
POLAR DECOMPOSITION AND FUNCTIONAL
CALCULUS FOR GENERALIZED TOMITA’S

OBSERVABLES

HIROSHI INOUE AND CAMILLO TRAPANI

Abstract. Continuing previous studies by one of us (HI), a polar
decomposition and a functional calculus for an unbounded Tomita’s
observable are studied. For both problems we distinguish two dif-
ferent cases dictated by commutation properties.

1. Introduction

The notion of Tomita’s observable algebra has recently been recov-
ered by Atsushi Inoue in [1]. Two types of observable have been consid-
ered: the first one consists of a quartet (A, x, y∗, µ) where A is a linear
operator in Hilbert space H, x ∈ H, y∗ is an element of the conjugate
dual spaceH∗ ofH and µ is an expectation; the second type is described
as a trio observable and it consists essentially of the triplet (A, x, y∗)
which appears in a quartet observable. The structure of families of
quartet observables Q∗(H) or trio observables T ∗(H) has been studied
in detail in the cited monograph, under the assumption that A is a
bounded operator in H. A trio observable (A, x, y∗) has also a physical
meaning since it describes, in a certain sense, a measurement process:
A represents a physical quantity, x and y are vector representing states
of the system and y∗ is nothing but the linear functional determined
by y, the ket |y〉 of the Dirac formalism. However the assumption that
the physical quantity A is represented by a bounded operator, is not
convenient since operators representing physical quantities are often
unbounded. For this reason the case when the operator A in a member
of some *-algebra of unbounded operators acting on a dense domain D
of Hilbert space has been considered in [2, 3, 4], where several proper-
ties of unbounded observable algebras have been obtained.

We do not go further in discussing the physical interpretation of
Tomita’s observables and we address our interest in the mathematics
which this notion entails in the same line as in [2, 3, 4]. This paper
is, in particular, devoted to the polar decomposition of an unbounded
Tomita’s observable and to the functional calculus constructed on an
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observable of this type. In the case of bounded Tomita’s observables
some results in this direction have been discussed in [1].

After some preliminaries and basic definitions, we envisage the prob-
lem of the polar decomposition of an unbounded trio observable, by
which we mean of course the possibility of expressing an unbounded
trio observable A as the product US of a partial isometry acting on
the dense domain D and of an unbounded observable S which is rea-
sonable to consider as the module |A| of A. We consider two different
situations (Sections 3.1 and Section 3.2) and we obtain the result for
hermitian elements A = A†. Section 4 is devoted to the construction
of a functional calculus for an unbounded trio observable. Also in this
case, we distinguish two different situations (Sections 3.1 and Section
3.2) determined by the commutation properties of the involved opera-
tors and under some convenient condition we construct an unbounded
trio observable f(A) associated to some continuous functions on the
half-line (0,∞) in such a way that f 7→ f(A) is a *-homomorphism
(or, even, a *-isomorphism) of *-algebras.

2. Preliminaris: T †-algebras and all that

In this section we summarize the main basic definitions and facts
concerning unbounded observables and T †-algebras.

Definition 2.1. Let D be a dense domain in Hilbert space H and
L†(D) the maximal O∗-algebra on D. An unbounded trio observable
(for short, observable) is a triplet (A0, ξ, η

∗) where A0 ∈ L†(D), ξ ∈ D
and η∗ ∈ D∗ = {ζ∗ ∈ H∗ : ζ ∈ D}. The set of unbounded trio
observables on D is denoted by T †(D).

The set T †(D) is a complex *-algebra without identity with respect
to the following operations:

A+B = (A0 +B0, ξ + ζ, η∗ + χ∗)

αA = (αA0, αξ, αη)

AB = (A0B0, A0ζ, (B
†
0η)

∗)

A† = (A†
0, η, ξ

∗),

where A = (A0, ξ, η
∗), B = (B0, ζ, χ

∗) and α ∈ C.

Definition 2.2. A *-subalgebra of the *-algebra T †(D) is called a trio
observable algebra on D, for simplicity, a T †-algebra on D. Let A be a
T †-algebra on D in H. If the O*-algebra π(A) on D is closed (resp. self-
adjoint, essentially self-adjoint, integrable), then A is called π-closed
(resp. π -self-adjoint, π-essentially self-adjoint, π-integrable).



POLAR DECOMPOSITION FOR UNBOUNDED OBSERVABLES 3

When D = H, a trio (A0, x, y
∗) with A0 ∈ B(H) and x, y ∈ H is

called a Tomita’s trio observable on H. The set T ∗(H) of all Tomita’s
trio observables on H is a Banach *-algebra without identity equipped
with the above algebraic operations and the norm ‖A‖ := max{‖A0‖, ‖x‖, ‖y‖}.
We denote the involution on T ∗(H) by A 7→ A], with A] = (A∗

0, η, ξ
∗),

to distinguish T ∗(H) from T †(D).
If A = (A0, ξ, η

∗) ∈ T †(D), we write

π(A) = A0, λ(A) = ξ, , λ∗(A) = η∗.

Then π is a (in general, unbounded) *-representation of T †(D) onto
L†(D) and λ is a linear map of T †(D) onto D, with

λ(AB) = π(A)λ(B), ∀A,B ∈ T †(D).

Similarly, λ∗ is a linear map of T †(D) onto D∗, satisfying

λ∗(A) = (λ(A†))∗, λ∗(AB) = (π(B)†λ(A†))∗, ∀A,B ∈ T †(D).

Let A be a π-self-adjoint T †-algebra on D in H. The commutant Ac

of A [2, Section 5] can be defined as

Ac = {K ∈ T ∗(H); π(K) ∈ π(A)′w, λ(K), λ(K]) ∈ D,
π(K)λ(A) = π(A)λ(K) and π(K)∗λ(A) = π(A)λ(K]), ∀A ∈ A}.

3. Polar decomposition of elements of T †(D)

To study the polar decomposition of a trio observable, we define the
following notions of absolute values of it as follows:

Definition 3.1. Let A be a T †-algebra on D in H. An element A of A
is said to be positive if A = B†B for some B of A, and A is said to be
π-positive if it is hermitian and π(A) is positive, that is, (π(A)ξ|ξ) = 0
for all ξ ∈ D.

Clearly, if A is positive, it is π-positive.

Definition 3.2. If A = B2 for some positive (resp. π-positive) ele-
ment B of A, then B is said to be the absolute value or root (resp.
π-absolute value or the π-root) of A and denoted by |A| or A 1

2 (resp.
|A|π or A

1
2
π ).

In this section, let A be a π-selfadjoint T †-algebra on D in H.
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3.1. The case K ηAc. By the symbol K ηAc we mean the following

Definition 3.3. We say that K ∈ T †(D) is affiliated with Ac if

(i) π(K) η π(A)′w;
(ii) π(K)λ(A) = π(A)λ(K) and π(K)†λ(A) = π(A)λ(K†), ∀A ∈

Ac.

In this case we write K ηAc. The set of all K ηAc will be denoted by
Ac

η.

Let K ηAc. As is known, if π(K) = UK |π(K)| is the polar decom-
position of π(K), then

π(K)∗ = |π(K)|U∗
K = U∗

KUK |π(K)|U∗
K = U∗

K |π(K)∗|

is a polar decomposition of π(K)∗.
Let us putK0 := |π(K)| = (π(K)∗π(K))1/2 and letK0 =

∫∞
0
tdEK(t)

be its spectral decomposition. Then, from K0 η π(A)
′
w it follows that

UK , U
∗
K ∈ π(A)′w and EK(t) ∈ π(A)′w for all t ∈ (0,∞).

Moreover, if ξ ∈ D ⊂ D(K0), putting EK(n) = EK(−n, n), we
obtain K0EK(n)ξ → K0ξ and π(A)K0EK(n)ξ = K0EK(n)π(A)ξ →
K0π(A)ξ, for every A ∈ A. Hence, we have K0ξ ∈

⋂
A∈AD(π(A)) = D.

Hence

(3.1) K0D ⊂ D.

Similarly, if we put H0 = |π(K)∗|, we get H0D ⊂ D.
Let us define

K0̃ := (K0�D, U
∗
Kλ(K), (U∗

Kλ(K))∗)

H0̃ := (H0�D, UKλ(H), (UKλ(H))∗).

In what follows, we will write K0 instead of K0�D and H0 instead of
H0�D. Since K0, H0 ∈ L†(D), K0̃ and H0̃ belong to T †(D). Moreover,

Lemma 3.4.

K0̃ ∈ Ac
η, (K0̃ )

† = K0̃ and (K0̃ )
2 = K†K

H0̃ ∈ Ac
η, (H0̃ )

† = H0̃ and (H0̃ )
2 = KK†
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Proof. Clearly, π(K0̃ ) = K0 ∈ π(A)′w. Moreover, for every A ∈ A, we
have

π(K0̃ )λ(A) = K0λ(A)

= U∗
KUKK0λ(A)

= U∗
Kπ(K)λ(A) since K0 = π(K)

= U∗
Kπ(A)λ(K)

= π(A)U∗
Kλ(K)

= π(A)λ(K0̃ ) by definition of K0̃ ;

π(K0̃ )
†λ(A) = π(K0̃ )λ(A)

= π(A)λ(K0̃ )

= π(A)λ(K0̃
†
).

From these equalities we deduce that K0̃ ∈ Ac
η. Moreover (K0̃ )

† = K0̃

clearly and

(K0̃ )
2 = (K2

0 , K0U
∗
Kλ(K), (K0U

∗
Kλ(K))∗)

= (π(K)†π(K), π(K)†λ(K), (π(K)†λ(K))∗) = K†K.

The proof for H0̃ is similar. �

Lemma 3.4 shows that K0̃ and H0̃ are π-positive and they are the
π-absolute values of K and K†, respectively, so we can write

|K|π = (|π(K)|, U∗
Kλ(K), (U∗

Kλ(K))∗)(3.2)
|K†|π = (|π(K)∗|, U∗

Kλ(K
†), (U∗

Kλ(K
†))∗).

It is natural to ask if |K|π is positive, i.e., there exists a hermitian
element S of Ac

η with π(S) = |π(K)| 12 dD. In Theorem 3.8 below we
shall show this is true if π(K) is invertible, that is, it has a bounded
inverse. In general, this does not necessarily hold.

The next step consists in considering the polar decomposition of
a hermitian K. For this purpose, we first define the product of an
operator A0 ∈ L†(D) and X = (π(X), λ(X), λ(X†)∗) ∈ T †(D). We put

A0X = (A0π(X), A0λ(X), (A0λ(X
†))∗).

Then A0X ∈ T †(D) and T †(D) is a left-module over L†(D).
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We also put
PK = UKU

∗
K and PK† = U∗

KUK .

Then PK is the projection onto the closure of the range R(π(K)) of
π(K). Similarly, PK† is the projection onto the closure of the range
R(π(K)∗) of π(K)∗.

Taking into account the above mentioned facts and notations, we
have

UK |K|π = (π(K), PKλ(K), (PKλ(K))∗).

We now prove the following
Lemma 3.5. Let K = K†. Then UK |K|π ηAc

Proof. Since π(UK |K|π) = π(K) we clearly have π(UK |K|π) η π(A)′w.
Moreover

π(UK |K|π)λ(A) = π(K)λ(A)

= PKπ(K)λ(A)

= PKπ(A)λ(K)

= π(A)PKλ(K)

= π(A)λ(UK |K|π).

If K = K†, then (UK |K|π)† = UK |K|π; in this case the preceding series
of equalities also implies that π(UK |K|π)† = π(A)λ((UK |K|π)†). Hence,
UK |K|π ∈ Ac

η. �

Remark 3.6. If K 6= K†, we have
π(UK |K|π)†λ(A) = π(K)†λ(A)

= PK†π(K)†λ(A)

= π(A)PK†λ(K†)

= π(A)λ(U∗
K |K†|π)

6= π(A)λ((UK |K|π)†), in general.

Lemma 3.7. Let K ∈ T †(D) with K ηAc. Suppose that A is non-
degenerate, that is, the linear span [π(A)D] of π(A)D is dense in H.
Then

PKλ(K) = λ(K) and PK†λ(K†) = λ(K†).

Proof. For every A ∈ A,
π(A)PKλ(K) = PKπ(K)λ(A) = π(K)λ(A) = π(A)λ(K).

The density of [π(A)D] then implies that PKλ(K) = λ(K).
The proof of the equality PK†λ(K†) = λ(K†) is similar. �
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The next theorem establishes the polar decomposition of an hermit-
ian element K.

Theorem 3.8. Let K be a hermitian element of Ac
η which is affialiated

with Ac. Then we have the following
(i) Suppose that A is nondegenerate. Then

(3.3) K = UK |K|π.

(ii) Suppose that π(K) is invertible. Then |K|π is the absolute value
of K, that is |K|π = |K| and

(3.4) K = UK |K|.
The equalities (3.3) and (3.4) are called the π-polar decomposition and
the polar decomposition of K, respectively.

Proof. (i) This follows easily from Lemma 3.5 and Lemma 3.7.
(ii) In the same way as (3.1) we can show

(3.5) |π(K)
1
2 |D ⊂ D.

Since π(K) is invertible, |π(K)|, |π(K)| 12 , π(K)∗, |π(K)∗| and |π(K)∗| 12
are invertible, and U∗

KUK = UKU
∗
K = I, which implies by (3.3) that

|π(K)| 12 η π(A)′w and

π(A)|π(K)|−
1
2U∗

Kλ(K) = |π(K)|−
1
2U∗

Kπ(K)λ(A)

= |π(K)|−
1
2 |π(K)|λ(A)

= |π(K)|−
1
2λ(A)

for all A ∈ A, so that, putting

S := (|π(K)|
1
2 dD, |π(K)|−

1
2U∗

Kλ(K), (|π(K)|−
1
2U∗

Kλ(K))∗)

we get
S ∈ Ac

η

and S2 = (|π(K)|, U∗
Kλ(K), (U∗

Kλ(K))∗)

= |K|π.
Hence |K|π is positive, so |K|π = |K| and K = UK |K|. This completes
the proof. �

Remark 3.9. If K is not hermitian,
UK |K|π = (π(K), PKλ(K)), (PKλ(K))∗) 6∈ Ac

η,

in general, and even if A is nondegenerate,
UK |K|π = (π(K), λ(K)), λ(K)∗) 6= (π(K), λ(K)), λ(K†)∗) = K.
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Theorem 3.10. Let K ∈ T †(D) be affialiated with Ac. Let us put

Ks := (π(K), PKλ(K), (PK†λ(K†))†),

Kn := (0, (I − PK)λ(K), ((I − PK†)λ(K†))†).

Then Ks, Kn ∈ Ac
η and K = Ks +Kn.

Proof. We have π(Ks) = π(K) ∈ π(A)′w and, for every A ∈ A,

π(Ks)λ(A) = π(K)λ(A)

= UKU
∗
Kπ(K)λ(A)

= π(A)PKλ(K)

= π(A)λ(Ks).

and

π(Ks)
†λ(A) = π(K)†λ(A)

= U∗
KUKπ(K)†λ(A)

= π(A)PK†λ(K†)

= π(A)λK†
s).

This implies that Ks is affiliated with Ac; i.e., Ks ∈ Ac
η.

On the other hand, π(Kn) = 0 ∈ π(A)′w, obviously, and, for every
A ∈ A

π(A)λ(Kn) = π(A)(I − PK)λ(K)

= (I − PK)π(K)λ(A)

= 0

= π(Kn)λ(A).

and

π(A)λ(K†
n) = π(A)(I − PK†)λ(K†)

= (I − PK†)π(K†)λ(A)

= 0

= π(K†
n)λ(A).

This implies that Kn ∈ Ac
η. It is evident that K = Ks + Kn. This

completes the proof. �
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We will call Ks the semisimple part of K and Kn the nilpotent part
of K. Moreover if K = Ks then K is called semisimple and in K = Kn,
then K is called nilpotent.

By Theorem 3.10 and Lemma 3.7 we get the following

Proposition 3.11. Let K ∈ Ac
η. If A is nondegenerate, then K is

semisimple.

3.2. The case of A ∈ Acs. Let A be a π-selfadjoint T †-algebra on D.
We denote by Acs the following bicommutant

Acs = {A ∈ T †(D) : AK = KA, ∀K ∈ Ac}.

Since A ⊂ Acs, Acs is a π-selfadjoint T†-algebra on D in H. Further-
more, since π(Ac) ⊂ π(A)′w we also have (π(A)′w)

′ ⊂ π(Ac)′, where
denotes the usual commutant of the *-algebra of bounded operators.
In this subsection we will consider the polar decomposition, semisim-
plicity and nilpotentness for an element A ∈ Acs.

Let A ∈ Acs and suppose that π(A) is affiliated with π(Ac)′ and let
π(A) = UA|π(A)| be its polar decomposition. Then

(3.6) UA ∈ π(Ac)′ and |π(A)| η π(Ac)′.

We notice that the inclusions

UAD ⊂ D, |π(A)|D ⊂ D

are not necessarily true. For this reason, throughout this subsection
we will consider elements A ∈ Acs with the property UA ∈ L†(D).

Lemma 3.12. Let us put

|π(A)|̃ := (|π(A)|�D, U∗
Aλ(A), (U

∗
Aλ(A))

∗).

Then,

|π(A)|̃ ∈ Acs and (|π(A)|̃ )2 = π(A)†π(A).

Proof. For simplicity we write |π(A)| instead of |π(A)|�D.
Since UA ∈ L†(D), we have |π(A)|ξ = U∗

Aπ(A)ξ ∈ D for every ξ ∈ D;
i.e., |π(A)|D ⊂ D. Thus |π(A)|̃ ∈ T †(D). We shall show that |π(A)|̃ ∈
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Acs. This follows from

K|π(A)|̃ = (π(K)|π(A)|, π(K)U∗
Aλ(A), (|π(A)|λ(K†))∗)

= (|π(A)|π(K), U∗
Aπ(A)λ(K), (U∗

Aπ(A)λ(K
†))∗)

= (|π(A)|π(K), U∗
AUA|π(A)|λ(K), (U∗

Aπ(K)†λ(A))∗)

= (|π(A)|π(K), |π(A)|λ(K), (π(K)†U∗
Aλ(A))

∗)

= |π(A)|̃K, ∀K ∈ Ac.

Moreover, we have

(|π(A)|̃ )2 = (|π(A)|2, |π(A)|U∗
Aλ(A), (|π(A)|U∗

Aλ(A))
∗)

= (π(A)†π(A), π(A)†λ(A), π(A)†λ(A))∗) = A†A

This completes the proof. �

By Lemma 3.12, it appears natural to define |π(A)|̃ as |A|π.

Let us now put PA = UAU
∗
A and PA† = U∗

AUA. Then PA is the
projection onto the closure of the range R(π(A)) of π(A). Similarly,
PA† is the projection onto the closure of the range R(π(A)∗) of π(A)∗.
Then we have

UA|A|π = (UA|π(A)|, UAU
∗
Aλ(A), (U

∗
AUAλ(A

†))∗)

= (π(A)†, PAλ(A
†), (PAλ(A

†))∗)

and

U∗
A|A|π = (π(A)†, U∗

AUAλ(A
†), (U∗

AUAλ(A
†))∗)

= (π(A)†, PA†λ(A†), (PA†λ(A†))∗)

but they are not necessarily contained in Acs. Indeed, for any K ∈ Ac,
we have

UA|A|πK = (π(A)π(K), π(A)λ(K), (π(K)†PAλ(A))
∗)(3.7)

= (π(K)π(A), π(A)λ(K), (π(A)λ(K†))∗);

but, on the other hand,

KUA|A|π = (π(K)π(A), π(K)PAλ(A), (π(A)
†λ(K†))∗)(3.8)

= (π(K)π(A), π(A)λ(K), (π(A)†λ(K†))∗),

but π(A)λ(K†) 6= (π(A)†λ(K†) unless A is hermitian.
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Theorem 3.13. If A is hermitian and UA ∈ L†(D), then
UA|A|π = (π(A), PAλ(A), (PAλ(A))

∗) ∈ Acs.

In addition, if Ac is nondegenerate (i.e., [π(Ac)H] is dense in H), then
(3.9) A = UA|A|π
Proof. Let A be hermitian. Then, by (3.9) and (3.8), (UA|A|π)K =
K(UA|A|π) for every K ∈ Ac: Hence, UA|A|π ∈ Acs. Assume now that
Ac is nondegenerate. Then as shown in Lemma 3.7, we have

π(K)PAλ(A) = π(K)λ(A), ∀K ∈ Ac.

Since [π(Ac)H] is dense in H, it follows that PAλ(A) = λ(A). This
completes the proof. �

The equality in (3.9), A = UA|A|π, is called the π-polar decomposition
of A.

Remark 3.14. If A is nonhermitian, even if Ac is nondegenerate, we
may have

UA|A|π = (π(A), λ(A), λ(A)∗) 6= A.

For example, letM be a self-adjoint O∗-algebra on D inH with a cyclic
and separating vector ξ0. ξ0 ∈ D is called cyclic (resp. separating) for
M if Mξ0 (resp. M′

wξ0) is dense in H. Then we can define a π-self-
adjoint T †-algebra A on D in H by

A = {A := (A0, A0ξ0, (A0ξ0)
∗); A0 ∈ M}.

Since ξ0 is cyclic for M, we have
Ac = {(C,Cξ0, (C∗ξ0)

∗); C ∈ M′
w},

which implies by separateness of ξ0 that for A,B ∈ A

A = B if and only if π(A) = π(B)

if and only if λ(A) = λ(B).

Hence if A is not a hermitian element of A, then A 6= UA|A|π.

As in Theorem 3.10 and Proposition 3.11, we can show that every
A ∈ Acs can be decomposed into a semisimple part As and a nilpotent
part An.

Theorem 3.15. Let A ∈ Acs. Suppose that UA ∈ L†(D) and put
As := (π(A), PAλ(A), (PA†λ(A†))†),

An := (0, (I − PA)λ(A), ((I − PA†)λ(A†))†).

Then As, An ∈ Acs and A = As + An.
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As is called the semisimple part of A and An is called the nilpotent
part of A. Furthermore, If A = As, then A is called semisimple and if
A = An then A is called nilpotent.

Even if A is hermitian and A = UA|A|π, |A|π need not be positive;
in fact, the inclusion |π(A)| 12D ⊂ D also does not hold, in general.
So, we shall consider when the polar decomposition A = UA|A| of A
is possible. Let now A = A† ∈ T †(D). Let π(A) = UA|π(A)| be
the polar decomposition of π(A) and let |π(A)| =

∫∞
0
tdEA(t) be the

spectral resolution of |π(A)|. Let us denote by P(A) the T †-algebra
on D generated by A. We suppose that P(A) is π-closed (otherwise,
replace D with D̃ :=

⋂
A∈P(A)D(π(A))).

The following equalities are clear
P(π(A))′w = {π(A)}′w; P(A)c = {A}c.

But P(A) is not necessarily π-self-adjoint. By [6, Lemma 3.2] we know
that {π(P(A))}′w is a von Neumann algebra on H if, and only if, π(A)
is essentially self-adjoint. Moreover, from [5, Theorem 2.1], we know
that the following statements are equivalent

(i) P(π(A)) is self-adjoint;
(ii) π(An) is essentially self-adjoint, for every n ∈ N;
(iii) {π(A)}′w is a von Neumann algebra and {π(A)}′wD ⊂ D.

Then
{UA, {EA(t); t ∈ (0,∞)}}′′ = ({π(A)}′w)′ ⊂ {π(A)}′w.

Hence,
(3.10) {UA, {EA(t); t ∈ (0,∞)}′′D ⊂ {π(A)}′wD ⊂ D.
Now we have the following

Theorem 3.16. Let A = A† ∈ T †(D). Suppose that π(A) is invertible
and π(An) is essentially self-adjoint for every n ∈ N. Then |A|π is
positive and the polar decomposition A = UA|A| of A holds.

Proof. By (3.10) UA ∈ L†(D) and PA = I because π(A) is invert-
ible, which implies by Theorem 3.13 that A = UA|A|π. Moreover,
|π(A)| 12D ⊂ D and |π(A)|− 1

2D ⊂ D by (3.10). Putting

X := (|π(A)|
1
2 dD, |π(A)|−

1
2UAλ(A), (|π(A)|−

1
2UAλ(A))

∗),

we can show that X = X† ∈ P(A)cs and X2 = X. Hence |A|π is
positive and A = UA|A|. This completes the proof. �

Finally we show that every A ∈ T †(D) can be decomposed into a
semisimple part As and a nilpotent part An in P(A)cs.
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Corollary 3.17. Let A† = A ∈ T †(D) and suppose that π(An) is
essentially self-adjoint, for every n ∈ N. Put

As := (π(A), (I − EA(0))λ(A), ((I − EA(0))λ(A))
∗),

An := (0, EA(0)λ(A), (EA(0)λ(A))
∗).

Then As, An ∈ P(A)cs and A = As+An. In particular, if Ker(π(A)) =
{0}, then A is semisimple and has the polar decomposition A = UA|A|.

Proof. P(A) is π-self-adjoint and by (3.10) UA ∈ L†(D) and PA =

UAU
∗
A = I−EA(0), being the projection onto Ker (π(A)), which implies

that As, An ∈ P(A)cs. Thus, the statement follows from Theorem 3.13
and 3.15. �

4. Functional calculus

In this section we will study the functional calculus for an unbounded
trio observable and consider a density theorem for T †-algebras.

4.1. Case K ηAc. Let π(K) = UK |π(K)| = |π(K)∗|UK be the polar
decomposition of π(K) and |π(K)| =

∫∞
0
tdEK(t) be the spectral res-

olution of |π(K)|. We put K0 := |π(K)| and H0 := |π(K)∗| for short.
We recall that, by (3.2), the absolute value of K is defined as

|K|π = (|π(K)|, U∗
Kλ(K), (U∗

Kλ(K))∗).

First we will consider the functional calculus for |K|π.
We put

CK
λ (0,∞) :=

{
f ∈ C(0,∞) :

∫ ∞

0

|f(t)|2d‖EK(t)ξ‖2 <∞

and
∫ ∞

0

|f(t)|2

t2
d‖EK(t)ξ‖2 <∞

}
= {f ∈ C(0,∞) : D(f(K0)) ⊃ D and D((f−1

0 f)(K0)) ⊃ D}
where f0(t) = t, t ∈ (0,∞).

For every f ∈ CK
λ (0,∞) we have

(4.1) f(K0)D ⊂ D and (f−1
0 f)(K0)U

∗
KD ⊂ D.

Indeed, since f(K0) η {π(A)}′w, Ek(n) ∈ {π(A)}′w, for every ξ ∈ D we
have,

f(K0)Ek(n)ξ =

∫ n

0

f(y)dEK(t)ξ → f(K0)ξ

and
π(A)f(K0)Ek(n)ξ = f(K0)Ek(n)π(A)ξ → f(K0)π(A)ξ
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for all A ∈ A. Hence, f(K0) ∈
⋂

A∈AD(π(A)) = D. Thus, f(K0)D ⊂
D.
In very similar way, taking into account that D ⊂ D((f−1

0 f)(K0)) we
prove that (f−1

0 f)(K0)U
∗
KD ⊂ D.

Now we put,
(4.2)
f(|K|π) := (f(K0), (f

−1
0 f)(K0)U

∗
Kλ(K), ((f−1

0 f)(K0)
∗U∗

Kλ(K))∗).

Then we have the following

Lemma 4.1. f(|K|π) ηAc for every f ∈ CK
λ (0,∞).

Proof. By (4.1), we have f(|K|π) ∈ T †(D) and furthermore π(f(|K|)) =
f(K0) η π(A)

′
w. For every A ∈ A, we have

π(f(|K|π))λ(A) = f(K0)λ(A)

= (f−1
0 f)(K0)K0λ(A)

= (f−1
0 f)(K0)U

∗
Kπ(K)λ(A)

= (f−1
0 f)(K0)U

∗
Kπ(A)λ(K)

= π(A)(f−1
0 f)(K0)U

∗
Kλ(K)

= π(A)λ(f(|K|π)).

Similarly,

π(f(|K|π))†λ(A) = f(K0)λ(A)

= (f−1
0 f)(K0)U

∗
Kλ(K)

= π(A)λ(f(|K|†π)).

Hence, f(|K|π) ηAc. �

Lemma 4.2. CK
λ (0,∞) is a *-subalgebra of C(0,∞).

Proof. Let f, g ∈ CK
λ (0,∞) and α ∈ C. It is clear that f + g, αf, f ∗ =

f ∈ CK
λ (0,∞). We show that fg ∈ CK

λ (0,∞).
For every ξ ∈ D,

(fg)(K0)ξ = f(K0)g(K0)ξ.

By (4.1), g(K0)ξ ∈ D.
Thus, g(K0)ξ ∈ D(f(|K|π)) and f(K0)g(K0)ξ ∈ D. �

By Lemma 4.1 and Lemma 4.2 we have the following theorem which
establishes the functional calculus for |K|π.
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Theorem 4.3. Let K ∈ Ac
η. There exists a map

f ∈ CK
λ (0,∞) → f(|K|π) ∈ Ac

η

with the properties

(f + g)(|K|π) = f(|K|π) + g(|K|π)
(αf)(|K|π) = αf(|K|π),
(fg)(|K|π) = f(|K|π)g(|K|π),
f ∗(|K|π) = f̄(|K|π),

for every f, g ∈ CK
λ (0,∞), α ∈ C.

Remark 4.4. In other words, the map f ∈ CK
λ (0,∞) → f(|K|π) ∈ Ac

η

is a *-homomorphism.

Let us now denote by Cc(0,∞) the set of all continuous functions on
(0,∞) with compact support.

For every K ηAc, Cc(0,∞) is a *-subalgebra of CK
λ (0,∞). Thus,

using (4.2), we define

Cc(|K|π) = {f(|K|π); f ∈ Cc(0,∞)}.

The functional calculus of |K|π when restricted to Cc(0,∞) exhibits
more regularity.

Theorem 4.5. Suppose that K ηAc. Then
(i) Cc(|K|π) is a commutative *-subalgebra of Ac and the map f ∈

Cc(0,∞) → f(|K|π) ∈ Cc(|K|π) is a *-isomorphism.
(ii) For f ∈ Cc(0,∞), Kf(|K|π) ∈ Ac and∣∣〈λ(Kf(|K|π)f(|K|π)†)† | λ((K)†)

〉∣∣ = ‖f(K0)λ(K
†)‖2.

Proof. (i) Let f ∈ Cc(0,∞). Since f(K0) ∈ π(A)′w, it follows from
Theorem 4.3 that f(|K|π) ∈ Ac and since Cc(0,∞) is a *-subalgebra of
CK

λ (0,∞), it follows from Theorem 4.3 that the map f ∈ Cc(0,∞) →
f(|K|π) ∈ Cc(|K|π) is a *-isomorphism.

(ii) For K ∈ Ac we have

Kf(|K|π) = (π(K)f(K0), π(K)(f−1
0 f)(K0)U

∗
Kλ(K), (f(K0)λ(K

†))∗)

= (UKK0f(K0), UKK0(f
−1
0 f)(K0)U

∗
Kλ(K), (f(K0)λ(K

†))∗)

= (UKK0f(K0), UKf(K0)U
∗
Kλ(K), (f(K0)λ(K

†))∗)

which implies that Kf(|K|π) ∈ T †(D).
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For every A ∈ A we have

A(Kf(|K|π)) =
= (π(A)π(K)f(K0), π(A)π(K)(f−1

0 f)(K0)U
∗
Kλ(K), ((π(K)f(K0))

∗λ(A†))∗)

= (π(K)f(K0)π(A), UKf(K0)U
∗
Kπ(K)λ(A), (f(K0)π(K)∗λ(A†))∗)

= (π(K)f(K0)π(A), UKf(K0)U
∗
KUKK0λ(A), (f(K0)π(A)

†λ(K†))∗)

= (π(K)f(K0)π(A), UKf(K0)K0λ(A), (π(A)
†f(K0)λ(K

†))∗)

= (π(K)f(K0)π(A), UKK0f(K0)λ(A), (π(A)
†f(K0)λ(K

†))∗)

= (π(K)f(K0)π(A), π(K)f(K0)λ(A), (π(A)
†f(K0)λ(K

†))∗)

= (Kf(|K|π))A.

Thus we have Kf(|K|π) ∈ Ac and

λ(Kf(|K|π)) = Ukf(K0)U
∗
Kλ(K), λ(Kf(|K|π)†) = f(K0)λ(K

†).

Moreover we have

|
〈
λ(Kf(|K|π)f(|K|π)†)† | λ((K)†)

〉
| = |

〈
λ(f(|K|π)†) | λ(K†〉 |

= |
〈
π(f(|K|π))λ(Kf(|K|π)†) | λ(K†〉 |

= |
〈
f(K0)f(K0)λ(K

†) | λ(K†〉 |
= ‖f(K0)λ(K

†)‖2.

�

Theorem 4.6. Let A be a nondegenerate π-self-adjoint T †-algebra on D
in H. Then, for every K ∈ Ac there exists a sequence {Kn} ⊂ Cc(|K|π)
such that KK2

n ∈ Ac τs∗→ K, in the following sense:

π(KK2
n) → π(K) strongly,

π((KK2
n)

†) → π(K†) strongly,

λ(KK2
n) → λ(K),

λ((KK2
n)

†) → λ(K†).

Proof. We will show that, if f ∈ Cc(0,∞),

(4.3) UKf(K0) = f(H0)UK .

Indeed, by Weierstrass approximation theorem, there exists a sequence
{pn} of polynomials such that pn → f , uniformly. Since UKK0 = H0UK

it follows that UKpn(K0) = pn(H0)UK and UKpn(K0) → UKf(K0),
pn(H0)UK → f(H0)UK uniformly (i.e., in the norm of bounded opera-
tors).
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Let us now consider an increasing sequence {fn} of nonnegative func-
tions in Cc(0,∞) such that limn→∞ f 2

n(t) = 1, 0 < t <∞. We put

Kn := fn(|K|π) = (fn(K0), (f
−1
0 fn)(K0)U

∗
Kλ(K), ((f−1

0 fn)(K0)
∗U∗

K), n ∈ N.

By Theorem 4.5,

(4.4) Kn ∈ Cc(|K|π) and KKn ∈ Ac.

By (4.3) and (4.4) we get, for all n ∈ N,

π(KK2
n) = π(K)π(K2

n)

= H0UKf
2
n(K0)

= H0f
2
n(K0)UK

= f 2
n(H0)H0UK .

We have f 2
n(K0) → QK and f 2

n(H0) → QH , where QK and QH denote
the projections onto the R(K0) and R(H0), respectively. From this we
obtain

π(KK2
n) → QHH0UK = H0UK = π(K).

and

π((KK2
n)

†) = π(K2
n)π(K)† = fn(K

2
0)K0U

∗
K →

QKK0U
∗
K = K0U

∗
K = π(K)† = π(K†).

Now we prove that

λ(KK2
n) = UKfn(K0)

2U∗
Kλ(K) → UKQ

KU∗
Kλ(K) = λ(K).

Indeed, for every A ∈ A, we have

π(A)UKQ
KU∗

Kλ(K) = UKQ
KU∗

Kπ(K)λ(A)

= UKQ
KU∗

KUKK0λ(A)

= UKQ
KK0λ(A)

= π(K)λ(A)

= π(A)λ(K).

Since [π(A)D] is dense in H, UKQ
KU∗

Kλ(K) = λ(K). Finally, we prove
that

λ((KK2
n)

†) = fn(K0)
2λ(K†) → λ(K†).
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Indeed, since fn(K0)
2λ(K†) → QKλ(K†), it suffices to showQKλ(K†) =

λ(K†). For every A ∈ A, we have

π(A)QKλ(K†) = QKπ(K†)λ(A)

= QKK0U
∗
Kλ(A)

= K0U
∗
Kλ(A)

= π(K†)λ(A)

= π(A)λ(K†).

Again, since [π(A)D] is dense in H, we get

QKλ(K†) = λ(K†).

In conclusion, KK2
n ∈ Ac τs∗→ K. �

4.2. The case of A ∈ Acs. Let A be a π-self-adjoint T †-algebra on
D. We consider here a functional calculus for A ∈ Acs. Let π(A) =

UA|π(A)| be the polar decomposition of π(A) and A0 := |π(A)| =∫∞
0
tdEA(t) be the spectral resolution of |π(A)|. Then {UA, EA(t); t ∈

(0,∞)} ⊂ (π(A)′w)
′ but, in general, they are not contained in L†(D).

In what follows we will assume that

(4.5) (π(A)′w)
′D ⊂ D.

Then {UA, EA(t); t ∈ (0,∞)} ⊂ L†(D). Furthermore, since f(A0) ∈
(π(A)′w)

′, for every f ∈ Cc(0,∞) then, by (4.5), f(A0)D ⊂ D. Hence

f(|A|π) := (f(A0), (f
−1
0 f)(A0)U

∗
Aλ(A), (f(A0)U

∗
Aλ(A))

∗) ∈ T †(D)

and

(4.6) π(f(|A|π)) = f(A0) ∈ (π(A)′w)
′.

Lemma 4.7. For every f ∈ Cc(0,∞),

f(|A|π), Af(|A|π) ∈ Acs.

Proof.

Kf(|A|π) = (π(K)f(A0), π(K)(f−1
0 f)(A0)U

∗
Aλ(A), (f(A0)λ(K

†))∗)

= (π(K)f(A0), (f
−1
0 f)(A0)U

∗
Aπ(A)λ(K), (f(A0)λ(K

†))∗)

= (π(K)f(A0), (f
−1
0 f)(A0)A0λ(K), (f(A0)λ(K

†))∗)

= (π(K)f(A0), f(A0)λ(K), (f(A0)λ(K
†))∗);
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f(|A|π)K = (f(A0)π(K), f(A0)λ(K), (π(K)†f(A0)U
∗
Aλ(K

†))∗)

= (f(A0)π(K), f(A0)λ(K), (f(A0)U
∗
Aπ(A)λ(K

†))∗)

= (f(A0)π(K), f(A0)λ(K), (f(A0)λ(K
†))∗).

Therefore, f(|A|π) ∈ Acs. The proof for Af(|A|π) is similar. �

We put
Cc(|A|π) := {f(|A|π); f ∈ Cc(0,∞)}.

By Lemma 4.7, Cc(|A|π) is a *-subalgebra of Acs.
Moreover, we have

Theorem 4.8. Let A be a π-self-adjoint T †-algebra on D inH. Suppose
that (π(A)′w)′D ⊂ D and that π(Ac) is nondegenerate. Then,

(i) For every A ∈ Acs the map f ∈ Cc(0,∞) → f(|A|π) ∈ Cc(|A|π)
is a *-isomorphism.

(ii) For every A ∈ Acs there exists a sequence {An} ⊂ Acc such that
An

τs∗→ A.

Proof. (i) can be proved as in Theorem 4.5. (ii) We take, similarly
to what we did in Theorem 4.6, an increasing non negative sequence
{fn} ⊂ Cc(0,∞) such that limn→∞ f 2

n(t) = 1, 0 < t < ∞ and, in the
very same way as in Theorem 4.6, we prove that Afn(|A|π) ∈ Acc and
Afn(|A|π)

τs∗→ A. �

Now we consider a functional calculus of A ∈ Acs for the following
subspace CA

λ (0,∞) of C(0,∞) We put

CA
λ (0,∞) :=

{
f ∈ C(0,∞) :

∫ ∞

0

|f(t)|2d‖EA(t)ξ‖2 <∞

and
∫ ∞

0

|f(t)|2

t2
d‖EA(t)ξ‖2 <∞

}
.

By Lemma 3.12, |A|π = (A0, U
∗
Aλ(A), (U

∗
Aλ(A))

∗) ∈ Acs; but, differ-
ently from the case K ∈ Ac, the inclusion f(A0)D ⊂ D does not
necessarily hold. We have the following

Theorem 4.9. Let A be a π-self-adjoint T †-algebra on D. Suppose
that (π(A)′w)′D ⊂ D, π(Ac) is nondegenerate and π(Ac

η) is closed; i.e.,
D =

⋂
K∈Ac

η
D(π(K)). If A ∈ Acs, then

f(|A|π) := (f(A0), (f
−1
0 f)(A0)U

∗
Aλ(A), (f(A0)U

∗
Aλ(A))

∗) ∈ Acs, f ∈ CA
λ (0,∞)

Proof. We prove that f(A0)D ⊂ D and that f(|A)) ∈ T †(D), for ev-
ery f ∈ CA

λ (0,∞). If K ∈ Ac
η and ξ ∈ D, we have f(A0)EA(n)ξ ∈
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(π(A)′w)
′D ⊂ D and f(A0)EA(n)ξ → f(A0)ξ; π(K)f(A0)EA(n)ξ =

f(A0)EA(n)π(K)ξ → f(A0)π(K)ξ. This implies that

f(A0)ξ ∈
⋂

K∈Ac
η

D(π(K)) = D.

Hence, f(A0)D ⊂ D and f(|A|) ∈ T †(D); as in Lemma 4.7 we can
prove that in fact f(|A|π) ∈ Acs and, in the same way as in Theorem
4.3, that f ∈ CA

λ (0,∞) → f(|A|π) ∈ Acs is a *-isomorphism. �

For A = A† ∈ T †(D), we get the following

Corollary 4.10. Let A = A† ∈ T †(D). Let us denote by P(A) the
π-closed T †- algebra generated by A. Assume that

(i) π(A)n is essentially self-adjoint, for every n ∈ N;
(ii) π(A) is nonsingular; i.e., [π(A)D] is dense in H.

Then, f(|A|π) ∈ P(A)cs, for every f ∈ CA
λ (0,∞) and the map f ∈

CA
λ (0,∞) → f(|A|π) ∈ P(A)cs is a *-isomorphism.

Proof. By (i) P(A) is a π-self-adjoint T †-algebra on D and (P(A)′w)
′ ⊂

P(A)′w; this implies that that (P(A)′w)
′D ⊂ D. Furthermore from the

inclusion P(A) ⊂ P(A)cη it follows that P(A)cη is π-closed. For every
n ∈ N, we put

An = (π(A)EA(n), λ(A), λ(A)
∗).

Then, An ∈ P(A)c and π(An)ξ = π(A)EA(n)ξ → π(A)ξ. By the as-
sumption (ii) it follows that π(P(A)c) is nondegenerate. The statement
then follows from Theorem 4.9. �

5. Examples

Example 5.1. Let M be a self-adjoint O∗-algebra on D in H with
identity I and ξ0 6= 0 ∈ D. We define a π-self-adjoint T †-algebra A on
D in H by

A = {X = (X0, X0ξ0, (X
†
0ξ0)

∗); X0 ∈ M}.

Then it is easily shown that

Ac = {C = (C0, C0ξ0, (C
∗
0ξ0)

∗); C0 ∈ M′
w},

Ac
η = {K = (K0, K0ξ0, (K

†
0ξ0)

∗); K̄0 ηM′
w},

Acs = {A = (A0, A0ξ0, (A
†
0ξ0)

∗); A0 ∈ (M′
w)

s}.

(1) Let K = K† ∈ Ac
η. Then

|K|π = (|K̄0|dD, |K̄0|ξ0, (|K̄0|ξ0)∗)
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and
K = UK |K|π.

Furthermore, putting

S := (|K̄0|
1
2 dD, |K̄0|

1
2 ξ0, (|K̄0|

1
2 ξ0)

∗),

S ∈ Ac
η and S2 = |K|π. Hence |K|π is positive, so K = UK |K|.

(2) Let A = A† ∈ Acs. Suppose that An
0 is essentially self-adjoint

for all n ∈ N. By (3.10), UAdD, |Ā0|dD, |Ā0|
1
2 dD∈ L†(D), so

|A|π = (|Ā0|dD, |Ā0|ξ0, (|Ā0|ξ0)∗)
= (|Ā0|

1
2 dD, |Ā0|

1
2 ξ0, (|Ā0|

1
2 ξ0)

∗)2

= |A|
and A = UA|A|. This shows that Theorem 3.8 for K = K† ηAc

η

and Theorem 3.16 for A = A† ∈ Acs hold without assumption
of the invertivility of π(K) and π(A).

Example 5.2. [2, Example 2] Let S := S(R) denote the Schwartz
space of all C∞ rapidly decreasing functions. It is well known that the
operators q and p defined for φ ∈ S by

(qφ)(t) = tφ(t),

(pφ)(t) = −idφ
dt

leave S invariant, are essentially self-adjoint on S and satisfy the Canon-
ical Commutation Relation (CCR) qpφ − pqφ = iφ; this implies that
the self-adjoint O*-algebra MS that they generate on S is constituted
by elements of the form

a =
N∑
k=0

M∑
h=0

αknq
kph.

Here we treat with the following π-self-adjoint T †-algebras A(1), A(2)

and A(3) on S:
A(1) = {(a, ϕ, ψ∗); a ∈ MS , ϕ, ψ ∈ S},
A(2) = {(a, aϕ, (aψ)∗); a ∈ MS} for ϕ, ψ ∈ S
A(3) = {(a, 0, 0); a ∈ MS}.

Since, as is well known, (MS)
′
w = CI, we can show

(i) Ac
(1) = {0} and Acs

(1) = T †(S),
(ii) Ac

(2) = {(αI, αϕ, (ᾱψ)∗); α ∈ C} and Acs
(2) = {(x, xϕ, (x†ψ)∗); x ∈

L†(S)},
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(iii) Ac
(3) = {(αI, 0, 0); α ∈ C} and Acs

(3) = {(x, 0, 0); x ∈ L†(S)},
so the results of Section 3.2 on polar decomposition and of Section
4.2 on functional calculus can be applied to every element A of Acs

(i)

(i = 1, 2, 3) satisfying

(5.1) UA ∈ L†(S).

where UA is the partial isometry defined by the polar decomposition of
π(A). We give examples where the property (5.1) is fulfilled.
Let

a− =
1√
2
(q + ip) , a+ =

1√
2
(q − ip)

h = a−a+ and k = a+a−.

Then MS is generated by I, a− and a+. Let {ϕn} be the ONB in the
Hilbert space L2 := L2(R) contained in S defined by

ϕn(t) = π− 1
2 (2nn!)−

1
2 (t− d

dt
)ne−

t2

2 , n ∈ N0 := N ∪ {0}.

Then ϕ0 ∈ S is a strongly cyclic vector for MS , that is, MSϕ0 is
tMS -dense in S and

a−ϕn =

{
0 , n = 0√

nϕn−1 , n ∈ N

a+ϕn =
√
n+ 1ϕn+1, n ∈ N0

hϕn = (n+ 1)ϕn, n ∈ N0

kϕn = nϕn, n ∈ N0

hold, so a− and a+ are called the lowering operator and the raising
operator, respectively, and h and k are called the number operators,
and

a− =
∑
n∈N0

√
n+ 1 ϕn ⊗ ϕ̄n+1,

a+ =
∑
n∈N0

√
n+ 1 ϕn+1 ⊗ ϕ̄n,

h =
∑
n∈N0

(n+ 1) ϕn ⊗ ϕ̄n,

k =
∑
n∈N0

n ϕn ⊗ ϕ̄n
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where (ϕ ⊗ ψ̄)ξ := (ξ|ψ)ϕ. Then h and k are positive self-adjoint
operators in L2 and a− = ua−k

1
2 and a+ = ua+h

1
2 are the polar decom-

positions of a− and a+, respectively, satisfying

ua−ϕn =

{
0 , n = 0

ϕn−1 , n ∈ N(5.2)

and
u∗a−ϕn = ua+ϕn = ϕn+1, n ∈ N0,(5.3)

which implies that
(5.4) ua− , ua+ ∈ L†(S),

(5.5) u∗a+ua+ = ua−u
∗
a− = I, ua+u

∗
a+

= u∗a−ua− = Proj {ϕ0}⊥

and
(5.6) h is invertible.

Let A± be any element of T †(S) having π(A±) = a± and write
A± = (a±, ϕ±, (ψ±)

∗)

for some ϕ±, ψ± ∈ S, respectively. By (5.4)
|A+|π = (|a+|, u∗a+ϕ+, (u

∗
a+
ϕ+)

∗)

= (h
1
2 , ua−ϕ+, (ua−ϕ+)

∗),

|A−|π = (|a−|, u∗a−ϕ−, (u
∗
a−ϕ−)

∗)

= (k
1
2 , ua+ϕ−, (ua+ϕ−)

∗)

are well defined. Moreover, we can show that
(5.7) |A±|π is positive.

Indeed, by (5.3) u∗a−ϕ− = ua+ϕ− ∈ {ϕ0}⊥, so
(∑

n∈N
1√
n
ϕn ⊗ ϕ̄n

)
ua+ϕ−

is in S and

X− :=

(
k

1
2 ,

(∑
n∈N

1√
n
ϕn ⊗ ϕ̄n

)
u∗a−ϕ−,

((∑
n∈N

1√
n
ϕn ⊗ ϕ̄n

)
u∗a−ϕ−

)∗)
∈ T †(S),

X†
− = X− and (X−)

2 = |A−|π. Hence |A|π is positive. By (5.6) |A+|π
is positive.

First we consider the polar decomposition of an element of Acs
(1).

For any ϕ ∈ S we put

A
(1)
±,ϕ = (a±, ϕ, (ϕ)

∗), ϕ ∈ S.
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Then
|A(1)

±,ϕ| = (|a±|, u∗a±ϕ, (u
∗
a±ϕ)

∗),

ua± |A
(1)
±,ϕ| = (a±, ua±u

∗
a±ϕ, (ua±u

∗
a±ϕ)

∗).

By (5.5) we have

ua−|A
(1)
−,ϕ| = A

(1)
−,ϕ.

For A(1)
+,ϕ it follows from (5.5) that if (ϕ|ϕ0) = 0, then

ua+|A
(1)
+,ϕ| = A

(1)
+,ϕ,

and if otherwise, then

ua+|A
(1)
+,ϕ| 6= A

(1)
+,ϕ.

Second, take the following elements of Acs
(2):

A
(2)
± = (a±, a±ϕ0, (a

∗
±ϕ0)

∗).

Then since
A

(2)
− = (a−, 0, ϕ

∗
1),

|A(2)
− | = (|a−|, 0, 0) = |A|,

it follows that
ua−|A

(2)
− | = (a−, 0, 0) 6= A

(2)
− .

Moreover
A

(2)
+ = (a+, a+ϕ0, (a

∗
+ϕ0)

∗) = (a+, ϕ1, 0),

|A(2)
+ | = (|a+|, u∗a+a+ϕ0, (u

∗
a+
a+ϕ0)

∗)

= (|a+|, ϕ0, ϕ
∗
0),

ua+|A
(2)
+ | = (a+, ua+ϕ0, (ua+ϕ0)

∗)

= (a+, ϕ1, ϕ
∗
1)

6= A
(2)
+ .

Third, let

A
(3)
± = (a±, 0, 0).

Then
|A(3)

+ | = (|a+|, 0, 0), and ua+|A
(3)
+ | = (a+, 0, 0) = A

(3)
+ ,

and similarly

|A(3)
− | = ua− |A

(3)
− .
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As seen above, various cases arise for unbounded trio observables A−
(resp. A+) defined by the lowering operator a− (resp. the raising
operator a+).

Example 5.3. Let P(h) be a polynomial algebra on S generated by I
and h. Then P(h) is a self-adjoint O∗-algebra on S and

P(h)′w = {h}′w = {(ϕn ⊗ ϕ̄n); n ∈ N0}′ = (P(h)′w)
′.

We define the following π-self-adjoint T †-algebras on S by

B(1) := {(p(h), ϕ, ψ∗); p(h) ∈ P(h) and ϕ, ψ ∈ S},
B(2) := {(p(h), p(h)ϕ0, (p(h)

†ϕ0)
∗); p(h) ∈ P(h)},

B(3) := {(p(h), 0, 0); p(h) ∈ P(h)}.

Then we have the following

(1)

Bc
(1) = {(π(K), 0, 0); π(K) ∈ P(h)′w},

Bcs
(1) = {(π(A), 0, 0); π(A) η (P(h)′w)

′}.

(2)

Bc
(2) = {(π(K), π(K)ϕ0, (π(K)∗ϕ0)

∗); π(K) ∈ P(h)′w},

Bcs
(2) = {(π(A), π(A)ϕ0, (π(A)

†ϕ0)
∗); π(A) η (P(h)′w)

′}.

(3)

Bc
(3) = {(π(K), 0, 0); π(K) ∈ P(h)′w},

Bcs
(3) = {(π(A), 0, 0); π(A) η (P(h)′w)

′}.

Hence every element A of Bcs
(i) (i = 1, 2, 3) satisfies (5.1), so its polar

decomposition and functional calculus are possible.
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