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Abstract
Employing the quantumLiouville equationwith phenomenological dissipation, we investigate the
transport properties ofmassless andmassiveDirac fermion systems thatmimics graphene and
topological insulators, respectively. ThemasslessDirac fermion systemdoes not show an intrinsic
Hall effect, but it shows aHall current under the presence of circularly-polarized laserfields as a nature
of a optically-driven nonequilibrium state. Based on themicroscopic analysis, we find that the light-
inducedHall effectmainly originates from the imbalance of photocarrier distribution inmomentum
space although the emergent Floquet–Berry curvature also has a non-zero contribution.We further
compute theHall transport property of themassiveDirac fermion systemwith an intrinsicHall effect
in order to investigate the interplay of the intrinsic topological contribution and the extrinsic light-
induced population contribution. As a result, wefind that the contribution from the photocarrier
population imbalance becomes significant in the strongfield regime and it overcomes the intrinsic
contribution. Thisfinding clearly demonstrates that intrinsic transport properties ofmaterials can be
overwritten by external driving andmay open away to ultrafast optical-control of transport properties
ofmaterials.

1. Introduction

Controllingmaterial properties by external driving is one of the ultimate goals ofmodern condensedmatter
physics. Light is one of themost important drivers to realize ultrafast control ofmaterial properties [1, 2]. A
strong terahertzfield can couple with a specific phononmode in solids and largely populate the phononmode.
As a result of the significant phonon excitation, electron–phonon coupling is renormalized, and a
superconducting state is realized in the picosecond time scale [3, 4]. Furthermore, recently it was theoretically
demonstrated that an optically-driven phonon can inducemagnetism in two-dimensionalmaterials [5]. An
intense infrared laser field can strongly couple alsowith electrons in solids and significantly renormalize
electronic structures within a optical cycle. The light-inducedmodulation of electronic structure in solids has
been suggested theoretically as ameans tomodify effective interactions [6–10] and possibly tune between
competing phases of strongly correlated electron systems [11–13]. On sub-femtosecond time scales, even
subcycle electron dynamics in solids can nowbe investigatedwith attosecond experimental techniques towards
petahertz optoelectronics [14–17].

In contrast to the subcycle electron dynamics in solids, the cycle-averaged dynamics is another important
subject and has been intensively studied in a number of theoretical works in terms of Floquet theory [18–24],
where Floquet states FY ñ∣ are stationary solutions of Schrödinger equationwith a time-periodicHamiltonian,H
(t)=H(t+T). In a seminal work byOka andAoki [18], it was theoretically demonstrated that the topology of
condensed-matter systems can be controlled by light via the Floquet engineering. Furthermore, based on the
emergence of topology, the light-induced anomalousHall effect in graphene, analogous to theHaldanemodel
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[25]with broken time-reversal symmetry [26], has been predicted.Motivated by this theoretical prediction,
McIver et al recently observed the light-induced anomalousHall effect in graphene under the presence of a
circular laserfield [27]. Soon after, we have theoretically investigated themicroscopic origin of the observed
light-induced anomalousHall effect by the quantumLiouville equationwith phenomenological dissipation
[28]. As a result, we clarified that the imbalance of photocarrier distribution of topological Floquet states in the
Brillouin zone predominantly causes the light-induced anomalousHall current with a small contribution from
the emergent Berry curvature of the Floquet states.

The anomalousHall effect induced by circularly polarized light has been heavily discussed in various
theoretical works [18, 29–34] from the point of view of intrinsic and light-induced Berry curverture
contributions in order to explore a possibility of diagnosing and steering topological properties by light.
However, despite the great interest in the subject, population effects with dissipation have only recently been
discussedmore seriously in the context of Floquet and topological engineering in open [35, 36] and closed
[37–39]nonequilibriummany-body systems. Dissipation and population effects are definitely important in
explaining the recent experiments on the light-inducedHall effect [27, 28], and herewewill provide an in-depth
discussion of them. In this work, wefirst discuss appropriate treatment of phenomenological relaxation for
dissipative light-driven condensedmatter systems, taking care of electronic decoherence and thermalization via
electron–electron and electron–phonon scattering. Then, we investigate the light-induced anomalousHall
effect in amassless Dirac fermion system as amodel of graphene and elucidate the population contribution and
the topological contribution to theHall effect. Finally, we investigate the light-induced anomalousHall effect in
amassiveDirac fermion system as a simplemodel describing a topological insulator in order to explore the
interplay of the intrinsic topological contribution and the extrinsic light-induced contribution to theHall
current. As a result, we find that the intrinsic contribution can beweakened by strong optical driving and the
extrinsic contribution dominates the properties of the driven system in the strong field regime. Thesefindings
indicate robustness and generality of the photocarrier population effect and open a possibility to control of
material properties via population-control on top of state-control by light.

This paper is organized as follows: in section 2we describe the theoreticalmodeling ofmassless andmassive
Dirac fermion systemswith the phenomenological relaxation. In section 3we first assess phenomenological
relaxation constructedwith two kinds of physical basis sets: one is the static Bloch state, and the other is the
dynamicalHouston state. Then, we investigate theHall transport property ofmassless andmassiveDirac
fermion systems under the presence of circularly polarized laserfields. Finally, ourfindings are summarized in
section 4.

2.Method

Herewe describe the simple but realistic theoreticalmodeling ofmassless andmassiveDirac fermion systems.

The systems are described by the followingwidely usedHamiltonian at each k

-point,

H v k v k
2

, 1k z x x y y zF F t s s s= + +
D ( )

whereσu=x,y,z is a Paulimatrix, vF is the Fermi velocity, andΔ is the band gap of the system. IfΔ is set to zero, the
system corresponds to amassless Dirac fermion system.Otherwise, the system is amassiveDirac fermion
system. The chirality of the system is given by 1zt =  . Note that the positive and negative chiralities correspond
to theDirac cone of graphene atK and K ¢ points, respectively. Thus, one needs to include both contributions in
the simulation to accurately describe the low energy states of graphene. In this work, we fix the Fermi velocity vF
to 1.12×106m s−1, which corresponds to that of graphene computed by the ab initio calculation [40].

To describe the light-driven electron dynamics inmassive andmassless Dirac fermion systemswith
dissipation, we employ the following quantumLiuoville equation for the reduced single-particle densitymatrix

t
t

H t
D t

d

d

,

i
, 2K t

K t K t
K t K t

r
r

r= +
 

 ( )
[ ( )] ˆ ( ) ( )( )

( ) ( )
( ) ( )

with a time-dependentHamiltonian HK t


( ) and a phenomenological relaxation operator DK t
ˆ ( ). The time-

dependentHamiltonian is given as

H v K t v K t
2

, 3K t z x x y y zF F t s s s= + +
D ( ) ( ) ( )( )

where the light-matter coupling is described by the Peierls substitution, K t k eA t c= +
  

( ) ( ) , with a
spatially uniform vector potential A t


( ).

We construct the relaxation operator D tK t
ˆ ( )( ) based on the relaxation time approximation [41]. For this

purpose, wefirst express the reduced densitymatrix tK tr  ( )( ) on the basis ofHouston states [42, 43], which are

2

New J. Phys. 21 (2019) 093005 SA Sato et al



eigenstates of the instantaneousHamiltonian HK t


( ) at each instance; H u t u tK t bk bK t bk
H Hñ = ñ∣ ( ) ∣ ( )( ) ( ) , where b

denotes the band index, valence (b=v) or conduction (b=c) bands. The reduced densitymatrix can be

expandedwith theHouston states at each k

-point as

t u t u t , 4K t
bb

bb K t bk b k,
H Hår r= ñá

¢
¢ ¢

   ( ) ∣ ( ) ( )∣ ( )( ) ( )

which can bewritten inmatrix formwith theHouston basis,

t
t t

t t
. 5K t

vv K t vc K t

cv K t cc K t
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r r
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( ) ( )

( ) ( )

In the basis of theHouston states, we further construct the relaxation operator DK t
ˆ ( ) with the

phenomenological relaxation time,T1 andT2, as

D , 6K t K t

t
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where
bK t
eqr 

( ) is the Fermi–Dirac distribution,

1

e 1
7b K t k T,

eq

bK t eB
r =

+m-
( )( ) ( )( )

with the electron temperatureTe and the chemical potentialμe. In this work, we fix the electron temperature to
80Kand the chemical potential to zero unless stated otherwise. Here,T1 denotes the longitudinal relaxation
time, which is responsible for the population decay, whileT2 denotes the transverse relaxation time, which is
responsible for decoherence. According to [28], the relaxation times,T1 andT2, are set to 100 fs and 20 fs,
respectively. Here, we choose the longitudinal relaxation timeT1 according to the electron thermalization time
scale, while the transverse relaxation timeT2 according to the electron–electron scattering time scale [44–46].

Instead of the use ofHouston states u t
vk
H ñ∣ ( ) , onemay consider to employ static Bloch states, which are

eigenstates of theHamiltonian, H u uk bk bk bk
B Bñ = ñ   ∣ ∣ , to construct the dissipation operator. However, as will be

shown later, the dissipation operator based on the Bloch states fails to describe fundamental properties of
materials because the field-induced intrabandmotion is not taken into account in the Bloch basis.

Employing the time-evolving reduced densitymatrix tK tr  ( )( ) , one can compute dynamics of a general one-

body observable Ô as

O t k O t
1

2
d Tr . 8K t2 òp

rá ñ =


ˆ ( )
( )

[ ˆ ( )] ( )( )

In this work, we focus on the transport property ofmassive andmassless Dirac fermion systems. Thus, we
compute the time-evolution of the electric current, employing the following current operator,

J t
c H

A
, 9i

K t

i
= -

¶

¶


ˆ ( ) ( )( )

whereAi is the ith component of the vector potential A t


( ).

3. Results

3.1.Dissipation constructedwithHouston andBloch states
Here, we elucidate the two kinds of dissipation operators D̂ to demonstrate that taking the appropriate basis for
the densitymatrix is crucial: one is constructedwith theHouston states, as explained in section 2. The other is
constructedwith the static Bloch states, which are eigenstates of the field-freeHamiltonian, instead of using the
Houston states. For the sake of the investigation, we first evaluate the direct current (DC) transport property of a
massless Dirac fermion system, i.e. amodel for graphene.

To evaluate theDC transport property, we compute the electric current under a static source–drain field. To
smoothly apply the source–drain field E tSD


( ), we employ the following time-profile that includes a switch-on

process

E t E e f
t

T
, 10xSD SD

switch

=
  ⎛

⎝⎜
⎞
⎠⎟( ) ( )
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where the switching function f (x) is defined as

f x
x

x x x

1, 1

3 2 , 0 1
0, otherwise.

112 3 =
<

- <

⎧
⎨⎪
⎩⎪

( ) ( )

Here, we set the source–drain direction to the x-direction, the source–drain field strength ESD to 10
3 V m−1, and

the switching timeTswitch to 200 fs.
Figure 1 shows the computed current along the source–drainfield direction as a function of time. The red-

solid line shows the result employing the relaxation operator constructedwith theHouston basis, while the
green-dashed line shows that with the Bloch basis. The time-profile of the applied electric field is also shown as
the black dash–dot line. One sees that the result using theHouston states(red-solid) converges to the constant
current on the time scale of the relaxation. Therefore, the system reaches a nonequilibrium steady state under the
presence of the source–drain field, and the saturated current can be described as a function of the applied field
strength, J(ESD). In theweakfield limit, the perturbative expansion can be applied, and one obtains
J(ESD)=σESD. Indeed, we numerically confirmed that the current infigure 1 is already in this linear response
regime. Thus, we can confirm that the dissipation operator constructedwith theHouston states can naturally
reproduceOhm’s law.On the other hand, the result using the Bloch states(green-dashed)monotonically
increases and diverges in the long time propagation limit. This factmeans that the systemdoes not reach a steady
state, demonstrating that the relaxation operator constructedwith the Bloch states induces an artificial error,
violatingOhm’s law.

Next, we consider theHall transport property with the dissipation constructedwith theHouston and the
Bloch states. For this purpose, we set the gapΔ to 100 meV, and the chirality τz to+1. All the other parameters
are the same as for the aboveDC transport investigationwith themasslessDirac fermion system.We compute
theHall current along the x-axis under the presence of the slowly-switched-on electric field along the y-axis.
Here, we define the instantaneousHall conductivityσxy as a ratio of the instantaneousHall current and the
strength of the source–drain field ESD.

Infigure 2, the red-solid line shows the result computedwith the dissipation constructedwith theHouston
states, while the green-dashed line shows that with the Bloch states. As a reference, the blue-dotted line shows the
result without any dissipation. TheHall conductivity without any dissipation converges to e h22- under the
static electric field, showing the half integer of the quantized conductivity in agreement with the basic theory of
anomalousHall effect [47]. TheHall conductivity computedwith relaxation in theHouston basis fairly
reproduces the quantized conductivity, indicating that relaxation does not have any significant effect in the
regime of adiabatic evolution. On the other hand, theHall conductivity computedwith relaxation based on the
static Bloch basis significantly deviates from the quantized value, showing divergent behavior. Therefore, the
relaxation operator constructedwith the Bloch states fails to capture the transport property of a topological
insulator.

The failure of the relaxation operator constructedwith the static Bloch states can be understood in terms of
the following unphysical excitationmechanism: under a static electricfield, the vector potential A t


( )

monotonically increases and theHamiltonian HK t


( ) changes in time. If the systemhas a substantial gap, the

Figure 1.Current as a function of time in amasslessDirac fermion systemunder aweak quasi-static electric field. The red-solid line
shows the result with the phenomenological dissipation constructed with theHouston basis, and the green-dashed line shows that
constructedwith the Bloch basis. The black dash–dot line shows the applied electricfield(right axis).
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dynamics has to be adiabatic and the states have to bewell approximated by the eigenstates of the instantaneous
Hamiltonian.However, once the relaxation operator constructedwith the static Bloch states is applied, the
operator forces the system to remain in the initial Bloch states, which are not the eingenstates of the
instantaneousHamiltonian. Therefore, the relaxation operator using the Bloch states disturbs the adiabatic
dynamics, and the system is artificially excited. This unphysical excitation appears as the diverging current in the
DC transport of themassless Dirac fermion system (infigure 1) and in theHall transport of themassiveDirac
fermion system (infigure 2). In contrast, theHouston states can naturally capture this adiabatic dynamics since
they are defined as instantaneous eigenstates of theHamiltonian HK t


( ). Therefore, the relaxation operator

constructedwith theHouston states does not disturb the adiabatic dynamics under a static electric field, and it
can properly describes the dissipative property of dynamical systems.

Here we examined the properties of the relaxation operator constructedwith theHouston states only for the
quasi-static responses as shown infigures 1 and 2.However, importantly, we note that the same description of
the relaxation has been recently examined even for time-dependent fields in both linear and nonlinear response
regimes and has been demonstrated to fairly capture the experimentally observed features in the context of the
energy loss spectroscopy and the high-order harmonic generation from solids [48, 49]. Thus, hereafter, we
employ the relaxation operator constructedwith theHouston states in order to investigate the light-induced
Hall responses under the simultaneous presence of static and dynamicalfields.

3.2. Light-inducedHall effect in graphene
Next, we investigate the anomalousHall effect induced by circularly polarized light in amasslessDirac fermion
system thatmodels theDirac bands in graphene. Figure 3 shows a schematic picture of our simulation setup that
mimics the experimental setup of [27].We compute the electron dynamics under the presence of circularly-
polarized light and a static source–drain field, andwe compute theHall current, which is perpendicular to the
source–drain direction.

To practically compute the light-inducedHall current, we employ the following form for a circular laser
pulse,

A t
cE t

T

e t e t

cos

sin cos 12x y

cir
cir

cir cir

2

cir cir cir

w
p

w t w

=-

´ +



 

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

[ ( ) ( )] ( )

in the domain T t T2 2cir cir- < < and zero outside. Here, ÿωcir is themean photon energy,Tcir is the full
duration,Ecir is themaximumof thefield strength of a circularly-polarized laserfield. The chirality of the circular
laser is given by τcir=±1. According to previous work [28], we set the full width at halfmaximumof the pulse
to 1ps, thewavelength of the laser to 6.5 μm,which corresponds to the photon energy of ÿωcir≈190 meV. For
the source–drain field, we employ the formof equation (10), setting ESD to 10

4 Vm−1 andTSD to 20 fs.
Tomake the direct connection to the experiment [27], we evaluate the light-inducedHall current as the

difference of the transverse current induced by positive and negative chirality pump laser fields (pump
dichroism). Figure 4(a) shows thefield strength profile of a circular laser pulse and the source–drain field as

Figure 2.Hall conductivity as a function of time in amassiveDirac fermion systemunder aweak quasi-static electric field. The red-
solid line shows the result with the phenomenological dissipation constructedwith theHouston basis, the green-dashed line shows
that constructedwith the Bloch basis, and the blue-dotted line shows that without any dissipation. The black dash–dot line shows the
applied electricfield.
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functions of time, whilefigure 4(b) shows the difference of the transverse currentΔ J(t) induced by the positive
and negative circular laser pulses under the presence of the source–drain field. As seen from figure 4(b), the
dichroism currentΔ J(t) shows high-frequency components. These high-frequency components are not
relevant for the transport property because there is nomean charge flowwith the time-average. To extract the
DC component of the transverse current, we define theHall current as the temporal-average of the dichroism
current as

J t t J t
t t1

2
d exp

2
, 13

W W
H

2

2

2ò
ps s

= ¢D ¢
- ¢⎡

⎣⎢
⎤
⎦⎥( ) ( ) ( ) ( )

where thewidth of the temporal average σW is set to 100 fs.
Figure 4(c) shows the computedHall current JH(t) as a function of time.One sees that theHall current shows

the similar profile to the applied circular field. This fact indicates that the light-inducedHall effect in the present
conditions can be characterizedwith a quasi-steady-state due to the balance of the laser excitation and the
relaxation at each instance. Indeed, it was demonstrated that theHall conductivity evaluatedwith the peakHall

Figure 3. Schematic picture of the experimental setup for the light-induced anomalousHall effect in graphene.

Figure 4.Evaluation of the light-inducedHall current in amassless Dirac fermion system. (a)The red-solid line shows thefield
strength of the circular laser pulse as a function of time, and the blue-dotted line shows that of the source–drain field.Here, the
source–drain field (blue-dotted) is scaled by a factor of 100. (b)The difference of the transverse current induced by the positive and
negative circularly polarized laser pulses. (c)The extractedHall current evaluated by equation (13)with the transverse current in the
panel(b).
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current induced by a circular laser pulse is well described by that evaluatedwith a steady state under the
continuous circular laser [28].

Next, we investigate the light-inducedHall effect by changing the field strength of the circular laser pulses.
For this purpose, we define the light-inducedHall conductivityσxy of themassless Dirac fermion system as the
ratio of the peakHall current JpeakH and the source–drain field strength ESD, J Exy H

peak
SDs = .

Infigure 5, the red circles show the computedHall conductivity as a function of the applied circular laser
fields. One sees that theHall conductivitymonotonically increases and shows a saturation behavior in the strong
field regime. In the experiment, a similar saturation has been reported as the saturated conductivity of

e h1.8 0.4xy
exp 2s =  [27]. Therefore, our simulation provides a consistent result with previous

experimental work.
In our previous theoretical work [28], it was demonstrated that the light-inducedHall effect in graphene

dominantly originates from the population imbalance of photocarriers in themomentum space.Here, we revisit
this interpretation from a different angle. For this purpose, we evaluate the contribution of themomentum-
space population imbalance to theHall current by the following intraband current

J t kn
k

1

2
d , 14

b v c
bK t

bK t
intra 2

,


òåp

=
¶

¶=

 



( )
( )

( )( )
( )

where K t


( ) is the accelerated Blochwavevector, K t k eA t c, bk = +
  

( ) ( ) is the eigen-energy of theDirac

Hamiltonian at k

. Here, the instantaneous occupation n tbK t

 ( )( ) is computed by the projection onto theHouston
state as

n t t u t u tTr . 15bK t K t bk bk
H Hr= ñá  ( ) [ ( )∣ ( ) ( )∣] ( )( ) ( )

Note that the intraband current in equation (14) is nothing but the current computed solely by the diagonal
elements of the current operator in equation (9) in theHouston basis representation. Because the band velocity
of theDirac bands, k v k kbk f¶ ¶ = 

  
 ∣ ∣, is isotropic around theDirac point, the light-inducedHall current

computedwith equation (14) purely originates from the symmetry breaking of the photocarrier distribution
n tbK t
 ( )( ) in the Brillouin zone.
Infigure 5, the green squares show the population imbalance contribution computed by equation (14). In

theweakfield regime, the population imbalance contribution of the bareDirac bandswell reproduces the total
Hall conductivity (red circles). Therefore, the light-induced anomalousHall effect dominantly originates from
the population imbalance of photocarriers. Furthermore, even in the strong field regime, the population
imbalance contribution fairly captures general trends of the total signal. Therefore, the population imbalance
picture is still relevant even in the strong field regime.

To obtain further insight intomicroscopic physics behind the light-induced anomalousHall effect, we
investigate a property of steady states under the presence of circularly-polarized light. For this purpose, we
numerically construct a steady state by solving equation (2)under the presence of a continuous circularly-
polarized laser fieldwithout the static source–drain field. After the long time propagation, the system reaches a
steady state due to the balance of the laser excitation and the relaxation. The single-particle densitymatrix of
such steady state has a periodicity in time, t t TK t K t cycler r= + ( ) ( )( ) ( ) , with the period of the externalfieldTcycle.

Figure 5. Light-inducedHall conductivityσxy as a function of thefield strength of the applied circular laserfield. The red circles show
the totalHall conductivity computedwith the total current operator, equation (9). The green squares show the contribution from the
population imbalance computedwith the intraband current, equation (14). The blue triangles show the contribution from the Berry
curvature of natural orbitals computedwith equation (20).
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To investigate details of such steady state densitymatrix, we consider the expansionwith natural orbitals [50] as

t n t u t u t , 16K t
b

bk bk bk
NO NO NOår = ñá   ( ) ( )∣ ( ) ( )∣ ( )( )

where u t
bk
NO∣ ( ) is a natural orbital, and n t

bk
NO ( ) is the occupation of the natural orbital. Thanks to the time

periodicity of the densitymatrix, the natural orbitalsmay have the same time periodicity
as u t T u t

bk bk
NO

cycle
NO+ ñ = ñ ∣ ( ) ∣ ( ) .

Importantly, the expectation value of single-particle operators, equation (8), can be expressed as a sumof the
expectation value of each natural orbital with the occupationweight as,

O t k n t u t O u t
1

2
d . 17

b
bk bk bk2
NO NO NOò åp

á ñ = á ñ


  ˆ ( )
( )

( ) ( )∣ ˆ∣ ( ) ( )

Therefore, the natural orbital is one of themost suitable descriptors of the system in a single-particle picture.
Based on this fact, we investigate properties of the steady states with their natural orbitals.

As seen infigure 5, the contribution from the population imbalance in the bareDirac bands(green-square)
dominates the total conductivity(red-circle) in theweakfield regime. Therefore, the steady state in theweak
field regime is expected to bewell characterized by the valence and conduction states of the bareDirac bands.
Once the field strength becomes strong, the contribution from the population imbalancemechanism shows a
discrepancy from the total conductivity. Thus, in the strong field regime, the bare valence and conduction states
would not be suitable descriptors of the system anymore. In order to access this hypothesis, we introduce a
measure of similarity of the natural orbitals and theHouston states(the instantaneous eigenstates of the
Hamiltonian).We shall call itHouston fidelity. To define theHouston fidelity, we first introduce afidelitymatrix

F
k
H at each k


such that eachmatrix element Fij k,

 is the cycle-average of the squared overlap of the ith natural

orbital and the jthHouston state as

F
T

t u t u t
1

d . 18ij k

T

ik jk,
cycle 0

NO H 2
cycle

ò= á ñ  ∣ ( )∣ ( ) ∣ ( )

Then, theHouston fidelity is defined as the absolute value of the determinant of the fidelitymatrix,
S Fdet

k k
H = ∣ ∣. Note that theHouston fidelity, S

k
H , takes themaximumvalue of one only if the natural orbitals

are identical to theHouston states at all the time. In general, S0 1
k
H  .

In contrast to the above bare band picture, onemay consider a photon-dressed band picture based on the
Floquet theory. Under the continuous laser driving, theHamiltonianH(t)has the time periodicity with the
period ofTcycle. Then, a Floquet state u t

bk
F ( )may be introduced as a part of a solution of the time-dependent

Schrödinger equationwith a time-periodicHamiltonian

t
t H ti

d

d
, 19

bk K t bk
F F Y ñ = Y ñ  ∣ ( ) ∣ ( ) ( )( )

where the solution t
bk
FY ñ∣ ( ) consists of the time periodic Floquet state, u t T u t

bk bk
F

cycle
F+ ñ = ñ ∣ ( ) ∣ ( ) , and a pure

phase factor as t t u texp i
bk bk bk
F F FY ñ = - ñ  ∣ ( ) [ ]∣ ( ) . Here,

bk
F  is the Floquet quasienergy. Onemay further

introduce ameasure of similarity of the natural orbitals and the Floquet states by employing the Floquet states in
equation (18) instead of theHouston states. This was introduced as S

k
F Floquet fidelity in previous work [28], and

it was used to demonstrate that the Floquet states are realized in graphene under the presence of a strong
laserfield.

Since photocarriers are expected to play a significant role in the light-induced anomalousHall effect, we now
investigate the steady state densitymatrix at a resonant k-point where the vertical gap is identical to the photon
energy, k v2cir Fw=∣ ∣ . Figure 6(a) shows theHouston fidelity S

k
H and the Floquet fidelity S

k
F at the resonant k-

point as a function offield strength of the circular laser field. In theweakfield regime, theHouston fidelity is
close to one, indicating that the steady state is well characterized by the bareDirac bands. As the field strength
becomes stronger, theHouston fidelitymonotonically decreases, indicating that the states are significantly
dressed by photons and the system is notwell characterized by the bareDirac bands anymore. Thesefindings
fairly support the above hypothesis. The Floquet fidelity S

k
F at the resonance infigure 6(a) is close to zero in the

weakfield regime. This fact indicates that the photon-dressing electronic state is significantly disturbed by the
dissipation, and the Floquet states cannot be formed in theweak field regime.Once thefield strength increases,
the photon-dressing effect becomesmore significant and overcomes the dissipation effects. As a result of the
competition of the dressing and the dissipation, the Floquet states can be fairly well formed in a strong field
regime.However, once thefield strength becomes stronger than 20MVm−1, the Floquetfidelity starts
decreasing. This fact can be understood by the opening of additional dissipative channels due to the significant
intrabandmotion of electrons in the Brillouin zone: Once the field strength becomes strong enough, the
momentum shift of the electron e A t c


∣ ( )∣ becomes comparable to the distance between theDirac point and
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the resonant k-point k v2cir Fw=∣ ∣ . As a result, electrons that originally stay around the resonant point can
move around theDirac point, where the gap between the conduction and valence states is small. Because of the
small gap nature, additional dissipative channels can be opened, and the photon-dressing effect is significantly
disturbed. Indeed, themomentum shift corresponding to the field strength of 30 MVm−1 is about 8.3×10−3

a.u., and it exceeds the resonantmomentum k v2 6.8 10cir F
3w= = ´ -∣ ∣ a.u.

Next, we investigate the steady state densitymatrix at theDirac point instead of the resonance. Figure 6(b)
shows theHouston fidelity S

k
H and the Floquet fidelity S

bk
F at theDirac point, k 0=


. In contrast to the result at

the resonance, theHouston fidelity ismuch smaller than one even in theweakfield limit. This fact indicates that
the bare band picture is significantly disturbed by theweak external driving because of the gapless feature at the
Dirac point. The Floquetfidelity at theDirac point is almost zero in theweak field limit, while it quickly
converges to one as thefield strength increases. Therefore, the Floquet states arewell established at theDirac
point in the strong field regime. This fact is consistent with the above finding in the resonance condition: the
Floquet states are significantly disturbed by the dissipation in theweak field regime, while they are stabilized in
the strongfield regime because the photon-dressing effect overcomes the dissipation effect. One sees that the
Houston fidelity seems to converge to one in the strong field limit, indicating that the adiabatic picture becomes
suitable in the strong field regime.However, the realization of the adiabatic states requiresmuch higher field
strength, comparedwith the Floquet states.

Based on the Floquet picture, it was demonstrated that the Floquet quasienergy shows the band-gap opening
at theDirac point under the presence of a circularly-polarized laser field, and the Floquet states show the
emergence of Berry curvatures [18]. Furthermore, the light-induced anomalousHall effect was predicted based
on the anomalous velocity due to the Floquet Berry curvature. Figure 6(c) shows the Floquet gap at theDirac
point as a function of thefield strength of the circular laser field. The gap reaches 100 meV at the highest field
strength, 30MVm−1. According tofigure 6(b), one expects that, in the strong field regime, the system forms the
Floquet states and shows the Floquet Berry curvature contribution to theHall effect due to the topological gap
opening. Indeed, it was demonstrated that the natural orbitals of the non-equilibrium steady state with
dissipation showBerry curvatures consistent with those of the Floquet states [28]. To quantify the Berry
curvature contribution to the light-induced anomalousHall effect, we extend the expression of theHall
conductivity with the Floquet states [18] to that with the natural orbitals as

Figure 6.CalculatedHouston fidelity S
k
H and Floquetfidelity S

k
F (seemain text for details) as functions offield strength at (a) the

resonant k-point, k v2 fcirw=∣ ∣ and (b) theDirac point, k 0=


. (c)The Floquet gap at theDirac point as a function offield strength
of the circular laserfield.
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where n
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NO˜ is the cycle-average natural orbital occupation, and bk
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Infigure 5, the blue triangles show the Berry curvature contribution to the light-inducedHall conductivity
computedwith equation (20). One sees that the light-induced Berry curvature shows non-zero contribution to
the light-inducedHall conductivity. However, it is a ratherminor contribution comparedwith the population
imbalance effect. Therefore, we can conclude that the light-induced anomalousHall effect in graphene
dominantly originates from the photocarrier population imbalance inmomentum space.

3.3. Light-inducedHall effect in topological insulators
In the previous section, we discussed the emergent Berry curvature contribution to the light-induced anomalous
Hall effect in themasslessDirac fermion system.Here, we investigate theHall transport properties of a system
where the light-induced extrinsic contributions coexist with the intrinsic topological contribution. For this
purpose, we investigate the light-induced anomalousHall effect in amassiveDirac fermion system.We set the
gapΔ to 100 meV,which is comparable to the Flouqet gap of themasslessDirac fermion system at the highest
field strength (seefigure 6(c)). The other parameters are the same as the previousmassless Dirac fermion system.

In order to investigate the relation between the chirality of light(τcir) and the intrinsic chirality of the
system(τz), we do not employ the pumpdichroismbut employ the cycle-averaged current of a nonequilibrium
steady state under the presence of the source–drain field and a continuous circular laserfield, fixing the chirality
of light to positive(τcir=+1).

Figure 7(a) shows the computedHall conductivityσxy as a function offield strength of the circular laserfield.
The red circles show the conductivity of the positive chirality system(τz=+1), while the blue squares show
that of the negative chirality system(τz=−1). In theweakfield limit, the two systems show the intrinsicHall
conductivities with the opposite sign, reflecting the intrinsic Berry curvature contribution. Once thefield
strength becomes strong, the two systemswith the different chiralities start showing qualitatively different
behaviors because they have opposite intrinsic contributions and a common extrinsic contribution. The positive
chirality system (τz=+1) shows negative conductivity in theweakfield limit. As thefield strength increases, the
absolute value of the conductivity decreases.When thefield strength reaches around 8MVm−1, theHall
conductivity becomes zero due to the cancellation of the intrinsic and extrinsic contributions. Once the field
strength becomes stronger, the conductivity changes its sign to positive andmonotonically increases. On the
other hand, the negative chirality system (τz=−1) does not show the sign change in theHall conductivity.
Interestingly, the conductivities of the two systems converge to a similar value in the strong field regime. These
facts indicate that the common extrinsic contribution to theHall transport property overcomes the intrinsic
Berry curvature contribution in the strong field regime.

In order to elucidate themicroscopicmechanism of theHall transport property of themassiveDirac
fermion system in the presence of the circular laserfield, we evaluate the contribution from the population
imbalance of photocarriers with equation (14) and the Berry curvature contribution by equation (20).

Figure 7(b) shows the result of the positive chirality system(τz=+1). Here, in theweakfield limit, the total
conductivity(red circle) shows the half integer of the quantized conductivity e h0.5 2- due to the intrinsic
topological contribution, and this value is well described by the natural-orbital Berry curvature
contribution(blue triangle). Thus, we can confirm that the intrinsic Berry curvature contribution is well
captured by the natural orbital expression, equation (20). Furthermore, since there is no photocarrier generation
in theweakfield limit, the contribution from the population imbalance(green square) is zero in this regime. As
thefield strength increases, the Berry curvature contribution becomes smaller while the population imbalance
starts being the larger contribution in the positive chiral system. As a result, the sign of theHall conductivity
changes fromnegative to positive. This fact indicates the robustness of the extrinsic population contribution and
a possibility that the intrinsic property of the system can be completely overwritten by the extrinsic property with
the strong optical driving.

Figure 7(c) shows the result of the negative chirality system(τz=−1). In contrast to the positive chirality
system, theHall conductivity of the negative chirality system shows the positive conductivity in theweakfield
regime. Furthermore, theHall conductivity does not show the sign change even in the strong field regime. This
behavior can be understood by the fact that, in the negative chirality system, the intrinsic and the extrinsic
contributions have the same sign in theHall conductivity (see figure 7(c)). Infigure 7(c), while the Berry
curvature contribution (blue triangle) dominates the intrinsicHall transport property in theweak field limit, it is
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weakened once thefield strength becomes strong.On the other hand, while the contribution from the
population imbalance is negligible in theweakfield regime, it becomes significant in the strong field regime.
Therefore, in both positive and negative chirality systems, the intrinsic topological contribution is weakened by
the laser driving, while the light-induced extrinsic contribution dominates the totalHall transport property.

Finally, we investigate the effect of electron (hole) doping on the anomalousHall effect in themassiveDirac
fermion system. In previous theoretical and experimental works, the doping effect on the light-induced
anomalousHall effect in graphene has been investigated [27, 28], and it was demonstrated that the light-induced
Hall conductivity in the strong field regime shows a double-peak structure with a central plateau as a function of
the chemical potential. Here, we elucidate the role of the intrinsicHall transport property in the optically-driven
massiveDirac fermion systemwith electron (hole)doping.

Figure 8(a) shows theHall conductivities of themassiveDirac fermion systems in equilibriumwithout
optical driving as a function of chemical potentialμ, while figure 8(b) shows those under the presence of the
strong circular laserfield(Ecir=20MVm−1). In equilibrium, the conductivities show the central plateau
region thewidth of which is comparable with the size of the gapΔ=100 meV.Depending on the chirality of
the system(τz=±1), theHall conductivity has the opposite sign. In contrast, in the nonequilibrium steady
state under the presence of the strong laserfield, theHall conductivities become positive regardless of the
chirality of the system. Furthermore, both chiral systems show the common feature; the double peak structure
with the central plateau region. This feature is consistent with the emergent feature of the light-induced
anomalousHall effect in graphene. These findings indicate that, although the systemswith opposite chiralities
have significantly different intrinsic properties in equilibrium, the properties can be overwritten by the strong
optical drive.

4. Summary

In this work, we investigated the transport property ofmassless andmassiveDirac fermion systems thatmimic
graphene and topological insulators, respectively. Dirac fermion systems under the coexistence of light and

Figure 7.Hall conductivities as a function of thefield strength of the applied circular laserfields. (a)The total Hall conductivity of the
massiveDirac fermion system is shown for the positive chirality system (τz=+1) as the red circles and for the negative chirality
system (τz=−1) as the blue squares. (b)TheHall conductivity of the positive chirality system is shown. The red circles show the total
conductivity, the green squares show the contribution from the population imbalance computedwith equation (14), and the blue
triangles show the Berry curvature contribution computed by equation (20). (c) shows now theHall conductivity for the negative
chirality system.
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dissipation in order to provide themicroscopic insight into the dynamics of optically-driven nonequilibrium
systems.

We assessed two kinds of phenomenological relaxation operators: one is constructedwith theHouston
states, which are the instantaneous eigenstates ofHamiltonian. The other is constructedwith the static Bloch
states, which are static eigenstates of the field-freeHamiltonian. It was demonstrated that the relaxation operator
constructedwith theHouston states satisfiesOhm’s low for ametallic system and reproduces the quantizedHall
conductivity of a topological insulatorwhile the relaxation operator constructedwith the Bloch states fails to
satisfyOhm’s low and to reproduce the quantized conductivity, showing divergence of the current. The failure of
this relaxation operator can be understood by an artificial excitation via the relaxation operator because the
field-induced intrabandmotion is not properly taken into account, which is instead naturally included in the
operator using theHouston states. Thus, theHouston state expression is indispensable to properly construct the
dissipation operator and to be able to address the dynamical simulation of the driven system.

We then investigated the light-induced anomalousHall effect in amassless Dirac fermion system that
mimics theDirac bands of graphene.We demonstrated that themassless Dirac fermion system shows theHall
transport property under the presence of circular laser fields. Based on themicroscopic analysis, we clarified that
the imbalance of photocarrier distribution in the Brillouin zone is themain origin of the light-inducedHall
transport property although the nonzero light-induced Berry curvature contributionwas also found.We further
analyzed the steady-state densitymatrix under the continuous circular laser driving. As a result, we found that
the Floquet states are notwell formed in theweak field regime due to dissipationwhile they arewell formed in
the strongfield regime because the photon-dressing overcomes the dissipation effect.

Next, we studied theHall transport property of themassiveDirac fermion systemunder the presence of the
circular laserfields in order to investigate the interplay of the intrinsic and the extrinsic contributions to theHall
transport. In theweakfield regime, the intrinsic topological contribution dominates theHall transport property
while the photocarrier population effect is negligible. Once the field strength becomes strong, the topological
contribution becomesweakenedwhile the photocarrier population effect becomes significant. Surprisingly, if
the intrinsic and the extrinsic contributions have opposite signs to theHall conductivity, the sing of theHall
conductivity of the topological insulator can beflipped by the strong laser driving. Note that, in addition to the
intrinsic Berry curvature contribution, it is known that extrinsic scattering processes such as the skew-scattering
may have a significant contribution to the anomalousHall effect in equilibriumphases [51]. Because the
scattering processes dependmuch on population distributions of carriers, the photocarrier effect investigated in
this workmay furthermodify the extrinsic scattering contribution and open yet another possibility of

Figure 8.Hall conductivities of themassiveDirac fermion systems as a function of chemical potentialμ. (a)TheHall conductivities in
equilibriumwithout optical-driving are shown for the positive chirality system (τz=+1) as the red-solid line and for the negative
chirality system (τz=−1) as the blue-dashed line. (b)TheHall conductivities in a non-equilibrium steady state with the optical
driving(Ecir=20 MV m−1) are shown.
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controllingHall transport properties by light. This possibility will be investigated by integrating the
corresponding scatteringmechanisms into the presentmodel in futurework.

The above findings demonstrate the robustness and the generality of the photocarrier population imbalance
effect in the optically-driven nonequilibrium systems. Importantly, we demonstrated that the extrinsic
population effect can overwrite intrinsic properties ofmaterials. Therefore, the population control can be a key
to realize the optical control ofmaterial properties. Furthermore, by combining the population control with the
state control such as the Floquet engineering by photon-dressing, properties and functionalities ofmaterials can
be largely controlled via light and novel features in nonequilibrium systemsmay be discovered.
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