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Highlights 

● Impacts of five grid-DEM resolutions on hydrologic-stability modeling are assessed 

● The model uses Triangulated Irregular Networks to describe the topography 

● We analyze direct and indirect effects of hydro-geomorphic processes involved 

● Resolution impacts triggering processes when lateral water exchanges are allowed 
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Abstract 

This study employs a distributed eco-hydrological-landslide model, the tRIBS-VEGGIE-Landslide, 

to evaluate the influence of terrain resolution on the hydro-geomorphological processes involved in 

slope stability analysis. The model implements a Triangulated Irregular Network (TIN) to describe 

the topography starting from a grid-DEM. Five grid-DEM resolutions of the case study basin, i.e., 

10, 20, 30 and 70 m, are used to derive the corresponding TINs. The results show that using 

irregular meshes reduces the loss of accuracy with coarser resolutions in the derived slope 

distribution in comparison to slope distributions estimated from the original grid-based DEM. From 

a hydrological perspective, the impact of resolution on soil moisture patterns and on slope stability 

is significant mostly when lateral water exchanges are allowed. The degrading of resolution leads to 

a reduction of the predicted unstable areas, with respect to the highest resolution case, from about 

15% (20 m) to more than 40% (70 m).  

 

Keywords: hydrologic modeling; landslides; numerical modeling; digital elevation models; slope 

stability analysis.  
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1 Introduction 1 

Physically-based modeling is one of the approaches used to assess the vulnerability of natural 2 

basins to hillslope instability induced by extreme or prolonged precipitation. The increasing 3 

trend of weather-related disasters (Hoeppe, 2016) motivates the continuing interest in more 4 

reliable tools for prediction and analysis of precipitation-induced landslide events. 5 

One of the issues extensively discussed in landscape modeling is the use of the appropriate grid 6 

Digital Elevation Model (DEM) resolution. Specifically, the question is whether adopting the 7 

finest available grid-DEM (hereinafter simply DEM) resolution is a justified choice, not only in 8 

terms of computational requirements, but also in terms of effective improvement of the model 9 

capability in predicting/determining the initiation of landslides (Cavazzi et al., 2013; Fuchs et al., 10 

2014). 11 

The DEM is used to extract morphological secondary attributes, such as slope, aspect, flow path, 12 

upstream contributing area, etc. Lack of accuracy in the primary attribute (i.e., elevation) would 13 

be propagated on the extracted morphological information (Wu et al., 2007; Vaze et al., 2010; 14 

Yang et al., 2014). 15 

In landslide modeling, the local slope angle is the variable which most influences the calculation 16 

of the terrain stability, in both direct and indirect ways. Hydrological-stability approaches are 17 

based on the integration of distributed hydrological models with the simple infinite slope model 18 

(Montgomety and Dietrich, 1994; Iverson 2000, Claessens et al., 2005; Rosso et al., 2006; 19 

Arnone et al., 2011; Lepore et al., 2013). The landslide stability model computes the equilibrium 20 

of forces on a shallow soil prism. Gravity acts to initiate a slide as a function of the slope angle 21 

and the total wight of the soil, including water. Friction resists sliding and it is affected by soil 22 

moisture. The steeper the slope, the greater the component favoring slide initiation (direct 23 

effect). Catchment slope distribution also controls many of the hydrological terrain-based 24 

processes, such as the surface flow paths and the lateral redistribution of subsurface flows, which 25 
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ultimately determine the local soil moisture, the duration of the transient regime after an event 26 

and thus the soil water pressures that impact the forces equilibrium.  27 

Although high resolution digital terrain data allows a more realistic representation of topography 28 

and, consequently, a better analysis of hillslope and valley morphology, which are very 29 

important in the recognition of the topographic signature of valley incision by debris flows and 30 

landslides (Tarolli and Dalla Fontana, 2009), a high resolution DEM does not always imply a 31 

better performance in modelling the processes that lead to landslides. Several studies have 32 

explored how the grid-cell size of the input topography data may influence rainfall induced 33 

landslides. Some studies focus on landslide susceptibility (Chang et al., 1991; Lee and Lin, 2010; 34 

Grohmann et al., 2015; Arnone et al., 2016a; Cama 2016) and others explore the impact of 35 

resolution on results from physically-based models (Zhang and Montgomery, 1994; Tarolli and 36 

Tarboton, 2006; Claessens et al., 2005; De Sy et al., 2013; Keijsers et al., 2011; Fuchs et al., 37 

2014; Penna et al. 2014; Mahaigam and Olsen 2015; Viet et al., 2016). Most of the results of 38 

these studies agree that the coarser resolutions tend to smooth the terrain description, i.e., local 39 

slope angle decreases, thus reducing the number of unstable areas. 40 

Specifically, Keijsers et al. (2011) used the LAPSUS-LS (Claessens et al., 2005) model and 41 

found that coarser resolutions reduced the ability to predict probability of failure at a particular 42 

location, yet stable areas were predicted correctly. However, many others concluded that the 43 

finest available resolution does not necessarily lead to better model performance (Arnone et al., 44 

2016b; Fuchs et al., 2014), since modelling a physical process such as landslides, may depend on 45 

scales not detected with very high resolutions (Tarolli and Tarboton, 2006; Penna et al., 2014). 46 

At finer resolutions, the local surface topography is less representative of the process governing 47 

the landslide initiation and hence impacts the average size of the landslides (Freer et al., 2002; 48 

Tarolli and Tarboton, 2006). The availability of very-high resolutions DEMs (up to 1 m) (Yang 49 

et al., 2014; Noto et al., 2017; Francipane et al., 2020) resulting from the use of LIDAR begs the 50 

question of their value in landslide mapping (Wang et al., 2013; Fuchs et al., 2014; Ciampalini et 51 



6 

al., 2016). Fuchs et al. (2014) found an improvement of 3% in determining slope instability by 52 

using < 10 m resolution, but they stated that such an improvement can have a small impact in 53 

applications where, for example, the soil terrain properties are poorly described and there is a 54 

lack of other data.  55 

All studies mentioned so far make use of hydrological-landslide models that are grid-based, i.e., 56 

they require a grid-DEM to describe topography. Another class of hydrological and 57 

geomorphologic models uses Triangulated Irregular Networks (TINs) (e.g., CHILD by Tucker et 58 

al., 1999; tRIBS by Ivanov et al., 2004; tRIBS-Erosion by Francipane et al., 2012; CHM by 59 

Marsh et al., 2020), which make it possible to represent more efficiently the topography by 60 

increasing the number of nodes only where morphology is complex. TIN meshes can be built 61 

directly from measured elevation points but are more commonly derived from readily available 62 

grid-DEMs. Although the quality of simulations directly depends on the TIN mesh, the quality of 63 

the TIN discretization depends on the original DEM.  64 

This study evaluates the influence of the DEM resolution on the slope stability analysis by using 65 

a distributed eco-hydrological-landslide model, which uses TINs derived from a DEM to 66 

describe the topography. Most hydrological-landslide models in the literature are grid-based and 67 

not much is written about the dependence of TIN- based models on terrain resolution. We use the 68 

tRIBS-VEGGIE-Landslide (Triangulated Irregular Network (TIN)-based Real-time Integrated 69 

Basin Simulator - VEGetation Generator for Interactive Evolution) (Lepore et al., 2013), which 70 

is capable of representing vegetation dynamics, and rainfall triggered landslides while simulating 71 

soil moisture evolution on the hillslope. The study addresses questions regarding the impact of 72 

the original DEM resolution on the landslide modeling, for given DEM-TIN conversion 73 

algorithm. Some of the questions are: How significant is the influence of the grid resolution on 74 

the estimation of slope distribution? How do the resolution impact terrain-driven hydrological 75 

processes, such as lateral redistribution, and then the landslide occurrence? How does the use of 76 

coarse resolutions modify the amount of the predicted total failure area? 77 
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The study area is the Mameyes basin, which is located in the Luquillo Experimental Forest 78 

(Puerto Rico), where numerous slope stability analyses have been carried out with the same 79 

model (Lepore et al., 2013, Dialynas et al., 2016; Arnone et al., 2016b). The impact of the 80 

original DEM resolution on tRIBS–VEGGIE landslide output is studied using different 81 

resampled DEMs at 20, 30, 50, and 70 m resolution (from the available 10 m DEM) to obtain the 82 

triangulated irregular network required by the model.  83 

2 Methods 84 

2.1 tRIBS-VEGGIE-Landslide model 85 

The tRIBS-VEGGIE-Landslide model (Lepore et al., 2013) couples the eco-hydrological model 86 

tRIBS-VEGGIE (Ivanov et al., 2008) and the infinite slope analysis in order to compute the 87 

factor of safety (FS) of a slope as a response to the soil moisture dynamics. 88 

The hydrological component of the model reproduces essential hydrologic processes over the 89 

complex topography of a river basin (e.g., infiltration, evapotranspiration, interception, lateral 90 

redistribution and soil moisture dynamics). It considers spatial variability in precipitation fields 91 

and the land surface and computes the corresponding soil moisture dynamics. The role of 92 

topography in lateral soil moisture redistribution is emphasized by taking into account the effects 93 

of heterogeneous and anisotropic soil. Topography is described by means of a multiple-94 

resolution approach based on a TIN, which offers a flexible computational structure that reduces 95 

the number of computational elements without a significant loss of information (Vivoni et al., 96 

2004) and hence increasing the computational performance of the model. 97 

The vegetation module simulates the biophysical energy processes (e.g., transpiration), 98 

biophysical hydrologic processes (e.g., vegetation dependent unsaturated soil moisture), and 99 

biochemical processes (e.g., photosynthesis and plant respiration). 100 

In addition to the soil moisture in the unsaturated zone and water table dynamics, the stability 101 

model accounts also for the soil-water characteristic curve and the saturated shear strength 102 
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parameters (cohesion and friction angle) to assess FS. The implemented equation is the 103 

following: 104 

����� = ��
	
��
���

+ ����
���� −

	���
	
��

���������
���
�
��� ∙ ����
���       (eq. 1) 105 

where FS (t) is the time-dependent factor of safety (hereinafter simply FS); c′ is the effective soil 106 

cohesion; γs is the total unit weight of soil, which varies with soil moisture; γw is the water unit 107 

weight; zn is the soil depth along the normal direction to the slope; α and ϕ are the slope and the 108 

soil friction angle, respectively; ψb is the air entry bubbling pressure (assumed negative); λ is the 109 

pore-size distribution index; θ (t) is the time-dependent volumetric water content (hereinafter 110 

simply θ); θr and θs are the residual and saturated soil moisture contents, respectively. ψb and λ 111 

are the parameters of the Brooks and Corey formulation (1964) which relate hydraulic 112 

conductivity and soil water potential to soil moisture (Sivandran and Bras, 2012). Under the 113 

condition in which soil is full of water down to the considered soil depth, eq. 1 reduces to the 114 

saturated conditions formulation (Arnone et al., 2016). 115 

The final products of the module are dynamic maps of instability areas as well as dynamic FS 116 

depth profiles at selected areas, which depend on soil moisture dynamics. 117 

More information about the formulation used in the slope stability model can be found in Lepore 118 

et al. (2013) and Arnone et al. (2016b), while for more details about tRIBS-VEGGIE the reader 119 

can refer to Ivanov et al. (2008). 120 

2.2 Terrain analysis algorithms  121 

The most common methods to represent terrain data are DEMs and triangulated irregular 122 

networks, which can be easily incorporated into geographical information systems (GIS) and are 123 

increasingly used as data input for hydrological, hydraulic, and morphological models (Goodrich 124 

et al., 1991; Kumler 1994; Mita et al., 2001; Tucker et al., 2001; Ivanov et al., 2004a, b). TINs 125 

are used since they make possible the representation of very complex topography in a very 126 
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efficient way. Areas of uniform terrain can be represented with few triangular elements, while 127 

complex areas can be represented with increased details by using more triangular elements 128 

(Goodrich et al., 1991). TINs are extraordinarily flexible and resilient in the representation of 129 

terrain. 130 

In order to build an appropriate TIN, it is very important to decide how to pick the sample points 131 

from the original dataset and/or how to triangulate them. One of the most important and used 132 

triangulation methods is the Delaunay Triangulation (DT) (Watson and Philip 1984; Tsai 1993). 133 

It is the dual graph of the Voronoi diagram, also called Thiessen polygons, which subdivides the 134 

space into a set of convex polygons whose boundaries are the perpendicular bisectors between 135 

adjacent data points. The dual relationship between DT and its Voronoi diagram provides a 136 

direct solution to the nearest neighbor problem for a set of points in such a way that each triangle 137 

vertex is connected to its nearest neighbors. 138 

The algorithm used in this work to convert a DEM into a TIN is the one implemented within the 139 

TIN Index Analysis Package (Vivoni et al. 2004) (TIAP - 140 

http://vivoni.asu.edu/tribs/tinindex.html), which allows the user to obtain a hydrologically-141 

significant TIN from a high-resolution DEM (e.g., LIDAR) suitable for models such as tRIBS-142 

Veggie-Landslide. The package can derive a TIN from a DEM by means of two different ‘target’ 143 

methods: the TIN Index method, which is based on the idea of hydrologic similarity, and the TIN 144 

Terrain or Slope Criteria method, which is instead based on the topographic relevance of DEM 145 

points in describing the terrain. The terrain-based approach uses a higher resolution for rugged 146 

terrain areas while flatter areas have a lower resolution. For the sampling of DEM points, the 147 

package provides three different point selection methods: proximal distance (PD), very 148 

important points (VIP) and latticetin (LT). The LT sampling method (Lee, 1991) is used here, 149 

because it preserves the catchment slope distribution in a robust and more accurate manner than 150 

the others (e.g., Vivoni et al., 2004). Starting from a DEM, this method retains all those points 151 

that are required for maintaining a surface within a specified elevation tolerance that reflects the 152 
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maximum allowable difference in elevation between the input grid and the surface created from 153 

the output TIN. 154 

The generation of an appropriate terrain model for hydrological purposes should ensure that the 155 

TIN conforms to the watershed boundary and the watershed stream network. The created TIN 156 

mesh thus allows for flow and transport from a node to another, along triangle edges, using a 157 

finite difference approach. Hydrologic processes (e.g., infiltration, evaporation, groundwater 158 

table elevation) are computed on the Voronoi polygon associated with each node. Slope is 159 

calculated based on the TIN, along each triangle edge. A slope value is assigned to a Voronoi 160 

polygon along the steepest of the spokes connected to the Voronoi node. The slope is used to 161 

define the drainage flow path originating from each computational node (Braun and Sambridge, 162 

1997; Tucker et al. 1999; Vivoni et al., 2004). 163 

3 Study case 164 

3.1 Basin description  165 

The Mameyes basin is within the Luquillo Experimental Forest (LEF), in the northeast of the 166 

island of Puerto Rico, USA. It has an area of 16.7 km2, with an elevation ranging between 104.2 167 

and 1,046 m a.s.l. (Figure 1a). About 30% of the basin has a slope greater than 25 deg (Figure 168 

1a). The basin is one of the wettest basins in Puerto Rico and is characterized by a high 169 

variability in rainfall and air temperature throughout the basin. The mean annual precipitation 170 

(MAP) ranges between 3,000 and 5,000 mm. High percentages of sandy-loam and clay-loam, 171 

with lower percentages of clay and silty-clay, make up the soil of the basin. The bedrock is 172 

located at a depth of about 8 m or deeper (Simon et al., 1990) and does not affect the shallow 173 

slope failure mechanisms. Vegetation is mainly made of tabonuco forest (Dacryodes excelsa), 174 

typically within 150 and 600 m of elevation, colorado forest (Cyrilla racemiflora), within 600 175 

and 900 m of elevation, and dwarf (cloud) forest, above 900 m. In addition, the palm forest 176 

(Prestoea montana) is usually present on steep and poorly drained sites. 177 
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The Mameyes basin has been selected as a case study because the availability of data to 178 

implement tRIBS-VEGGIE and the large number of landslides, which make the basin a good test 179 

case for the tRIBS-VEGGIE-Landslide. As an example, Hurricane Maria, which hit Puerto Rico 180 

in September 2017, caused about 20 landslides across the basin (Figure 1a). Figure 1b shows 181 

images of three landslides that occurred along the PR-191 road and observed during a field trip 182 

in the Rio Mameyes basin in 2014. Also shown is an old landslide with new vegetation. 183 

More information about the study area can be found in Lepore et al. (2013) and Arnone et al. 184 

(2016b). 185 

a) 186 
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b) 187 

Figure 1 – (a) Digital elevation model (DEM), slope, soil map and location of landslides caused by Hurricane Maria 188 

in September 2017 for the Mameyes basin. (b) Images of landslides along the PR-191 and observed during a field 189 

trip in 2014. An old landslide with new vegetation is also shown (pictures taken by Drs. Arnone and Dialynas).  190 

3.2 Input data and model parameters 191 

 192 

The tRIBS-VEGGIE-Landside model requires meteorological forcing, soil distribution data, and 193 

soil and ecological parameters.  194 

The used meteorological data and model parameters are those already obtained and calibrated for 195 

the Mameyes basin in previous studies by Lepore et al. (2013) and Arnone et al. (2016b). 196 

Specifically, the meteorological data derive from the Bisley Tower located within the basin (lat. 197 

18.31, long. 65.74, 352 m a.s.l.), which measures many of the needed input data with an hourly 198 

resolution (wind speed and direction, air temperature, cloud cover, relative humidity, rainfall, 199 

and incoming shortwave radiation). We used the same rainfall forcing as in Lepore et al. (2013), 200 

corresponding to the period between January and November 2008, which includes an important 201 

event that occurred in April 2008. Specifically, we analyzed the results obtained over a time 202 

window of 48 hours encompassing the event recorded between the 27 and 28 April 2008 with a 203 

peak rainfall intensity of about 100 mm/h at t = tp (Figure 2). The model operates continuously at 204 

the hourly scale. 205 
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 206 

Figure 2 – (a) Rainfall recorded at the Bisley Tower for the period January-November 2008 (black curve) with a 207 

focus on the rainfall event of 27-28 April 2008 (red curve), which was analyzed to explore the changes in soil 208 

moisture pattern and soil instability. Panel (b) focuses on the analyzed event, where the time of the storm peak is 209 

denoted as tp. 210 

 211 

As described in Lepore et al., (2013), soil data were extracted from the soil map retrieved from 212 

the USDA Forest Service’s International Institute of Tropical Forestry of San Juan. Additionally, 213 

a calibration procedure of the main hydrological soil parameters was conducted by the authors 214 

based on soil moisture time series from May to November 2008 observed at three locations, 215 

within an area close to the Bisley Tower. Values of main hydrologic and soil parameters are 216 

reported in Table 1, which are constant across the five model configurations (which will be 217 

introduced in the next section). It is important to highlight that landslide-model related 218 

parameters were not calibrated. 219 

Table 1. Main hydrological and mechanical soil properties. Source Lepore et al., (2013). 220 

Paramete

r 
Description  Units 

Clay-

loam 

Sandy-loam Silty-clay 
Clay 

Ks Saturated hydraulic conductivity [mm/h] 50.0 50.0 30.0 10.0 

θs Saturated soil moisture [mm3/mm3] 0.56 0.55 0.55 0.53 

θs Residual soil moisture [mm3/mm3] 0.075 0.041 0.051 0.09 

λ Pore size distribution index [-] 0.2 0.32 0.13 0.13 

ψb Air entry bubbling pressure [mm] -250 -150 -340 -370 

ϕ Soil friction angle [deg] 25 25 25 25 

c’ Soil effective cohesion [N/m2] 3000 3000 3000 3000 

Ar Anisotropy ratio [-] 1÷300 1÷300 1÷300 1÷300 

 221 

Parameter Ar is responsible of the lateral redistribution of soil moisture, which has been reported 222 

to be significant in the Mameyes basin (Harden and Delmas Scruggs, 2003). Ar, which is defined 223 
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as the ratio between saturated hydraulic conductivities in the directions parallel and normal to the 224 

slope (Ks), partially controls the lateral subsurface flux transfer. Ar was varied from 1 to 300 225 

(Table 1). Values used are reported in the model setup section. Mechanical parameters, i.e., 226 

effective soil cohesion, c’, and friction angle, ϕ, are reported in Table 1 (sources: Lepore et al., 227 

2013; Simon et al., 1990).  228 

Finally, with regard to the topography data, calibration of the parameters mentioned was done 229 

using the 30 m resolution DEM available for the island of Puerto Rico to derive the TIN 230 

network. This study, uses the now available 10 m resolution DEM as the core data set for the 231 

resolution studies, as described in the next section.  232 

3.3 Model setup 233 

Resampled DEMs at resolutions of 20, 30, 50, and 70 m were obtained from the 10 m DEM by 234 

applying the nearest neighbor interpolation technique, which does not alter any of the values of 235 

cells from the input grid and assigns the value of the cell centers on the input grid to the closest 236 

cell center on the output grid (Figure 3, first column). Indeed, others have argued that limited to 237 

hydrological applications, the nearest neighbor technique leads to the highest accuracy in DEM 238 

resolution resampling (Takagi, 1998; Tan et al., 2015; Wu et al., 2008). 239 

The five DEMs were then used to derive the corresponding hydrologically-significant TINs 240 

mentioned in section 2.2. Specifically, the combination of Slope Criteria and LT sampling 241 

method was used for each configuration; the method retains a number of significant nodes 242 

corresponding to the TIN to DEM ratio, ν, in order to obtain a reasonable balance between a 243 

feasible computational cost and an efficient preservation of topographic characteristics. 244 

Therefore, the percentage of retained points with such a choice is the one that guarantees the best 245 

hydrographic similarity. Specifically, the aim is to preserve the catchment slope distribution, as 246 

well as the hydrographic features. As the DEM resolution decreases, the ratio ν required to 247 
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preserve topographic attributes increases. Finally, from the TIN-nodes, the Voronoi polygons are 248 

uniquely defined. Table 2 summarizes the characteristics for each configuration.  249 

Table 2. Number of DEM cells, TIN nodes, and Voronoi polygons for each DEM resolution. Because some nodes 250 

are used as catchment boundaries, the final number of Voronoi polygons is lower than the TIN nodes. 251 

DEM Resolution [m] #DEM cells  #TIN nodes TIN to DEM ratio,ν 
#Voronoi 

polygons 

10 169,615 6,974 4% 6,276 

20 42,400 3,605 9% 3,131 

30 18,837 2,603 14% 2,190 

50 6,782 2,274 34% 1,908 

70 3,462 2,416 70% 2,177 

 252 

Special attention is paid to the spatial distribution of the slope, since the slope controls the 253 

hydrology and the soil stability and its estimation is affected by DEM resolution (Chang and 254 

Tsai, 1991; Claessens et al., 2005; Grohmann, 2015; Arnone et al., 2016a). For the sake of 255 

comparison, grid-based maps of slope are derived from each DEM using the planar method of 256 

average maximum technique on a 3x3 kernel (Burrough, 1998) implemented within ArcMap of 257 

ESRI. 258 

Figure 3 illustrates the five DEMs (first column) and the Voronoi polygons together with their 259 

spatial distributions of slope. The figure shows that high resolutions capture more variability in 260 

DEM elevation. The grid-based maps of slope (second column) highlight a considerable 261 

smoothing of slopes at lower resolutions (e.g., 50 and 70 m), especially in the central and south 262 

areas of the watershed, where higher slopes (orange to red cells) are replaced in some cases by 263 

gentler slopes (blue cells). This smoothing is less evident on the Voronoi-based maps (third 264 

column). According to the Voronoi contours, it is noteworthy to observe that gentler slope areas 265 

of the watershed are represented by large Voronoi elements (blue polygons), while in steeper 266 

areas topographic variability is better described by more and smaller Voronoi elements 267 

(orange/red polygons). 268 

The lost in accuracy in the description of topography may lead to a different watershed divide 269 

and a slightly smaller watershed area (i.e., 50 and 70 m Voronoi mesh). However, since the 270 

analyses will be mostly conducted at a basin scale, this will not undermine the results. 271 
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 272 

 273 

Figure 3 – DEM, slope derived from DEM (grid-Slope), and slope on Voronoi polygons (Voronoi Slope) as 274 

generated in TIAP from different resolutions of DEM (e.g., 10, 20, 30, 50, and 70 m) for the Mameyes basin.  275 

 276 
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Table 3 lists some basic statistics (i.e., minimum, maximum, mean, median, and standard 277 

deviation) of the area and slope of Voronoi polygons, together with the slope of grid cells, for the 278 

different resolutions. It is observed that the Voronoi-based maps tend to provide higher 279 

maximum slope values. This can be the result of the different algorithms used to calculate the 280 

slope with DEMs and Voronoi meshes, as discussed in section 3.3 and 2.2, respectively. Indeed, 281 

the use of an average maximum technique in the grid-based map tends to produce a smaller 282 

maximum gradient because of smoothing. 283 

 284 

Table 3. Values of maximum (Max), minimum (Min), median, mean, and standard deviation (St. Dev.) for the 285 

Voronoi polygons area and the Voronoi/grid slope as a function of DEM resolution. 286 

 Voronoi Area [m2] Voronoi/grid Slope [deg] 

DEM 

Resolution 

[m] 

Min Max Mean Median St. Dev. Min Max Mean Median St. Dev 

10 18 23,940 2,669 2,193 2,160 0.0/0.0 80.0/71.3 22.3/22.4 21.6/21.9 11.2/8.5 

20 55 51,712 5,339 4,450 4,231 0.0/0.4 79.9/66.9 21.4/21.7 20.8/21.3 11.2/7.8 

30 151 64,733 7,611 6,389 5,912 0.0/0.6 76.6/59.5 20.7/21.0 20.0/20.6 11.1/7.7 

50 117 49,218 8,649 7,293 6,287 0.0/0.2 78.7/54.7 20.3/19.6 19.4/19.1 11.5/7.3 

70 356 39,343 7,181 6,737 3,651 0.0/0.2 57.3/56.0 18.6/18.5 18.6/18.1 9.0/7.0 

 287 

With regard to the Voronoi mesh derived from the 70 m DEM, a greater number and more 288 

regular Voronoi polygons were created as compared to the 50 m Voronoi mesh; this is explained 289 

by the need to retain more points in order to preserve the elevation description (ν ratio in Table 290 

2).  291 

Finally, we analyzed the results associated with the two extreme values of coefficient of 292 

anisotropy, i.e., Ar = 1 and Ar = 300 (Lepore et al., 2013). The selected coefficients of anisotropy 293 

are representative of two opposite situations: (i) water lateral redistribution is limited and the 294 

wetting front propagates mainly through infiltration, in the direction perpendicular to the terrain 295 

surface; (ii) there is a strong lateral redistribution, mainly driven by gravity.  296 

 297 
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4 Results 298 

Slope stability in the model depends on terrain representation and simulated hydrological 299 

processes, both dependent on resolution. For given mechanical soil properties, three variables 300 

influence the local failure: depth of hypothetical plane of failure, slope, and soil moisture.  301 

4.1 Significant Lateral Redistribution (Ar = 300) Case 302 

The relation among the above-mentioned variables at failure conditions are shown in Figure 4, 303 

for Ar = 300, for the five parent DEM resolutions and at the time of the storm peak (t = tp), which 304 

is representative of rapid changes in hydrological processes across soil depths. 305 

 306 

Figure 4 – Occurrences of depths of failure (first column); relation between depth of failure and slope (second 307 

column), depth of failure and normalized soil moisture (SM) (third column) and between slope and SM (fourth 308 

column) for the elements with FS ≤ 1, at the time of the storm peak t = tp, for the five parent DEM resolutions and 309 

Ar=300. Markers distinguish the soil types.  310 

 311 

The panels on the first column report the frequency distribution of the depths of the plane of 312 



19 

failure across the basin. Second and third panels show the scatterplots between the depth of 313 

failure and the slope and between the depth of failure and the normalized soil moisture (SM, or 314 

effective saturation) at failure, respectively. Finally, the panels on the fourth column show the 315 

relation between slope and SM. Elements characterized by different soil types are distinguished 316 

by different markers. 317 

All the scatterplots in Figure 4 delineate two clear clusters of points describing different 318 

conditions. In one case, failures occur when the soil is saturated; such condition of failure is 319 

reached throughout the basin. Failure due to saturation occurs for all types of soil and mostly at 320 

shallow layers (i.e., between ~500 mm and ~1,000 mm), as denoted by the frequency distribution 321 

of the depths of failure. Under saturation, failures occur at moderate slopes i.e., within the range 322 

of ~15-35 deg.  323 

A second cluster is formed by those polygons that are characterized by a slope greater than ~35 324 

deg and fail mostly at depths greater than 1,250 mm; this only occurs over the sandy-loam soil (+ 325 

markers) where a low degree of saturation is reached. In unsaturated soil conditions the role of 326 

apparent cohesion due to soil matric suction (i.e., third term of eq. 1) can be significant (Lepore 327 

et al., 2013) but in sandy-loam there is a relatively (compared to other fine soils) small 328 

contribution of the apparent cohesion, described by the low absolute value of the air entry 329 

bubbling pressure (ψb, see Table 1). Thus, the elements in sandy-loam result in a failure even at 330 

unsaturated conditions and at deep failure depths, for the given geo-mechanical properties.  331 

As the resolution degrades, from top (10 m) to bottom (70 m) panels, the two clusters can still be 332 

clearly distinguished, with less elements exhibiting slope failures as the resolution degrades and 333 

with fewer failing polygons having a very steep slope (e.g., greater than ~45deg), especially in 334 

the 70 m DEM-derived mesh.  335 

Additionally, in contrast to the finest resolutions, which show failure surfaces at all depths, the 336 

coarser resolutions are characterized by shallow failures (across the all types of soils) and deep 337 

layers (mostly on the sandy-loam soil at unsaturated conditions, as previously explained). 338 
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Polygons that reach saturation fail mostly at depths of ~1,000 mm, or less.  339 

The way depth, slope, and SM at failure are related to each other depends on the main 340 

topographical features, i.e., local slope and drainage polygons area, which influence the 341 

evolution of the hydrological processes and ultimately the slope instability. Therefore, these 342 

relations are associated to the accuracy in the description of the topographical features which 343 

varies with the five DEM-derived meshes.  344 

Figure 3 showed that the TIN generation algorithm creates an implicit mutual dependence 345 

between areas and slopes of Voronoi polygons, with larger polygons describing gentler slope 346 

zones and smaller polygons describing more complex morphologies and hydrological significant 347 

areas, such as the river networks (Vivoni et al., 2005). An overview of this dependency for the 348 

five DEM-derived meshes is given in Figure 5, which shows the bivariate frequency 349 

distributions between area and slope of the Voronoi polygons. The distributions are assessed 350 

through the Multivariate Kernel Density Estimation (MKDE - Simonoff, 2012). The red area, the 351 

red + the orange area, and the sum of the red, orange, and yellow areas represents the 25%, 50%, 352 

and 75% of the bivariate distribution mass, respectively.  353 
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 354 

Figure 5 – The Multivariate Kernel Density Estimation of the area and slope of the Voronoi polygons at the 355 

resolutions of (a) 10 m, (b) 20 m, (c) 30 m, (d) 50 m, and (e) 70 m; red = 25%, red + orange = 50%, red + orange+ 356 

yellow = 75% of the bivariate distributions mass, respectively.  357 

 358 

The distribution of the points corresponding to the Voronoi polygons derived from the parent 359 

10m DEM clearly shows the presence of very steep elements (> 60 deg) that are represented by 360 

very small polygons, and of a few elements corresponding to very large polygons drawn for 361 

zones at moderate slope (between nearly flat areas and ~20 deg). As it is possible to notice from 362 

the inset of Figure 5a, 75% of generated polygons have an area ranging between 0 and ~5,000 m2 363 

and a slope lower than ~45 deg. Many of the very small and flat polygons describe the drainage 364 
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network areas (see Figure 3). As the resolution of the parent DEM decreases, the probability 365 

mass spreads out towards larger Voronoi polygons areas, implying an increase in variability. 366 

Moreover, the center of the bivariate distribution slightly moves towards higher values of areas 367 

and lower values of slope. At the lowest resolution (Figure 5e) the variability in Voronoi 368 

polygons area decreases and slope values are smaller, with the absence of values greater than 60 369 

deg, thus indicating a pronounced smoothing of the topography. Moreover, it is noteworthy the 370 

alignment of some points on the same vertical straight lines (Figure 5e) due to the regular shape 371 

of the resulting Voronoi polygons (see Figure 3). As previously mentioned, this result reflects 372 

the inability of TIAP to generate, from a too coarse DEM, a suitable irregular mesh that 373 

appropriately represents the topography of the basin. 374 

The slope-area dependence of Voronoi polygons directly affects the spatial distribution of the 375 

modeled failures. The steepest areas of the basin, which are those most prone to fail, are 376 

represented by very small polygons only in the fine resolutions. The maps of the landslides at 377 

t=tp and for Ar=300 for the all meshes generated are shown in Figure 6. The north-western part of 378 

the basin is the area that exhibits greater occurrence of slope failures. It can be observed that the 379 

amount of such failures (i.e., black Voronoi polygons) gradually decreases as the resolution 380 

decreases. Additionally, polygons that fail (colored black) are smaller in the 10 m resolution 381 

mesh. The number, position and dimension of failing polygons across different resolutions is 382 

related to the different slope-area dependence depicted in Figure 5; failures in the 10 m 383 

resolution mesh originate mainly from small Voronoi elements associated to the highest slopes 384 

(Figure 5a) whereas the failures at the lowest resolution are associated to fewer and larger 385 

polygons characterized by slope higher than ~35° (Figure 5e), mainly in sandy-loam. 386 

 387 
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 388 

Figure 6 – Spatial distribution of the polygons at failure (black polygons) at the time of the storm peak t=tp, for the 389 

five parent DEM resolutions and for Ar=300. 390 

 391 

The resulting percentage of total area at failure is reported in Figure 7a; specifically, the inset 392 

histogram reports the percentage of total area at failure as a function of original DEM size. The 393 

main histogram depicts the relative total failure areas as a percent of the 10 m case, here taken as 394 

reference. 395 

The main histogram shows that there is a clear reduction in percentage of total failure area as the 396 

parent DEM resolution is degraded. The simulation carried out using the 10 m DEM predicted 397 

that more than 7% of basin area is unstable. The simulations based on 20 m and 30 m DEMs 398 

predicted about 6% of the basin as unstable (around 80% of the 10 m DEM results). Finally, 399 

when 50 m and 70 m DEM resolutions are used, only about 3% of the basin area is classified as 400 

unstable (~ 40% of the 10 m DEM). This means that adopting a 50 m or 70 m DEM-derived 401 

resolution mesh leads to an underestimation of failure area of about 60% with respect to the 402 

highest resolution (10 m), considered as the more realistic scenario. 403 
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In terms of angle of failure (Figure 7b), the median varies considerably across the resolutions 404 

within the range 28-40 deg, whereas the variability is similar across all resolutions except for the 405 

coarsest resolution DEM, where it is somewhat smaller. 406 

 407 

 408 

Figure 7 – Changes in percent of failure area and percent relative failure area (a) and slope at failure (b) at the time 409 

of the storm peak t=tp, across the five parent DEM resolutions and for Ar=300. The small histograms at the top-right 410 

corner (a) report the percentage of total area at failure as a function of the parent DEM resolution, whereas the main 411 

histogram depicts the relative total failure as a percent of the 10 m case, here taken as reference (100 %).  412 

 413 

As previously mentioned, besides the direct impact of slope on the triggering mechanisms of a 414 

landslide, the slope, and the accuracy in its representation, also have an indirect influence given 415 

that some of the hydrological processes that influence the soil moisture pattern are gravity 416 

driven. Figure 4 illustrates a decrease in the occurrence of moderate depths of failure, i.e., around 417 

1,250 mm, as the resolutions degrades, especially at the 70 m DEM-derived mesh. In this case, 418 

apart from the unstable areas characterized by a sandy-loam soil type, which mostly fail for 419 

morphological and geo-mechanical reasons (since the soil is unsaturated), the rest of areas with 420 

slope greater than a certain value (~15 deg) become unstable because they reach saturation down 421 

to a certain critical depth. Specifically, the gentler the slope, the deeper the location of the depth 422 

of failure. However, in the case of coarser resolutions and particularly the 70 m parent DEM, 423 

very few elements fail because of saturation at depths greater than ~1,500 m (Figure 4). For the 424 

sake of process understanding, Figure 8 shows, for all polygons, the evolution of the soil 425 
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moisture with depth for the coarsest (70 m) and finest (10 m) resolutions, reporting the 426 

scatterplot of slope vs soil moisture across the two soil types (i.e. clay-loam and sandy-loam), 427 

where most of the failures occur (Figure 4), for t=tp, Ar=300, and at three soil depths, i.e., 500 428 

mm (Figure 8a), 1,000 mm (Figure8b) and 2,000 mm (Figure 8c). 429 

At a depth of 500 mm (Figure 8a), for the 70 m resolution (red marks) almost the entire basin is 430 

quasi-saturated (SM > 0.9). Whereas for the 10 m resolution (black marks), there is a greater 431 

number of Voronoi polygons that are not as saturated (SM < 0.9), especially at the steepest areas 432 

(slope > 60 deg). This condition explains why, at this time, failures occur mainly at shallow 433 

depths in the case of 70 m resolution (see Figure 4). Moving from 500 mm (Figure 8a) to 1,000 434 

mm (Figure 8b) and to 2,000 mm (Figure 8c), it is possible to discern the movement of the front 435 

of infiltration in both resolutions. Indeed, the cloud of points moves from saturation (at the top of 436 

the soil column, Figure 8a) to drier values (at deeper soil horizons, Figure 8b and 8c), where the 437 

front of infiltration has not yet reached, especially in the 70 m resolution case. In fact, except for 438 

a single polygon, there are no saturated areas steeper than 20 deg, thus explaining the absence of 439 

failures due to saturation at depths deeper than ~1,250 mm (see Figure 4). Analysis of the same 440 

plots (not reported here) right before and after tp confirmed such a movement of the moisture 441 

front. In this case, redistribution occurs and soil moisture spatial patterns are mainly controlled 442 

by topography. 443 

 444 

Figure 8 – Scatterplot of slope vs level of saturation (SM) for the 10 m (black) and 70 m (red) parent DEM 445 

resolutions, in clay-loam (o) and sandy-loam (+), at t=tp and for Ar=300. Plots correspond to depths of (a) 500 mm, 446 
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(b) 1,000 mm and (c) 2,000 mm.  447 

4.2 Limited Lateral Redistribution (Ar = 1) Case 448 

When lateral redistribution of soil moisture is limited, such as in the case of anisotropy ratio 449 

Ar=1, the wetting front follows a considerably different path, as widely discussed in Lepore et al. 450 

(2013). Since the lateral exchanges are attenuated, the front of infiltration is mainly along the 451 

direction perpendicular to the soil surface (Lepore et al., 2013). Indeed, the above discussed 452 

scatterplots are significantly different for the case of Ar=1, as shown in Figure 9 for both the 453 

finest and coarsest resolutions and for the same two soil types of Figure 8. Specifically, down to 454 

500 mm (Figure 9a), the basin is mostly saturated, regardless the soil type and the slope (except 455 

that for the very steep areas, i.e., slope > ~60 deg).  456 

 457 

Figure 9 – As in Figure 8 but for Ar=1.  458 

 459 

At larger depths (Figure 9b and 9c) it is possible to clearly distinguish the behavior of the two 460 

soil types, which are characterized by different water retention properties (see Table 1). 461 

Specifically, at the depth of 1,000 mm (Figure 9b), SM depends on slope following a nearly 462 

monotonic relationship; in this case, the local slope controls the propagation of vertical fluxes 463 

downwards the soil column within a single Voronoi element, together with the hydraulic 464 

conductivity properties. At the depth of 2,000 mm, SM mostly depends on soil type (Figure 9c), 465 

likely because the wetting front has not yet reached these deeper horizons. In this case, the 466 

changes in the slope representation with different meshes have less impact on the spatial soil 467 
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moisture dynamics. This is likely because fluxes across contiguous polygons are minimized and 468 

the slope of a Voronoi element may not directly control the moisture dynamics of neighboring 469 

cells.  470 

Figure 10 shows the results relative to the elements that fail for the finest (10 m) and coarsest (70 471 

m) cases, for t=tp and Ar=1. As for the Ar=300 case, two clusters of points can be distinguished: 472 

(i) failures are triggered by the reaching the soil saturation and occur at very shallow horizons 473 

and moderate slopes; this happens mainly in the clay-loam soil and is more emphasized when the 474 

coarsest resolution is used; (ii) failures mainly occur in areas with critical slope (greater than ~35 475 

deg) and a degree of saturation greater than 0.5. This situation occurs mainly in the sandy-loam 476 

soil and is attenuated in the 70 m DEM derived mesh because of its smoothed topography, as 477 

discussed before. With respect to the high anisotropy case, the greatest percentage of landslides 478 

is very shallow and thus attributable to the soil that reaches the saturation. In fact, the elimination 479 

of lateral redistribution of moisture, as previously discussed, leads to locally higher soil 480 

moisture.  481 

 482 

Figure 10 - Occurrences of depths of failure (first column); relation between depth of failure and slope (second 483 

column), depth of failure and normalized soil moisture (SM) (third column) and between slope and SM (fourth 484 

column) for the elements with FS ≤ 1, at the time of the storm peak t=tp, for Ar=1 and for the finest (10 m) and 485 

coarsest (70 m) parent DEM resolutions. Only clay-loam and sandy-loam soil types are represented.  486 
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 487 

The percentage of total areas at failure and slope at failure for the case Ar=1 is reported in Figure 488 

11. The results show a percentage of failure area ranging from ~20%, for the case based on the 489 

10 m original resolution, to ~10%, for the 70 m original resolution (Figure 11a). The higher 490 

percentage of failure area, as compared with Ar=300 (Figure 7a), demonstrates that, for given 491 

morphological features and rainfall trigger, the impacts of the hydrological processes (in this 492 

case the lateral redistribution) in reducing the soil saturation may be significant for the stability 493 

of the slope. The choice of Ar=1 reduces the sensitivity of the predicted area of failure across 494 

resolutions. The use of 50 m and 70 m resolutions predicted ~70% and ~60% of the failure area 495 

of the 10 m case, respectively (versus 40% for the Ar.= 300 case). 496 

Finally, the median values of slope at failure, together with their variability, exhibits a slight 497 

decreasing trend as the resolution degrades (Figure 11b); this trend reflects the smoothing effect 498 

of the coarser resolutions on slope as highlighted in Figure 3 and Figure 5. 499 

The differences observed between the two cases with Ar=300 and Ar=1 point out that, when the 500 

lateral redistribution is limited (i.e., Ar=1), land slope is more important than the impacts of soil 501 

moisture (hydrology) on the land failure mechanisms.  502 

 503 

Figure 11 – As in Figure 7 but for Ar = 1.  504 

5 Summary and Discussion 505 

The effects of the original DEM size on the slope stability modeling have been explored by 506 

analyzing variables and processes that directly (i.e., slope) and indirectly (i.e., soil moisture 507 
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dynamics) are involved in triggering failures. In contrast to other efforts, a distributed eco-508 

hydrological-landslide model based on an irregular mesh, that is better suited to describe the 509 

topography, was used. A 10 m resolution DEM available for the study area was resampled to the 510 

resolutions of 20, 30, 50, and 70 m, in order to derive the corresponding hydrologically-511 

significant TINs (Vivoni et al., 2004). 512 

Slope is a terrain attribute derived from the DEM that directly influences the equilibrium of 513 

forces controlling the stability analysis. The steeper the slope, the greater are the forces that lead 514 

to the soil movement. Conversely, for given geo-mechanical properties of the soil, areas can be 515 

unconditionally stable (Montgomery and Dietrich, 1994; Arnone et al., 2011) below a certain 516 

value of slope.  517 

The comparison with the grid-derived slope showed that the use of a triangulated mesh reduces 518 

the smoothing effect due to the use of coarse resolution grids (Chung and Tsai, 1991; Zhang and 519 

Montgomery, 1994; Claessens et al., 2015). With meshes as coarse as 30 m in resolution, the 520 

slope distribution is well preserved, especially in the range of slope values most critical for 521 

landslide modeling (i.e., slope greater than ~ 25 deg). A smoothing effect of the very steep slope 522 

values was observed only for the meshes derived from the 50 m and 70 m DEM resolutions 523 

(Figures 3 and 5). 524 

The bivariate slope-area distributions of Voronoi polygons vary significantly among the five 525 

DEM-derived meshes (Figure 5). Specifically, as the resolution of the parent DEM decreases, the 526 

average area of the Voronoi polygons increases while the average slope value decreases, 527 

resulting in a smoothing effect of the topography. Because some of the modeled hydrological 528 

processes, such as convergence of fluxes and lateral redistribution, are directly controlled by the 529 

local slope (and the convergence areas), the variations in the bivariate slope-area distribution 530 

(Figure 5) are closely connected to the observed changes in the simulated hydrological behavior.  531 

The Voronoi mesh derived from the 70 m resolution DEM constitutes an exception in the slope-532 

area distribution, with points aligned on the same vertical straight lines (see Figure 5). These are 533 
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mainly due to the excessive number of retained points from the original DEM that led to the 534 

creation of several similar Voronoi polygons. The result thus confirms the inability of 535 

generating, from a too coarse DEM, a suitable irregular mesh able to coherently represent the 536 

basin morphology (Vivoni et al., 2005) other than the shape of the watershed (Figure 3). 537 

The polygons slope-area correlation arises only when irregular meshes are used, and thus this 538 

type of analysis is missing in work that is grid based (Tarolli and Tarboton, 2006; Claessens et 539 

al., 2015; Penna et al., 2014). 540 

The combination of terrain description and simulated soil moisture dynamics determines the 541 

conditions of slope stability for each mesh resolution; specifically, we analyzed the dynamics at 542 

the time of the storm peak, representative of a time when the evolution of the hydrological 543 

processes is fast. The results can be summarized as follows: 544 

- The smoothing effect of resolution on the description of topography leads to a reduction 545 

of the number of unstable polygons (FS < 1), especially when a 70 m DEM resolution is 546 

used.  547 

- Failure due to saturation occurs at shallower layers as result of reaching saturation state 548 

rapidly, regardless of the resolution, as also found out by Viet et al. (2016). At the 549 

analyzed time of the simulation, shallow depths of failure are more frequent in the coarse 550 

resolution cases and, particularly, failures at the intermediate depths (~1,250 mm) are less 551 

frequent in the 70 m grid-size DEM compared to the 10 m case. This is because the 552 

combination of soil wetness and slope does not lead to FS values below the critical 553 

threshold; for example, in some cases the smoothing effect of the topography in the 554 

coarse resolution may lead to a high degree of saturation within the shallow horizons that 555 

reach the critical failure conditions; in other cases, at equal condition of saturation, the 556 

smoothing effect may reduce the local slope which then result to be not critical. The 557 

conditionally stable areas, i.e., those at intermediate slope (~ 15 deg, see Figure 4), are 558 

the ones affected by the changes in the resolution (Figure 4).  559 
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- The spatial distribution of simulated landslide locations (FS < 1) highlights the 560 

commonality across resolutions of areas of the basin most prone to instabilities; however, 561 

the 10 m case results in more elements and larger areas at failure (Figure 6). 562 

- The quantitative analyses of failures confirm the decreasing trend in areas of failure as 563 

the resolution of the parent DEM decreases; this is particularly significant with the 564 

coarsest resolutions, i.e., 50 and 70 m, as shown by the relative assessment (Figure 7). 565 

The results agree with most of the previous studies, especially in highlighting that the 566 

changes are not necessarily linear with a loss of resolution, and that some degradation of 567 

resolution may be an acceptable compromise between the loss of accuracy in terrain 568 

description and the goodness of results (Fuchs et al., 2014; Penna et al., 2014; Tarolli and 569 

Tarboton, 2006; Dialynas, 2017). 570 

- All the mechanisms that relate grid-size DEM with the simulated hydrological processes 571 

(e.g., mainly the SM lateral redistribution) are strongly smoothed if the anisotropy ratio 572 

Ar is equal to 1. Since in this case this parameter limits the gravity-driven process in the 573 

form of lateral exchanges (Lepore et al., 2013), the front of infiltration mainly develops 574 

along the direction perpendicular to the soil surface (Figure 9). For the specific case 575 

analyzed in this study, and for anisotropy ratio Ar=1, the changes in the soil moisture 576 

pattern leads to more Voronoi polygons resulting in a failure due to the higher degree of 577 

saturation of soil, especially at shallow soil horizons. In the case of Ar of 1, the 578 

landsliding process is dominated by the nature of infiltration and development of soil 579 

moisture fronts in each Voronoi polygon and hence less dependent on the the impact of 580 

lower resolution on the smoothing of the topography.  581 

6 Conclusions 582 

 583 

This study evaluated the hydro-geomorphological influences of DEM resolution on the slope 584 

stability analysis by using a distributed eco-hydrological-landslide model that uses a 585 
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Triangulated Irregular Network (TIN) to describe the topography. The model has been applied to 586 

the Mameyes basin (Puerto Rico), where numerous landslide analyses have been carried out in 587 

the past (Lepore et al., 2013; Arnone et al., 2016b). 588 

The results demonstrated that the use of a TIN-based hydrological-landslide model can reduce 589 

the loss of accuracy in the derived slope distribution for coarse resolutions. Significant changes 590 

in the prediction of areas in failure result only when a very coarse DEM is used to derive the 591 

corresponding Voroni mesh and when the lateral redistribution of water, controlled by the 592 

anisotropy coefficient, is considerable. However, if the computational costs of the finest DEM 593 

resolution are prohibitive, the use of a slightly coarser resolution may be a good compromise to 594 

still identify the zones highly susceptible to landslides. 595 

Future efforts can investigate how products of very high resolution, e.g., 1 m, could enhance the 596 

modeling of landslides in the Luquillo Experimental Forest by focusing on landslide phenomena 597 

in the road cut slopes. 598 
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