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Abstract

Special polynomials, ascribed to the family of Gegenbauer, Legen-
dre, and Jacobi and of their associated forms, can be expressed in an
operational way, which allows a high degree of flexibility for the for-
mulation of the relevant theory. We develop a point of view based on
an umbral type formalism, exploited in the past, to study some aspects
of the theory of special functions, in general, and in particular those
of Bessel functions. We propose a fairly general analysis, allowing a
transparent link between different forms of special polynomials .
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1 Introduction

In the following we develop a novel method regarding the study of the proper-
ties of the Gegenbauer polynomials [1] and of their generalized forms. We use
an operational formalism of umbral nature, which will be shown to guarantee
significant simplifications of the underlying algebraic technicalities. We intro-
duce the main concepts, associated with the technique we are going to deal
with, starting from a very simple example.

We consider indeed the elementary function

e(ν)(x) = (1 + x)−ν (1.1)

with ν being any rational or complex number with Re(ν) > 0 , according to
the use of standard Laplace transform identities, the function (1.1) can be
rewritten as

e(ν)(x) =
1

Γ(ν)

∫ ∞
0

e−ssν−1e−sxds (1.2)

Following ref. [7] we use the operational rule1

(α)x ∂x f(x) = f(αx) (1.3)

to write

e(ν)(x) =
1

Γ(ν)

∫ ∞
0

e−ssν−1sx ∂xe−xds (1.4)

We note that we can define the effect of the Laplace transform on the
exponential function according to the following identities

1

Γ(ν)

∫ ∞
0

e−ssν−1sx ∂xe−xds =

(
1

Γ(ν)

∫ ∞
0

e−ssν−1sx ∂xds

)
e−x =

= Γ̂νe
−x =

∞∑
r=0

(−1)r

r!
(ν)r x

r,

Γ̂ν =
Γ(ν + x ∂x)

Γ(ν)
,

(ν)r =
Γ(ν + r)

Γ(ν)

(1.5)

1By Setting (α)
x ∂x = eln(α) x ∂x and by making the change of variables x = et we get

(α)
x ∂x f(x) = eln(α) ∂tf(et) = f(et+ln(α)) finally going back to the original variable we end

up with eq. (1.3).
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The procedure of bringing the exponential outside the sign of integration,
thus defining the operator Γ̂ν , is allowed only for the values of |x| < 1, for
which the series, containing the Pochhammer symbol (ν)r, converges. The
series appearing in (1.5) is recognized as the Newton binomial, even though
obtained in an ”involved”, albeit useful way, for the purposes of the present
paper. In the spirit of the umbral calculus [10] we will reinterpret the function
e(ν)(x) as an ordinary exponential function, by introducing the operator ν̂,
defined as2

ν̂ rϕ0 = (ν)r (1.6)

accordingly, we can cast the function e(ν)(x)in the form

e(ν)(x) = e−ν̂ xϕ0 (1.7)

thus formally treating it as an exponential (namely a transcendental function)
even though the series (1.5) has a limited range of convergence |x| < 1. As
explained below, we will take advantage from the previous exponential umbral
restyling of the function in (1.1) to construct a new formalism useful for the
study of various family o special polynomials.

By keeping the derivative of both sides of eq. (1.7) , with respect to the x
variable, using the ordinary rules of calculus, we obtain the identity3

∂xe
(ν)(x) =

(
∂xe
−ν̂ x) ϕ0 = −ν̂ e−ν̂ xϕ0 =

∞∑
r=0

(−1)r+1ν̂ r+1x
r

r!
ϕ0 =

= −
∞∑
r=0

(−1)r (ν)r+1

xr

r!
= −ν e(ν+1)(x)

(1.8)

which follows as a consequence of

(ν)r+1 = ν (ν + 1)r (1.9)

and more generally
(ν)r+m = (ν)m(ν +m)r (1.10)

We can accordingly state the rule

2The adjective ”umbral” in the sense of ref. [10] may not be fully correct, a comment on
the appropriate framing of this term will be presented in the concluding section.

3The same identity can be obtained from eq. (1.2) which yields

∂xe
(ν)(x) = − 1

Γ(ν)

∫ ∞
0

e−ssνe−sxds = −Γ(ν + 1)

Γ(ν)
e(ν+1)(x)

The umbral identity we have derived is not limited by any convergence restriction



534 G. Dattoli, B. Germano, S. Licciardi and M. R. Martinelli

(
∂mx e

−ν̂ x) ϕ0 = (−1)m
(
ν̂me−ν̂ x

)
ϕ0 =

= (−1)m (ν)m e
(ν+m)(x)

(1.11)

Before proceeding further it is worth clarifying a point, which will be more
thoroughly treated in the concluding section. Even though the formalism we
have developed allows to treat not trivial functions in terms of elementary
exponential functions, some properties like the semigroup identities associated
with the exponential case are not easily associated with e(ν)(x). We find indeed
that, albeit the following chain of identities is correct

e(ν)(x+ y) = e−ν̂ (x+y)ϕ0 = e−ν̂ xe−ν̂ yϕ0 (1.12)

it is also true that

e(ν)(x+ y) 6= e(ν)(x) e(ν)(y) (1.13)

To overcome such an apparently paradoxical conclusion, we clarify that
the concept of semi-group has to be properly framed within the appropriate
algebraic context. In defining the semigroup and, thereby, the associated iden-
tities, the corresponding binary operations between x and y need to be defined.

The associative binary operation (ABO) ex+y = exey = eyex is a conse-
quence of the fact that (x + y)n =

∑n
r=0

(
r
n

)
xn−ryr. This means that if we

modify the Newton bynomial as

(x⊕ν y)n =
n∑
r=0

(
n

r

) {
(ν)n
(ν)r

}−1
xn−ryr,{

(ν)m
(ν)p

}
=

(ν)m
(ν)m−p (ν)p

=
B(ν +m, ν)

B(ν +m− p, ν + p)
,

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
≡ EulerB Function

(1.14)

we can define the corresponding ABO

e(ν)(y) e(ν)(x) =
∞∑
r=0

(ν)r
r!

(−y)r
∞∑
s=0

(ν)s
s!

(−x)s =

=
∞∑
n=0

(−1)n

n!
(ν)n

(
n∑
r=0

(
n

r

){
(ν)n
(ν)r

}−1
xn−ryr

)
=

= e(ν)(x⊕ν y)

(1.15)
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Accordingly we conclude that the proper environment for the algebraic
semi-group property of the umbral exponential discussed in this section is the
use of associative operations of the type (1.15).

The reliability of the formalism we are developing can be further checked
by deriving integrals involving the pseudo Gaussian function

e(ν)(x2) = e−ν̂ x
2

ϕ0 = (1 + x2)−ν (1.16)

and according to the rules we have stipulated along with the properties of the
ordinary Gaussian function, we can state that

∫ +∞

−∞
e(ν)(x2) dx =

∫ +∞

−∞
e−ν̂ x

2

dxϕ0 =

=

√
π

ν̂
ϕ0 =

√
π (ν)− 1

2
=
√
π

Γ

(
ν − 1

2

)
Γ (ν)

,

Re(ν) >
1

2

(1.17)

This (well known) result is a byproduct of the outlined technique, but it
could be also derived as a consequence of the Ramanujan Master Theorem
(RMT)4 [9].

It must be stressed that the integral in eq. (1.17) is extended to all the
real axis and therefore the umbral representation should be representative of
the function on the r.h.s. of eq. (1.16) and not of the relevant series expansion∑∞

r=0(−1)r (ν)r
x2 r

r!
, having radius of convergence |x| < 1.

To clarify this point, we note that, by exploiting again the Laplace trans-
form method, we can alternatively write the integral (1.17) as

∫ +∞

−∞

1

(1 + x2) ν
dx =

∫ +∞

−∞
dx

[
1

Γ(ν)

∫ ∞
0

e−ssν−1e−s x
2

ds

]
=

=

√
π

Γ(ν)

∫ ∞
0

e−ssν−
3
2ds =

√
π

Γ
(
ν − 1

2

)
Γ (ν)

(1.18)

which justifies the use of the previously stated umbral rules.

4The RMT may be formulated as follows: ”If a function f(x) admits an expansion

f(x) =
∑∞
n=0

φ(n)(−x)n

n!
in a neighborhood of x = 0 then

∫∞
0
f(x)xν−1dx = Γ(ν)φ(−ν)”.
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By pushing further the formalism, we can take advantage from the wealth
of properties of Gaussian integrals, by getting e.g.

∫ +∞

−∞
e(ν)(a x2 + i b x) dx =

√
π

aν̂
e−ν̂

b2

4 a ϕ0 =

=

√
π

a

Γ

(
ν − 1

2

)
Γ(ν)

1(
1 +

b2

4 a

)ν− 1
2

,

Re(ν) >
1

2
, Re(a) > 0

(1.19)

Let us now consider a further application of the previous procedure, by
keeping the successive derivatives (with respect to the variable x ) of the pseudo
Gaussian function, namely

e(ν)n (x2) = ∂nxe
(ν)(x2) (1.20)

We take advantage from the analogy with the properties of ordinary Gaus-
sians and from the associated identity [9]

∂nxe
a x2 = Hn(2 a x, a) ea x

2

,

Hn(ξ, η) = n!

[n2 ]∑
r=0

ξn−2 rηr

(n− 2 r)! r!

(1.21)

where Hn(ξ, η) are two variable Hermite-Kampé de Fériét (H-KdF) polyno-
mials [2] with generating function

∞∑
n=0

tn

n!
Hn(ξ, η) = eξ t+η t

2

(1.22)

Therefore, by just adapting eqs. (1.7, 1.21) to the pseudo-Gaussian case,
we find

e(ν)n (x2) = Hn(−2 ν̂ x, −ν̂) e−ν̂ x
2

ϕ0 =

= (−1)nn!

[n2 ]∑
r=0

(−1)r(2x)n−2 r

(n− 2 r)! r!
(ν̂n−re−ν̂ x

2

)ϕ0

(1.23)

On account of eq. (1.11) we note that
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(
ν̂n−re−ν̂ x

2
)
ϕ0 = (ν)n−r e

(ν+n−r)(x2) (1.24)

If we now introduce the two variable polynomials

K(ν)
n (ξ, η) = n!

[n2 ]∑
r=0

(ν)n−r ξ
n−2 rηr

(n− 2 r)! r!
(1.25)

we can recast eq. (1.23) in the non operatorial form

e(ν)n (x2) = (−1)nK(ν)
n

(
2x

1 + x2
,− 1

1 + x2

)
1

(1 + x2)ν
(1.26)

For ξ = 2x, y = −1 the polynomials (1.25) reduce to the ordinary Gegenbauer
polynomials, namely

K(ν)
n (2x, −1) = n!C(ν)

n (x) (1.27)

Furthermore the identity

(−1)n e(−ν)(x2) e(ν)n (x2) = K(ν)
n

(
2x

1 + x2
,− 1

1 + x2

)
(1.28)

can be viewed as the associated Rodriguez formula [1].

It is also worth stressing that the use of the relation

∂nxe
a x2+b x = Hn(2 a x+ b, a) ea x

2+b x (1.29)

And the same rules, stated before, yields the result

e(ν)n (a x2 + b x) =

= (−1)nK(ν)
n

(
2 a x+ b

1 + a x2 + b x
,− a

1 + a x2 + b x

)
1

(1 + a x2 + b x)ν
(1.30)

The results we have presented in this introduction discloses one of the ad-
vantages of the formalism, which allows the derivation of the properties of
Gegenbauer polynomials from those of Hermite. Further consequences of this
point of view will be discussed in the following sections.

2 The Gegenbauer polynomials and their gen-

eralized forms

As already stressed the procedure we have followed so far seems to be tailor
suited to treat the Gegenbauer polynomials and the relevant generalized forms,
which can be introduced by means of the generating function
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∞∑
n=0

tn

n!
K(ν,m)
n (−ξ, −η) = e(ν)(ξ t+ η tm) =

1

(1 + ξ t+ η tm)ν
, | t |< 1;

(2.1)
according to our formalism, can easily be identified with the help of higher
order two variable H-KdF polynomials [2]

K(ν,m)
n (ξ, η) = H(m)

n (ν̂ ξ, ν̂ η)ϕ0,

H(m)
n (x, y) = n!

[ nm ]∑
r=0

xn−mryr

(n−mr)! r!

∞∑
n=0

tn

n!
H(m)
n (x, y) = ext+yt

m

(2.2)

The repeated derivatives of functions like e(ν)(axm+bx) can be expressed by
using the properties of the higher order Hermite Kampé de Fériét polynomials
and of their generalized forms. The use of the following identity involving
multivariable Hermite polynomials (see ref. [3])

∂nxe
P (x) = H(m,m−1, ... ,2)

n

(
P ′(x),

P ′′(x)

2
,
P ′′′(x)

3!
, ... ,

P (m)(x)

m!

)
eP (x),

P (x) = a xm + b x

(2.3)

Can be exploited, along with eq. (2.3), to get (see also eq. (1.23))

∂nx e
(ν)(a xm + b x) = e

(ν)
n (a xm + b x) =

= H
(m,m−1, ... ,2)
n

(
−ν̂ P ′(x), −ν̂

P ′′(x)

2
, −ν̂

P ′′′(x)

3!
, ... , −ν̂

P (m)(x)

m!

)
e
−ν̂ P (x)

ϕ0 =

= K
(ν,m,m−1, ... ,2)
n

(
−

P ′(x)

P (x) + 1
, −

P ′′(x)

2(P (x) + 1)
, −

P ′′′(x)

3!(P (x) + 1)
, ... , −

P (m)(x)

m!(P (x) + 1)

)
1

(P (x) + 1)ν

(2.4)

where

K(ν,m,m−1, ... ,2)
n (x1, x2, x3, ... , xm) =

1

Γ(ν)

∫ ∞
0

e−ssν−1H(m,m−1, ... ,2)
n (x1s, x2s, x3s, ... , xms)ds,

H(m,m−1, ... ,2)
n (x1, x2, x3, ... , xm) = n!

[ nm ]∑
r=0

xrmH
(m−1, ... ,2)
n−mr (x1, ... , xm−1)

(n−mr)!r!
∞∑
n=0

tn

n!
H({m})
n ({x}) = e

∑m
s=1 xst

s

,

{m} = m,m− 1, ... , 2; {x} = x1, x2, ... , xm
(2.5)
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The same method allows some progress in the derivation of Gegenbauer
generating functions and indeed we find

∞∑
n=0

tn

n!
K

(ν)
n+l(−ξ, −η) = Hl(−ν̂ (ξ + 2 η t), −ν̂ η) e−ν̂ (ξ t+η t2)ϕ0 =

=

(−1)lK
(ν)
l

(
(ξ + 2 η t)

1 + ξ t+ η t2
, − η

1 + ξ t+ η t2

)
(1 + ξ t+ η t2)ν

,

| t |<

∣∣∣∣∣ξ −
√
ξ2 − 4η

2η

∣∣∣∣∣
(2.6)

which can be easily derived from the corresponding case of the Hermite
polynomials [3]

∞∑
n=0

tn

n!
Hn+l(x, y) = Hl(x+ 2yt, y)ext+yt

2

(2.7)

All the previous results can be obtained by the use of the Laplace trans-
form method. The integral transforms are indeed not an alternative, but the
rigorous support of the umbral methods we are developing. Further comments
on this point will be presented in the concluding section.

3 The Jacobi Polynomials

In the previous section we have exploited a, seemingly, powerful tool to deal
with a plethora of problems concerning the theory of special functions, whose
relevant technicalities can accordingly be reduced be to straightforward exer-
cises in elementary calculus.

The theory of Laguerre polynomials has been profitably reformulated by
defining them as an ordinary Newton binomial including an appropriate umbral
operator [4], namely

Ln(x, y) = (y − ĉ x)n ϕ0,

ĉαϕ0 =
1

Γ(α + 1)

(3.1)

The genesis of the operator ĉ can be traced back to the theory of differin-
tegral operators [8] and indeed
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ĉα → ∂−αη (3.2)

And the “vacuum” ϕ0 is the space spanned by the variable η itself. Ac-
cording to such a point of view the second of eq. (3.1) should be understood
as5

ĉmϕ0 → ∂−mη 1 =

∫ η

0

dη1...

∫ ηm−1

0

dηm |η=1 =
1

Γ(m+ 1)
(3.3)

If we forget all the intermediate steps in the previous chain of equalities and
keep the “rule” as expressed in the second line of eq. (3.1) we find, after
expanding the Newton binomial

Ln(x, y) =
n∑
s=0

(
n

s

)
(−x)sy n−sĉ sϕ0 =

=
n∑
s=0

(−1)s
n! y n−sxs

(s!)2 (n− s)!

(3.4)

which (for y=1) is the usual series definition of Laguerre polynomials.

Let us now take a step further, by introducing the following family of two
variable polynomials

1

n!
R(α, β)
n (ξ, η) = ĉα1 ĉ

β
2 [ĉ1ξ + ĉ2η]n ϕ 1,0 ϕ 2,0 (3.5)

where the operators ĉ labelled by two different index act on two different vacua
as

ĉ ν1 ĉ
µ
2 ϕ 1,0 ϕ 2,0 = (ĉ ν1 ϕ 1,0) (ĉµ2 ϕ 2,0) =

=
1

Γ ( ν + 1)
.

1

Γ (µ+ 1)

(3.6)

According to the previous definition we obtain the following explicit form
for the polynomials defined in eq. (3.5)

R(α, β)
n (ξ, η) = (n!)2

n∑
s=0

ξ n−sη s

[(n− s)! ] s! Γ(n− s+ α + 1) Γ(s+ β + 1)
(3.7)

5For non- integer values of the exponent of ĉ we remind that differentigral operators with
non- integer exponents are defined through Laplace type transforms
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The relevant properties can easily be derived by the use of elementary
algebraic manipulations. It is indeed easily checked that

1

(n+ 1)!
R

(α, β)
n+1 (ξ, η) = [ĉ1ξ + ĉ2η] ĉα1 ĉ

β
2 [ĉ1ξ + ĉ2η]n ϕ1, 0ϕ2, 0 =

=
1

n!

(
ξ R(α+1, β)

n (ξ, η) + η R(α, β+1)
n (ξ, η)

) (3.8)

and that

∂ξR
(α, β)
n (ξ, η) = n2R

(α+1, β)
n−1 (ξ, η),

∂ηR
(α, β)
n (ξ, η) = n2R

(α, β+1)
n−1 (ξ, η)

(3.9)

Furthermore we can determine its generating functions (g.f.) by the use
analogous elementary procedures. We obtain for example

∞∑
n=0

tn

(n!)2
R(α, β)
n (ξ, η) = ĉα1 ĉ

β
2 e

t (ĉ1ξ+ĉ2η)ϕ1, 0ϕ2, 0 (3.10)

and, by noting that

ĉνe−ĉ xϕ0 =
∞∑
r=0

(−x)rĉr+ν

r!
ϕ0 = Cν(x)

Cν(x) =
∞∑
r=0

(−1)rxr

r! Γ(r + ν + 1)

(3.11)

where the functions Cν(x) (namely the Tricomi-Bessel) are linked to the cylin-
drical Bessel functions by

Cν(x) =

(
1

x

) ν
2

Jν(2
√
x) (3.12)

We can write the g.f. (3.10) in terms of a product of Bessel functions6

∞∑
n=0

tn

(n!)2
R(α, β)
n (ξ, η) = Cα(−ξ t)Cβ(−η t) =

=
1√

(ξ αη β) tα+β
Iα

(
2
√
ξ t
)
Iβ
(
2
√
η t
) (3.13)

6Where Iν(x) = (−i)νJν(ix) is the first kind modified Bessel function.
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The polynomials R
(α, β)
n (ξ, η) can be used to define the ordinary Jacobi

polynomials [1] through the identity

P (α, β)
n (x) =

Γ(n+ α + 1) Γ(n+ β + 1)

(n!)2
R(α, β)
n (ξ(x), η(x)) ,

ξ(x) =
x− 1

2
, η(x) =

1 + x

2

(3.14)

The relevant recurrences are obtained from eqs. (3.8), (3.9) and writes

(n+ 1)P
(α, β)
n+1 (x) =

1

2
x
[
(n+ β + 1)P (α+1, β)

n (x) + (n+ α + 1)P (α, β+1)
n (x)

]
+

− 1

2

[
(n+ β + 1)P (α+1, β)

n (x)− (n+ α + 1)P (α, β+1)
n (x)

]
(3.15)

and

d

dx
P (α, β)
n (x) =

Γ(n+ α+ 1) Γ(n+ β + 1)

2 (n− 1)!2

(
R

(α+1, β)
n−1 (ξ(x), η(x)) +R

(α, β+1)
n−1 (ξ(x), η(x))

)
=

=
1

2

[
(n+ β)P

(α+1, β)
n−1 (x) + (n+ α)P

(α, β+1)
n−1 (x)

]
=
n+ α+ β + 1

2
P

(α+1, β+1)
n−1 (x)

(3.16)

Finally the relevant generating function can be written as

∞∑
n=0

tn

Γ(n+ α + 1) Γ(n+ β + 1)
P (α, β)
n (x) =

(
2√

2(x− 1)t

)α(
2√

2(x+ 1)t

)β

·

· Iα(
√

2 (x− 1) t) Iβ

(√
2 (x+ 1) t

)
(3.17)

We can now deduce further consequences from the previous umbral restyling
of the Jacobi polynomials.

The index doubling ”theorem” can e.g. derived by noting that

R
(α, β)
2n (ξ, η) = (2n)! ĉα1 ĉ

β
2 [ĉ1ξ + ĉ2η]n [ĉ1ξ + ĉ2η]n ϕ1, 0ϕ2,0 =

=
(2n)!

n!

n∑
s=0

(
n

s

)
ξn−sηsR(n−s+α, s+β)

n (ξ, η)
(3.18)
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which, on account of eq. (3.14), yields

P
(α, β)
2n (x) =

n!

(2n)!
Γ(2n+ α + 1) Γ(2n+ β + 1)

n∑
s=0

(
n

s

)
(ξ(x))n−s (η(x))s ·

· P
(n−s+α, s+β)
n (x)

Γ(2n− s+ α + 1) Γ(n+ s+ β + 1)
(3.19)

Furthermore an analogous procedure yields the following argument duplication
formula

P (α, β)
n (2x) =

Γ(n+ α + 1) Γ(n+ β + 1)

n!

n∑
s=0

(
n

s

)(x
2

)s s∑
r=0

(
s

r

)
·

· (n− s)!P (s−r+α, r+β)
n−s (x)

Γ(n− r + α + 1) Γ(n− s+ r + β + 1)

(3.20)

It is evident that the method is so straightforward that all the previous
identities can easily be generalized, as touched on in the concluding remarks.

The associated Laguerre polynomials [1], defined, within the present con-
text, as

L(α)
n (x, y) =

Γ(n+ α + 1)

n!
Λ(α)
n (x, y),

Λ(α)
n (x, y) = ĉα(y − ĉ x)nϕ0 =

= n!
n∑
r=0

(−x)ryn−r

r! Γ(r + α + 1) (n− r)!

(3.21)

evidently further confirm the mutual link with the Jacobi family are closely
linked and we find indeed that

R(α,β)
n (ξ, η) = (n!)2

n∑
s=0

(−1)sL
(α)
n−s(−ξ, ξ + η) L

(β)
s (η, ξ + η)

Γ(n− s+ α+ 1)Γ(s+ β + 1)
,

P (α, β)
n (x) =

Γ(n+ α+ 1) Γ(n+ β + 1)

n!
ĉα1 ĉ

β
2

[(
y + ĉ1

x− 1

2

)
−
(
y − ĉ2

x+ 1

2

)]n
ϕ1, 0ϕ2, 0 =

= Γ(n+ α+ 1) Γ(n+ β + 1)

n∑
s=0

(−1)sL
(α)
n−s

(
1− x

2
, y

)
L
(β)
s

(
x+ 1

2
, y

)
Γ(n− s+ α+ 1) Γ(s+ β + 1)

(3.22)
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In these introductory remarks we have covered some of the properties of
Jacobi polynomials by employing a minimal computational effort, we have
fixed the formalism we are going to use and have provided an idea of the
consequences which can be drawn by means of these methods.

4 The Legendre Polynomials

The Legendre polynomials are a particular of Jacobi [1] and can be identified
as

Pn(x) = P (0, 0)
n (x) = R(0,0)

n (ξ, η) (4.1)

Their properties can be therefore derived as a consequence of those of the R
polynomials in the particular case of α = β = 0. Let us therefore go back to
eq. (3.22) and note that

1

n!
Pn(x) =

[
ĉ1
x− 1

2
+ ĉ2

x+ 1

2

]n
ϕ1, 0ϕ2,0,

1

n!
Pn(0) =

(
− ĉ1

2
+
ĉ2
2

)n
ϕ1, 0ϕ2,0 =

1

n!
Rn

(
−1

2
,

1

2

)
=

=
(−1)n

2nn!

n∑
s=0

(−1)s
(

n!

s! (n− s)!

)2

,

Pn(1) = Rn(0, 1) = 1, Pn(−1) = Rn(−1, 0) = (−1)n

(4.2)

The use of the auxiliary polynomials Rn is a fairly important tool to state
further identities, as e.g.

Pn(λx) = n!

[
ĉ1
λx− 1

2
+ ĉ2

λx+ 1

2

]n
ϕ1, 0ϕ2,0 =

= n!

[
λ

(
ĉ1
x− 1

2
+ ĉ2

x+ 1

2

)
+ ĉ1

λ− 1

2
+ ĉ2

−λ+ 1

2

]n
ϕ1, 0ϕ2,0 =

= (n!)2
n∑
s=0

λn−s
s∑
r=0

ξ(λ)s−rη(−λ)rP
(s−r, r)
n−s (x)

(s− r)!r!(n− r)!(n− s+ r)!

(4.3)

Furthermore we obtain
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Pn+m(x) = (n+m)!

[
ĉ1
x− 1

2
+ ĉ2

x+ 1

2

]n+m
ϕ1, 0ϕ2,0 =

= n!m!
m∑
s=0

(
n+m

s

)
ξ(x)m−sη(x)sP

(m−s, s)
n (x)

(m− s)!(n+ s)!

(4.4)

and

Pn(x+ y) = (n!)2
n∑
s=0

(y
2

)s s∑
r=0

P
(s−r, r)
n−s (x)

(s− r)!r!(n− r)!(n− s+ r)!
(4.5)

The previous identity cannot be considered an “addition theorem” in the
strict sense, but rather a Taylor series expansion.

The next step will be the derivation of the differential equation satisfied by
the Legendre polynomials.

By the use of eqs. (3.15), (3.16) we end up with

nPn−1(x) =

[
(1− x2) d

dx
+ nx

]
Pn(x)

(n+ 1)Pn+1(x) =

{
(2n+ 1) x−

[
(1− x2) d

dx
+ nx

]}
Pn(x)

(4.6)

by combining the previous recurrences, we can introduce the following opera-
tors

N̂− = (1− x2) d

dx
+ n̂ x,

N̂+ = −(1− x2) d

dx
+ (n̂+ 1 )x

(4.7)

Defined in such a way that

N̂−Pn(x) = nPn−1(x),

N̂+Pn(x) = (n+ 1)Pn+1(x)
(4.8)

Where n̂ is a kind of number operator “counting” the index of the Legendre
polynomial, namely
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n̂ Pm+k(x) = (m+ k)Pm+k(x) (4.9)

According to the previous definitions we find

N̂+N̂−Pn(x) =

[
−(1− x2) d

dx
+ (n̂+ 1)x

] [
(1− x2) d

dx
+ n̂x

]
Pn(x) =

=

[
−(1− x2) d

dx
+ nx

] [
(1− x2) d

dx
+ nx

]
Pn(x) = n2Pn(x)

(4.10)

which explicitly yields the following second order equation satisfied by the
Legendre polynomials written in the form(

d

dx
(1− x2) d

dx

)
Pn(x) + n (n+ 1)Pn(x) = 0 (4.11)

In the forthcoming section we will extend the umbral formalism to make
further progress by including the properties of the associated Legendre poly-
nomials and the theory of Spherical Harmonics.

5 Final Comments

In these concluding remarks we will present further arguments supporting the
effectiveness of the method we have proposed. Let us therefore consider the
evaluation of the following repeated derivatives

F (ν)
m (x) =

(
d

dx

)m(
eP (x)

(1 +Q(x))ν

)
,

P (x) = αx2 + βx,

Q(x) = ax2 + bx

(5.1)

The use of the umbral procedure allows a significant simplification of the
relevant algebra, by setting indeed

eP (x)

(1 +Q(x))ν
= eP (x)e(ν)(Q(x)) = eP (x)−ν̂Q(x)ϕ0 = e(α−ν̂a)x

2+(β−ν̂b)xϕ0 (5.2)

we find

F (ν)
m (x) = Hm (2(α− ν̂a)x+ (β − ν̂b), α− ν̂a) eP (x)−ν̂Q(x)ϕ0 (5.3)
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The use of the so far developed rules yields

F
(ν)
m (x) = m!

[m2 ]∑
r=0

1

(m− 2r)!r!

m−2r∑
s=0

(m− 2r

s

)
Am−2r−sBs

r∑
q=0

(r
q

)
(−1)s+qαr−qaq(ν)s+q e(ν+s+q)(Q(x))eP (x)

A = 2αx+ β; B = 2ax+ b

(5.4)

or, in a more compact form

F (ν)
m (x) = Ω(ν)

m

(
P
′
(x),

P
′′
(x)

2
;

Q
′
(x)

(1 +Q(x))
,

Q
′′
(x)

2(1 +Q(x))

)
eP (x)

(1 +Q(x))ν

Ω(ν)
m (x, y;u, z) =

m∑
s=0

(
m

s

)
(−1)sHm−s(x, y)K(ν)

s (u,−z)

(5.5)

It is now worth to explore more accurately the role of the K
(ν)
n (., .) poly-

nomials discussed in the first part of the paper.
To this aim we consider the particular case for which ν = 1

2
for which

e
( 1
2
)

n (x2) = (−1)nK
( 1
2
)

n

(
2x

1 + x2
,− 1

1 + x2

)
1

(1 + x2)
1
2

(5.6)

furthermore, by recalling that

K
( 1
2
)

n (a, b) =
1√
π

∫ ∞
0

e−ss−
1
2Hn(as, bs)ds (5.7)

and that

Hn(x, y) = y
n
2Hn

(
x
√
y
, 1

)
(5.8)

we can easily infer that

∞∑
n=0

tn

n!
K

( 1
2
)

n (a, b) =
1√

1− at− bt2
(5.9)

which is the generating function of Legendre polynomials for a = 2x, b = −1,
moreover the use of the identity (5.8) yields

(1 + x2)
n+1
2 e

( 1
2
)

n (x2) = (−1)nn!Pn

(
x√

1 + x2

)
(5.10)

which can be extended to the cases involving the generalized Legendre forms,
as discussed elsewhere.
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The same procedure can be applied to derive the following generating func-
tion for ordinary Legendre

∞∑
n=0

(
n+ l

l

)
tnPn+l(x) =

Pl

(
x− t√

1− 2xt+ t2

)
(1− 2xt+ t2)

l+1
2

(5.11)

which is also a particular case of eq. (2.6).

According to the above point of view, the m − th derivative of the Pn(x)
can therefore be easily calculated, thus finding

(
d

dx

)m
Pn(x) =

2m√
π(n−m)!

∫ ∞
0

e−ssm−
1
2Hn−m(2xs,−s)ds =

=
1√
π

[n−m2 ]∑
r=0

(−1)r2n−2rxn−m−2rΓ(n− r + 1
2
)

(n−m− 2r)!r!

(5.12)

On the other side the successive derivatives of the Legendre polynomials
can be obtained from (4.2) and yields the following link with the Jacobi poly-
nomials

(
d

dx

)m
Pn(x) =

1

2m
(n!)2

(n−m)!
(ĉ1 + ĉ2)

m

[
ĉ1
x− 1

2
+ ĉ2

x+ 1

2

]n−m
ϕ1, 0ϕ2,0 =

=
(n!)2

2m

m∑
s=0

(
m

s

)
P

(m−s, s)
n−m (x)

(n− s)!(n−m+ s)!

(5.13)

We will discuss a further alternative formulation of the theory of Legendre
polynomials, using a formalism touched in [8], which will be embedded with
the technique developed in this note. We consider indeed the following family
of polynomials

Πn(x, y) = ((π̂y + x)nϕy, 0)φ0 (5.14)

where

(
π̂ryϕy, 0

)
φ0 =

y
r
2 r!

Γ
(
r
2

+ 1
) ∣∣∣cos

(
r
π

2

)∣∣∣ ĉ r2φ0 =

=
y
r
2 r!

Γ
(
r
2

+ 1
)2 ∣∣∣cos

(
r
π

2

)∣∣∣ (5.15)
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According to the above definition, we obtain the explicit expression for the Π
polynomials as

Πn(x, y) = Hn(x, ĉ y)φ0 = n!

[n2 ]∑
k=0

xn−2 kyk

(k!)2 (n− 2 k)!
(5.16)

They are essentially hybrid Laguerre-Hermite polynomials satisfying the “heat”
equation

LD̂yG(x, y) = −∂2xG (x, y) ,

LD̂y = −∂yy ∂y,
G(x, 0) = xn

(5.17)

We have denoted by LD̂ythe Laguerre derivative [5, 6] and it is evident that
the polynomials (5.16) can be defined through the following operational rule

Πn(x, y) = C0(−y ∂2x)xn (5.18)

and the Legendre polynomials can be identified with the particular case

Pn(x) = Πn

(
x, −1− x2

4

)
(5.19)

Finally, from the previous identities we find

∞∑
n=0

tn

n!
Pn(x) = ex t−ĉ

1−x2
4

t2φ0 = ex tJ0

[
t
√

1− x2
]

(5.20)

We can now derive a further consequence from the above equation and from
the umbral definition of the Legendre polynomials, according to which we find

∞∑
n=0

tn

n!
Pn(x) =

∞∑
n=0

tn
[
ĉ1
x− 1

2
+ ĉ2

x+ 1

2

]n
ϕ1,0 ϕ2,0 =

=
1

1− t
[
ĉ1
x−1
2

+ ĉ2
x+1
2

]ϕ1,0 ϕ2,0

(5.21)

The use of standard Laplace transform identities yields

1

1− t
[
ĉ1
x−1
2

+ ĉ2
x+1
2

] [ϕ1,0 ϕ2,0] =

∫ ∞
0

e−ses t (ĉ1
x−1
2

+ĉ2
x+1
2 )ds ϕ1,0 ϕ2,0 =

=

∫ ∞
0

e−sC0

(
1− x

2
s t

)
C0

(
−1 + x

2
s t

)
ds

(5.22)
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which once confronted with (5.20) yields

∫ ∞
0

e−sC0

(
1− x

2
s t

)
C0

(
−1 + x

2
s t

)
ds =

= extJ0

(
t
√

1− x2
) (5.23)

Before closing this paper we will discuss some points left open since the
introductory section and relevant to the legitimacy of our treatment based on
the use of umbral operators. We must underline that

a) As already remarked elsewhere [7] the methods we have developed here
and in previous papers are justified by the correctness of their results, rather
than by the rigor of the relevant mathematical foundations

b) A well sound motivation can however be proposed along the lines dis-
cussed in ref. [7] where most of the rules relevant to the umbral operator
algebra have been justified using the properties of the Borel transform.

c) As to the umbral definition of the Gegenbauer polynomials, proposed in
this paper we can adopt an analogous point of view by noting that the use of
the operational identity

M(a x, b y) = ax ∂xby ∂yM(x, y) (5.24)

based on the Euler dilation operator allows the following reshuffling of eq. (2.5)

K(ν)
n (ξ, η) =

1

Γ(ν)

∫ ∞
0

e−ssν−1sξ ∂ξ+η ∂η dsHn( ξ, η) (5.25)

and the use of the properties of the Gamma function eventually leads to the
following operational definition of the Gegenbauer polynomials

K(ν)
n (ξ, η) = Γ̂ν Hn(ξ, η)

Γ̂ν =
Γ(ν + ξ ∂ξ + η ∂η)

Γ(ν)

(5.26)

The operator Γ̂ν is therefore a differential realization of its umbral counterpart
ν̂. In a forthcoming paper we will discuss the problem using this point of
view , which offers some advantage for e.g. the derivation of the differential
equation satisfied by the different polynomial families. In a forthcoming paper
we will extend the procedure developed in this paper to further families of
special functions and to the relevant application in classical and quantum
electromagnetism.
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