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Abstract

In this short note we develop new methods toward the ultimate goal of classifying geproci sets
in P3. We apply these methods to show that among sets of 16 points distributed evenly on 4
skew lines, up to projective equivalence there are only two distinct geproci sets. We give different
geometric distinctions between these sets. The methods we develop here can be applied in a more
general set-up; this is the context of follow-up work [2].

1 Introduction

The study of geproci sets was initialized in one of the previous workshops on Lefschetz properties held
in Levico Terme (Italy) in 2018. In the present note we work exclusively over the field C of complex
numbers.

Definition 1.1 (A geproci set of points). We say that a set of points Z ⊂ PN
C with N ≥ 3 is geproci

(for GEneral PROjection is a Complete Intersection), if its general projection to a hyperplane is a
complete intersection.

We say that a geproci set is trivial, if it is already contained in a hyperplane. From now on we
consider only nontrivial geproci sets.

So far nontrivial geproci sets have been discovered only in P3. They project to a plane, where
their images are the intersection points of two curves of degrees a and b (equivalently: the ideal of
the projection has exactly two generators: one of degree a and another of degree b). We assume that
a ≤ b and we refer to such sets of points as (a, b)-geproci.

Example 1.2 (A grid). Assume that we have two positive integers a ≤ b. Let Z ⊂ P3 be a grid, i.e.,
the set of all intersection points among lines in two sets L = {L1, . . . , La} and M = {M1, . . . ,Mb}
such that lines from the same set, either L or M, are pairwise skew but any two lines from distinct
sets intersect in a point. It is elementary to see that a grid is an (a, b)-geproci set for all values of a, b
and the set is nontrivial for a, b ≥ 2 and it is contained in a unique quadric for a, b ≥ 3.

Grids exist for any values of a and b. They were studied extensively in [3]. Here we are interested
in geproci sets which are not grids but half grids.

Definition 1.3 (A half grid). We say that a nontrivial (a, b)-geproci set Z ⊂ P3 is a half grid, if it is
not a grid but one of the curves determining its general projection as a complete intersection can be
taken as a union of lines.
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Remark 1.4. General projections of points can be collinear only if the points are collinear before. So
an (a, b) half grid in P3 consists either of a-tuples of b points each distributed on a lines or of b-tuples
of a points distributed on b lines. A priori it could be that the lines containing points of Z intersect.
However [1, Proposition 4.14] provides an easy argument that this is not the case. Indeed, removing
all lines but three from the half grid, we obtain a (3, a) (or a (3, b)) geproci set. This set must be a
grid, so that in particular the lines must be disjoint.

In particular half grids are geproci by definition. Most of the known geproci sets which are not
grids are half grids. As a matter of fact, we know at the time of this writing only three exceptions –
see the introduction to [1] for details. This justifies that our interest here focuses on half grids.

Our main result in this note is the following.

Theorem 1.5 (Classification of (4, 4) half grids). Let Z ⊂ P3 be a (4, 4) half grid. Then, up to
projective change of coordinates, Z is either

A) the anharmonic case (see Section 4.1)

(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (1 : 1 : 0 : 0), (1 : 0 : 1 : 1),
(0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (0 : 0 : 1 : 1), (0 : 1 : −1 : 0),
(1 : 0 : 1 : 0), (0 : 1 : 0 : 1), (1 : 1 : 1 : 1), (1 : 1 : 0 : 1),
(1 : 0 : ε : 0), (0 : 1 : 0 : ε), (1 : 1 : ε : ε), (1 : 1 − ε : ε : 1),

where ε is a primitive root of unity of order six, or

B) the harmonic case (see Section 4.2)

(1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (1 : 1 : 0 : 0), (1 : 0 : 0 : −1),
(0 : 0 : 1 : 0), (0 : 0 : 0 : 1), (0 : 0 : 1 : 1), (0 : 1 : 1 : 0),
(1 : 0 : 1 : 0), (0 : 1 : 0 : 1), (1 : 1 : 1 : 1), (1 : 1 : 1 : −1),
(1 : 0 : −1 : 0), (0 : 1 : 0 : −1), (1 : 1 : −1 : −1), (−1 : 1 : 1 : 1).

The points in the statement of Theorem 1.5 are organized so that the half grid property is imme-
diately visible: points in the columns are collinear. The main difference between both cases is that
in the harmonic case there are exactly 4 lines containing 4 of configuration points, whereas in the
anharmonic case additional collinearity can be observed for the 4 points in the bottom row.

In order to put this result in some perspective, let us recall that in [1, Theorem 4.10] we proved
that the only non-grid (3, 4)-geproci set is the half grid determined by points in the D4 root system.
Up to projective change of coordinates, its 12 points can be listed explicitly as

(1 : 1 : 0 : 0), (1 : 0 : 1 : 0), (1 : 0 : 0 : 1), (0 : 1 : 1 : 0), (0 : 1 : 0 : 1), (0 : 0 : 1 : 1),
(1 : −1 : 0 : 0), (1 : 0 : −1 : 0), (1 : 0 : 0 : −1), (0 : 1 : −1 : 0), (0 : 1 : 0 : −1), (0 : 0 : 1 : −1).

See Theorem 3.1 for a more precise statement.

2 Inputs from projective geometry

To fix notation let (x : y : z : w) be projective coordinates on P3. We denote by j(P1, P2;P3, P4) the
cross-ratio of an ordered set of four collinear points (see [1] for the definition and first results). For
integers {i, j, k, l} = {1, 2, 3, 4}, we write (i, j, k, l) to indicate the permutation, which sends 1 to i, 2
to j, 3 to k and 4 to l. Note that this is not cycle notation!

It is well-known that the cross-ratio is invariant under the Klein group, namely

j(P1, P2;P3, P4) = j(Pσ(1), Pσ(2);Pσ(3), Pσ(4)),

where σ is one of the following permutations:

(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1). (1)
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Note that all elements in the Klein group are involutions.
There are two exceptional cases under which there are additional permutations leaving the cross-

ratio invariant:

The harmonic case. If j(P1, P2;P3, P4) ∈ {−1, 1/2, 2}, then the following permutations leave the
cross-ratio invariant:

(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1),
(1, 2, 4, 3), (2, 1, 3, 4), (3, 4, 2, 1), (4, 3, 1, 2).

(2)

The anharmonic case. If j(P1, P2;P3, P4) ∈
{

1
2 +

√
3
2 i, 12 −

√
3
2 i

}
, i.e., it is a primitive root of unity

of order 6, then the following permutations leave the cross-ratio invariant:

(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1),
(1, 3, 4, 2), (2, 4, 3, 1), (3, 1, 2, 4), (4, 2, 1, 3),
(1, 4, 2, 3), (2, 3, 1, 4), (3, 2, 4, 1), (4, 1, 3, 2).

(3)

It is a classical fact in projective geometry (see, e.g., [4, Paragraph 3.4.1]) that given four lines in
P3 not on a quadric surface, there are two (counted with multiplicities) transversals to these lines.

We saw in Example 1.2 that any (a, b) grid with a, b ≥ 3 is contained in a quadric. Our first result
here is a criterion when lines determining a (2, 4) grid are contained in a quadric.

Lemma 2.1 (Quadrics and (2, 4) grids.). Let R,R′ ⊂ P3 be a pair of skew lines. Let P1, . . . , P4 be a
set of mutually distinct points on R and let P ′

1, . . . , P
′
4 be a set of mutually distinct points on R′. Let

ri be the line determined by PiP
′
i for i = 1, . . . , 4. The lines r1, . . . , r4 are contained in a quadric if

and only if
j(P1, P2;P3, P4) = j(P ′

1, P
′
2;P

′
3, P

′
4).

Proof. The lines r1, r2, r3 are pairwise skew, so they determine a unique quadric Q. This quadric
contains R and R′ because it has at least 3 points common with both lines. If the line r4 is contained

r1

r2

r3

r4

R R′

P1

P2

P3

P4

P ′
1

P ′
2

P ′
3

P ′
4

Figure 1: A (2, 4) grid

in Q, then the two cross ratios are equal.
For the other direction, observe that there exists a unique line r in the ruling of Q determined

by r1 which passes through P4. This line meets R′ in the unique point P such that the cross ratios
j(P1, P2;P3, P4) and j(P ′

1, P
′
2;P

′
3, P ) are equal. But this implies P = P ′

4 and we are done.

We need the following simple fact about projectivities of P1. We include it here with a proof, as it
was difficult to track it down in the literature.
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Lemma 2.2. Let φ be a projective transformation of P1 with exactly 1 fixed point P . Then φ has no
other finite orbit but that of P .

Proof. Without loss of generality we may assume that P = (1 : 0). Let M be a matrix representing
φ. Since φ(P ) = P and φ has no other fixed points, it has the form

M =

(
1 ε
0 1

)
with ε ∈ C \ {0}, because φ is not the identity. For a point Q ̸= P we have Q = (q : 1) for some q ∈ C
and for a positive integer n we have

φn(Q) =

(
1 ε
0 1

)n(
q
1

)
=

(
q + nε

1

)
,

so the orbit of Q is infinite.

The next Lemma characterizes projective involutions (i.e., a projective transformations φ with φ2 = Id
but φ ̸= Id) with two fixed points.

Lemma 2.3 (Involution of P1 with 2 fixed points). Let P, P ′ be two distinct points in P1. Then there
exists a unique involution φ with fixed points at P and P ′.

Proof. We can assume that P = (1 : 0) and P ′ = (0 : 1). Then any matrix fixing (projectively) these
two points has the shape

M =

(
1 0
0 ε

)
.

The condition M2 = Id (and M ̸= Id) forces ε = −1.

Our next observation is that projective transformations on two skew lines in P3 are always induced
by a projective transformation of the ambient space.

Lemma 2.4 (Extending projectivities on a pair of skew lines). Let R,R′ be skew lines in P3. Let φ
be a projectivity on R and let φ′ be a projectivity on R′. Then there exists a projective transformation
Φ of P3, which restricts to φ on R and to φ′ on R′. In particular the two lines are invariant under Φ.

Proof. Up to change of coordinates we can assume that R is the z = w = 0 line and R′ is defined by
equations x = y = 0. Let M be a matrix defining φ in (x : y) coordinates and let M ′ be a matrix
defining φ′ in (z : w) coordinates. Then the matrix(

M 0
0 M ′

)
defines a projectivity Φ in coordinates (x : y : z : w), which satisfies the requirements of the Lemma.

3 On the (4, 4) half grids

In [1, Theorem 4.10] we showed the following classification result for (3, 4)-geproci sets which is crucial
in the sequel.

Theorem 3.1 (Classification of (3, 4)-geproci sets). Let Z ⊂ P3 be a (3, 4)-geproci set. Then either

a) Z is a grid, or

b) Z is the D4 configuration of points.
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Taking into account that D4 does not contain any four collinear points and does not lie on a
quadric surface, we derive the following immediate consequence.

Corollary 3.2 (Subsets of (4, 4) half grids). Let Z be a (4, 4) half grid and let Ra, Rb, Rc, Rd be four
lines covering Z. Then for any index x ∈ {a, b, c, d} the set Z \Rx is a (3, 4) grid.

For any three mutually different symbols x, y, z ∈ {a, b, c, d} we denote by Qxyz the quadric gener-
ated by Rx, Ry and Rz. Since the lines are skew, these quadrics are smooth. They are also mutually
distinct, because Z is not contained in a quadric (it would be a grid otherwise).

Ra Rb Rc

Rd

Figure 2: A (4,4) half grid

Before we impose specific coordinates on the points in Z, we want to determine additional collinear-
ities. To this end we begin to label points in Z on the lines provided in Figure 2. We begin with the
line Rc and we denote the points on this line with c1, . . . , c4, see Figure 3. Since Zabc is a grid on Qabc,

Ra Rb Rc

Rd

c1

c2

c3

c4

Figure 3: A (4,4) half grid with numbered points on line Rc

there are four lines r1, r2, r3, r4 in the ruling complementary to that determined by the lines Ra, Rb
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and Rc, each of them passing through the point ci with the same index. The intersections of each ri
with Ra, Rb determine a labelling for the points of Z on the lines Ra and Rb, see Figure 4.

r1

r2

r3

r4

Ra Rb Rc

Rd

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

Figure 4: A (4, 4) half grid with numbered points on lines Ra, Rb and Rc

Since r1, . . . , r4 are contained in a quadric we have

j(a1, a2; a3, a4) = j(b1, b2; b3, b4) = j(c1, c2; c3, c4) (4)

by Lemma 2.1. This is a considerable constraint and we want to combine it with similar conditions
determined by the remaining three quadrics.

The set Zbcd is a grid in Qbcd. So there are four lines in the ruling of Qbcd complementary to the
ruling containing Rc cutting out the points of Z on the union Rb ∪Rc ∪Rd. We call them L1, . . . , L4,
where the numbering is determined by the numbering of points on Rc, see Figure 5. This numbering
determines also numbering of points on the line Rd. Thus all points in Z are now labeled. For
i = 1, . . . , 4 we denote by bβ(i) the point of intersection Rb ∩ Li (in Figure 5 we took as an example
β(1) = 2, β(2) = 3 and so on). In any case we have

j(bβ(1), bβ(2); bβ(3), bβ(4)) = j(c1, c2; c3, c4) = j(d1, d2; d3, d4) (5)

by Lemma 2.1. Now, the key point here is to see that the permutation β can be assumed not to be
an involution, which forces one of cases: (2) or (3). We will first exclude the possibility that β is the
identity.

Proposition 3.3. The permutation β is not the identity.

Proof. If β(i) = i, then Li = ri, so that di ∈ Qabc. If this happens for all i, we obtain that Z is
contained in a quadric, hence it is a grid. A contradiction.

Since β preserves the cross-ratio of four points on Rb, there exists a projective transformation φβ of
Rb, which restricts to β on Z ∩Rb. We show in the next Lemma that this projectivity has exactly two
fixed points.

Lemma 3.4 (Transversals to Ra, . . . , Rd). There are two distinct transversals S, S′ to Ra, . . . , Rd.
Moreover, the intersection points of these transversals with Rb are the fixed points of φβ.
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r1

r2

r3

r4

Ra Rb Rc

Rd

L1

L2

L3

L4

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

Figure 5: Grid lines on Qabc and Qbcd

Proof. The intersection Qabc ∩ Qbcd contains two skew lines Rb and Rc, so it must contain either
one line S (counted with multiplicity 2) or two lines S, S′ from the complementary rulings on both
quadrics. Hence these lines must be transversals of Ra, . . . , Rd.

Let us denote their intersection points:

as = S ∩Ra, bs = S ∩Rb, cs = S ∩Rc, ds = S ∩Rd

and similarly
as′ = S′ ∩Ra, bs′ = S′ ∩Rb, cs′ = S′ ∩Rc, ds′ = S′ ∩Rd,

see Figure 6. Now we want to exclude the possibility that S = S′. To this end we prove the following
Claim.
The projectivity φβ has two fixed points at bs and bs′ .
Proof of the Claim.
By Lemma 2.4 there exists a projective transformation Φ of P3, which restricts to φβ on Rb and to
the identity on Rc. This projectivity maps lines ri joining bi and ci to lines joining Φ(bi) and Φ(ci) for
i = 1, . . . , 4. But Φ(bi) = bβ(i) and Φ(ci) = ci, so that Φ(ri) = Li for all i = 1, . . . , 4. It follows that

Φ(Qabc) = Qbcd.

Moreover, since Φ leaves Rb and Rc invariant by Lemma 2.4 it must leave also the union S ∪ S′

invariant, because
Qabc ∩Qbcd = Rb ∪Rc ∪ S ∪ S′.

It must be in fact Φ(S) = S because Φ restricts to the identity on Rc so it cannot swap the points cs
and cs′ (the claim Φ(S) = S remains valid also if S = S′).

Since φβ is not the identity, it has at most two fixed points. It has also at least two fixed points by
Lemma 2.2 because it is a transformation of finite order, equal to the order of β, so that all its orbits
are finite. Suppose now that S = S′. Then there exists another point bs ̸= P ∈ Rb fixed by φβ. Let
rP be the line in the same ruling as r1 on Qabc passing through P . This line meets Rc in some point
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r1

r2

r3

r4

S

S′

Ra Rb Rc

Rd

L1

L2

L3

L4

a1

a2

a3

a4

as

as′

b1

b2

b3

b4

bs

bs′

c1

c2

c3

c4

cs

cs′

d1

d2

d3

d4

ds

ds′

Figure 6: All lines and transversals

Pc. Since Φ(Pc) = Pc (as Φ restricted to Rc is the identity) the line rP is invariant under Φ. But then
it belongs to Qabc ∩Qbcd, so it must be the line S′ distinct from S.

The two fixed points of φβ are then bs and bs′ . This ends the proof of the Claim and also of the
Lemma.

Considering the grid Zabd on the quadric Qabd we obtain another permutation β′ acting on points
b1, . . . , b4 determined by numbering of points on the line Rd in a way that the following triples of
points are collinear:

aα(1), bβ′(1), d1, aα(2), bβ′(2), d2, aα(3), bβ′(3), d3, aα(4), bβ′(4), d4, (6)

where α is some permutation of points on Ra.

Lemma 3.5. The permutations β and β′ do not coincide and at least one of them is not an involution.

Proof. By definition of β the following triples of points are collinear:

bβ(1), c1, d1, bβ(2), c2, d2, bβ(3), c3, d3, bβ(4), c4, d4. (7)

Combining (7) with (6) we conclude that if β = β′, then the lines Li meet the line Ra at points of Z.
But this implies that Z is a grid, a contradiction.

Now, replacing Rc by Rd in the proof of Lemma 3.4 we conclude that bs and bs′ are fixed points
of β′. So β and β′ induce projectivities φ and φ′ on Rb which have the same pair points as their fixed
points. By Lemma 2.3 at most one of these projectivities can be an involution.
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Since all permutations in (1) are involutions, we conclude that the points in Zb are either harmonic
or anharmonic. Then (4) and (5) imply that points in all Zx are simultaneously either harmonic or
anharmonic for x ∈ {a, b, c, d}. We study both cases in more detail in the next section.

4 Proof of Theorem 1.5

To fix notation we assume in this section that the permutation β introduced before Proposition 3.3
is not an involution. This can be done since relabelling the lines Ra, Rb, Rc and Rd according to the
following rule: (a, b, c, d) → (d, b, a, c) exchanges the role of β and β′ from Lemma 3.5.

4.1 The anharmonic case

In this part we prove Theorem 1.5 A). We see in (3) that all non-involutions appearing there have a
fixed point. Renumbering the points, if necessary, we may assume that b4 is the fixed point of β. This
implies that r4 is one of the two lines transversal to Ra, . . . , Rd. Let this line be S, so that we have
r4 = S.

Moreover, renumbering the remaining points, if necessary, we may assume that β is the 3-cycle
(2, 3, 1, 4). Now we can begin with fixing coordinates. Suppose to begin with that

Rb : x = z = 0 and Rc : x− y = z − w = 0.

Let also
b1 = (0 : 1 : 0 : 0), b2 = (0 : 0 : 0 : 1), b3 = (0 : 1 : 0 : 1)

and
c1 = (1 : 1 : 0 : 0), c2 = (0 : 0 : 1 : 1), c3 = (1 : 1 : 1 : 1).

Then necessarily
b4 = (0 : 1 : 0 : ε) and c4 = (1 : 1 : ε : ε),

where ε is a primitive root of unity of order 6, so that it satisfies the equation ε2 − ε+ 1 = 0. Then it
must be

r1 : z = w = 0, r2 : x = y = 0, r3 : x− z = y − w = 0, and r4 = S : εx− z = εy − w = 0.

With the given fixed β we can reproduce also equations of the Li lines:

L1 : x− y = z = 0, L2 : x = y + z − w = 0, L3 : x− z = z − w = 0 and L4 = r4 = S.

It remains to construct the lines Ra and Rd.
To this end note that for i ∈ {1, 2, 3} the line Mi joining ci to one of points a1, a2, a3 on Ra

must also meet Rd in one of the points d1, d2, d3. The following Lemma restricts considerably possible
collineations.

Lemma 4.1. It is neither aβ(i) ∈ Mi nor ai ∈ Mi for all i = 1, . . . , 4.

Proof. Assume to the contrary that aβ(i) ∈ Mi for some i, see Figure 7. Since the lines Mi and Li

intersect in ci (and are not equal, as otherwise Li would be one of the secants S, S′ contradicting the
assumption that β has no fixed point), they span a plane, call it πi. Since Li and Mi intersect Rd

in two distinct points, this line is also contained in πi. Similarly, since bβ(i) ∈ Li by definition and
aβ(i) ∈ Mi by assumption, the line rβ(i) is contained in πi. But then the lines rβ(i) and Rd intersect,
so that rβ(i) is either S or S′, a contradiction.

It cannot be that ai ∈ Mi, because then it would be either Mi = ri and we would have Mi = S′

contradicting β not being an involution.

Corollary 4.2. It is aβ2(i) ∈ Mi for all i = 1, . . . , 4.



10

Rd

Li

Mi

aβ(i)

d∗bβ(i)

di

ci

Figure 7: Ilustration for Lemma 4.1

Moreover, replacing Mi by Ni in Lemma 4.1 we conclude that neither aβ−1(i) ∈ Ni nor ai ∈ Ni.

Corollary 4.3. It is aβ(i) ∈ Ni for all i = 1, . . . , 4.

Since we are in the position to pick the point a1 on the r1 line arbitrarily (but distinct from b1
and c1), we pick a1 = (1 : 0 : 0 : 0), this forces Ra : y = w = 0 and

a2 = (0 : 0 : 1 : 0), a3 = (1 : 0 : 1 : 0) and a4 = (1 : 0 : ε : 0).

Now, as we have specific coordinates for all points on lines Ra, Rb, Rc we can determine equations of
lines Mi and Nj and check their intersections. We obtain

d1 = (1 : 0 : 1 : 1), d2 = (0 : 1 : −1 : 0), d3 = (1 : 1 : 0 : 1).

Then Rd : y + z−w = x−w = 0 and d4 = (ε : ε− 1 : 1 : ε). This concludes proof of Theorem 1.5 A).

4.2 The harmonic case

In this part we prove Theorem 1.5 B). Right away we fix equations of lines Ra, Rb, Rc and the coor-
dinates of points a1, a2, a3, b1, b2, b3 and c1, c2, c3 as in Section 4.1. Then necessarily

a4 = (1 : 0 : −1 : 0), b4 = (0 : 1 : 0 : −1) and c4 = (1 : 1 : −1 : −1),

since the quadruples of points on lines Ra, Rb and Rc must be harmonic.
The only permutations in (2) of order greater than 2 are the 4-cycles (3, 4, 2, 1) and (4, 3, 1, 2).

Renumbering the points if necessary, we may assume that β = (3, 4, 2, 1). Then the lines Li are
determined as follows:

L1 : z = x− y +w = 0, L2 : x = y− z +w = 0, L3 : x− z = y− z = 0 and L4 : x+w = z−w = 0

and
ci, di, bβ(i) ∈ Li for i = 1, . . . , 4.

Let, as before, Mi be the line through ci containing a configuration point on Ra and another one on
Rd. And let Ni be the line through bi containing a configuration point on Ra and on Rd. Since Lemma
4.1 remains valid also in the situation considered here only the following collinearities are possible:

M1 : c1 and {a2 or a4} , M2 : c2 and {a1 or a3} ,
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M3 : c3 and {a1 or a4} , M4 : c4 and {a2 or a3} .

The choice of points on M1 and the possibilities listed above determine the points on the remaining
lines, so that there are only two possibilities:

M1 : c1 − a2 forces M4 : c4 − a3 and M2 : c2 − a1 and M3 : c3 − a4,

whereas
M1 : c1 − c4 forces M3 : c3 − a1 and M2 : c2 − a3 and M4 : c4 − a2.

By the same token for the lines Ni we obtain the following possibilities

N1 : b1 and {a2 or a3} , N2 : b2 and {a1 or a4} ,

N3 : b3 and {a2 or a4} , N4 : b4 and {a1 or a3} .

which provides two cases for the configuration:

N1 : b1 − a2 forces N3 : b3 − a4 and N2 : b2 − a1 and N4 : b4 − a3,

whereas
N1 : b1 − a3 forces N4 : b4 − a1 and N2 : b2 − a4 and N3 : b3 − a2.

We need now to determine which lines Mi and Nj intersect in points being potential configuration
points on the Rd line. So these points cannot be the ak points. Incidences between all possible lines
Mi and Nj lines are summarized in Table 1. An analysis of Table 1 together with matching new points

b1a2 b2a1 b3a4 b4a3 b1a3 b2a3 b3a2 b4a1
c1a2 a2 ∅ ∅ ∅ 1 : 1 : 1 : 0 ∅ a2 ∅
c2a1 ∅ a1 ∅ ∅ ∅ −1 : 0 : 1 : 1 ∅ a1
c3a4 ∅ ∅ a4 ∅ ∅ a4 0:1:2:1 ∅
c4a3 ∅ ∅ ∅ a3 a3 ∅ ∅ 2:1:0:-1

c1a4 0 : 1 : 1 : 0 ∅ a4 ∅ 1 : 2 : 1 : 0 a4 ∅ ∅
c2a3 ∅ 1 : 0 : 0 : −1 ∅ a3 a3 −1 : 0 : 1 : 2 ∅ ∅
c3a1 ∅ a1 -1:1:1:1 ∅ ∅ ∅ 0:1:1:1 a1
c4a2 a2 ∅ ∅ 1:1:1:-1 ∅ ∅ a2 1:1:0:-1

Table 1: Incidences of potential lines Mi and Nj

to equations of lines Li shows that it must be

Rd : x− z + 2w = y − z + w = 0

and the configuration points on this line are

d1 = (2 : 1 : 0 : −1), d2 = (0 : 1 : 2 : 1), d3 = (1 : 1 : 1 : 0), d4 = (−1 : 0 : 1 : 1)

or
Rd : x− z + 2w = y − z + w = 0

and the configuration points are

d1 = (1 : 0 : 0 : −1), d2 = (0 : 1 : 1 : 0), d3 = (1 : 1 : 1 : −1), d4 = (−1 : 1 : 1 : 1).

We leave it as an exercise to a motivated reader to check that both configurations obtained this way
are projectively equivalent. This ends the proof of Theorem 1.5.
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