreast Det. Acc: 97.2; Cls Acc (AUC): 95.3
[5] YoloV3 INbreast AP B: 94.2; M: 84.6
Our YoloV5s CBIS-DDSM → INbreast AP B:0.771 ± 0.131 ; M:0.898 ± 0.069
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for characterization purposes and are thus considered sec-
ondary examinations [12, 64].

Based on these findings, Eigen-CAM proves to be the 
method more suitable with respect to occlusion sensitiv-
ity for generating saliency maps in object detection tasks. 
Despite the unavoidable increase in false positives, the 
reduction in false negatives was significant. This reduction 
is particularly important from a clinical perspective, as it 
enables early diagnosis and facilitates the scheduling of 
further examinations by ruling out the growth of invasive 
lesions. Considering these factors, we believe that saliency 
maps should complement, rather than replace, the outputs 
of the Yolo model. In fact, Yolo’s predictions resulted strict 
with a small number of false positives, while Eigen-CAM’s 
predictions are more conservative with a minimal number of 
false negatives. Above all, these outputs should be seen as a 
qualitative tool that always requires clinical radiologic evalu-
ation. For this reason, it is the responsibility of the physician 
to determine which areas necessitate additional examination.

Conclusions

In this work, a Yolo-based model was proposed for breast can-
cer detection. Although the CBIS-DDSM dataset is composed 
of scanned film mammograms, the use of the transfer learning 
technique improves the models’ generalization capabilities when 
Yolo is fine-tuned with FFDM images (INbreast and propri-
etary datasets). The results obtained on the INbreast dataset were 
exploited to train YoloV5 on the proprietary dataset. The per-
formance obtained are very encouraging, also considering the 
heterogeneity of the proprietary dataset, which is composed of 
particularly difficult-to-recognize lesions such as asymmetries 
and distortions. In addition, the use of the saliency maps makes 
the internal process of deep learning models transparent and 
encourages the integration of our model within a clinical deci-
sion support system. In fact, the gradient-free Eigen-CAM 
method highlights all the suspicious ROIs, also in incorrect 
prediction scenarios. For this reason, it represents the enhanced 
output of our model. The proposed model represents a trusted 
predictive system to support cognitive and decision-making and 
control processes in the clinical practice. In addition, the XAI 
results pave the way for a prospective study in which the diag-
nostic performance of physicians is evaluated with and without 
the support of both Yolo and Eigen-CAM outputs, using an 
external data cohort. This represents a step towards the integra-
tion of data-driven systems into real clinical practice.
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