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Doctor of Philosophy

Mathematical modelling of granular gases in the context of Grad’s Theory and
Rational Extended Thermodynamics

by Annamaria Pollino

Kinetic theory is a discipline introduced by Boltzmann in the late 19th century to
study monatomic gas at the microscopic level, introducing a distribution function,
which depends on macroscopic variables, such as time and position of particles in
space and microscopic variables such as particle velocity. The evolution of the distri-
bution function is defined by the Boltzmann equation from which the macroscopic
equations of Euler and Navier-Stokes can be derived.
The theory of Rational Extended Thermodynamics, formulated by Ingo Müller and
Tommaso Ruggeri in the last century, deals with the study of non equilibrium phe-
nomena at a macroscopic level, such as shock waves, micro- and nano-flows, second
sounds, light scattering, rarefied gases and so on. It consists of a hierarchy of balance
laws, where dissipative fluxes are assumed as field variables. The same hierarchy of
equations is found in the moment systems of kinetic theory by truncating at an arbi-
trary order of moments.
There are various points of contact between the two theories. Extended thermody-
namics postulates the existence of a law of entropy that imposes conditions of non-
negativity for the production of entropy, and kinetic theory also places conditions on
the sign of entropic dissipation through the H theorem. Grad’s 13-moment theory
provides the same phenomenological equations as extended thermodynamics and
represents a theoretical validation. It is therefore interesting to study a phenomenon
of unbalance for gases from the perspective of kinetic theory and from the point of
view of extended thermodynamics, then making comparisons between the results
provided by the two theories.
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In this thesis, a study is conducted on monatomic granular gases, particles that
are subject to inelastic collisions, in which there is no energy conservation. The first
case study concerns dilute granular gases, characterized by very spaced particles,
where the centers of two colliding particles coincide and in the collision of two par-
ticles the effect of nearby particles is neglected. The study is done first by considering
a model of differential equations for 13 moments, of which the terms of production
are calculated with the method of Grad moments, typical of kinetic theory. Then
the same model is derived using the theory of extended thermodynamics and some
investigations are conducted on the hyperbolicity region of the system and the con-
vexity of entropy. In addition, spatially homogeneous solutions are studied in the
one-dimensional case, comparing in particular the decay of the temperature of the
gas to the Haff law. Stationary solutions are also determined in the one-dimensional
case.
A more complex case to be considered from the point of view of kinetic theory and
extended thermodynamics concerns dense granular gases: particles interact in such
a way that in binary collision the effect of other nearby particles cannot be neglected,
and the centers of two colliding particles are distinct. A nearly linear model of dif-
ferential equations for 14 moments is presented and flows and production terms
are determined through kinetic theory. The model is then derived in the context
of extended thermodynamics for moderately dense gases. This thesis also deep-
ens some biological applications through Extended Thermodynamics. A model of
14 moments is proposed for the study of blood, thought as a mixture, formed by
plasma, red blood cells and white blood cells, of which solutions are determined in
the linear case, in plane symmetry and cylindrical symmetry. Another biological ap-
plication regards the evolution of a chronic wasting disease through the definition of
a hyperbolic system that predicts finite wave speeds. The linear stability of solutions
and the behavior of acceleration waves are investigated.
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1

Introduction

The aim of the doctoral thesis is the study of some non equilibrium phenomena
based on two theories of mathematical physics: Kinetic theory and Rational Ex-
tended Thermodynamics.
Kinetic theory is a discipline introduced by Boltzmann in the late 19th century. It
deals with the study of gas particle systems at the microscopic level, introducing
a non-negative function, f (x, t, v) called distribution function, which depends on
macroscopic variables, such as time t and position of particles in space x and mi-
croscopic variables such as particle velocity v. The quantity f (x, t, v)dxdv expresses
the concentration of gas molecules in the volume element dxdv in the vicinity of the
point (x, v) at time t. The evolution of the distribution function is defined by the
Boltzmann equation from which the macroscopic equations of Euler and Navier-
Stokes can be derived.
The theory of Rational Extended Thermodynamics, formulated by Ingo Müller and
Tommaso Ruggeri [Müller and Ruggeri, 2013] in the last century, deals with the
study of non equilibrium phenomena at a macroscopic level, such as shock waves
[Weiss, 1995], micro- and nano-flows, second sounds, light scattering [Weiss and
Müller, 1995] and so on. It consists of a hierarchy of balance laws, where dissipative
flows are assumed as field variables. The same hierarchy of equations is found in the
moment systems of kinetic theory by truncating at an arbitrary order of moments.
Research in recent decades has been dedicated to the study of granular materials,
that is, agglomerates of particles that perform inelastic collisions. Under the hy-
pothesis of driving forces acting on them, these materials exhibit a behavior similar
to granular gases, which has led many researchers to study them with the techniques
of kinetic theory. A significant contribution to the study of granular materials and
to the analogies with granular gases was provided by Campbell [Campbell, 1990]
and Goldhirsch [Goldhirsch, 2003]. The study of granular materials allowed to in-
vestigate interesting phenomena, such as the formation of hexagonal patterns and
kinks in oscillated granular layers [Melo, Umbanhowar, and Swinney, 1995]. Es-
sentially, two lines of research concerning the kinetic theory of granular materials
have developed: on the one hand the theory of Chapman Enskog expansion and on
the other the method of Grad moments. Both theories aim at solving the nonlinear
Boltzmann equation and obtaining the Eulero equations, the Navier-Stokes equa-
tions and at higher order the Burnett equations. In 1982 Bobylev [Bobylev, 1982]
proved that while higher-order approximations of Chapman Enskog theory lead to
unstable equations, Grad’s method provides stable equations for monatomic gases.
Despite this, research has been very prolific in the first field for monatomic gases.
The fact that Grad’s theory has been less used in monatomic gases may lie within
the following limits: it is very difficult to find the terms of production of the balance
laws and it is not well known how many nor what moments to choose for the model.
Surely both theories have the disadvantage of not having clear boundary conditions.
So we can say that initially the research focused on the study of gases based on CE
methods. In fact, in [Goldshtein and Shapiro, 1995] Goldshtein and Shapiro deter-
mined through CE expansions the Eulero equations for granular flows. Brey [Brey et
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al., 1998] applied CE theory to derive the Navier Stokes and Fourier equations for di-
lute granular gases, instead Garzò [Garzó and Dufty, 1999] extended the same study
to dense granular gases. Sela et al [Sela, Goldhirsch, and Noskowicz, 1996] defined
the distribution function in terms of the number of Knudsen and the coefficient of
restitution e, which varies between 0 and 1 and expresses the degree of inelasticity of
collisions (for e=1 the collision is elastic). Practically limiting themselves to the case
of e close to 1, they determined with the CE theory the Burnett relations for a two-
dimensional granular gas. Lutsko [Lutsko, 2005] studied the dense granular gases
and through the CE expansion obtained to the order zero the homogeneous cooling
state while to the first order the relations of Navier Stokes and Fourier. Garzò et
al [Kremer, Santos, and Garzó, 2014] determined the Burnett relations for a smooth
granular gas for different values of the restitution coefficient. However, it must be
said that the research then used the techniques of Grad’s theory for the study of
granular gases. The first to apply it to dense and granular gases were Jenkins and
Richman who in [Jenkins and Richman, 1985a] provided a model of 13 moments,
while in [Jenkins and Richman, 1985b] a model of 16 moments, in which they also
described the rotation of two-dimensional particles during the collision. Bisi et al
[Bisi, Spiga, and Toscani, 2004] investigated the behavior of weakly inelastic gas in
1 dimension. Kremer et al [Kremer and Marques Jr, 2011] derived a 14 moments
model, based on Grad theory, for a dilute granular gas, they analyzed the homoge-
neous cooling state related to the Haff law and studied the stability of a linearized
model with 13 moments. Gupta and Torrilhon [Gupta and Torrilhon, 2012] idealized
a computational method to determined the production terms of Grad models for
monatomic gas, mixtures of monatomic gases and granular gas. In [Gupta, Shukla,
and Torrilhon, 2018a] Gupta et al derived a 26 moments theory for dilute granular
gas through Grad method and found constitutive relations for stress tensor and heat
flux. They also studied the stability analysis of the model with eigenmodes.
Although kinetic theory deals with physical phenomena from a microscopic point of
view and thermodynamics from a macroscopic point of view, there are many points
of contact between the two theories. Thermodynamics, particularly the second law,
predicts the arrow of time, according to which thermodynamic processes in nature
occur irreversibly and this has been proven by Boltzmann through the H theorem
on entropic dissipation. Parallel to kinetic theory, in the last seventy years, starting
from the works of Onsager, Eckart, Meixner, Prigogine and others, Extended Ther-
modynamics has developed as a systematic thermodynamic theory of unbalance.
The thermodynamics of irreversible processes have been used in the study of var-
ious phenomena of the non equilibrium such as mass diffusion and viscous fluids
[Müller and Ruggeri, 2013], heat conduction [Donato and Ruggeri, 2000], chemical
reactions [Kremer and Müller, 1998], electrical conduction etc.

One limitation that raises classic thermodynamic theory is that it is based on
models of parabolic differential equations that admit wave solutions at infinite ve-
locities. The rational extended thermodynamics was conceived to overcome this
limit. In fact, it allows to define for the study of rarefied gases or gases far from
equilibrium models of quasi-linear hyperbolic differential equations, which guaran-
tee the finite velocity of waves. The state of the gas under consideration is defined
not only by density, velocity and temperature, but is extended to stress tensor and
heat flux which are no longer constitutive variables as in classical thermodynamics,
but they become fields, for which it is necessary to assign balance laws. A further ad-
vantage of extended thermodynamics models is that they guarantee the existence,
uniqueness of the solutions and their continuous dependence on the initial data.
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However, the models in question are not closed. To determine the constituent vari-
ables, universal physical principles are adopted: the principle of Galilean invariance
and the principle of entropy. The Galilean invariance allows the decomposition of
moments, fluxes and productions in the convective and non convective parts. The
principle of entropy postulates the existence of a convex function, the density of en-
tropy that satisfies the law of conservation of entropy. This is an additional law that
must be verified by the field variables. To this end, Lagrange multipliers are intro-
duced according to the theory elaborated by Liu [Liu, 1972, Ruggeri and Strumia,
1981] that allow the assumption of the balance laws as constraints for the law of en-
tropy.
Another point of contact between Extended Thermodynamics and Kinetic Theory is
that field variables used in Extended Thermodynamics [Müller and Ruggeri, 2013]
are the moments of the distribution function and the phenomenological equations
of Extended Thermodynamics coincide with those obtained with the Grad’s method
for 13 moments. Extended Thermodynamics has also been applied to the study of
polyatomic gases by defining a structure model [Ruggeri and Sugiyama, 2015,Rug-
geri and Sugiyama, 2021] with two hierarchies of moments: one for mass and the
other for energy. It has been shown that Rational Extended Thermodynamics (RET)
can describe processes where rapid time changes or when a strong deviation from
equilibrium occur. On the other hand models with more than two hierarchies of
moments are newly emerged [Arima et al., 2021b]. In fact, it has been shown that
the field equations of RET can describe a range various non-equilibrium phenomena
such as light shattering, sound waves, heat waves, structure of shock waves [Müller
and Ruggeri, 2013,Ruggeri and Sugiyama, 2015,Ruggeri and Sugiyama, 2021]. RET
has been applied to monatomic gases [Müller and Ruggeri, 2013] and mixtures [Müller
and Ruggeri, 2013,Ruggeri and Sugiyama, 2015, Barbera and Brini, 2011b, Barbera
and Brini, 2011a,Barbera and Brini, 2014] with many interesting results. Recently,
RET has been generalized to dense and rarefied polyatomic gases both in the clas-
sical [Ruggeri and Sugiyama, 2015; Ruggeri and Sugiyama, 2015; Carrisi, Montisci,
and Pennisi, 2013; Arima et al., 2012; Arima et al., 2021b] and in the relativistic frame-
work [Ruggeri and Sugiyama, 2021; Pennisi and Ruggeri, 2017; Arima et al., 2022;
Arima and Carrisi, 2023], for metal electrons [Barbera and Brini, 2019; Barbera and
Brini, 2021], to quantum systems [Trovato, 2014,Brini and Seccia, 2022; Brini and
Seccia, 2023], and and also for biological systems [Barbera, Curro, and Valenti, 2015;
Consolo et al., 2022; Consolo, Currò, and Valenti, 2020; Consolo and Grifó, 2022],
providing relevant results and good agreement with experimental data.
As has been deduced in the work [Müller and Ruggeri, 2004], even when study-
ing a rather simple physical phenomenon, such as the stationary heat conduction in
a monatomic gas, the differences between classical thermodynamics and extended
thermodynamics are evident. These differences become more marked in the case of
curved domains [Müller and Ruggeri, 2004] where the authors studied a rarefied gas
at rest between two circular coaxial cylinders. Precisely they noted that the normal
components of stress tensor vanish as in classical thermodynamics and this implies
that Fourier’s law is not valid. Barbera et al. [Barbera and Müller, 2006] also studied
the gas behavior between two rotating coaxial cylinders, showing that no rigid rota-
tion is compatible with Grad’s theory unlike Navier Stokes and Fourier theory. The
differences between extended and classical thermodynamics in the study of a rar-
efied gas at rest between two confocal elliptical cylinders were also shown in [Bar-
bera and Müller, 2008]. Then, the analysis of stationary heat transfer problems was
extended to general 3D symmetric domains [Barbera and Brini, 2010; Barbera, Brini,
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and Valenti, 2012]. All these studies lead to the general idea that, the differences be-
tween the stationary solutions of classical and extended thermodynamics increase
when the geometry of the problem becomes more complex and further from the
planar one. Meanwhile, other authors studied the solution of 13-moment extended
thermodynamics when a flow is introduced. In particular, Marques Jr. and Kre-
mer [Marques Jr and Kremer, 2001] investigated the planar Couette flow, whereas
Gramani Cumin et al. [Cumin, Kremer, and Sharipov, 2002] (see also the references
therein) investigated the non-isotermal cylindrical Couette flow with a tangential
velocity. It was shown that the nonlinear equations of 13-moment extended ther-
modynamics are already able to predict some differences from the classical thermo-
dynamics which are in agreement with the expectation of the kinetic theory. More
recently 3D flows are also investigated [Barbera and Brini, 2017; Barbera and Brini,
2018] and for different gases where the dynamic pressure becomes more evident
[Arima et al., 2014; Barbera, Brini, and Sugiyama, 2014].

The main topic of the PhD thesis is the investigation of rarefied granular gases
and dense granular gases on the basis of Kinetic Theory and Extended Thermody-
namics. Quasilinear models, comprised of 13 or 14 partial differential equations
for 13 or 14 moments respectively, are presented and with the techniques of kinetic
theory the fluxes and source terms expressing the dense character of the gas are
determined. These models are then defined in the context of Extended thermody-
namics and the values of bulk viscosity and thermal conductivity of Navier Stokes
and Fourier laws respectively are recovered. In addition, models are integrated and
various numerical applications on spatially homogeneous solutions are conducted.
One of the advantages of these models is that they can be used in many fields of
research. For example, granular gases have a similar behavior to granular materials.
This has meant that the research of granular gases has extended to the study of many
physical applications that concern granular materials, such as the industrial trans-
port of cereals, ores, pharmaceuticals, granular snow avalanches, rock debris slides
and underwater sediment slumps. In this thesis we also carried out two biological
applications, through models of quasilinear and hyperbolic systems of partial dif-
ferential equations, defined in the context of Extended Thermodynamics. The first is
inspired by a classic model elaborated by Dimitri Gidaspow [Gidaspow and Huang,
2009] in which he studies the behavior of red blood cells in narrow vessels. We de-
fine a new model adding moments and balance laws and evaluate the concentrations
and velocity of red blood cells, finding accordance with the paper [Gidaspow and
Huang, 2009] and some new results about the stress tensor and heat flux, thanks to
the more precision of Extended Thermodynamics.

The second biological application is about a reaction-diffusion model [Sharp and
Pastor, 2011] in order to investigate the evolution of mad cow disease that affects
various animal species by ingestion of foods, containing misfolded proteins called
prions. Reaction-diffusion models, that involve the Fick law for the diffusion as-
pect, are parabolic and so they predict the diffusion of the biological population at
a infinity speed. Here we substitute the Fick law with the balance laws of Extended
Thermodynamics in order to recover coherent finite speed of diffusion.

The thesis is divided as follows. The main objective of Chapter 1 is to lay the
foundations of two kinetic models for granular dense gas, i.e. high dense gas molecules,
that are subject to inelastic collisions. The first was developed by Jenkins and Sav-
age [Jenkins and Savage, 1983] and the second by Jenkins and Richman [Jenkins and
Richman, 1985a]. These models of kinetic theory provide the balance laws for den-
sity, velocity and energy and allow to compute the specific forms for the mean fluxes
of momentum and energy and the mean rate at which energy is lost in collisions.
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In Chapter 2 we investigate the behavior of rarefied granular gas in the context of
Extended Thermodynamics and derive a quasi linear system of differential equa-
tions for 13 moments [Barbera E, 2023,Barbera and Pollino, 2023c]. The model has to
be closed by constitutive relations that are determined by invoking universal physi-
cal principles, such as the entropy law and the principle of Galilean invariance. We
determine linear solutions in two cases: spatially homogeneous solutions and sta-
tionary solutions in one dimensional space. We also show that these solutions are
found in the acceptable regions of the model, that is, in the region where the model
is hyperbolic, which guarantees the existence and uniqueness of the solutions, con-
tinuous dependence on initial data and the propagation of waves at finite speed and
also in the region where entropy production is non-negative.
In Chapter 3 [Barbera and Pollino, 2023d] we focus on dense granular gases: the
particles have positions and velocities that depend on each other and the collisions
are inelastic. The positions of the centers of two colliding particles are distinguished,
and in collision, the position of the two particles is affected by the presence of neigh-
boring particles. The phenomenon of transfer of particle properties and transport
have to be considered. Using the techniques of kinetic theory we define a fourteen
moments model for dense granular gas and we determine fluxes associated with
transport and fluxes associated with transfer. Precisely adopting approximate linear
formulas [Jenkins and Richman, 1985a], we compute all the fluxes and source for
each balance equation. Chapter 4 is devoted to the determination of a 14 moments
model for moderately dense granular gas in the context of Extended Thermodynam-
ics [Barbera and Pollino, 2023e]. Physical universal principles are invoked to close
the system and production terms are recovered by comparison with those obtained
in the previous chapter. Chapter 5 and Chapter 6 are dedicated to biological applica-
tions of Extended Thermodynamics. In Chapter 5 we define a 14 moments model for
blood flow, regarded as a mixture comprised of plasma, red blood cells and white
blood cells. We base on the paper [Barbera and Pollino, 2022,Barbera and Pollino,
2023b] and we define a quasi linear differential model following the structure of the
two hierarchies of moments, elaborated in [Ruggeri and Sugiyama, 2015]. Aim of
this chapter is the investigation of the Fåhræus-Linqvist effect, that is the migration
of red blood cells from the wall to the center of narrow vessels. Chapter 6 is devoted
to the investigation of a chronic wasting disease through a reaction-diffusion model
[Barbera and Pollino, 2023a,Sharp and Pastor, 2011]. We study the linear stability of
the equilibrium solutions and analyze the propagation of acceleration waves, that
are expected to occur at finite velocity.





7

Chapter 1

A Kinetic Model of 13 moments for
granular gas

1.1 Introduction

Based on experiments conducted by Savage and others, [Savage and Mckeown,
1983; Savage and Sayed, 1984], it was noticed that granular materials, composed
of spherical, identical, dense and nearly elastic particles have a behavior similar to
that of dense gases. In fact it has been observed that in the granular flows collisions
occur instantaneously between pairs of spheres.

This has led many researchers to study granular materials by applying the theory
of non-ordinary kinetic equilibrium theory, developed by Chapman and Cowling for
dense gas [Chapman and Cowling, 1990]. The drawback of this approach lies in the
fact that in collisions between granular particles the kinetic energy is not conserved
but this limit has been overcome by adapting the kinetic theory ad hoc to the class
of granular materials.

Research was carried out in order to investigate the evolution of planetary rings,
the industrial transport of cereals, ores and pharmaceuticals and also geophysical
phenomena such as, granular snow avalanches, rock debris slides and underwater
sediment slumps.

Models of kinetic theory allow to determine the balance laws for density, velocity
and energy and to compute the specific forms for the mean fluxes of momentum and
energy and the mean rate at which energy is lost in collisions.

The main objective of this introductory chapter is to lay the foundations of two
kinetic models for granular dense gas, i.e. high dense gas molecules, that are subject
to inelastic collisions. The first was developed by Jenkins and Savage [Jenkins and
Savage, 1983] and the second by Jenkins and Richman [Jenkins and Richman, 1985a].
Going into detail, in 1983 Jenkins and Savage [Jenkins and Savage, 1983] studied an
idealized material comprised of identical, smooth, nearly elastic, spherical particles,
in which the particle interact only through binary collisions with their neighbors.
They formulated the probability of binary collisions in the following form

f (2)(c1, r1, c2, r2) = g(r1, r2) f (1)(c1, r1) f (2)(c2, r2),

where ci and ri are the velocity and the position respectively of the i particle,
f (2)(c1, r1, c2, r2) is the pair distribution functions, f (i)(ci, ri) the single particle veloc-
ity distribution function and g(r1, r2) a radial distribution function for dense gases.
This allowed them to derive local expressions for the balance laws and integral ex-
pressions for the stress, energy flux and energy dissipation.

In 1984 Jenkins and Richman [Jenkins and Richman, 1985a] extended the Grad’s
method of moments [Grad, 1958] from the dilute system of elastic particles to dense
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system of inelastic particles. They determined analytical expressions for the colli-
sional fluxes and the collisional productions of the velocity moments, keeping of the
fact that in dense gases colliding particles have different positions in space and are
affected by the presence of other nearby particles. Finally they provided the balance
laws of the Grad’s 13 moment system.

1.2 Kinetic theory for a dense system of nearly elastic spheres

1.2.1 Setting

Following Jenkins and Savage [Jenkins and Savage, 1983], we consider a dense sys-
tem of macroscopic particles that are identical spheres of diameter σ and mass m.
We suppose that the collisions between them are binary but nearly elastic. Indicat-
ing with c1 and c′1 the velocities of the particle "1" before and after the collisions and
with c2 and c′2 those of the particle "2", one has, for the balance of linear momentum,

mc′1i = mc1i − Ji,

mc′2i = mc2i + Ji,
(1.1)

where Ji is the impulse of the force exerted by particle "1" upon particle "2" during
collision. If g = c1 − c2 and g′ = c′1 − c′2 are the relative velocities of the centers
of the spheres immediately before and after the collisions and k is the unit vector
directed from the center of particle "1" to the center of "2" at contact, we suppose
that the component normal to the plane of contact of the particles is related to the
component normal prior to collision by(

g′ · k
)
= −e (g · k) (1.2)

where e is the so-called restitution coefficient, with 0 ≤ e ≤ 1. When e = 1, the
relative velocities are reversed upon collision and energy is conserved. Values of e
less then 1 indicate dissipation of energy.

By combination of (1.1) and (1.2) one gets

c′1i = c1i − 1
2 (1 + e) (g · k) ki,

c′2i = c2i +
1
2 (1 + e) (g · k) ki,

(1.3)

which describe the relations of the velocities of the particles "1" and "2" before and
after the collision.

By combinations of (1.3), it is easy to obtain some relations that will be useful
later in the determination of fluxes and productions, that are

c′1ic
′
1j − c1ic1j = 1

2 (1 + e) (g · k)
[ 1

2 (1 + e) (g · k) kik j −
(
kic1j + k jc1i

)]
,

c′1ic
′
1jc
′
1p − c1ic1jc1p = − 1

2 (1 + e) (g · k)
[
3k(ic1jc1p) − 3

2 (1 + e) (g · k) k(ik jc1
p)+

+ 1
4 (1 + e)2 (g · k)2 kik jkp

]
,

c′1lc
′
1lc
′
1sc
′
1s − c1lc1lc1sc1s = −2 (1 + e) (g · k)

[
klc1lc1sc1s − 1

2 (1 + e) (g · k) (klc1l)
2 +

− 1
4 (1 + e) (g · k) c1sc1s +

1
4 (1 + e)2 (g · k)2 klc1l − 1

32 (1 + e)3 (g · k)3
]

.
(1.4)
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Similarly it is possible to obtain other relations, setting ∆ψ = ψ′1 + ψ′2− ψ1− ψ2 :

∆(cicj) =
1
2 (1 + e) (g · k)

[
(1 + e) (g · k) kik j −

(
kigj + k jgi

)]
,

∆(cicjck) = 3Q(i∆(cjck)),

∆(c4) = 1
8 (1 + e)4 (g · k)4 − 1

2 (1 + e)3 (g · k)4 +

+ (1 + e)2 (g · k)2
[

Q2 + 1
4 g2 + 2 (Q · k)2 + 1

2 (g · k)2
]
+

− (1 + e) (g · k)
[ 1

2 (g · k) g2 + 2 (g · k) Q2 + 4 (g ·Q) (Q · k)
]

(1.5)

with Qi =
1
2 (c1i + c2i), that is the velocity of the center of mass of the two particles.

If we consider the kinetic energy E = 1
2 mc2 and apply (1.5), we obtain:

∆E = −1
4

m(1− e2)(g · k)2, (1.6)

that confirms the conservation of kinetic energy when e = 1.

1.2.2 Distribution function

We define the two particle configurational distribution function, n(2)(r1, r2), such
that n(2)(r1, r2)dr1dr2 is the probable number of pairs of particles, each in the volume
dr1 and dr2, centered at r1 and r2 respectively. Its analytical formulation, when the
particle flow is homogeneous, is given by

n(2)(r1, r2) := g0(d)n2, (1.7)

where n is the uniform number density of particles, d = |r1 − r2| and g0(d) a ra-
dial distribution function. An expression of g0 for a fluid of identical hard spheres,
whose solid volume fraction ν = 1

6 πnσ3, is numerically determined by Carnahan
and Starling:

g0 (ν) =
1

1− ν
+

3ν

2 (1− ν)2 +
ν2

2 (1− ν)3 . (1.8)

If f (2)(c1, r1, c2, r2, t) is the pair distribution function, with f (2)(c1, r1, c2, r2, t)dc1dr1dc2dr2
the probable number of pairs of particles located in the volumes dr1, dr2, centred at r1
and r2, and having velocities c1, c2, centred in the ranges dc1, dc2, at time t, then the
probable number of binary particle collisions, n(2)(r1, r2) is obtained by integrating
f (2)(c1, r1, c2, r2, t) on all velocities:∫ ∫

f (2)(c1, r1, c2, r2, t)dc1dc2 = n(2)(r1, r2, t). (1.9)

Given any property ψ(c1, c2), its mean 〈ψ〉 is determined by

〈ψ〉 = 1
n

∫ ∫
ψ(c1, c2) f (2)(c1, r1, c2, r2, t)dc1dc2. (1.10)

Maxwellian transport equation for any property of a particle ψ(c) is given by

∂

∂t
〈nψ〉 = n〈Dψ〉 −∇ · 〈ncψ〉+ C(ψ) (1.11)
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where Dψ = dc
dt ·

∂ψ
∂c = 1

m F · ∂ψ
∂c and F is the external force acting on a particle. The

change of ψ at an instant dt and in a fraction of volume dr, is caused by three factors:
the change in velocity represented by Dψ, the passage of the particles entering and
leaving dr, indicated by the divergence ∇ · 〈ncψ〉 and the collisions C(ψ) that take
place between particles. Now, we develop some expressions for the collision term
C(ψ). If we consider two particles colliding with velocities c1 and c2 and causing the
property ψ to vary from value ψ2 to value ψ′2, the expression of the change of ψ is
determined by [Jenkins and Savage, 1983] in the following way:

C(ψ) =
∫ ∫ ∫

(ψ′2 − ψ2) f (2)(c1, r1, c2, r2)σ
2(g · k)dkdc1dc2. (1.12)

We specify that the triple integrals from here on are calculated on the domain g · k >
0, which is the one in which it is considered admissible collision. It is possible to
get a similar formula when ψ property varies from ψ1 to ψ′1 and to recover the total
variation of ψ as follows:

C(ψ) = −∇ · θ(ψ) + χ(ψ), (1.13)

where

θ(ψ) = −1
2

σ
∫ ∫ ∫

k(ψ′1 − ψ1) f (2)(c1, r1, c2, r2)σ
2(g · k)dkdc1dc2, (1.14)

χ(ψ) =
1
2

∫ ∫ ∫
k(ψ′1 + ψ′2 − ψ1 − ψ2) f (2)(c1, r1, c2, r2)σ

2(g · k)dkdc1dc2. (1.15)

So, the Maxwellian equation can be reviewed as

∂

∂t
〈nψ〉 = n〈Dψ〉 −∇ · 〈ncψ〉 −∇ · θ(ψ) + χ(ψ). (1.16)

Now, we show how we derive from this equation balance laws of mass, momentum
and energy. If we set ψ = mn = ρ, we obtain the conservation law of mass:

ρ̇ = ρ∇ · u, (1.17)

where u is the mean velocity and the dot stands for the time derivative with respect
to the mean motion, ∂

∂t + ui
∂

∂ri
and u. If ψ = mc, we recover the local form of the

balance of linear momentum:

ρu̇ = −∇ · 〈ρC⊗ C〉 −∇ · P + nF, (1.18)

where ⊗ is the tensor product, C = c− u and P is the pressure tensor, given by

P = −1
2

mσ
∫ ∫ ∫

(c′1 − c1)⊗ k f (2)(c1, r1, c2, r2)σ
2(g · k)dkdc1dc2. (1.19)

Finally, taking ψ = 1
2 mc2 gives the local form of the balance of energy:

3
2

ρṪ = −∇ · 〈1
2

ρC2C〉 − tr(∇u〈ρC⊗ C〉)−∇ · q− tr(P∇u)− γ, (1.20)

where T = 1
3 〈C

2〉,

q = −1
4

mσ
∫ ∫ ∫

k(C
′2
1 − C2

1) f (2)(c1, r1, c2, r2)σ
2(g · k)dkdc1dc2 (1.21)
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and the collisional rate of dissipation per unit volume γ is given by

γ = −1
4

mσ
∫ ∫ ∫

(c
′2
1 + c

′2
2 − c2

1 − c2
2) f (2)(c1, r1, c2, r2)σ

2(g · k)dkdc1dc2. (1.22)

In collisions between dense gases it is possible to neglect the transport phenomenon
of the property ψ, while the transfer of the property ψ due to the collision must be
considered. So we can overlook the terms ∇ · 〈ρC ⊗ C〉 related to (1.18) and terms
−∇ · 〈 1

2 ρC2C〉 − tr(∇u〈ρC⊗ C〉) related to (1.20).
In the case of non homogeneous flow, collisions between approaching particles

are more likely than those between moving away particles. This means that the pair
distribution function manifests a collisional anisotropy. So the best way to represent
it would be to determine it as the solution of the Boltzmann evolution equation. But
given the difficulty of calculation, Jenkins and Savage [Jenkins and Savage, 1983]
prefer to define a form of the pair distribution function, similar to that derived from
Chapman and Cowling as an approximate solution of the Boltzmann equation. They
represent the distribution function in the following way:

f (2)(c1, r1, c2, r2) = g(r1, r2) f (1)(c1, r1) f (1)(c2, r2) (1.23)

where

f (1)(ci, ri) = ni

(
1

2πTi

) 3
2

exp

[
− (ci−ui)

2

2Ti

]
(1.24)

is the single particle velocity distribution function for each particle i, expressed as
Maxwellian about the mean velocity and

g(r1, r2) = g0

[
1− αk · (u2 − u1)

(πT)
1
2

]
(1.25)

is a normalized pair distribution function for the anistropy case, with α a generic
function of ν. So we get the pair distribution function at collision, that contains the
mean fields n, u and T:

f (2)(c1, r1, c2, r2) = g0

(
1

2π

)3 n1n2

(T1T2)
3
2

[
1− αk · (u2 − u1)

(πT)
1
2

]
exp

−
[
(c1−u1)

2

2T1
+

(c2−u2)
2

2T2

]
.

(1.26)
We adopt the expansion of the pair distribution function in terms of a Taylor series
about the point r in the collision integrals (1.19), (1.21) and (1.22), in order to recover
the constitutive relations [Jenkins and Savage, 1983]:

γ =
k(1− e)

2σ2

[
12T − (3π + 4α)σ

(
T
π

) 1
2

(trD)

]
, (1.27)

q = −k∇T, (1.28)

P = π
1
2 kσ−1T

1
2 I − 1

5
k(2 + α)[(trD)I + 2D] (1.29)

where

k = 2ρνg0σ(1 + e)
(

T
π

) 1
2

, 2D = ∇u + (∇u)T .

We observe that the structure of the heat flux and the pressure tensor, here obtained,



12 Chapter 1. A Kinetic Model of 13 moments for granular gas

are similar to those, computed by Chapman and Cowling in [Chapman and Cowl-
ing, 1990].

1.2.3 An explanatory application

We consider two parallel plates at fixed distance L, in relative motion along the hor-
izontal direction. We are interested to investigate the stationary shear flow between
the two plates, where the mean velocity is only horizontal. So we define a rectangu-
lar Cartesian system, made of x and y axes and we suppose that the density ρ, the
non-vanishing x-component u of the mean velocity and the specific energy T depend
only on the component y. The conservation of mass (1.17) is identically verified. The
balance law for momentum (1.18) provides the following relations:

0 = −
∂Pxy

∂y
, (1.30)

0 = −
∂Pyy

∂y
− ρG, (1.31)

where G is the gravitational acceleration. The balance law for specific energy (1.20)
reduces to

0 = −
∂qy

∂y
− Pxy

∂u
∂y
− γ. (1.32)

Employing the costitutive relations (1.19),(1.21) and(1.22), we obtain:
the component of the pressure tensor

Pxy = −1
5

k(2 + α)
∂u
∂y

, (1.33)

Pyy = π
1
2 kσ−1T

1
2 , (1.34)

the heat flux
qy = −k

∂T
∂y

, (1.35)

and the dissipation
γ = 6σ−2(1− e)kT. (1.36)

The presence of gravity makes the flow not symmetrical. In addition, when shear
rates are very high, vertical forces prevail over weight forces. Therefore it is conve-
nient to study the symmetrical case where gravity is neglected. Let us assume that
the Cartesian coordinate system has origin at the center of the flow and adopt as
boundary conditions for the mean velocity and the heat flux:

u
(

L
2

)
= −u

(
−L

2

)
= U, (1.37)

q
(

L
2

)
= −q

(
−L

2

)
= Q. (1.38)

We integrate the horizontal component of the linear momentum (1.30) and then,
using the constitutive relation (1.33), we obtain:

1
5

k(2 + α)
∂u
∂y

= S, (1.39)
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where S represents the shear stress applied to the flow at the top plate. Then, if
we replace the local value of density ρ by its constant mean value ρ̄, we are able to
integrate the normal component of linear momentum (1.31), in which gravity is ne-
glected. Finally we obtain, employing the constitutive relation (1.34), the following
result:

π
1
2 kσ−1T

1
2 = N, (1.40)

where N is the normal stress throughout the flow. We determine k from (1.40), ∂u
∂y

from (1.39) and combining the equation (1.32) with the costitutive relations (1.35)
and (1.36), we get after some easy computations:

ẅ + λw = 0, (1.41)

where w = T
1
2 , a dot stands for the derivative with respect to the adimensional

vertical coordinate s = y
L and

λ =

(
L
σ

)2
[

5π

2(2 + α)

(
S
N

)2

− 3(1− e)

]
. (1.42)

We study the case λ = 0, in which the specific energy is uniform and there is no heat
flux through the boundaries. Using (1.39) and (1.40), together with the boundary
condition (1.37) and the equation (1.42), we get the relation between T and the shear
rate 2U

L :

T
1
2 = 2

[
2 + α

30(1− e)

] 1
2 σU

L
. (1.43)

Since k is proportional to T
1
2 , from (1.40) and (1.39) we can conclude that the normal

stress N and the shear stress S are proportional to the square of the shear rate 2U
L .

Moreover the term σU

LT
1
2

depends on the restitution coefficient e and α. We decided to

focus on nearly elastic particles because in this case and when e is close to 1, the ratio
σU

LT
1
2

and the anisotropic term g(r1, r2) of the pair distribution function f (2) in (1.25)

are both small.
The study can be further deepened by investigating the case in which λ is not zero
and those in which gravity is not neglected. But in the latter case we obtain a linear
differential equation that has for solutions Bessel functions of imaginary order and
imaginary arguments, difficult to treat. See for more details [Jenkins and Savage,
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1983].

1.3 Kinetic theory for a dense system of inelastic particles

We present the main results of the paper [Jenkins and Richman, 1985a], about a
dense gas system, composed of inelastic spherical particles. We assume the same
setting as in the previous section and suppose that the spatial gradients of the un-
known fields, i.e. density, ρ, velocity, ui, and temperature, T are small so as to neglect
the terms of the second order. Let f (1)(c, r, t) the single particle distribution function,
where c is the velocity of the particle, r its position and t time. Let f (2)(c1, r1, c2, r2)
the pair distribution function that expresses the probability of collisions between
two particles, where ci and ri are respectively the velocity and the position of the
generic i = 1, 2 particle. Using an approximation of the velocity distribution func-
tion for each single particle, f (1), the parts of the pressure tensor, Pij, and heat flux, qi,
due to the transport of momentum and energy between collissions, are determined.
Instead, an appropriate approximation of the pair distribution function, f (2), allows
to compute the parts of the pressure tensor and heat flux and the energy dissipation,
γ, due to the transfer of momentum and energy during collisions. The constitutive
relations together with the balance equations are therefore used to determine the
unknown fields.

1.3.1 Balance laws

Let ψ(C) the property of a particle, with C = c − u the relative velocity. The col-
lisional rate of change per unit volume, C(ψ) of the property ψ(C), represents the
integral over all possible binary collisions of the change of ψ multiplied by the prob-
able frequency of the collision, like the expression (1.12), that we determined in the
previous section. Let f (2)(c1, r, c2, r + σk) the pair distribution function regarding
two particles such that one is located at the position r and with velocity c1 and the
second has the position r + σk and velocity c2. Adopting for the pair distribution
function, f (2), the following expansion in a Taylor series about the fixed spatial po-
sition r,

f (2)(c1, r, c2, r + σk) = f (2)(c1, r− σk, c2, r)

+ σki
∂

∂ri

(
1− σ

2!
k j

∂

∂rj
+

σ2

3!
k jkm

∂2

∂rj∂rm
− ...

)
f (2)(c1, r, c2, r + σk),

(1.44)

the expression for C(ψ), computed in details in [Jenkins and Richman, 1985a], is:

C(ψ) = χ(ψ)− ∂

∂ri
θi(ψ)−

∂uj

∂ri
θi

(
∂ψ

∂Cj

)
. (1.45)

We observe that:

χ(ψ) =
1
2

∫ ∫ ∫
(ψ′1 + ψ′2 − ψ1 − ψ2) f (2)(c1, r− σk, c2, r)σ2(g · k)dkdc1dc2 (1.46)

is the source term,

θi(ψ) = −
σ

2

∫ ∫ ∫
(ψ′1 − ψ1)ki

(
1− σ

2!
k j

∂

∂rj
+

σ2

3!
k jkm

∂2

∂rj∂rm
− ...

)
× f (2)(c1, r, c2, r + σk)σ2(g · k)dkdc1dc2

(1.47)
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is the flux term, related to the transfer of the generic moment during collisions, while
the term ∂uj

∂ri
θi

(
∂ψ
∂Cj

)
figures only when ψ is a function depending on C. The equation

governing the evolution in time of the mean amount, < nψ >, is

∂

∂t
〈nψ〉 = n

〈
Fi

m
∂ψ

∂ci

〉
− ∂

∂ri
〈nciψ〉+ C(ψ). (1.48)

where Fi is the external force acting on a particle. When ψ = 1, we recover the
conservation law of mass:

Dρ

Dt
+ ρ

∂ui

∂ri
= 0, (1.49)

where the density ρ = nm and D
Dt = ∂

∂t + ui
∂

∂ri
is the time derative following the

mean flow. Inserting the expression of C(ψ), (1.45) and the conservation law (1.49)
in (1.48), we obtain:

ρ
D〈ψ〉

Dt
+

∂

∂ri
(〈ρCiψ〉+ θi(mψ)) + ρ

(
Dui

Dt
− Fi

m

)〈
∂ψ

∂Ci

〉
+

(〈
ρCi

∂ψ

∂Cj

〉
+ θi

(
m

∂ψ

∂Cj

))
∂uj

∂ri
= χ(mψ).

(1.50)

From this equation we will determine all the balance laws of the moments. Let us
adopt the following notations:

Mi1,i2,...,iN := 〈Ci1 Ci2 ...CiN 〉 (1.51)

express the transport of particle properties between collisions;

θj,i1,i2,...,iN := θj(mCi1 Ci2 ...CiN ) (1.52)

indicate the transfer of particle properties in collisions;

χi1,i2,...,iN := χ(mCi1 Ci2 ...CiN ) (1.53)

are the source terms. We note that in the case of diluted gas, particles travel a long
distance between them, so when two particles collide, the presence of other nearby
particles is ignored and the positions of the two colliding particle centers are not dis-
tinct. Furthermore, the phenomenon of transport of the properties of particles dur-
ing collision prevails over that of transfer and therefore the term (1.52) is neglected.
Instead, in the case that we are studying concerning dense gases and granular ma-
terials, when two particles collide, their centers are distinct and the transfer term
acting on the σ distance between the particle centers can no longer be overlooked.
So we will always have to consider in the balance equations the contributions, due
to transport Mi1,i2,...,iN and transfer θj,i1,i2,...,iN . Also we have to take into account the
presence of nearby particles during a collision and this is achieved by adopting the
pair distribution function:

f (2)(c1, r, c2, r +
1
2

σk) = g0r +
1
2

σk f (1)(c1, r) f (1)(c2, r + σk), (1.54)
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where the radial distribution function g0, given in (1.8), indicates the likelihood of a
collision. If we set ψ = Ci in (1.50), we obtain the balance law of linear momentum,

ρ
Dui

Dt
+

∂

∂rj
(ρMij + θij) = nFi, (1.55)

where Mij is the transport term, θij the transfer term and the sum Pij = ρMij + θij is
the pressure tensor. If we take ψ = C2 with the temperature T = <C2>

3 , we recover
the balance law of energy,

3
2

ρ
DT
Dt

+
1
2

∂

∂ri
(ρMijj + θijj) + Pij

∂uj

∂ri
=

1
2

χjj, (1.56)

in which ρMijj is the transport term, θijj the transfer term, the sum qi = ρMijj + θijj

is the heat flux and 1
2 χjj the dissipation of energy because collisions are inelastic. If

we set ψ = CiCj and use the energy law, we obtain the balance law for the deviatoric
part, M̂ij of the second moment of velocity, Mij,

1
2

ρ ˙̂Mij +

(
Qkij −

1
3

Qkδij

)
,k
+

(
Pk(iuj),k −

1
3

Pknun,kδij

)
=

1
2

χ̂ij, (1.57)

where the overdot stands for the time derivative, the comma the differentiation with
respect to position, Qkij := (ρMkij+θkij)

2 and χ̂ij = χij − χkk
δij
3 . If we take ψ = CiCjCk,

we determine the balance law for the third moment of velocity,

ρṀijk + 2Qnijk,n − 3M(ijPk)n,n + 6Qn(ijuk),n = χijk, (1.58)

where Qnijk =
1
2 (ρMnijk + θnijk). In order to solve the set of balance laws, we approx-

imate the single particle distribution function to the infinite series as Grad made in
[Grad, 1958]:

f (1)(c, r, t) =
(

1− ai
∂

∂ci
+

aij

2!
∂2

∂ci∂cj
−

aijk

3!
∂3

∂ci∂cj∂ck
+ ...

)
f (1)0 (c, r, t) (1.59)

where

f (1)0 (c, r, t) =
n

(2πT)3/2 exp
(
− C2

2T

)
(1.60)

is the Maxwellian distribution and the coefficients ai, aij, aijk, ..., are the first, second,
third order tensors, depending on r and t and symmetric in all of their indices. We
observe that ai = 0 in order to vanish the mean of the relative velocity, C and aii =
0 because of the definition of the temperature. Following [Jenkins and Richman,
1985a], we recover from (1.59) the expressions for the mean value of the generic
moment (1.51) as

Mi1,i2,...,iN = N!
N

∑
p=0

1
p!(N − p)!

a(i1...ip < Cip+1 ...CiN >0, (1.61)

where
< Cip+1 ...CiN >0:=

1
n

∫
Cip+1 ...CiN f (1)0 (c, r, t)dc (1.62)
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is the Maxwellian mean of Cip+1 ...CiN . So, we determine:

Mij = Tδij + aij, (1.63)

Mijk = aijk, (1.64)

and
Mijkp = 3T2δ(ijδkp) + 6Ta(ijδkp) + aijkp. (1.65)

The expressions of the pair distribution function (1.54) and the single velocity distri-
bution function (1.59) allow to find the source terms (1.46) and the flux terms (1.47),
but it is necessary to truncate (1.59) at the N term ai1,i2....iN to have a finite number
of unknowns ρ, ui, T, ..., ai1,i2....iN , determined by the system of N balance equations.
Grad [Grad, 1958] truncated the single velocity distribution function to the third
order. An alternative method is that of Maxwellian iterations, which Trusdell and
Muncaste [Truesdell and Muncaster, 1980] worked out for diluted gases and which
Jenkins and Richman [Jenkins and Richman, 1985a] extended to dense gases.
We truncate the single particle distribution function (1.59) after its first three terms,
so the unknown variables are ρ, ui, T, aij and aijk. The last term has no direct physical
meaning but it is related to the heat flux aill . So we adopt the decomposition of aijk
into deviatoric and isotropic parts:

aijk = αijk +
1
5
(aillδjk + ajllδik + akllδij) (1.66)

and suppose that the deviatoric part αijk vanishes. Definitely, we have 13 moments
for a set of thirteen balance equations: the conservation law for mass, the balance
law of momentum, the balance law of energy, the balance of the second moment
and the balance of the third moment. Here we determine the last two balance laws.
Using (1.63), (1.64) and (1.66), the balance law for the second moment (1.57) assumes
the form

ρ
Daij

Dt
+

1
5

(
∂(ρaikk)

∂rj
+

∂(ρajkk)

∂ri
− 2

3
∂(ρapkk)

∂rp
δij

)
+ 2ρTD̂ij

+

(
(ρaki + θki)

∂uj

∂rk
+ (ρakj + θkj)

∂ui

∂rk
− 2

3
(ρakp + θkp)

∂up

∂rk
δij

)
+

∂

∂rk
(θkij −

1
3

θkppδij) = χij −
1
3

χkkδij,

(1.67)

where D̂ij is the deviatoric part of the strain tensor Dij =
1
2 (ui,j + uj,i). The balance

law for the third moment (1.58), setting j = k and using (1.65) with aijkp = 0, be-
comes:

ρ
Daikk

Dt
+ 5

∂(ρT2)

∂ri
+ 7

∂(ρTaij)

∂rj
+

∂

∂rn
θnijj − (5Tδij + 2aij)

∂

∂rk
(ρTδjk + ρajk + θjk)

+
ρ

5

(
7ajkk

∂ui

∂rj
+ 2ajkk

∂uj

∂ri
+ 2aikk

∂uj

∂rj

)
+ 2θkij

∂uj

∂rk
+ θkjj

∂ui

∂rk
= χijj.

(1.68)

In the case of dense gases, the positions of the centers of two colliding particles are
distinct. This means that in the expression of the pair distribution function (1.54),
the functions of the velocity distributions of the two particles are evaluated at differ-
ent points in space. To make source and flux terms dependent on unknown fields,
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evaluated at the same point, approximations with series and truncations must be
adopted. In addition, gradients of unknown fields should be assumed to be of a
small order of magnitude.

1.3.2 Production terms

Based on the assumption that the gradients of the main fields are small, we approach
the pair distribution function with Taylor series that will allow us to determine the
source term and flux term of each balance equation. Using the Taylor series expan-
sion

f (2)(c1, r− σk, c2, r) = g0(r)

(
f (1)(c1, r)− σki

∂ f (1)(c1, r)
∂ri

)
f (1)(c2, r)

−σ

2
ki

∂g0(r)
∂ri

f (1)(c1, r) f (1)(c2, r),

(1.69)

in (1.46), we recover

χ (ϕ) =
g0(x)

2

∫ ∫ ∫
(ψ′1 + ψ′2 − ψ1 − ψ2) f (1) (c1, r) f (1) (c2, r)×

×
[
1 + σ

2 ki
∂

∂ri
ln f (1)(c2,r)

f (1)(c1,r)

]
σ2 (g · k)dkdc1dc2.

(1.70)

Employing

f (2)(c1, r, c2, r + σk) = g0(r)

(
f (1)(c2, r) + σki

∂ f (1)(c2, r)
∂ri

)
f (1)(c1, r)

+
σ

2
ki

∂g0(r)
∂ri

f (1)(c1, r) f (1)(c2, r),

(1.71)

into (1.47), we obtain

θi (ϕ) = −σ
g0(x)

2

∫ ∫ ∫
(ψ′1 − ψ1) ki f (1) (c1, r) f (1) (c2, r)×

×
[
1 + σ

2 k j
∂

∂rj

(
ln f (1)(c2,r)

f (1)(c2,r)

)]
σ2 (g · k)dkdc1dc2.

(1.72)

Jenkins and Richman [Jenkins and Richman, 1985a] provide simplified expressions
for flux and source terms, which are linear in velocity and temperature gradients. In
fact quadratic terms of the moments aij and aijk or the products of these moments for
the gradients of the main fields are neglected. The approximate expressions of the
flux and source are respectively:

θi (ψ) = Ai (ψ) + Bi (ψ) + ajkBijk (ψ) + ajkpBijkp (ψ)

χ (ψ) = E (ψ) + F (ψ) + ajkFjk (ψ) + aijkFijk (ψ)
(1.73)
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where the integrals are given by

Ai (ψ) = − σ
2 g0
∫ ∫ ∫

(ψ′1 − ψ1) ki f01 f02σ2 (g · k)dkdc1dc2,

Bi (ψ) = − σ2

4 g0
∫ ∫ ∫

(ψ′1 − ψ1) kikm f01 f02
∂

∂rm

(
ln f02

f02

)
σ2 (g · k)dkdc1dc2,

Bijk (ψ) = − σ
4 g0
∫ ∫ ∫

(ψ′1 − ψ1) ki

(
f01

∂2 f02
∂c2j∂c2k

+ f02
∂2 f01

∂c1j∂c1k

)
σ2 (g · k)dkdc1dc2,

Bijkp (ψ) =
σg0
12

∫ ∫ ∫
(ψ′1 − ψ1) ki

(
f01

∂3 f02
∂c2j∂c2k∂c2p

+ f02
∂3 f01

∂c1j∂c1k∂c1p

)
σ2 (g · k)dkdc1dc2.

(1.74)
and

E (ψ) =
g0
2

∫ ∫ ∫
∆ (ψ) f01 f02σ2 (g · k)dkdc1dc2,

F (ψ) = σ
g0
4

∫ ∫ ∫
∆ (ψ) km f01 f02

∂
∂rm

(
ln f02

f02

)
σ2 (g · k)dkdc1dc2,

Fij (ψ) =
g0
4

∫ ∫ ∫
∆ (ψ)

(
f01

∂2 f02
∂c2i∂c2j

+ f02
∂2 f01

∂ci1∂c1j

)
σ2 (g · k)dkdc1dc2,

Fijk (ψ) = − g0
12

∫ ∫ ∫
∆ (ψ)

(
f01

∂3 f02
∂c2i∂c2j∂c2k

+ f02
∂3 f01

∂c1i∂c1j∂c1k

)
σ2 (g · k)dkdc1dc2.

(1.75)
with ∆ = ψ′1 + ψ′2 − ψ1 − ψ2, f01 = f (1)0 (c1, r) and f02 = f (1)0 (c2, r). The use of (1.73)
instead of (1.46) and (1.47) allows us to determine with a good degree of approx-
imation the values of the source and flux terms. The computations involve using
velocity change formulas (1.3). During this dissertation we will try to deal with the
results of Jenkins and Richman [Jenkins and Richman, 1985a] in the context of Ex-
tended Thermodynamics and to extend them to the 14-moment system for dense
gases.

1.3.3 Approximation of Moments

In order to evaluate the time derivatives of aij and aill , we consider the simple case in
which the main fields ρ, ui and T are constants and aij and aill depend only on time.
In this way (1.67) and (1.68) provide:

ȧij +
1
τ̄
= 0, (1.76)

and
ȧikk +

1
τ̂
= 0, (1.77)

where τ̄ and τ̂ are relaxation times, proportional to

1
νg0

σU

LT
1
2

0

. (1.78)

We observe that when ν ∈]0.2, 0.6[, then νg0 ∈]0.4, 5[ for the expression (1.8). In this
range, relaxation times are small if the parameter σU

LT
1
2

0

is small. As a consequence

time derivative of aij and aill are neglected. We assume in what follows that the
dimensionless parameters

σ

L
,

aij

T0
,

aijk

T
3
2

0

,
σU

LT
1
2

0

(1.79)
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are small. Solving the dimensionless form of (1.67), we determine the second mo-
ment:

ρaij = −2µ̄D̂ij (1.80)

where

µ̄ = α

(
1 +

2
5

νg0(3e− 1)(1 + e)
)

(1.81)

is the transport shear viscosity, with

2α =
5mT

1
2

2σ2g0(1 + e)(3− e)π
1
2

. (1.82)

Considering the dimensionless form of (1.68), we obtain:

1
2

ρaikk = −κ̄
∂T
∂ri

+ δ̄
∂ρ

∂ri
(1.83)

where

κ̄ = β

(
1 +

3
5

νg0(1 + e)2(2e− 1)
)

(1.84)

is the transport coefficient, analogous to the thermal conductivity for dilute gas, with

β =
75mT

1
2

2σ2g0(1 + e)(49− 33e)π
1
2

(1.85)

and

δ̄ =
15e(1− e)π

1
2 σT

3
2

4(49− 33e)νg0

d(ν2g0)

dν
(1.86)

that is the transport coefficient, related to the density gradient. Employing (1.73)
together with (1.74) and (1.75), we are able to determine respectively the transfer
part of the pressure tensor and heat flux and the dissipation of energy:

θij = [ρT(2νg0(1 + e))−ωDkk]−
[

2µ̄

(
4
5

νg0(1 + e)
)
+

6
5

ω

]
D̂ij, (1.87)

where

ω =
8mν2g0(1 + e)T

1
2

π
3
2 σ2

(1.88)

is the bulk viscosity,

1
2

θikk = −
[
κ̄
(

6νg0(1 + e)
5

)
+

3ω

2

]
+ δ̄

(
6νg0(1 + e)

5

)
∂ρ

∂ri
, (1.89)

γ =
3ω(1− e)

4σ2 (12T − 3π
3
2 σT

1
2 Dii). (1.90)

Finally the total expression of the pressure tensor is

Pij = (p−ωDkk)δij − 2µD̂ij, (1.91)

where
p = ρT(1 + 2νg0(1 + e)) (1.92)
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is the pressure and

µ = µ̄

(
1 +

4
5

νg0(1 + e)
)
+

3
5

ω (1.93)

is the shear viscosity. The total energy flux can be expressed as

Qi = −κ
∂T
∂ri

+ δ
∂ρ

∂ri
(1.94)

where

κ = κ̄
(

1 +
6
5

νg0(1 + e)
)

3
2

ω, (1.95)

δ = δ̄

(
1 +

6
5

νg0(1 + e)
)

. (1.96)

To verify that the approximation made is physically acceptable, we study a sta-
tionary flow between two parallel plates, which move relative to each other. The
density and temperature are constant, while the velocity varies linearly with the dis-
tance between the plates. Applying these hypotheses to the energy balance equation
(1.56) and using the formulas for the pressure tensor (1.91) and the energy dissipa-
tion rate (1.90), we arrive at the relations:(

σU

LT
1
2

)2

=
9ω

2µ
(1− e), (1.97)

where the term to first member is considered small in the approximation. Ob-
serving that for values of ν ∈]0.3, 0.6[, the ratio between ω and µ varies in the range
]0.5, 2[, it follows that the coefficient (1− e) must be small to make the term to first
member is small. This implies that we must neglect the terms that in the constitutive
relations contain δ̄, proportional to (1− e) together with the term Dii in the expres-
sion of the rate of energy dissipation (1.90). So the constitutive relations become

Pij = (p−ωDkk)δij − 2µD̂ij (1.98)

Qi = −κ
∂T
∂ri

, (1.99)

γ =
9ω(1− e)T

σ2 . (1.100)

These relations are experimentally valid because they are in agreement with data
obtained by Lun in the work Lun et al., 1984.

1.4 Concluding remarks

In this chapter we have presented the results of [Jenkins and Savage, 1983] and [Jenk-
ins and Richman, 1985a]. In the work [Jenkins and Savage, 1983], using the Maxwell
equation, the balance laws for mass, momentum and energy are derived. The two
authors then approximate the distribution function f (2)(c1, r1, c2, r2, t) that expresses
the collisions between two particles as the product of the velocity distribution func-
tion of each particle f (1)(ci, ri), regarded as the Maxwellian function, and the ra-
dial distribution function g(r1, r2). By developing Taylor’s first-order series of the
function f (2)(c1, r1, c2, r2, t), they determine the constitutive relations for the pres-
sure tensor Pij, the heat flux qi and the energy dissipation γ. In the paper [Jenkins
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and Richman, 1985a] in addition to the balance laws for mass, momentum and en-
ergy, the balance laws for stress tensors and heat flux are also derived. Adopting a
Taylor series development for the velocity distribution function of each single parti-
cle f (1), the parts Mij and Mill of the pressure tensor Pij and heat flux qi, due to the
transport of momentum and energy between collisions respectively, are determined.
Instead the use of the formulas (1.73) allows to compute the parts θij and θill of the
pressure tensor and heat flux and the energy dissipation γ, due to the transfer of
momentum and energy during collisions. We’ll use the formulas 1.73 in Chapter 3
to determine all the production terms for a fourteen moments model.
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Chapter 2

An Extended Thermodynamic
Model of 13 moments for granular
gas

2.1 Introduction

Many works in the literature have been devoted to rarefied gases, characterized
by elastic collisions, especially in the field of kinetic theory. The 13-moment Grad
method is an example. The aim of this chapter is to extend the treatment to other
gases, whose molecules are involved in inelastic collisions. The inelasticity implies
that the total energy is not conserved, but part of it turns into heat, and that means a
decay of the gas temperature.

In the previous chapter we presented in detail some works by Jenkins and Rich-
man on kinetic models for dense gases. Mention should also be made of Kremer and
Marques [Kremer and Marques Jr, 2011] contribution to a 14-moment theory for di-
lute granular gases, adding to the thirteen moments of mass density, velocity, stress
tensor, and heat flow, a fourth-order scalar moment. They determined spatially ho-
mogeneous solutions that reveal the temporal decay of temperature, stress tensor,
heat flow and scalar moment of order 4. Moreover, they showed that the time de-
cay of the temperature is very close to that predicted by Haff’s law [Brilliantov and
Pöschel, 2004; Haff, 1983]. Kremer and Marques also study the dynamic behavior of
small local perturbations from spatially homogeneous solutions due to spontaneous
internal fluctuations by considering a thirteen field theory. The study of the stability
of longitudinal and transverse waves in dilute inelastic gases was extended to more
moments in [Gupta, Shukla, and Torrilhon, 2018b], where the authors found unsta-
ble longitudinal and transverse modes and compared their results with other exist-
ing theories (see [Gupta, Shukla, and Torrilhon, 2018b] and the references therein).
In this Chapter we aim to investigate the behavior of granular gas in the context of
Extended Thermodynamics and to derive a quasi linear system of differential equa-
tions for 13 moments. The model has to be closed by constitutive relations that are
determined by invoking universal physical principles, such as the entropic inequal-
ity, the convexity of entropy and the principle of Galilean invariance. We integrate
the system in the linear case and determine in one dimensional space the spatially
homogeneous solutions and the stationary solutions. We verify that the solutions
are acceptable and compatible with the hyperbolicity region of the model and with
the region in which the residual inequality of entropy is non-negative.
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2.2 Derivation of the field equations in Extended Thermody-
namics

For the description of the behavior of granular gas we introduce the field variables:
the density ρ (t, x), the velocity vi (t, x), the temperature T (t, x), the deviatoric part
of the stress tensor ρ<ij> (t, x) and the heat flux qi (t, x). In order to obtain these 13
fields, we assume as 13 field equations the balance equations for mass, momentum,
momentum flux and energy, as follows

∂ρ
∂t +

∂ρvk
∂xk

= 0,

∂ρvi
∂t + ∂Fik

∂xk
= ρ fi,

∂Fij
∂t +

∂Fijk
∂xk

= 2ρv(i f j) + Pij,

∂Fill
∂t + ∂Fikll

∂xk
= 3F(il fl) + Pill .

(2.1)

In these equations fi is the specific external body force and round brackets indicate
symmetrization. The set of balance equations (2.1) is the classical hierarchy of 13
equations for classical monatomic gases [Müller and Ruggeri, 2013]. The fluxes in
every equations are the densities of the following equations. Pij and Pill represent
the production terms. We assume here to be in presence of dilute gases of inelastic
spheres, so we follow the results of Jenkins and Richman [Jenkins and Richman,
1985a] in order to evaluate production terms.

This system of field equations is not closed, since there are unknown quantities
that are not expressed explicitly in terms of the fields. In order to close it, we need
to express the quantities in (2.1), as known functions of the fields in a form that
depends on the material under consideration, called constitutive quantities. In this
chapter we follow the methods of Rational Extended Thermodynamics [Müller and
Ruggeri, 2013] in order to derive the constitutive functions.

2.2.1 Galilean invariance

We require that the balance equations (2.1) hold in every inertial frame, so these
equations must be invariant under a Galilean transformation. This requirement en-
ables us to determine the velocity dependence of the quantities in (2.1) on the veloc-
ity field [Müller and Ruggeri, 2013]. In particular the following decomposition must
hold

Fij = ρij + ρvivj,

Fijk = ρijk + 3ρ(ijvk) + ρvivjvk,

Fikll = ρikll + 4ρ(iklvl) + 6ρ(ikvlvl) + ρv2vivk,

(2.2)

where the moments ρi1,i2,...,iN do not depend on the velocity field. They are called
for this reason internal moments. Some of them can be identify with common ther-
modynamic variables, indeed ρij = −tij, where tij is the stress tensor, and ρill = 2qi
with qi the heat flux. For the production terms the following decomposition must be
valid

Pij = ψij,

Pill = ψill + 3ψ(ilvl),
(2.3)

with ψij and ψill independent on the velocity field.
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By substitution of (2.2) and (4.5) into the balance equations (2.1), one obtains a
more compact form of the equations, that is

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂ρik

∂xk
= ρ fi,

dρij
dt +

∂ρijk
∂xk

+ ρij
∂vk
∂xk

+ 2ρk(i
∂vj)
∂xk

= ψij,

dρill
dt + ∂ρikll

∂xk
+ ρill

∂vk
∂xk

+ 3ρk(il
∂vl)
∂xk
− 3

ρ(il
ρ

∂ρl)k
∂xk

= ψill .

(2.4)

The first two equations represent the conservation laws of mass and momen-
tum. The trace of the third equation represents the balance law of energy. In fact
for monatomic gases the internal energy ρu is given by ρu = 1

2 ρll =
3
2 ρθ with θ the

so-called granular temperature.
Equations (2.4) represent 13 equations for the 13 fields ρ, vi, θ, ρ<ij> and qk.

Unfortunately, these equations are not closed for the occurrence of the constitutive
quantities ρ<ijk>, ρikll , ψij and ψill . Following the guidelines of Rational Extended
Thermodynamics [Müller and Ruggeri, 2013], we assume that these quantities de-
pend locally on the fields, that is they depend only on the fields and not on their
derivatives, i.e.

ρ<ijk> = ρ<ijk> (ρ, θ, ρ<sr>, qm) ,

ρikll = ρikll (ρ, θ, ρ<sr>, qm) ,

ψij = ψij (ρ, θ, ρ<sr>, qm) ,

ψill = ψill (ρ, θ, ρ<sr>, qm) .

(2.5)

In the next chapter, we restrict their generality, using the entropy principle.

2.2.2 Entropy principle

The entropy principle asserts the existence of a concave entropy density h, an en-
tropy flux hk and an entropy production Σ, such that the balance law

∂h
∂t

+
∂hk

∂xk
= Σ ≥ 0 (2.6)

is valid for all thermodynamic process, that is for all solutions of the field equations
(2.4). Therefore equations (2.4) can be considered as constrains for the validity of
the entropy principle. Following the methods of Rational Extended Thermodynam-
ics, we take into account theses constrains by introducing the so-called Lagrange
Multipliers λ, [Liu, 1972]. In this way the following relation

∂h
∂t +

∂hk
∂xk

+

−λ
[

dρ
dt + ρ ∂vk

∂xk

]
+

−λi

[
ρ dvi

dt + ∂ρik
∂xk
− ρ fi

]
+

−λij

[
dρij
dt +

∂ρijk
∂xk

+ ρij
∂vk
∂xk

+ 2ρk(i
∂vj)
∂xk
− ψij

]
+

−λill

[
dρill
dt + ∂ρikll

∂xk
+ ρill

∂vk
∂xk

+ 3ρk(il
∂vl)
∂xk
− 3

ρ(il
ρ

∂ρl)k
∂xk
− ψill

]
= Σ ≥ 0

(2.7)
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must be valid for all fields ρ, vi, θ, ρ<ij> and qi.
For the exploitation of relation (2.7), the entropy quantities and the Lagrange

multipliers must be expressed as functions of the fields. In particular the entropy
flux, with the requirement of Galileian invariance, becomes

hk = hvk + φk (2.8)

with
h = h (ρ, θ, ρ<sr>, qm) ,

φk = φk (ρ, θ, ρ<sr>, qm)
(2.9)

and the same dependence holds for the Lagrange multipliers λ.
Since we are interested in processes not far from the equilibrium state, charac-

terized by vanishing fluxes ρ<ik> and qi, we expand the constitutive functions in
the neighborhood of the equilibrium obtaining for the entropy quantities and the
Lagrange multipliers the following expressions

h = h0 + h1ρ<ij>ρ<ij> + h2qiqi,

φk = φ1qk + φ2ρ<lk>ql ,

λ = λ0 + λ1ρ<ij>ρ<ij> + λ2qlql ,

λi = ω1qi + ω2ρ<il>ql ,

λij = ν0δij + ν1ρ<ij> + ν2ρ<il>ρ<l j> + ν3qiqj,

λill = σ1qi + σ2ρ<il>ql

(2.10)

and
ρijk =

2
5 q(iδjk),

ρijll = γ0δij + γ1ρ<ij>
(2.11)

for the constitutive equations.
All functions in (2.10) and (2.11) depend only on the equilibrium variables that

are (ρ, θ).
Substituting (2.10) and (2.11) into the entropy inequality (2.7) implies an equality

that must be satisfied for all fields (ρ, θ, ρ<sr>, qm). Therefore, setting the coefficients
of the derivatives of (ρ, θ, ρ<sr>, qm) equal to zero, one gets a set of equations for the
determination of the functions in (2.10) and (2.11).

At equilibrium we have

∂h0

∂ρ
= λ0 and

∂h0

∂ρu
= 2ν0, (2.12)

so for dh0 we have

dh0 = λ0dρ + ν0dρll = λ0dρ + 2ν0d [ρu] (2.13)

with u the specific internal energy. By comparison of this relation with the Gibbs
equation we can identify the equilibrium values of the Lagrange multipliers, i.e. we
get

ν0 = 1
2θ and λ0 = − g

θ , (2.14)

where g = u− θ h0
ρ + p

ρ is the specific free enthalpy or Gibbs free energy.
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After some long but simple calculations, the remaining fields become

h = h0 (ρ, θ)− 1
4ρθ2 ρ<ij>ρ<ij> − 1

5ρ2θ3 qiqi,

φk =
1
θ qk − 2

5ρθ2 ρ<lk>ql ,

λ = − g
θ −

1
4ρ2θ2 ρ<ij>ρ<ij> − 2

5ρ2θ5 qlql ,

λi = 0,

λij =
1
2θ δij − 1

2ρθ2 ρ<ij> + 1
2ρ2θ3 ρ<il>ρ<l j> + 3

5ρ2θ4 qiqj,

λill = − 1
5ρθ3 qi +

9
25ρ2θ4 ρ<il>ql ,

(2.15)

with the linear constitutive functions

ρijk =
6
5 q(iδjk),

ρijll = 5ρθ2δij + 7θρ<ij>.
(2.16)

So we have closed the system since the constitutive functions for the variables ρijk
and ρijll are explicitly determined in terms of the unknown fields.

In order to verify completely the balance of entropy, it remains to satisfy the
convexity of entropy density h and to prove the residual inequality

Σ = λijψij + λillψill ≥ 0, (2.17)

that will be done in the next chapter when the production terms will be determined.

2.2.3 Convexity region

We prove here that the entropy density (4.9)1 is a convex function, at least near the
equilibrium state. First of all, we require that the Hessian matrix of h0 is positive-
defined with respect to the variables ρ and ρll . Using the relations (2.12), obtained
from the Gibbs equation, we get∣∣∣∣∣∣∣∣

−
(

∂2h0
∂ρ2

)
ρll

− ∂2h0
∂ρll∂ρ

− ∂2h0
∂ρ∂ρll

−
(

∂2h0
∂ρ2

ll

)
ρ

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
− 5

2ρ
1

2ρθ

1
2ρθ − 3ρ

2ρ2
ll

∣∣∣∣∣∣ = 1
6ρ2θ2 > 0. (2.18)

So the equilibrium entropy density −h0 is a convex function and this is also valid in
the neighborhood of the equilibrium state. In fact the second order terms are surely
positive.

2.2.4 Production terms

In Extended Thermodynamics we assume that the production terms are expressed
by the following linear combination of functions [Müller and Ruggeri, 2013,pag.65],

ψij = Aδij + Bρ<ij>,

ψill = Cqi.
(2.19)

The arbitrary functions A, B and C are determined requiring the validity of the resid-
ual inequality (2.17) and by use of experimental data. A possible evaluation of the
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functions can be obtained by comparison of (2.19) with the analogous productions
computed by Jenkins and Richman [Jenkins and Richman, 1985a], where they con-
sidered a dilute granular gas that consists of smooth inelastic spheres of mass m and
diameter dp. The two authors used the Grad moment theory that was designed to
study the evolution of rarefied gases and extended it to dense systems of inelastic
particles. This allowed them to calculate 13-moment collisional fluxes and produc-
tion terms. Below are the terms of production of stress tensor and heat flux for a
rarefied granular gas

ψij = − 48mν2

πd2
p

(
1− e2)√ θ

π
θ

d2
p
δij − 24ν(1+e)(3−e)

5dp

√
θ
π ρ<ij>,

ψill = − 4ν(1+e)(49−33e)
5dp

√
θ
π qi.

(2.20)

with ν = nπd3
p/6, e the restitution coefficient and n the number density of the par-

ticles, so ρ = nm. Unfortunately with the productions (2.20) the residual inequality
(2.17) is not always satisfied and this limits the range of validity of the field equa-
tions.

In fact we inserted the productions (2.20) into relation (2.17) to obtain the entropy
production as a known function of q = q1 and σ = ρ11 in the one-dimensional space.
Then we introduced the following dimensionless values for q and σ

q̂ =
q

ρθ
√

θ
and σ̂ =

σ

d2
pρ2
√

θ
√

πm
, (2.21)

so we recovered

Σ̂ =
19− 3e

25
q̂2 +

2(e + 2)
5

σ̂2 + 3(e− 1) > 0. (2.22)

In Fig.2.1 we showed in the (σ̂, q̂)-space the region in which the entropy produc-

FIGURE 2.1: Study of the sign of the entropy production. In Region
I the dimensionless entropy production is positive and the relation
(2.22) is fulfilled, while in Region II the dimensionless entropy pro-
duction is negative. These two regions are obtained with the value of

the restitution coefficient e = 0.75
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tion Σ̂ is non-negative. In particular, Region I corresponds to positive entropy pro-
duction, while in Region II Σ̂ is negative. Thus the principle of entropy admits as
acceptable values of non equilibrium variables those belonging to Region I. We also
evaluated the sign of the entropy productions for different values of e as shown in
Fig. 2.2. We observe that as the restitution coefficient increases towards the elastic

FIGURE 2.2: Study of the sign of the entropy production for different
values of the restitution coefficient e = 0.5, 0.75, 0.95.

case, the curve becomes more and more flattened until degenerating in the elastic
case. So in the elastic case the entropic production is always positive.

2.3 Hyperbolicity region

In this section we study the hyperbolicity of system (2.30), in particular we deter-
mine the boundaries of the region where system (2.30) is hyperbolic analyzing the
roots of its characteristic polynomial. This limitation to hyperbolicity is due to the
linear approximation made to pass from the Lagrange multipliers, such as indepen-
dent variables, to physical variables. Prior to this approximation, hyperbolicity is
ensured for any value of the variables [Pennisi, 2021,statement 2, pag.16 of Arima
et al., 2021a].

We indicate with u = (ρ, v, θ, σ, q)T the field vector and suppose that each vari-
able depends on time and the single spatial component x = x1. We represent the
(2.4) system in the matrix form

ut + A (u) ux = f (u) (2.23)
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with the matrix of the coefficients A given by

A =


v ρ 0 0 0
θ
ρ v 1 1

ρ 0

0 2
3

(
θ + σ

ρ

)
v 0 2

3
1
ρ

0 7
3 σ + 4

3 ρθ 0 v 8
15

− θ
ρ σ 16

5 q 5
2 (σ + ρθ) θ − σ

ρ v

 (2.24)

while the vector of the production terms

f = −
√

πθ
ρ

m
d2

p (1 + e)
(

0, 0,
4 (1− e)

3
θ,

4 (3− e)
5

σ,
49− 33e

15
q
)T

. (2.25)

The system is hyperbolic if the matrix A is a non-singular matrix and the eigen-
value problem admits five real and distinct roots with liner independent correspond-
ing right eigenvectors. Using the dimensionless values

σ̂ =
σ

ρθ
, q̂ =

q
ρθ
√

θ
, λ̂ =

λ̄√
θ

, (2.26)

with λ̄ = λ− v, the polynomial characteristic of the system (2.23) takes the form

λ̂

[
λ̂4 − 2

15
(31σ̂ + 39)λ̂2 − 96

25
λ̂ +

3
5
(7σ̂2 + 10σ̂ + 5)

]
= 0. (2.27)

Following [Müller and Ruggeri, 2013], we determine the boundaries of the hy-
perbolicity region corresponding to the case where two eigenvalues are real and
coinciding, that is when the mathematical condition is verified

(λ̂− µ1)
2(λ̂− µ2)(λ̂− µ3) = 0. (2.28)

Comparing this expression with the characteristic polynomial (2.27), we recover the
following relations

µ1 +
1
2 (µ2 + µ3) = 0,

− 2
15 (31σ̂ + 39) + 1

2 (µ2 + µ3)2 + 1
4 (µ2 − µ3)2 = 0,

3
5 (7σ̂2 + 10σ̂ + 5)− 1

4 (µ2 + µ3)2µ2µ3 = 0,
96
25 q̂ = ± 1

4 (µ2 + µ3)(µ2 − µ3)2.

(2.29)

These conditions are solved numerically, so it is possible to represent the heat
flux q̂ as a function of stress tensor σ̂. In Fig.2.3 we report this graph in the (q̂, σ̂)-
space. The points of the curve correspond to the values of q̂ and σ̂ for which there
are two real and coincident eigenvalues, so the system is hyperbolic. Region I is
the hyperbolicity region because the eigenvalues are all real and distinct. Region II
corresponds to the case in which the eigenvalues µ2 and µ3 are real. In Region III
the eigenvalues µ2 and µ3 are complex and conjugate. In conclusion, system (2.30)
results no hyperbolic in Regions II and III.

As it is expected, the hyperbolic region here obtained coincide exactly with those
determined for rarefied monatomic gases [Müller and Ruggeri, 2013]. In fact the
left hand side of equation (2.30) coincides with the corresponding ones of a rarefied
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FIGURE 2.3: Hyperbolicity region in the space (σ, q)

monatomic gas. For the same reason the hyperbolic region does not depend on the
restitution coefficient e. In Fig. 2.4 we represented together the hyperbolicity re-

FIGURE 2.4: Hyperbolicity region and Entropy production region in
the space (σ, q)

gion and the entropy production region with the value of the restitution coefficient
e = 0.95. We observe that the common region where the system is hyperbolic and the
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production of entropy is not negative is not very extensive with the choice of pro-
duction terms, computed by Jenkins and Richman in [Jenkins and Richman, 1985a].
So we stress that it would be interesting to investigate the problem with other pro-
duction terms to extend the region where the problem is well posed.

2.4 Field equations

Equations (2.5) together with the constitutive relations (2.11) and the productions
(2.20), obtained by the Grad’s model of Jenkins and Richman [Jenkins and Richman,
1985a], form a closed set of 13 fields equations for the 13 fields ρ, θ, vi, ρ<ij> and qi.
Every solution is called thermodynamic process. The closed system is therefore a
partial differential equations system that is hyperbolic in the neighborhood of equi-
librium. It has the following form

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂(ρθ)

∂xi
+ ∂ρ<ik>

∂xk
= 0,

3
2 ρ dθ

dt +
∂qk
∂xk

+ ρθ ∂vk
∂xk

+ ρ<kl>
∂vl
∂xk

= −2 ρ2
√

πθ
m d2

p
(
1− e2) θ,

dρ<ij>
dt + 4

5
∂q(i
∂xj)
− 4

15
∂qk
∂xk

δij + ρ<ij>
∂vk
∂xk

+ 2ρ<k(i>
∂vj)
∂xk

+ 2ρθ
∂v(i
∂xj)

+

− 2
3

(
ρ<kl>

∂vl
∂xk

+ ρθ ∂vk
∂xk

)
δij = − 4

5
ρ
√

πθ
m d2

p (1 + e) (3− e) ρ<ij>,

dqi
dt + 5

2
∂(ρθ2)

∂xi
+ 7

2
∂(θρ<ik>)

∂xk
+ 7

5 qi
∂vk
∂xk

+ 7
5 qk

∂vi
∂xk

+ 2
5 ql

∂vl
∂xi

+

− ρ<il>
ρ

∂ρ<lk>
∂xk
− ρ<ik>

ρ
∂(ρθ)
∂xk
− 5

2 θ
∂ρ<ik>

∂xk
− 5

2 θ
∂(ρθ)

∂xi
=

= − 1
15

ρ
√

πθ
m d2

p (1 + e) (49− 33e) qi.

(2.30)

We aim to study its solutions in two case: the spatially homogeneous case in one
dimensional space and the stationary case in one dimensional space. We verify that
solutions rely in acceptable regions of hyperbolicity and non negative residual in-
equality and carry out some numerical applications.

2.5 Time dependent equilibrium solutions

We focus on spatially homogeneous solutions of the thirteen field equations in which
the fields depend only on time. The system of field equation is

dρ
dt = 0,
dvi
dt = 0,

dθ
dt = − 4

3
ρ
√

π
m d2

p(1− e2)θ
3
2 ,

dρ<ij>
dt = − 4(1+e)(3−e)

5
ρd2

p
√

π

m θ
1
2 ρ<ij>,

dqi
dt = − ρ

√
π

15m d2
p(1 + e)(49− 33e)θ

1
2 qi.

(2.31)
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We observe that the mass density and the velocity field are constant in time, while
the remaining equations are a set of coupled differential equations that have to be in-
tegrate to determine the temperature, the pressure tensor and the heat flux. Assum-
ing as initial conditions, ρ(0) = ρ0, v(0) = 0, θ(0) = θ0, σ(0) = σ0 and q(0) = q0, the
equations are analytically integrated providing the following expressions for den-
sity, velocity, temperature, stress tensor and heat flow:

ρ(t) = ρ0, v(t) = 0, θ (t) = θ0(
1+ 2

3
ρ0
√

πθ0d2
p(1−e2)

m t
)2 ,

σ (t) = σ0

[
θ(t)
θ0

] 3
5

3−e
1−e

, q (t) = q0

[
θ(t)
θ0

] 1
20

49−33e
1−e

.

(2.32)

In terms of the dimensionless-values

ρ̂ = ρ
ρ0

, θ̂ = θ
θ0

, t̂ = t
t0
=

tρ0d2
p
√

θ0

m , σ̂ = σ
σ0

, q̂ = q
q0

, (2.33)

the solution reads

ρ̂ = 1, θ̂ = 1(
1+

2
√

π(1−e2)
3 t̂

)2 , σ̂ =
[
θ̂
(
t̂
)] 3

5
3−e
1−e , q̂ =

[
θ̂
(
t̂
)] 1

20
49−33e

1−e , (2.34)

illustrated in Fig.2.5-2.7-2.8 for different values of the restitution coefficient e.

FIGURE 2.5: Temperature field obtained as solution of the homoge-
neous case for different values of the restitution coefficient e.

We observe in Fig.2.5 the decay of temperature for values of e that are 0.75 and
0.95. It is possible to conclude that the decay of temperature is less marked when the
restitution coefficient is near to the elastic case. The behavior of the temperature is
well represented by Haff’s law, [Haff, 1983] that describes the dissipation of the total
energy in a fluid of inelastic particles through inelastic collision:

θ(t) =
1{

1 + (1−e)2

6

[
1 + 3(1−e)(1−2e2)

81−17e+30e2(1−e)

]
t
}2 . (2.35)

The energy’s decay is proportional to t−2 and depends on the average number of
collisions suffered by a particle within time t and also on 1− 2e2, that expresses the
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degree of inelasticity. Kremer proved that this law defines the evolution of temper-
ature in the fourteen model when the fourth moment remains constant in time (see
for more details [Kremer and Marques Jr, 2011]). In Fig.2.6 we plotted the tempera-

FIGURE 2.6: Temporal decay of temperature according to Haff’s Law
(e=0.95)

ture field, together with the temperature field, obtained with Haff’s law for e = 0.95.
The two graphs overlap and this confirms that Haff’s law faithfully describes the
temporal decay of the temperature field.

FIGURE 2.7: Temporal decays of temperature, pressure tensor and
heat flux (e=0.75)

In Fig.2.7 we compare the decay with time of temperature, pressure tensor and
heat flux when the restitution coefficient e = 0.75 and we notice that the pressure
tensor decays faster than the other field variables and for this reason we will ne-
glect below some terms that contain the pressure tensor. We observe in Fig.2.8 that
when the restitution coefficient increases, the time decay of the pressure tensor is
more marked, while the one of heat flux is more muffled. In both Figures 2.7-2.8 the
temperature field decreases much more slowly than other fields.
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FIGURE 2.8: Temporal decays of temperature, pressure tensor and
heat flux (e=0.95)

2.6 Dispersion relation

In this section we derive the dispersion relation relative to the system (2.30) and then
we obtain the high-frequency limit of the phase velocity and the attenuation factor.
Since we are interested in waves with small amplitude, we linearize the system of
field equations (2.30) around the spatially homogeneous solution (2.34), determined
in the previous paragraph: u0 =

(
ρ0, 0, θ (t) , ρ<ij> (t) , qi (t)

)
. We define the linear

and dimensionless perturbations of the unknown fields:

ñ(x, t) = n(x,t)
n0
− 1, ṽi(x, t) = vi(x,t)

v(t) θ̃(x, t) = θ(x,t)
θ(t) − 1

ρ̃<ij>(x, t) = ρij(x,t)−ρij(t)
n0mθ(t) q̃i(x, t) = qi(x,t)−qi(t)

n0mθ(t)v(t)

(2.36)

where n0 is the average number density of the system and v(t) =
√

5
3 θ(t) the adi-

abatic sound velocity in the homogeneous cooling state. We also introduce the di-
mensionless quantities

t̃ =
t

τ(t)
, x̃ =

x
v(t)τ(t)

, (2.37)

where τ(t) = m
4d2

pρ
√

πθ(t)
is the mean free time in the homogeneous cooling state.

So we substitute the relations (2.36)-(2.37) into the model (2.30). Keeping in mind the
fact that the decay of the pressure tensor and heat flux are steeper than that of the
temperature, we derive the following system of partial differential equations with
constant coefficients:

∂ñ
∂t̃ +

∂ṽk
∂x̃k

= 0,

∂ṽi
∂t̃ + 3

5

(
∂ñ
∂x̃i

+ ∂θ̃
∂x̃i

+ ∂ρ̃<ik>
∂x̃k

)
− ξ1

2 ṽi = 0,

∂θ̃
∂t̃ +

2
3

(
∂ṽk
∂x̃k

+ ∂q̃k
∂x̃k

)
+ ξ1

(
ñ + θ̃

2

)
= 0,

∂ρ̃<ij>

∂t̃ + 4
5

∂q̃<i
∂x̃j>

+ 2 ∂ṽ<i
∂x̃j>

+ ξ2ρ̃<ij> = 0,

∂q̃i
∂t̃ + 3

5
∂ρ̃<ik>

∂x̃k
+ 3

2
∂θ̃
∂x̃i

+ ξ3q̃i = 0

(2.38)
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with
ξ1 = 1−e2

3 , ξ2 = 2 (1+e)(2+e)
15 , ξ3 = (1+e)(19−3e)

60 . (2.39)

In order to study the behavior of the gas for small perturbations, we assume that
the fields are of the form

Ũ = Ū exp [i (ωt− kx)] , (2.40)

where k = (k, 0, 0) is the wave-vector of the perturbation and ω its angular fre-
quency. Then we recover two independent system of linear algebraic equations for
the amplitudes of the perturbations:

the longitudinal system assumes the form

ω −k 0 0 0

− 3
5 k ω + i ξ1

2 − 3
5 k − 3

5 k 0

−iξ1 − 2
3 k ω− i ξ1

2 0 − 2
3 k

0 − 4
3 k 0 ω− iξ2 − 8

15 k

0 0 − 3
2 k − 3

5 k ω− iξ3





ρ̄

v̄x

θ̄

ρ̄<xx>

q̄x


= 0, (2.41)

while the transverse system is given by
ω + i ξ1

2 − 3
5 k 0

−k ω− iξ2 − 2
5 k

0 − 3
5 k ω− iξ3




v̄y

ρ̄<xy>

q̄y

 = 0. (2.42)

It’s obvious that both systems admit nontrivial solutions when the matrix deter-
minants vanish. By imposing this condition we get the dispersion relation, through
which we obtain the oscillation frequency ω as a function of the wavenumber k.
Each solution of the dispersion relation detects a mode called hydrodynamic if the
angular frequency ω tends to 0 when k goes to 0 and a mode called kinetic when the
angular frequency tends to a constant value not zero for k going to 0. Of each solu-
tion we also study the real part of ω, which describes the oscillation frequency of the
generic small perturbation with the wavenumber k and the imaginary part, which
defines the temporal evolution (decay in this case or growth) of its amplitude. Solv-
ing the dispersion relation for the longitudinal system, we get 5 roots, representing
precisely 4 kinetic modes and one hydrodynamic. These eigenmodes are diffusive
because their real part vanishes for wavenumber values close to 0, as can be seen in
Fig.2.9a). We infer that when the imaginary part of the oscillation frequency is nega-
tive, the amplitude of the perturbation decreases to 0 in time and eigenmode is said
to be stable. Instead, when the imaginary part is positive, eigenmode is unstable be-
cause the amplitude of the perturbation increases temporally. The values in Fig.2.9
refer to the inelastic case, for e=0.75. We observe that 4 of the 5 eigenmode are stable,
while the other is unstable. As for the dispersion relation of the transverse system,
we observe in Fig.2.10 that in the inelastic case we have 3 modes all kinetics,whose
2 stable and one unstable.

2.7 Range of validity of the time dependent solutions

In Fig. 2.11 we plotted the time dependent solutions relating them with the hyper-
bolicity region and entropy production’s region. In these figures we represent the
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FIGURE 2.9: Real and Immaginary parts of the angular frequency for
the longitudinal system (e=0.75)

heat flux as a curve that depends on the stress tensor. As it is possible to notice,
these curves enter after some time inside the correspond ellipse, so from this time
the residual inequality (2.17) is violated. For this reason the time dependent solu-
tions can be accepted til this critical time. In addition, the region of admissibility of
solutions decreases in the inelastic case, when the restitution coefficient e becomes
smaller.

2.8 Stationary 1D solutions

In order to show some mathematical property of the system (2.4), we study the sta-
tionary problem of a granular gas at rest in absence of body forces. Therefore, as-
suming that the field variables depend only on the x1 = x-coordinate and setting
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FIGURE 2.10: Real and Immaginary parts of the angular frequency
for the transverse system (e=0.75)

v = 0, it follows

ρ dθ
dx + θ

dρ
dx + dσ

dx = 0,

dq
dx = −2

ρ2d2
p

m

√
πθ
(
1− e2) θ,

8
15

dq
dx = − 4

5
ρd2

p
m (1 + e) (3− e)

√
πθσ,

5
2 ρθ dθ

dx + θ dσ
dx = − 1

15
ρ
m

√
πθd2

p (1 + e) (49− 33e) q.

(2.43)

Then, by manipulations of these equations one has

ρθ = P,

σ = 4
3

1−e
3−e P,

dq
dx = −2P2 d2

p
m

(
1− e2)√π

θ ,

dθ
dx = − 2

75
d2

p
m (1 + e) (49− 33e)

√
π
θ q,

(2.44)

where P is the integration constant with the dimension of a pressure.
The first two differential equations can be written as a single differential equation

of 2nd order in the granular temperature, that is

2θ
d2θ

dx2 +

(
dθ

dx

)2

=
8
75

πd4
pP2

m2 (1 + e)2 (1− e) (49− 33e) . (2.45)
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FIGURE 2.11: Range of validity of the time dependent solutions

Then, for simplicity we introduce the dimensionless quantities

ρ̂ = ρθ0
P , θ̂ = θ

θ0
, σ̂ = σ

P , q̂ = q m
√

θ0
LP2d2

p
, H =

d4
pP2L2

m2θ2
0

(2.46)

so the differential equation (2.45) becomes

2θ̂
d2θ̂

dx̂2 +

(
dθ̂

dx̂

)2

=
8

75
πH (1 + e)2 (1− e) (49− 33e) . (2.47)

The solution can be obtained in terms of known function and it is shown in Fig.2.12.
Fig.2.12 shows the behavior of the granular temperature for different values of e. We
observe that the granular temperature goes towards a linear behavior in the elastic
case. In this kind of solution the traceless part of the stress tensor σ̂ is constant, as
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FIGURE 2.12: Granular temperature for different values of e.

follows from (2.44)2. In the particular case e = 0.95, one has σ ≡ 0.03. Finally, it can
be easily seen that, within the range of the quantities considered in this work, the
solution of the differential equation (2.47) coincides with the corresponding solution
of the linearized equation obtained from (2.47) neglecting the term

(
dθ̂/dx̂

)2
.

2.9 Range of validity of the 1D solutions

In Fig.2.13 we illustrated 1D solutions in relation with the residual inequality’s re-
gion. As it can be seen the requirement of acceptability of these solutions greatly
limits the range of validity of the model defined with the production terms (2.20).
In fact we note that the acceptability region in which the residual inequality is not
negative, that is, the area outside the ellipse, gradually narrows as the restitution
coefficient decreases. For e = 0.90 we found that the solutions reside partially in the
acceptable area.
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FIGURE 2.13: Range of validity of the 1D solutions

In order to avoid this limitation and to obtain more acceptable solutions of the
model, more general productions than the previous productions (2.20) must be taken
into account.

2.10 Conclusions and Final Remarks

This chapter is devoted to the study of granular rarefied gases, gases whose parti-
cles are very spaced and are involved in inelastic collisions. The mathematical model
underlying this study is a system of 13 partial differential equations for the deriva-
tion of 13 fields, the density, the temperature, the velocity, the stress tensor and the
heat flux, using the techniques of Extended Thermodynamics [Müller and Ruggeri,
2013]. The system was closed through the determination of constitutive relations
of the unknown functions ρ<ijk>, ρikll , ψij and ψill . To achieve this, universal phys-
ical principles such as the Entropy Principle and the Galilean principle have been
used. A first attempt was held by introducing the production terms of [Jenkins and
Richman, 1985a]. The resulting system is symmetric and hyperbolic in the neigh-
borhood of equilibrium, property that ensures from the mathematical point of view
that the problem of differential equations is a well-placed Cauchy problem and from
the physical point of view that the solutions have finite velocities. We determined
the spatially homogeneous solutions and represented the temporal decay of temper-
ature, relating it to Haff’s law, the decay of stress tensor and heat flux in the inelastic
case. Then we considered a linear perturbation of the spatially homogeneous solu-
tions and determined the dispersion relation, studying the stability of the solutions.
Moreover we determined the stationary solutions in the 1D case. The solutions for
the 1D case provide non null components of the stress tensor also in the case of a
gas at rest. This is in agreement with some results for stationary solutions problems
in gases described by the Extended Thermodynamics (see [Barbera and Brini, 2014;
Barbera and Brini, 2018]) and the references therein). The dependence of the solution
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on the restitution coefficient e is shown. Unfortunately using the productions terms
in [Jenkins and Richman, 1985a] the range of validity of the model is very limited.
A future research perspective would be to introduce suitable production terms or to
study the model by adding a 14th moment and comparing solution with those ob-
tained here. It would also be useful to compare the behavior of the temperature with
the empirical law of Haff, [Haff, 1983] in relation to the 14th moment. Another appli-
cation could be to treat the model using kinetic theory in order to have an exhaustive
view of the behavior of granular gases and we aim to do so in future works.
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Chapter 3

A Kinetic Model of 14 moments for
dense gas

3.1 Introduction

The simplest case of gases that are studied in kinetic theory is represented by dilute
and elastic gases, that is, gases, whose particles have positions and velocities inde-
pendent of each other and they are subject to elastic collisions. In dilute gases, when
two particles collide, the contribution of the other particles is not considered because
they are very spaced between them. In addition, the centers of the two colliding par-
ticles are assumed to coincide. Two phenomena in binary collision can be identified:
the transfer of particle properties, such as momentum and energy, and the transport
of these properties. In the dilute case, the transport predominates and the transfer
is neglected. In this Chapter we will focus on a more difficult case, represented by
dense and granular gases: the particles have positions and velocities that depend on
each other and the collisions are inelastic. This last condition implies that the kinetic
energy is not conserved, but a part of it is transformed into heat and determines a
dissipation of temperature. In dense gases, the positions of the centers of two col-
liding particles are distinguished, and in collision, the position of the two particles
is affected by the presence of neighboring particles. Ultimately, the phenomenon of
transfer of particle properties and transport should both be considered. Mathemat-
ically, this means that there are terms in the balance equations, related to transport
and transfer, that need to be considered. Using the techniques of kinetic theory we
define a fourteen moments model for dense granular gas and fluxes associated with
transport, fluxes associated with transfer and and adopting approximate linear for-
mulas [Jenkins and Richman, 1985a], we compute all the fluxes and source for each
balance equation.

3.2 Definition of moments

Kinetic theory deals with non-equilibrium problems concerning gases or gas mix-
tures. The starting point is the distribution function that is defined in the phase
space, consisting of macroscopic variables such as time and space and microscopic
variables such as velocity. Precisely we infer that the function f (t, x, c) is the single
particle distribution function, if

f (t, x, c)dc (3.1)

represents the number of particles that, at the time t, are in the position x with ve-
locity in the range c and c+dc.
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In terms of this function, we define the so-called moments of the distribution
function

Fi1i2...iN (t, x) = m
∫

ci1 ci2 ...ciN f (t, x, c)dc, (3.2)

with m the molecular mass. From these moments we recover the mascroscopic ther-
modynamic quantities. In fact, the moment of zeroth and first order represent re-
spectively the density ρ (t, x) and the macroscopic velocity v (t, x) that are

ρ (t, x) = m
∫

f (t, x, c)dc,

ρ (t, x) vi (t, x) = m
∫

ci f (t, x, c)dc.
(3.3)

Then, defining the relative velocity C = c− v, it is possible to introduce the internal
moments as

ρi1i2...iN (t, x) = m
∫

Ci1 Ci2 ...CiN f (t, x, c) dC. (3.4)

The first internal moments are related to well-known macroscopic quantities,
that are the granular temperature, θ (t, x), the stress tensor ρij and the heat flux qi

θ (t, x) = 1
3

m
ρ

∫
C2 f (t, x, c)dc,

ρij (t, x) = m
∫

CiCj f (t, x, c)dc,

qi (t, x) = 1
2 m
∫

CiC2 f (t, x, c)dc.

(3.5)

Another quantity that will be useful later is the non equilibrium part of the so-called
fourth moment, that is ∆ (t, x) = ρllss − 15ρθ2, where

ρllss = m
∫

C4 f (t, x, c)dc. (3.6)

Since ci = Ci + vi, we derive the relation between the moments F ad the internal
moments, so we split the moments in velocity-dependent part and internal moments

Fij = ρij + ρvivj,

Fijk = ρijk + 3ρ(ijvk) + ρvivjvk,

Fikll = ρikll + 4ρ(iklvl) + 6ρ(ikvlvl) + ρv2vivk,

Fkllss = ρkllss + 5ρ(kllsvs) + 10ρ(kllvsvs) + 10ρ(klvlvsvs) + ρv4vk,

(3.7)

and so on for moments of higher rank.

3.3 Balance equations

The distribution function f (t, x, c) obeys the Boltzman equation

∂ f
∂t

+ ci
∂ f
∂xi

+ fi
∂ f
∂ci

= C ( f ) , (3.8)

where fi are the specific body forces acting on the particles. The term C ( f ) is the
collisional operator, that is regarded as a measure of the change of the distribution
function, due to collisions between particles. The Boltzmann equation governs the
evolution in time and space of the distribution function and allows us to predict
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the behavior of the gas under investigation. The Boltzmann equation that exam-
ines the gas at the microscopic level returns the balance laws of Thermodynamics
when we multiply it by the moments and integrate it into the space of the veloci-
ties. The purpose of this Chapter will in fact be to use the tools of kinetic theory
to determine the fluxes and source terms of the balance laws and then to verify the
consistency of the results obtained by comparing them with the theories of the con-
tinuous. So multiplication of the Boltzmann equation by mci1 ci2 ...ciN and integration
over the whole range of c provide the balance equations for the macroscopic fields
Fi1i2...iN (t, x), which assume the compact form

∂Fi1i2...iN

∂t
+

∂Fki1i2...iN

∂xk
− NF(i1i2...iN−1

fiN) = Pi1i2...iN . (3.9)

Here the round brackets indicate the symmetric part of a tensor. The terms in the
right hand side represent the productions that will be discussed later.

We assume that the gas can be described by the first fourteen moments, that are
density ρ (t, x), velocity vi (t, x), temperature θ (t, x), stress tensor ρij (t, x), heat flux
qi (t, x) and the non-equilibrium part of the double trace of the moment of rank four
∆ (t, x). Then, the balance equations for these 14 macroscopic fields are

∂ρ
∂t +

∂ρvk
∂xk

= 0,

∂ρvi
∂t + ∂Fik

∂xk
= ρ fi + Pi,

∂Fij
∂t +

∂Fijk
∂xk

= 2ρv(i f j) + Pij,

∂Fill
∂t + ∂Fikll

∂xk
= 3F(il fl) + Pill ,

∂Fllss
∂t + ∂Fkllss

∂xk
= 4F(lss fl) + Pllss.

(3.10)

Equations (3.10) represent the classical hierarchy of 14 equations for classical
monatomic gases [Müller and Ruggeri, 2013].

3.4 Distribution functions

The statistics of binary collisions is characterized by the complete pair distribution
function f (2)

(
t, x1, c1, x2, c2), so

f (2)
(

t, x1, c1, x2, c2
)

dx1dc1dx2dc2 (3.11)

is the probable number of pairs of particles that at the time t are located between x1

and x1+dx1 and x2 and x2+dx2 with the velocities between c1 and c1+dc1 and c2

and c2+dc2, respectively.
In the case of dilute gases, the positions and the velocities of the particles are as-

sumed to be independent, therefore for rarefied gases one has f (2)
(
t, x1, c1, x2, c2) =

f
(
t, x1, c1) f

(
t, x2, c2). For such gases the transfer of particles proprieties, like mo-

mentum and energy in collisions is neglected in comparison to the transport of par-
ticles proprieties.

For dense gases instead the transfer of particles proprieties in collisions is so
important as the transport of particles proprieties. The probable position of two col-
liding particles is influenced by the presence of neighboring particles. To account for
the interactions of neighboring particles when two particles collide, the equilibrium
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value of a radial distribution function g0 is introduced into the relation that binds
f (2) and the velocity distribution function of each particle f ,

f (2)
(

t, x1, c1, x2, c2
)
= g0 (x) f

(
t, x1, c1

)
f
(
t, x2, c2) . (3.12)

There are different evaluations of the radial distribution function g0, for example
Charnahan and Starling [Carnahan and Starling, 1969] evaluated the probability of
collision in terms of the solid volume fraction ν = nπd3

p/6 as

g0 (ν) =
1

1− ν
+

3ν

2 (1− ν)2 +
ν2

2 (1− ν)3 . (3.13)

In presence of dense gases Jenkins and Richman in [Jenkins and Richman, 1985a]
showed that that the production terms can be expressed as

Pi1i2...iN = Ψi1i2...iN −
∂Θki1i2...iN

∂xk
. (3.14)

The quantities Ψi1i2...iN = Ψ (mci1 ci2 ...ciN ) are defined as

Ψ (ψ) = 1
2

∫ ∫ ∫ (
ψ1′ + ψ2′ − ψ1 − ψ2) f (2)

(
x− dpk, c1, x, c2)

d2
p (g · k)dkdc1dc2,

(3.15)

where ψi is a generic function related to the particle i. They represent the typical
source terms that are already present in monatomic gases. The other terms, that
are not present in kinetic theory of dilute gases, depend on the dense nature of the
material under consideration. One has Θsi1i2...iN = Θs (mci1 ci2 ...ciN ) with

Θs (ψ) = −
dp
2

∫ ∫ ∫ (
ψ1′ − ψ1) ks

(
1− dp

2! k j
∂

∂xj
+

d2
p

3! k jkm
∂

∂xj∂xm
+ ...

)
f (2)

(
x, c1, x + dpk, c2) d2

p (g · k)dkdc1dc2.
(3.16)

By substitution of (3.14) into (3.10), we get

∂ρ
∂t +

∂ρvk
∂xk

= 0,

∂ρvi
∂t + ∂

∂xk
[Fik + Θik] = ρ fi,

∂Fij
∂t + ∂

∂xk

[
Fijk + Θijk

]
= 2ρv(i f j) + Ψij,

∂Fill
∂t + ∂

∂xk
[Fikll + Θikll ] = 3F(il fl) + Ψill ,

∂Fllss
∂t + ∂

∂xk
[Fkllss + Θkllss] = 4F(lss fl) + Ψllss.

(3.17)

We take into account the internal moments (3.7) and we define the internal quan-
tities θ and ψ as it was done for Θ and Ψ respectively, with the peculiar velocity C
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instead of c. Then considering the following decomposition for the production terms

Θij = θij,

Θijk = θijk + 2θk(ivj),

Θikll = θikll + 3θk(ilvl) + 3θk(ivlvl),

Θkllss = θkllss + 4θk(llsvs) + 6θk(llvsvs) + 4θklvlvsvs,

Ψij = ψij,

Ψill = ψill + 3ψ(ilvl)

Ψikll = ψikll + 4ψ(iklvl) + ψ(ikvlvl),

(3.18)

one has
dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂

∂xk
[ρik + θik] = ρ fi,

dρij
dt + ∂

∂xk

[
ρijk + θijk

]
+ ρij

∂vk
∂xk

+ 2
[
ρk(i + θk(i

]
∂vj)
∂xk

= ψij,

dρill
dt + ∂

∂xk
[ρikll + θikll ] + ρill

∂vk
∂xk

+ 3
[
ρk(il + θk(il

]
∂vl)
∂xk

+

−3
ρ(il
ρ

∂
∂xk

[
ρl)k + θl)k

]
= ψill ,

dρllss
dt + ∂

∂xk
[ρkllss + θkllss] + ρllss

∂vk
∂xk

+ 4 [ρksll + θksll ]
∂vs
∂xk

+

−8 ql
ρ

∂
∂xk

[ρlk + θlk] = ψllss.

(3.19)

The first equation represents the conservation law of mass, the second is the bal-
ance law of momentum. The quantity ρik + θik is the total pressure tensor: the sum
of the quantity due to the transport of momentum between collisions and that trans-
ferred in collisions.

The trace of the third equation represents the balance law of energy,

3
2

ρ
dθ

dt
+

1
2

∂ [ρkll + θkll ]

∂xk
+ [ρkl + θkl ]

∂vl

∂xk
=

1
2

ψll , (3.20)

where θ is the so-called granular temperature, the sum 1
2 [ρkll + θkll ] is the heat flux,

with the transport and collisional parts, the last term ψll represents the dissipation
due to the inelastic nature of the collision.

The traceless part of equation (3.19)3 assumes the form

dρ<ij>

dt
+

∂
[
ρ<ij>k + θ<ij>k

]
∂xk

+ ρ<ij>
∂vk

∂xk
+ 2 [ρk<i + θk<i]

∂vj>

∂xk
= ψ<ij>. (3.21)

Square brackets in the indexes indicate traceless part of a tensor.

3.5 Grad closure

Equations (3.19) represent a quasi linear system of 14 partial differential equations
for the 14 fields ρ, vi, θ, ρ<ij>, qk = 1/2ρkll and ∆. These equations are not closed for
the occurrence of the quantities ρ<ijk>, ρ<ik>ll , ρkllss, θik, θijk, θikll , θkllss, ψij, ψill and
ψllss. Following the methods of Grad [Grad, 1958], the single distribution function is



48 Chapter 3. A Kinetic Model of 14 moments for dense gas

written as

f (t, x, c) =
(

1− ai
∂

∂ci
+ aij

∂2

∂ci∂cj
− aijk

∂3

∂ci∂cj∂ck
+ ...

)
f0 (t, x, c) , (3.22)

where f0 (t, x, c) is the Maxwellian distribution function given by

f0 (t, x, c) =
n

(2πθ)
3
2

e−
C2
2θ . (3.23)

Insertion of (3.23) into (3.22) yields the single distribution function in terms of the
Hermite polynomials

f (t, x, c) = f0

{
1 + ai

θ Ci +
aij

θ2

[
CiCj − θδij

]
+

aijk

θ3

[
CiCjCk − 3θC(iδjk)

]
+

+
aijks

θ4

[
CiCjCkCs − 6θδ(ijCkCs) + 3θ2δ(ijδks)

]
+ ...

}
.

(3.24)

The coefficients a are evaluated by insertion of (3.24), truncated to the fourth order,
into the definitions of the moments (3.3,3.5,3.6), so it follows

ai = 0, aij =
ρ<ij>

2ρ , aijk =
qi
5ρ δjk, aijks =

∆
120ρ δijδks. (3.25)

In this way, in the case of 14 moments, we obtain that the single velocity distri-
bution function takes the form

f (t, x, c) = f0

{
1 + ρ<ij>

2ρθ2 CiCj +
qiCi
5ρθ3

[
C2 − 5θ

]
+

∆
120ρθ4

[
C4 − 10θC2 + 15θ2]} .

(3.26)

Insertion of this distribution function into the definition of the moments ρijk,
ρ<ij>ll and ρillss yields the constitutive relations

ρijk =
2
5

(
qiδjk + qjδik + qkδij

)
,

ρ<ij>ll = 7θρ<ij>,

ρillss = 28θqi.

(3.27)

In [Jenkins and Richman, 1985a] Jenkins and Richman showed that the produc-
tion terms can be evaluated from (3.15) and (3.16) obtaining

ψ (ϕ) =
g0(x)

2

∫ ∫ ∫
Π (ϕ) f (1)

(
x, c1) f (1)

(
x, c2)×

×
[

1 + σ
2 ki

∂
∂xi

ln
f (1)(x,c2)
f (1)(x,c1)

]
σ2 (g · k)dkdc1dc2

(3.28)

with Π (ϕ) = ϕ1′ + ϕ2′ − ϕ1 − ϕ2 for the source terms and

θi (ϕ) = −σ
g0(x)

2

∫ ∫ ∫ (
ϕ1′ − ϕ1) ki f (1)

(
x, c1) f (1)

(
x, c2)×

×
[

1 + σ
2 k j

∂
∂xj

(
ln

f (1)(x,c2)
f (1)(x,c1)

)]
σ2 (g · k)dkdc1dc2.

(3.29)

We provide approximate expression for θi(ϕ) and ψ(ϕ) that are linear in the per-
turbations and the spatial gradients of velocity and temperature. So we obtain for
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the 14-moment case

θi (ϕ) = Ai (ϕ) + Bi (ϕ) + ρjkBijk (ϕ) + qjBijll (ϕ) + ∆B̂i (ϕ)

ψ (ϕ) = E (ϕ) + F (ϕ) + ρjkFjk (ϕ) + qjFj (ϕ) + ∆F̂ (ϕ) ,
(3.30)

where the integrals are given by

Ai (ϕ) = − σ
2 g0
∫ ∫ ∫ (

ϕ1′ − ϕ1) ki f01 f02σ2 (g · k)dkdc1dc2,

Bi (ϕ) = − σ2

4 g0
∫ ∫ ∫ (

ϕ1′ − ϕ1) kikm f01 f02
∂

∂xm

(
ln f02

f01

)
σ2 (g · k)dkdc1dc2,

Bijk (ϕ) = − σ
4 g0
∫ ∫ ∫ (

ϕ1′ − ϕ1) ki

(
f01

∂2 f02
∂c2

j ∂c2
k
+ f02

∂2 f01
∂c1

j ∂c1
k

)
σ2 (g · k)dkdc1dc2,

Bijll (ϕ) =
σg0
12

∫ ∫ ∫ (
ϕ1′ − ϕ1) ki

(
f01

∂3 f02
∂c2

j ∂c2
l ∂c2

l
+ f02

∂3 f01
∂c1

j ∂c1
l ∂c1

l

)
σ2 (g · k)dkdc1dc2,

B̂i (ϕ) = − σg0
48

∫ ∫ ∫ (
ϕ1′ − ϕ1) ki

(
f01

∂4 f02
∂c2

l ∂c2
l ∂c2

s ∂c2
s
+ f02

∂4 f01
∂c1

l ∂c1
l ∂c1

s ∂c1
s

)
σ2 (g · k)dkdc1dc2

(3.31)
and

E (ϕ) =
g0
2

∫ ∫ ∫
Π (ϕ) f01 f02σ2 (g · k)dkdc1dc2,

F (ϕ) = σ
g0
4

∫ ∫ ∫
Π (ϕ) km f01 f02

∂
∂xm

(
ln f02

f01

)
σ2 (g · k)dkdc1dc2,

Fij (ϕ) =
g0
4

∫ ∫ ∫
Π (ϕ)

(
f01

∂2 f02
∂c2

i ∂c2
j
+ f02

∂2 f01
∂c1

i ∂c1
j

)
σ2 (g · k)dkdc1dc2,

Fijk (ϕ) = − g0
12

∫ ∫ ∫
Π (ϕ)

(
f01

∂3 f02
∂c2

i ∂c2
j ∂c2

k
+ f02

∂3 f01
∂c1

i ∂c1
j ∂c1

k

)
σ2 (g · k)dkdc1dc2,

F̂ (ϕ) =
g0
48

∫ ∫ ∫
Π (ϕ)

(
f01

∂4 f02
∂c2

l ∂c2
l ∂c2

s ∂c2
s
+ f02

∂4 f01
∂c1

l ∂c1
l ∂c1

s ∂c1
s

)
σ2 (g · k)dkdc1dc2

(3.32)

with f01 = f0
(
x, c1) and f02 = f0

(
x, c2).

The integrals (3.31)1−4 and (3.32)1−4 are also evaluates in [Jenkins and Richman,
1985a]. We write here their values together with the new term due to the presence
of the 14th moment ∆ between the fields.

3.5.1 Determination of collision integrals

In order to calculate the coefficients of linear expressions (3.30), it is necessary to
observe that the relations

Q∗i = 1
2

(
C(1)

i + C(2)
i

)
and gi = C(1)

i − C(2)
i (3.33)

imply the variables’ change

C(1)
i = Q∗i +

1
2 gi, C(2)

i = Q∗i − 1
2 gi. (3.34)

So we have that ∫
f01 f02dc1dc2 =

∫ n2

(2πθ)3 e−
Q∗2

θ −
g2
4θ dQ∗dg. (3.35)
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We also underline that the following term assumes the form

f01 f02
∂

∂xm

(
ln

f02

f01

)
= f01 f02

[
− gs

θ

∂vs

∂xm
− gsQ∗s

θ2
∂θ

∂xm

]
. (3.36)

so the linear decomposition of all fluxes and source terms is with respect to the un-
known field: δ, ∂vk

∂xk
, ∂v<i

∂xj>
, ∂θ

∂xk
, ρ<ij> and qk. Using all the known integrals in Appendix

(3.49), we obtain after cumbersome computations, all fluxes and source terms as
functions of ρ, v, θ, ρ<ij>, qk and δ. As regards the fluxes we determine:
the Ai terms, that are the equilibrium parts of fluxes,

Ai (mCs) = 2(1 + e)υg0ρθδis,

Ai (mCsCv) = 0,

Ai (mCsCvCr) =
3
5 (1 + e)

(
10− 3e + 3e2) υg0ρθ2δ(isδvr),

Ai
(
mC4) = 0,

(3.37)

the Bi terms, that are linear with respect to the derivatives ∂vi
∂xj

or ∂θ
∂xk

,

Bi (mCs) = −
2(1+e)g0

√
πθρ2d4

p
15m

(
2

∂v(i
∂xj)

+ ∂vk
∂xk

δij

)
,

Bi (mCsCv) = −
2(1+e)g0

√
πθρ2d4

p
5m

∂θ
∂x(i

δsv),

Bi
(
mCsC2) = − (1+e)g0

√
πθθρ2d4

p
15m

[(
23− 3e + 8e2) ∂v(i

∂xj)
+
(
19− 4e + 4e2) ∂vk

∂xk
δij

]
,

Bi
(
mC4) = − 2(1+e)g0

√
πθθρ2d4

p
3m

(
13− 6e + 4e2) ∂θ

∂xi
.

(3.38)
the ρ<jk>Bijk terms,

ρ<jk>Bijk (mCs) =
2(1+e)g0πρd3

p
15m ρ<is>,

ρ<jk>Bijk (mCsCv) = 0,

ρ<jk>Bijk
(
mCsC2) = (1+e)(43−21e+4e2)g0πθρd3

p
30m ρ<is>,

ρ<jk>Bijk
(
mC4) = 0.

(3.39)

the qjBijll terms,

qjBijll (mCs) = 0,

qjBijll (mCsCv) =
4(1+e)g0πρd3

p
75m

[
qiδsv +

9
2 q(sδv)i

]
,

qjBijll
(
mC2Cs

)
= 0,

qjBijll
(
mC4) = 4(1+e)(26−12e+9e2)g0πθρd3

p
15m qi,

(3.40)
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and the ∆B̂i terms,

∆B̂i (mCs) = 0,

∆B̂i (mCsCv) = 0,

∆B̂i
(
mC2Cs

)
=

(1+e)(16−3e+3e2)g0πρd3
p

180m ∆δis,

∆B̂i
(
mC4) = 0.

Instead, as regards the source terms, we determine:
the E terms, that are the equilibrium terms, that vanish for e = 1,

E (mCs) = 0,

E (mCsCv) = −
4(1−e2)

3m g0ρ2d2
p
√

πθθδsv,

E (mCsCvCr) = 0,

E
(
mC4) = − 4(1−e2)(9+2e2)

m g0ρ2d2
p
√

πθθ2,

(3.41)

the F terms, that are linear with respect to ∂vi
∂xj

or ∂θ
∂xk

,

F (mCi) = 0,

F
(
mCiCj

)
= 2(1+e)(2−e)

5m g0ρ2d3
pπθ

∂v(i
∂xj)

+ (1+e)(1−3e)
15m g0ρ2d3

pπθ ∂vk
∂xk

δij,

F
(
mCiCjCk

)
= (1+e)(13−9e)

10m g0ρ2d3
pπθδ(ij

∂θ
∂xk)

,

F
(
mC4) = (1−e2)(19+5e2)

2m g0ρ2d3
pπθ2 ∂vk

∂xk
,

(3.42)

the ρ<ij>Fij terms,

ρ<ij>Fij (mCs) = 0,

ρ<ij>Fij (mCsCv) = −
4(1+e)(3−e)g0

√
πθρd2

p
5m ρ<sv>,

ρ<ij>Fij
(
mC2Cs

)
= 0,

ρ<ij>Fij
(
mC4) = 0.

(3.43)

the qiFill terms,
qiFill (mCs) = 0,

qiFill (mCsCv) = 0,

qiFill
(
mC2Cs

)
= − 2(1+e)(49−33e)g0

√
πθρd2

p
15m qs,

qiFill
(
mC4) = 0.

(3.44)
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and the ∆F̂ terms,

∆F̂ (mCs) = 0,

∆F̂ (mCsCv) = −
(1−e2)
60m
√

θ
g0ρd2

p
√

πθ∆δis,

∆F̂
(
mC2Cs

)
= 0,

∆F̂
(
mC4) = − [ (1−e2)e2

2m + (1+e)(271−207e)
60m

]
g0ρd2

p
√

πθ∆.

(3.45)

3.5.2 Final results

In summary, we conducted a study of dense and granular gases, determining a quasi
linear model of 14 partial differential equations for 14 moments. The novelty of our
work has been to determine for each balance equation the flux and the source term,
based on the calculations elaborated by Jenkins and Richman [Jenkins and Richman,
1985a]. Below, then we report for each balance equation the final value of the flow
term

θik = 2(1 + e)υg0ρθδik −
2(1+e)g0

√
πθρ2d4

p
15m

(
2

∂v(i
∂xk)

+ ∂vl
∂xl

δik

)
+

2(1+e)g0πρd3
p

15m ρ<ik>,

θijk = −
2(1+e)g0

√
πθρ2d4

p
5m

∂θ
∂x(i

δjk) +
4(1+e)g0πρd3

p
75m

[
qiδjk +

9
2 q(jδk)i

]
,

θikll = (1 + e)
(
10− 3e + 3e2) υg0ρθ2δik

− (1+e)g0
√

πθθρ2d4
p

15m

[(
23− 3e + 8e2) ∂v(i

∂xk)
+
(
19− 4e + 4e2) ∂vl

∂xl
δik

]
+

(1+e)(43−21e+4e2)g0πθρd3
p

30m ρ<ik> +
(1+e)(16−3e+3e2)g0πρd3

p
180m ∆δis,

θkllss = −
2(1+e)g0

√
πθθρ2d4

p
3m

(
13− 6e + 4e2) ∂θ

∂xk
+

4(1+e)(26−12e+9e2)g0πθρd3
p

15m qk,
(3.46)

and the final value of the source term

ψi = 0,

ψij = − 4
3
(1−e2)g0ρ2d2

p
√

πθθ

m δij +
2(1+e)(2−e)g0ρ2d3

pπθ

5m
∂v(i
∂xj)

+
(1+e)(1−3e)g0ρ2d3

pπθ

15m
∂vk
∂xk

δij

− 4(1+e)(3−e)g0
√

πθρd2
p

5m ρ<ij> −
(1−e2)g0ρd2

p
√

π

60m
√

θ
∆δij,

ψill =
(1+e)(13−9e)g0ρ2d3

pπθ

6m
∂θ
∂xi
− 2(1+e)(49−33e)g0

√
πθρd2

p
15m qi,

ψllss = −4 (
1−e2)(9+2e2)g0ρ2d2

p
√

πθ

m θ2 +
(1−e2)(19+5e2)g0ρ2d3

pπθ2

2m
∂vk
∂xk

−
[
(1−e2)e2

2m + (1+e)(271−207e)
60m

]
g0ρd2

p
√

πθ∆.

(3.47)
Given the complexity of flux and source expressions, the next step is to refer to the
stationary case (t constant and zero velocity) and to determine the spatial solutions
of the model.
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3.6 Appendix

To determine the previous integrals (3.46) and (3.47), it was necessary to make as-
sumptions about the integration variables. First, indicated the orthogonal triad g, i
and j, we set the vector k equal to

k = cos θg + sin θ cos ψi + sin θ sin ψj,

where θ is the angle between g and k, while ψ is the angle between i and the projec-
tion of k on the plane identified by i and j. Since it integrates in all directions of k for
which the relation applies g · k > 0, θ varies in interval [0, π

2 ] while ψ in the interval
[0, 2π]. It is observed that if the integrand contains odd powers of sin ψ or cos ψ, the
integral is null. On this basis, the following integrals are obtained with respect to the
variable k,∫

(g · k)n dk = 2π
(n+1) gn,∫

(g · k)n kidk = 2π
(n+2) gn−1gi,∫

(g · k)n kik jdk = 2π
(n+1)(n+3)

(
ngn−2gigj + gnδij

)
,∫

(g · k)n kik jksdk = 2π
(n+2)(n+4)

[
(n− 1) gn−3gigjgs + 3gn−1g(iδjs)

]
,∫

(g · k)n kik jkskrdk = 2π
(n+1)(n+3)(n+3)

[
n (n− 2) gn−4gigjgsgr+

+6ngn−2g(igjδsr) + 3gnδ(ijδsr)

]
.

(3.48)

To make the computations easier, it was necessary to change the integration vari-
ables according to the relations

dc1dc2 = dC1dC2 = |J|dQ∗dg,

where Q∗ = 1
2 (C1 +C2) and |J| = 1. So taking into account the fundamental integral∫

e−x2
dx = π

3
2 , the following integrals with respect to the variable Q∗ have to be

used, some of which were calculated analytically,∫
e−

Q∗2
θ dQ∗ = π

3
2 θ

3
2 ,∫

Q∗i e−
Q∗2

θ dQ∗ = 0,∫
Q∗s Q∗r e−

Q∗2
θ dQ∗ = 1

2 π
3
2 θ

5
2 δsr,∫

Q∗2e−
Q∗2

θ dQ∗ = 3
2 π

3
2 θ

5
2 ,∫

Q∗2Q∗s Q∗r e−
Q∗2

θ dQ∗ = 5
4 π

3
2 θ

7
2 δsr,∫

Q∗4e−
Q∗2

θ dQ∗ = 15
4 π

3
2 θ

7
2 .

(3.49)
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As concerns the integration with respect to the variable g, we have determined the
following integrals,∫

e−
g2
4θ dg = 23π

3
2 θ

3
2 ,∫

gsgre−
g2
4θ dg = 24π

3
2 θ

5
2 δsr,∫

gsgrgkgpe−
g2
4θ dg = 25π

3
2 θ

7
2
(
δsrδkp + δskδrp + δspδrk

)
,∫

g2gkgpe−
g2
4θ dg = 5 · 25π

3
2 θ

7
2 δkp,∫

g4e−
g2
4θ dg = 3 · 5 · 25π

3
2 θ

7
2 ,∫

g2gsgrgkgpe−
g2
4θ dg = 7 · 26π

3
2 θ

9
2
(
δsrδkp + δskδrp + δspδrk

)
,∫

g4gigje−
g2
4θ dg = 5 · 7 · 26π

3
2 θ

9
2 δij,∫

g6e−
g2
4θ dg = 3 · 5 · 7 · 26π

3
2 θ

9
2 ,

∫
ge−

g2
4θ dg = 25πθ2,∫

ggigje−
g2
4θ dg = 28

3 πθ3δij,∫
g3e−

g2
4θ dg = 28πθ3,∫

ggigjgrgse−
g2
4θ dg = 210

5 πθ4 (δijδsr + δisδjr + δirδjs
)

,∫
g3grgse−

g2
4θ dg = 210πθ4δsr,∫

g5e−
g2
4θ dg = 3 · 210πθ4,

(3.50)

∫
g−1gigjgrgse−

g2
4θ dg =

28

3 · 5πθ3 (δijδsr + δisδjr + δirδjs
)

. (3.51)

We observe that in the previous relations integrals with an odd number of functions
g do not appear, because they integrate to zero.

3.7 Concluding remarks

In this Chapter we started from the Grad’s 13 model for dense and granular gases of
Jenkins and Richman [Jenkins and Richman, 1985a] and we extended it to a model
of 14 moments, adding the 14th scalar moment ∆ and the balance equation corre-
sponding to it. The θi fluxes, related to the transfer of the particle moments and the
ψ source terms for each balance equation have been analytically determined, gen-
eralizing linear approximations with respect to the unknown fields, elaborated by
Jenkins and Richman in [Jenkins and Richman, 1985a]. A future research perspec-
tive would be to treat the model on the basis of continuum thermodynamic theories,
in particular the Rational Extended Thermodynamics, that is a macroscopic disci-
pline that is based on the results of the kinetic theory and on the method of Grad
thirteen moments. It would be interesting to make numerical applications such as
the propagation of discontinuity waves from stationary or spatially homogeneous
solutions and the study of the hyperbolicity region of the model in the neighborhood
of the equilibrium, as we made in the paper [Barbera E, 2023] for rarefied granular
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gases. Finally, we observe that the model of the 14 moments that we have defined is
a system of differential equations that can be expressed in the matrix form

C(u)uxx + ut + A(u)ux = D(u), (3.52)

with C(u), A(u), D(u) matrices. It is therefore clear that it is a parabolic system,
which has the disadvantage of not having a limit for the speed of propagation of its
solutions. A future perspective could be to modify the 14-moment model to make it
hyperbolic, in order to study it in the context of Rational Extended Thermodynamics.
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Chapter 4

An Extended Thermodynamic
Model of 13 moments for
moderately dense granular gas

4.1 Introduction

Moderately dense granular gases are gases in which particles are subject to inelas-
tic collisions and in binary collision the centers of the two particles are distinct and
interactions with neighboring particles must be taken into account. In the previous
chapter we defined a quasi linear model of 14 differential equations for 14 moments,
where fluxes and source terms were determined with the techniques of kinetic the-
ory. It is precisely the term of flux θki1,...,iN that indicates the dense character of gases.
In this chapter we derive a quasi linear model of 13 differential equations for 13 mo-
ments in the context of extended thermodynamics using the fluxes and production
terms computed in the previous chapter.

4.2 Balance equations

For the description of a moderately dense granular gas, we consider a model of 13
differential equations

∂ρ
∂t +

∂ρvk
∂xk

= 0,

∂ρvi
∂t + ∂Fik

∂xk
= ρ fi + Pi,

∂Fij
∂t +

∂Fijk
∂xk

= 2ρv(i f j) + Pij,

∂Fill
∂t + ∂Fikll

∂xk
= 3F(il fl) + Pill ,

(4.1)

where the unknown fields are the density ρ (t, x), the velocity vi (t, x), the temper-
ature θ (t, x), the stress tensor ρij (t, x) and the heat flux qi (t, x). and P are the pro-
duction terms. The set (4.1) represents the classical hierarchy of 13 equations for
monoatomic gases [Müller and Ruggeri, 2013]. In presence of dense gases of inelas-
tic spheres, it has been shown by Jenkins and Richman [Jenkins and Richman, 1985a]
that production terms take into account two subsidies,

Pi1i2...iN = Ψi1i2...iN −
∂Θki1i2...iN

∂xk
. (4.2)

The quantities ψi1i2...iN represent the typical source terms that are already present in
monoatomic gases, while the terms θki1,...,iN take into account the dense nature of the
material under consideration.
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By substitution of (4.2) into (4.1), we get

∂ρ
∂t +

∂ρvk
∂xk

= 0,

∂ρvi
∂t + ∂

∂xk
[Fik + Θik] = ρ fi,

∂Fij
∂t + ∂

∂xk

[
Fijk + Θijk

]
= 2ρv(i f j) + Ψij,

∂Fill
∂t + ∂

∂xk
[Fikll + Θikll ] = 3F(il fl) + Ψill .

(4.3)

The system of field equations (4.3) is not closed, since there are constitutive quan-
tities that have to be express as known functions of the fields variables. In this Chap-
ter we adopt the methods of Rational Extended Thermodynamics in order to derive
the constitutive functions and to determine the solutions of the model.

4.3 Galilean invariance

We require that the balance equations (4.3) hold in every inertial frame, so that they
must be invariant under a Galilean transformation. This requirement enables us to
split the moments, the fluxes and the production terms of (4.3) into convective and
non convective parts. So we obtain for moments and fluxes

Fij = ρij + ρvivj,

Fijk = ρijk + 3ρ(ijvk) + ρvivjvk,

Fikll = ρikll + 4ρ(iklvl) + 6ρ(ikvlvl) + ρv2vivk,

(4.4)

while for production terms

Θij = θij,

Θijk = θijk + 2θk(ivj),

Θikll = θikll + 3θk(ilvl) + 3θk(ivlvl),

Ψij = ψij,

Ψill = ψill + 3ψ(ilvl).

(4.5)

By substitution of (4.4) and (4.5) into the balance equations (4.3) we recover a more
compact form of the equations, that is

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂

∂xk
[ρik + θik] = ρ fi,

dρij
dt + ∂

∂xk

[
ρijk + θijk

]
+ ρij

∂vk
∂xk

+ 2
[
ρk(i + θk(i

]
∂vj)
∂xk

= ψij,

dρill
dt + ∂

∂xk
[ρikll + θikll ] + ρill

∂vk
∂xk

+ 3
[
ρk(il + θk(il

]
∂vl)
∂xk

+

−3
ρ(il
ρ

∂
∂xk

[
ρl)k + θl)k

]
= ψill .

(4.6)

Of course the first equation represents the conservation law of mass while the
second is the balance law of momentum. The quantity Pik = ρik + θik is the total
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pressure tensor: the sum of the quantity due to the transport of momentum between
collisions and that transferred in collisions.

The trace of the equation (4.6)3 is the balance law of energy

3
2

ρ
dθ

dt
+

1
2

∂

∂xk
[ρkll + θkll ] + [ρkl + θkl ]

∂vl

∂xk
=

1
2

ψll , (4.7)

where θ is the so-called granular temperature, the sum Qk = 1
2 [ρkll + θkll ] is the

heat flux, with the transport and collisional parts and the last term ψll represents the
dissipation due to the inelastic nature of the collision.

The traceless part of equation (4.6)3 assumes the form

dρ<ij>

dt
+

∂

∂xk

[
ρ<ij>k + θ<ij>k

]
+ ρ<ij>

∂vk

∂xk
+ 2 [ρk<i + θk<i]

∂vj>

∂xk
= ψ<ij>. (4.8)

Square brackets in the indexes indicate traceless part of a tensor.
The model (4.6) consists of 13 equations for the 13 fields ρ, vi, θ, ρ<ij> and

qk = 1/2ρkll . Unfortunately, these equations are not closed for the occurrence of
the constitutive quantities ρ<ijk>, ρikll , θik, θijk, θikll , ψij and ψill .

4.4 Entropy principle

The entropy principle asserts the existence of the concave entropy density h, the
entropy flux hk and the entropy production Σ such that the balance law

∂h
∂t

+
∂hk

∂xk
= Σ ≥ 0 (4.9)

must be valid for all thermodynamic process, that is for all solutions of the field
equations (4.6). In this way, equations (4.6) can be considered as constrains for the
validity of the entropy principle. Following the methods of Extended Thermody-
namics, we take into account theses constrains by introducing the so-called Lagrange
Multipliers [Liu, 1972], so we have

∂h
∂t +

∂hk
∂xk

+

−λ
[

dρ
dt + ρ ∂vk

∂xk

]
+

−λi

[
ρ dvi

dt + ∂
∂xk

[ρik + θik]− ρ fi

]
+

−λij

[
dρij
dt + ∂

∂xk

[
ρijk + θijk

]
+ ρij

∂vk
∂xk

+ 2
[
ρk(i + θk(i

]
∂vj)
∂xk
− ψij

]
+

−λill

[
dρill
dt + ∂

∂xk
[ρikll + θikll ] + ρill

∂vk
∂xk

+ 3
[
ρk(il + θk(il

]
∂vl)
∂xk

+

−3
ρ(il
ρ

∂
∂xk

[
ρl)k + θl)k

]
− ψill

]
= Σ ≥ 0

(4.10)

that must be valid for all fields. The entropy quantities and the Lagrange multipliers
must be expressed as functions of the fields, in particular the entropy flux with the
requirement of Galilean invariance becomes

hk = hvk + φk. (4.11)
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Furthermore, since we are interested in processes not far away the equilibrium
state characterized by vanishing fluxes ρ<ik> and qi, we develop the entropy density,
the entropy flux and the Lagrange multipliers in the neighborhood of the equilib-
rium state, that is

h = h0 (ρ, θ) + h1ρ<ij>ρ<ij> + h2qiqi,

φk = φ1qk + φ2ρ<lk>ql ,

λ = λ0 + λ1ρ<ij>ρ<ij> + λ2qlql ,

λi = ω1qi + ω2ρ<il>ql ,

λij = ν0δij + ν1ρ<ij> + ν2ρ<il>ρ<l j> + ν3qiqj,

λill = σ1qi + σ2ρ<il>ql

(4.12)

and the constitutive variables

ρijk =
2
5 q(iδjk) + O (2) ,

ρijll = γ0δij + γ1ρ<ij> + O (2) .
(4.13)

At equilibrium we have

dh0 = λ0dρ + ν0dρll = λ0dρ + 2ν0d [ρe] (4.14)

with e the specific internal energy. By comparison with the Gibbs equation we get

ν0 = 1
2θ and λ0 = − g

θ , (4.15)

where g = e− θ h0
ρ + p

ρ is the specific free enthalpy or Gibbs free energy.
The remaining fields become

h = h0 (ρ, θ)− 1
4ρθ2 ρ<ij>ρ<ij> − 1

5ρ2θ3 qiqi,

φk =
1
θ qk − 2

5ρθ2 ρ<lk>ql ,

λ = − g
θ −

1
4ρ2θ2 ρ<ij>ρ<ij> − 2

5ρ2θ5 qlql ,

λi = 0,

λij =
1
2θ δij − 1

2ρθ2 ρ<ij> + 1
2ρ2θ3 ρ<il>ρ<l j> + 3

5ρ2θ4 qiqj,

λill = − 1
5ρθ3 qi +

9
25ρ2θ4 ρ<il>ql

(4.16)

with the constitutive functions

ρijk =
2
5 q(iδjk) + O (2) ,

ρijll = 5ρθ2δij + 7θρ<ij> + O (2) .
(4.17)

We obtain the residual inequality of entropy,

−λij

[
∂θijk
∂xk

+ 2θk(i
∂vj)
∂xk

]
− λill

[
∂θikll
∂xk

+ 3θk(il
∂vl)
∂xk
− 3

ρ(il
ρ

∂θl)k
∂xk

]
=

= Σ− λijψij − λillψill ≥ 0.
(4.18)
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4.5 Production terms

In this section we represent the productions terms as linear expressions with respect
to the non-equilibrium variables ρ<ij> and qi, so we have

θij = α0δij + α1ρ<ij>,

θijk = 3β1q(iδjk),

θijll = γ0δij + γ1ρ<ij>

(4.19)

and
ψij = A0δij + A1ρ<ij>,

ψill = B1qi.
(4.20)

These expressions are recovered through the macroscopic model, but more more re-
strictive expressions can be obtained using the kinetic model [see eq. (50) of Arima
et al., 2021b]. As already said in Chapter 2 the coefficients A0, A1 and B1 must be de-
termined using experimental values and according to the residual inequality that in
this case is given by (4.18). For simplicity we recover here the coefficients A0, A1 and
B1 using the calculations of [Jenkins and Richman, 1985a]. This can limit also here
the range of validity of solutions. Clearly our model can support other different val-
ues of these unknown coefficients. We recover the coefficient terms by comparison
with the coefficients obtained by Jenkins et al. in [Jenkins and Richman, 1985a].

First of all, using the productions (4.19) and (4.20), we obtain the conservation
law of mass, the balance laws for momentum and energy,

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂

∂xi
[p + α0] +

∂
∂xk

[
(1 + α1) ρ<ij>

]
= ρ fi,

3ρ dθ
dt + 2 ∂

∂xk

[(
1 + 5

2 β1
)

qk
]
+ 2 (p + α0)

∂vk
∂xk

+

+2 (1 + α1) ρ<lk>
∂vl
∂xk

= 3A0,

(4.21)

the balance equation for the stress tensor,

dρ<ij>
dt + 4

5
∂

∂x<i

[(
1 + 5

2 β1
)

qj>
]
+ ρ<ij>

∂vk
∂xk

+

+2 (p + α0)
∂v<i
∂xj>

+ 2 (1 + α1) ρk<i
∂vj>
∂xk

= A1ρ<ij>

(4.22)

and the balance equation for the heat flux,

2 dqi
dt + ∂

∂xi

[
5ρθ2 + γ0

]
+ ∂

∂xk
[(7θ + γ1) ρ<ik>] +

+2
( 2

5 + β1
) [

qi
∂vk
∂xk

+ ql
∂vl
∂xi

+ 7
2 qk

∂vi
∂xk

]
+ 2qi

∂vk
∂xk

+

−
[
2 ρ<il>

ρ + 5 ρθδil
ρ

] [
∂

∂xl
(p + α0) +

∂
∂xk

((1 + α1) ρ<lk>)
]
= B1qi

(4.23)

The first coefficient A0 is related to the dissipation of energy, indeed consider-
ing spatially homogeneous fields we have the following equations for the decay of
temperature

ρ
dθ

dt
= A0, (4.24)
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that was also obtained and studied in [Kremer and Marques Jr, 2011] and [Barbera
E, 2023]. Then by comparison with [Jenkins and Richman, 1985a], it is possible to
identify A0 as

A0 = −
4
(
1− e2) g0ρ2d2

p
√

πθθ

3m
. (4.25)

By substitution of (4.25) into the differential equations (4.24), we obtain the time
dependence of the granular temperature that takes into consideration the energy
dissipation due to the inelastic collision by means of the restitution coefficient e.
This time evolution law is expressed by the Haff law [Haff, 1983] and described by
many authors [Brilliantov and Pöschel, 2004; Kremer and Marques Jr, 2011; Gupta,
Shukla, and Torrilhon, 2018b].

Then we determine the relaxation times, that, following [Jenkins and Richman,
1985a], can be identified as the two coefficients τρ and τq such that the deviatoric
part of the stress tensor and the heat flux decay to zero exponentially with these two
coefficients. This means that in the homogeneous case must be valid

dρ<ij>
dt = − ρ<ij>

τρ
,

dqi
dt = − qi

τq
.

(4.26)

By comparison of (4.26) with the homogeneous equations obtained by (4.22,4.23) and
the corresponding values evaluated by the kinetic theory one has

A1 = − 1
τρ

= − 4(1+e)(3−e)g0
√

πθρd2
p

5m ,

B1 = − 1
2τq

= − (1+e)(49−33e)g0
√

πθρd2
p

15m .
(4.27)

We proceed now with the first Maxwellian iteration, that can be obtained insert-
ing the equilibrium term in the left hand side of the equations, so we have

2ρθ ∂v<i
∂xj>

= − |A1| ρ<ij>,

5ρθ ∂θ
∂xi

= − |B1| qi.
(4.28)

So we obtain the classical Navier-Stokes Fourier laws for the stress tensor and
the heat flux, with explicit expressions for the viscosity and the heat conductivity,
that are

µ = ρθ
|A1| and k = 5ρθ

|B1| . (4.29)

Comparing (4.19) and (4.20) with corresponding productions obtained in the
Grad’s 13 moments theory, we can identify

α0 = 2(1 + e)υg0ρθ,

γ0 = (1 + e)
(
10− 3e + 3e2) υg0ρθ2,

(4.30)
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so the balance equations assume the following form

dρ
dt + ρ ∂vk

∂xk
= 0,

ρ dvi
dt + ∂

∂xi
[p + α0] +

∂ρ<ij>
∂xk

= ρ fi,

3ρ dθ
dt + 2 ∂qk

∂xk
+ 2 (p + α0)

∂vk
∂xk

+

+2ρ<lk>
∂vl
∂xk

= 3A0,

(4.31)

with the balance equations for the stress tensor and heat flux,

dρ<ij>
dt + 4

5
∂qj>
∂x<i

+ ρ<ij>
∂vk
∂xk

+ 2 (p + α0)
∂v<i
∂xj>

+ 2ρk<i
∂vj>
∂xk

= A1ρ<ij>,

2 dqi
dt + ∂

∂xi

[
5ρθ2 + γ0

]
+ ∂

∂xk
[7θρ<ik>] +

+ 4
5

[
qi

∂vk
∂xk

+ ql
∂vl
∂xi

+ 7
2 qk

∂vi
∂xk

]
+ 2qi

∂vk
∂xk

+

−
[
2 ρ<il>

ρ + 5 ρθδil
ρ

] [
∂

∂xl
(p + α0) +

∂ρ<lk>
∂xk

]
= B1qi.

(4.32)

By insertion of this 0th order terms α0 and γ0 that are peculiar of moderate dense
gases, we obtain a closed system of the balance equations for the 13 moments ρ, θ,
vi, ρ<ij> and qi.

With these quantities the second Maxwellian iteration (4.28) assumes the form

2 (ρθ + α0)
∂v<i
∂xj>

= − |A1| ρ<ij>,[
5ρθ + ∂γ0

∂θ − 5θ ∂α0
∂θ

]
∂θ
∂xi

+
[

∂γ0
∂ρ − 5θ ∂α0

∂ρ

]
∂ρ
∂xi

= − |B1| qi.
(4.33)

We obtain a generalization of the viscosity coefficient µ, that becomes

µ =
ρθ + α0

|A1|
=

ρθ +
(1+e)πg0ρ2θd3

p
3m

4(1+e)(3−e)g0
√

πθρd2
p

5m

(4.34)

and a modified heat conductivity

k =
5ρθ + ∂γ0

∂θ − 5θ ∂α0
∂θ

|B1|
. (4.35)

As in [Jenkins and Richman, 1985a] we have also a dependence of the heat flux on
the density gradient.

It was not possible to evaluate the coefficients of the terms of higher order in
(4.19) by comparison with the results obtained with the Grad theory for the presence
of the terms with the divergence of the velocity field.

4.6 Concluding remarks and perspective

A quasi linear model of 13 balance equations for 13 moments was derived for mod-
erately dense and granular gases in the context of Extended Thermodynamics. The
fluxes and the source terms were determined by expressing them as linear expres-
sions with respect to the terms of the non equilibrium ρij and qi. Then through the
Maxwellian iteration made up to the first order, the bulk viscosity and the thermal
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conductivity were respectively determined by comparison with the laws of Navier
Stokes and Fourier. It would be interesting as a future perspective to extend the
model to the case of granular and dense gases with more than 13 moments.
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Chapter 5

An Extended Thermodynamic
Model for blood flow

5.1 Introduction

In 2009 Gidaspow and Huang [Gidaspow and Huang, 2009] idealized a biphasic
blood model, consisting of plasma and red blood cells to study the behavior of blood
in narrow vessels. Their model describes the Fahraeus-Lindqvist effect, which is the
migration of red blood cells from the wall to the center of vessels due to a thermal
gradient. Various models for blood flow were then developed to study physiolog-
ical and clinical cases. For example in [Huang, Lyczkowski, and Gidaspow, 2009]
the pulsing flow in a coronary artery is studied. The change in rheology of red
blood cells determined by infectious diseases, environmental and hereditary factors
is investigated in [Fedosov et al., 2014]. The detection and the treatment of tumors
by recognizing tumor markers on the blood cell surfaces is numerically treated in
[Felicetti et al., 2014]. In [Wu et al., 2015] blood flow in several benchmark micro-
channels is studied using a two-fluid approach. The blood flow in carotid vessels
in described in [Lopes et al., 2019] and the effects of platelets are investigated in
[Gidaspow and Chandra, 2014].

Recently, we introduced a biphasic model [Barbera and Pollino, 2022] in the con-
text of Extended Thermodynamics [Müller and Ruggeri, 2013; Ruggeri and Sugiyama,
2015] that generalizes Gidaspow’s results [Gidaspow and Huang, 2009] on blood
flow and gives more detailed information on heat flow and the stress tensor of red
blood cells. In this chapter we incorporate the white blood cells to our previous
model [Barbera and Pollino, 2022]. Therefore, we define a three phasic model, con-
sisting of plasma, red and white blood cells, aimed to investigate the variation in
density and velocity of red and white blood cells in narrow blood vessels.

In particular, following the ideas of Extended Thermodynamics (ET), we con-
sider as field variables not only the classical ones (density, velocity and temperature)
but also the stress tensor, the dynamic pressure and the heat flux. The field equations
are balance laws, closed by local and instantaneous constitutive relations, which are
obtained using physical universal laws, like the Galilean and the entropy principles.
The obtained model is hyperbolic. Hyperbolicity guarantees finite speeds of propa-
gation and hyperbolic models are better suited to describe transient regimes.

The production terms are obtained by comparison of our model with [Gidaspow
and Huang, 2009] and in particular using physical parameters, such as the viscosity
and heat conductivity determined in [Gidaspow, 1994] in the context of the kinetic
theory. In this way our model coincide with the classical one [Gidaspow and Huang,
2009] when the white blood cells are neglected and we are in presence of slowly
changing fields and small gradients.
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On the contrary, our model can describe processes where rapid time changes or
when a strong deviation from equilibrium occur. In fact, it has been shown that the
field equations of ET can describe a range various non-equilibrium phenomena such
as light shattering, sound waves, heat waves, structure of shock waves [Müller and
Ruggeri, 2013; Ruggeri and Sugiyama, 2021]. ET has been applied, with many inter-
esting results, to monatomic gases [Müller and Ruggeri, 2013] and mixtures [Müller
and Ruggeri, 2013; Kremer and Marques Jr, 2011], showing in particular the possi-
bility to describe the thermal-diffusion effect. Recently, ET has been generalized to
dense and rarefied polyatomic gases both in the classical [Ruggeri and Sugiyama,
2021] and in the relativistic framework, metal electrons and biological models, heat
transfer in different symmetries and gas bubbles providing in all cases relevant re-
sults.

5.2 Balance Equations

In this section we introduce a 3-phase model consisting of plasma, red blood and
white blood cells, which generalizes the 2-phase model obtained in [Barbera and
Pollino, 2022]. The aim is to investigate the differences in density and velocity be-
tween red blood and white blood cells, when an energy gradient between the walls
and the center of narrow blood vessels is applied. As already said, the present model
is obtained in the context of ET [Müller and Ruggeri, 2013; Ruggeri and Sugiyama,
2021] so, in line with this theory, we consider the density, the velocity, the tempera-
ture, the stress tensor and the heat flux as field variables. Furthermore, in agreement
with the mixture approach [Müller and Ruggeri, 2013; Ruggeri and Sugiyama, 2015;
Kremer and Marques Jr, 2011], we introduce the conservation laws of mass, momen-
tum and total energy, and the balance laws for the stress tensor and for the heat flux
appropriate to each phase (α = f , r, w). Therefore, the system of balance equations
assumes the following form:

∂ρα

∂t +
∂(ραvα

k)
∂xk

= 0,

∂(ραvα
i )

∂t +
∂Fα

ik
∂xk

= ραgi + Iα
i = Hα

i ,

∂Mα
ll

∂t +
∂Mα

kll
∂xk

= 2vα
l Hα

l + 2Iα,

∂Fα
ij

∂t +
∂Fα

ijk
∂xk

= 2vα
(i H

α
j) + Sα

ij,

∂Mα
ill

∂t +
∂Mα

ikll
∂xk

= 3vα
(iv

α
l Hα

l) + 2 ρα
il

ρα Hα
l + 2eαHα

i + 2vα
i Iα + Sα

ill .

(5.1)

The round brackets in the indexes indicate symmetric part, ρα is the density, vα
k the

velocity, Fα
ik the momentum, Mα

ll the total energy, Mα
kll the energy flux, Fα

ijk the flux
of momentum Fα

ij , while Mα
ikll is the flux of Mα

ill for the α-component. The terms in
the right-hand-side represent the external forces, gi is the external specific force, the
interactions, Iα

i and Iα, and the productions Sα. In particular

Iα
i = ∑γ 6=α ψγα

(
vγ

i − vα
i
)

, (5.2)

where the coefficient ψr f is determined by Gidaspow in [Gidaspow and Huang,
2009; Gidaspow, 1994]. The others will be introduced later.
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Experimental values
Tube diameter 0.19mm
Plasma density 1020Kgm−3

Plasma viscosity 0.0012Kgm−1s−1

RBC size 8µm
GBC size 9µm
RBC density 1092Kgm−3

GBC density 1080Kgm−3

Restitution coefficient 0.95

It is easy to see that system (5.1) for each constituent has the typical form of
polyatomic gases, see [Ruggeri and Sugiyama, 2021] where the double hierarchies
of equations was introduced.

The whole system consists of a not-closed set of field equations. In the following
section we close this set of equations by use of physical universal principles and
we will express all quantities in terms of the field variables through constitutive
functions.

5.3 Constitutive relations

We start requiring the validity of Galilean invariance principle: the balance laws
must hold in every inertial frame, so they must be invariant under a Galilean trans-
formation. This implies the velocity dependence of densities, fluxes and produc-
tions, i.e.

Fα
ik = ρα

ik + ραvα
i vα

k ,

Fα
ijk = ρα

ijk + 3ρα
(ijv

α
k) + ραvα

i vα
j vα

k ,

Mα
ll = 2ραeα + ραvα

l vα
l ,

Mα
ill = 2qα

i + 2ρα
ilv

α
l + 2ραeαvα

i + ραvα
l vα

l vα
i ,

Mα
ikll = mα

ikll + 2ρα
iklv

α
l + 4qα

(iv
α
k) + 4ρα

l(iv
α
k)v

α
l +

+ρα
ikvα

l vα
l + 2ραeαvα

i vα
k + ραvα

i vα
k vα

l vα
l ,

Sα
ij = sα

ij,

Sα
ill = sα

ill + 2vα
l sα

ij,

(5.3)

where ρα
ik is the stress tensor, eα = 3θα the specific internal energy, θα the temperature

and qα
i the heat flux. The quantities ρα

ik, ρα
ijk, 2ραeα, 2qα

i , mα
ikll , sij and sill are the internal

quantities that are independent on the velocity fields. We observe that a simpler
method for obtaining Galilean invariance is present in [Pennisi and Ruggeri, 2006].
So, as a result of the principle of Galilean invariance for each component, the field
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equations can be written in a particular form

dαρα

dt + ρα ∂vα
k

∂xk
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ρα dαvα
i
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ik
∂xk

= Hα
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3 dα
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∂xk

= Iα,
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ij
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ij
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k

∂xk
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kij
∂xk

= sα
ij,

2 dαqα
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ikll
∂xk

+ 2ρα
ikl

∂vα
l

∂xk
+ 4qα
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∂vα
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∂xk
− 2 ρα

il
ρα

∂ρα
lk

∂xk
− 6θα ∂ρα

ik
∂xk

= sα
ill ,

(5.4)

where dα/dt = ∂/∂t + vα
k ∂/∂xk are the material derivatives.

We further decompose the stress tensors for the blood cells and plasma as the
sum of their traceless and trace parts:

ρ
β
ik = ρ

β
<ik> +

(
pβ + ∆β

)
δik, with β = r, w,

ρ
f
ik = ρ

f
<ik> + p f δik,

(5.5)

where1 the angular brackets indicate the traceless part of a tensor.
We consider ρα

<ik> and ∆β as field variables instead of ρα
ik, while the pressures pα

must be expressed in terms of the fields though the respective thermal equations of
state. Furthermore, according to the principle of material indifference for the whole
mixture [Kremer and Marques Jr, 2011], the fields cannot depend on the velocity vα

k
separately, but on the diffusion velocity uα

i and the blood velocity vi:

uα
i = vα

i − vi and vi =
ρrvr

i+ρwvw
i +ρ f v f

i
ρr+ρw+ρ f . (5.6)

Therefore, set (5.4) is a system of 41 equations for the 41 field variables: densities
ρα, diffusion velocities ur

i , us
i , blood velocity vi, temperatures θα, traceless parts of

the stress tensors ρα
<ij>, dynamic pressures ∆β and heat fluxes qα

i .
The remaining unknowns ρα

ijk, mα
ikll , sα

ij and sα
ill in (5.4) must be determined explic-

itly in terms of ρα, θα, ρα
<ij>, ∆β, qα

i trough constitutive functions. In line with ET, we
assume that these functions are local and instantaneous so, at one time and at one
position, they must depend on the fields at the same time and position.

We demand the validity of the entropy principle that assumes the existence of a
concave entropy density h, an entropy flux hk = hvk + φk and an entropy production
Φ that satisfy a balance equation of the form

∂h
∂t

+
∂hk

∂xk
= Φ ≥ 0 (5.7)

for all thermodynamic processes, that is for all solutions of the field equations.
The entropy principle can be mathematically evaluated by use of the Liu-Lagrange

multipliers λ. In fact the balance equations (5.4) are considered as constrains for the

1Throughout the chapter, β is used when only red and white blood cells are considered.
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validity of the entropy inequality (5.7). Therefore relation
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− ∑
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(5.8)

must be valid for all ρα, θα, uβ
i , vi, ρα

<ij>, ∆β, qα
i .

Clearly, also the entropy density h, the entropy flux φk the entropy production
Φ and the Lagrange multipliers must be expressed in terms of the fields by consti-
tutive functions. Then equation (5.8) is evaluated setting the coefficients of the field
variables and their derivatives equal to zero.

Since our aim is to focus on processes close to thermodynamic equilibrium, in or-
der to simplify the calculations, we expand the constitutive functions, the Lagrange
and the entropic quantities in terms of the non-equilibrium fluxes ρα

<ij>, ∆β and qα
i .

In particular, the constitutive relations are

ρα
ijk = 3ηαqα
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3 γ
f
0 δij + O (2) ,

(5.9)

where the coefficients depends only on the equilibrium variables (ρα, θα). Analogous
expansions are considered for the entropy quantities and the Lagrange multiplies
but the entropy quantities are expanded till the second order terms in order to have
a coherent evaluation of (5.8). So, inserting all expansions into the entropy equation
(5.8) and equating all coefficients of the field derivatives to zero, we can find out,
after some long calculations, the expression of the functions in (5.9) as follows:
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(5.10)

where
Ψβ = − θ2

β

3
∂γ
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)
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3 pβ + ρβ pβ

ρ +
θβ
(

pβ
θ

)2

ρβcβ
V
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(5.11)
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We use the expression of the pressure for red blood cells, determined by Gi-
daspow [Gidaspow, 1994; Gidaspow and Huang, 2009] and we assume a similar
dependence for the white bood cells

pβ =
(
1 + 2χβ

)
ρβθβ with χβ = (1 + e) εβgβ

0 , (5.12)

where εα is the phase volume fraction, gβ
0 the radial distribution function and e is the

restitution coefficient, a measure of the elasticity of the collisions between cells. Us-
ing these pressures, the constituent relations (5.10) take the more manageable form

γ
β
0 = 12

(
2 + χβ

) (
1 + 2χβ

)
ρβθ2

β,

γ
β
1 = 2

(
5 + 4χβ

)
θβ,

γ
β
2 = 6

(
5 + 4χβ

)
θβ,

ηβ = 1
2

1+2χβ

2+χβ
.

(5.13)

In conclusion, the left-hand sides of the balance equations (5.4) with relations
(5.5,5.9-5.13), are explicitly expressed in terms of the field variables. In the next sec-
tion we will instead evaluate the right-hand side of these equations.

5.4 Production terms

Following the BGK hypothesis, we assume each production term proportional to the
corresponding density minus its equilibrium value, that is

sα
<ij> = − ρα

<ij>
τα

σ
, sβ

ll = −3 ∆β

τ
β
∆

, sα
ill = −2 qα

i
τα

q
. (5.14)

The coefficients τ are the relaxation times which must be determined in terms of
the equilibrium variables. Here we evaluate them by comparison of our equations
with the corresponding classical ones in [Gidaspow and Huang, 2009; Gidaspow,
1994]. This comparison can be done through the so-called Maxwellian iterations
(see for example [Müller and Ruggeri, 2013]: We insert the productions (5.14) into
the balance equations (5.4)4,5 and we neglect all non-equilibrium terms in the left-
hand-side of these equations. The relations so determined find a perfect analogy
with the Navier-Stokes and and the Fourier equations for the stress tensor and the
heat flux, respectively. In fact we have

2pα ∂vα
<i

∂xj>
= − ρα

<ij>
τα

σ
,

5
3 pβ ∂vβ

k
∂xk

= −∆β

τ
β
∆

,[
1
3

∂γα
0

∂θα
− 2

(
pα

ρα
+ 3θα

)
∂pα

∂θα

]
∂θα
∂xk

= −2 qα
k

τα
q

.

(5.15)

In this way the relaxation times can be evaluated using the shear viscosity, bulk vis-
cosity and heat conductivity calculated for red blood cells in [gidaspow ; Gidaspow,
1994]. We assume that these expressions are valid also for white blood cells with
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appropriate values for the coefficients. Then we have

τ
β
σ = 1

1+2χβ

[
4
5 +

10
96

πεβ

χ2
β

(
1 + 4

5 χβ

)2
]

χβdβ
p√

πθβ
,

τ
f

σ = ε f
µ f
p f

,

τ
β
∆ = 4

5
1

1+2χβ

χβdβ
p√

πθβ
,

τ
β
q = 1

(1+2χβ)(2+χβ)

[
1 + 75

384
πεβ

χ2
β

(
1 + 6

5 χβ

)2
]

χβdβ
p√

πθβ
,

τ
f

q = κ f

[
1
6

∂γ
f
0

∂θ f
−
(

p f
ρ f

+ 3θ f

)
∂p f
∂θ f

]−1

,

(5.16)

where dβ
p is the diameter of red and white blood cells, ε f µ f and κ f are the viscosity

and heat conductivity of plasma.
The interaction terms in the balance laws of momentum and energy are evalu-

ated through the values determined by Savage et all [Savage, 1983], which takes into
account the inelastic collision of particles

Iβ = − 12(1−e2)gβ
0

dβ
p
√

π
ρβεβθ

3
2
β and I f = −Ir − Iw. (5.17)

Finally, the coefficients ψ f r and ψ f w in (5.2), taking into account the interactions be-
tween plasma and red or white blood cells respectively, are given by

ψ f β =


150ε2

βµ f

(1−εβ)d2
pβ

if ε f ≤ 0.8,

0 if ε f > 0.8,
(5.18)

(see Gidaspow (2009)) and we assume that coefficient ψrw in (5.2), which expresses
the interactions between red and white blood cells, is constant.

Substitution of (5.2,5.14,5.16-5.18) into balance equations (5.4) makes also the
right-hand side completely explicit in terms of the fields. Therefore, equations (5.4)
with the constitutive relations (5.2,5.5,5.14-5.18) form a closed set of 41 field equa-
tions in the 41 fields ρα, uβ

i , vi, θα, ρα
<ij>, ∆β and qα

i .

5.5 Planar analytical solutions

We study now the blood flow in a narrow vessel idealized as the gap between two
infinite parallel plates. We assume that the fields ρα, θα, ρα

<ij>, ∆β, qα
i and vα

i depend
only on the x1 = x orthogonal to the two plates and vα

i = (0, 0, vα
z ), where x3 = z lies

the direction of the flow.
In order to solve easily the problem, we linearize the field equations around

the constant equilibrium solution (ρα
0 , θ0) and introduce the following dimension-

less quantities

x̂ = x
L , θ̂α = θα

θ0
, p̂α = pα

ρα
0 θ0

, ρ̂α
<ij> =

ρα
<ij>

ρα
0 θ0

,

∆̂β = ∆β

ρ
β
0 θ0

, v̂α
z = vα

z√
θ0

, q̂α
i =

qα
i

ρα
0 θ0
√

θ0
.

(5.19)
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L is the distance between the two plates. With some simple calculations, the lin-
earized model assumes the following form

dp̂α

dx̂ = 0,
dρ̂α

<13>
dx̂ = ĝ + ∑γ ψ̂γα

(
v̂γ

3 − v̂α
3
)

,
dq̂α

1
dx̂ = Îα,

ρ̂α
<11> = −2ρ̂α

<33> = − 4
3 τ̂α

σ ηα Îα,

∆̂β = − 5
3 τ̂

β
∆ηβ Îβ,

p̂α
0

dv̂α
3

dx̂ + ηα dq̂α
3

dx̂ = − ρ̂α
<13>
τ̂α

σ
,

1
6 γ̂α

0
dθ̂α

dx̂ = − q̂α
1

τα
q

,

1
2

[
γ̂α

1 − 2
(

pα
0

ρα
0
+ 3θ

)]
dρ̂α

<13>
dx̂ = − q̂α

3
τα

q

(5.20)

with the dimensionless functions for the red and white blood cells given by

γ̂
β
0 = 12

(
2 + χβ

) (
1 + 2χβ

)
,

γ̂
β
1 = 2

(
5 + 4χβ

)
.

(5.21)

If we assume that plasma behaves as a perfect fluid, we also have

γ̂
f
0 = 24, and γ̂

f
1 = 10. (5.22)

The dimensionless terms related to the productions are instead

ĝ = g3L
θ0

, ψ̂γα =
ψγα L

ρα
0
√

θ0
, Îα = Iα L

ρα
0
√

θ0
3 , τ̂α = τα L√

θ0
. (5.23)

It can be easily seen that equations (5.20)4,5 are algebraic and combination of
(5.20)2,8 furnishes algebraic relations for q̂α

3 in terms of the velocity fields. Therefore,
the whole set (5.20) consists of a system of ODEs of order 15. This system can be
analytically integrated assuming that the three blood constituents have the temper-
ature θ0 and vanishing velocities at both boundaries, that coincide with the vessel
walls, and prescribing their pressures at one boundary Pα. In this way, we have
the 15 boundary conditions that we need for the determination of the 15 integration
constants.

Integrating equations (5.20)1,3,7 we easily get

p̂α = Pα, q̂α
1 = Îα x̂, θ̂α = − 3 Îα

γ̂α
0 τ̂α

q

(
x̂2 − 1

4

)
+ 1. (5.24)

These solutions obtained with the values of the parameters εr = 0.4 and εw = 0.01
are illustrated in Fig.1. As it can be easily seen, the two temperatures decrease at the
center of the vessel where instead both densities reach their maximum value. This
result is in agreement with the Fahraeus-Lindqvist effect, indeed the experimental
results predict that the red blood cells in small vessel concentrate in the center of the
channel. From Fig.1b, it can be easily seen that also the white blood cells concentrate
at the center, but this behavior is more evident, since white blood cells constitute a
very small fraction (less than 1%) of total blood volume.
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FIGURE 5.1: Dimensionless red and white blood cells temperatures
(Fig.1a) and dimensionless densities (Fig.1b). The graphs are ob-

tained with the values in Table 1, εr = 0.4 and εw = 0.01.
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FIGURE 5.2: Dimensionless red and white blood cells velocities
(Fig.2a) and heat flux in the direction of the flow (Fig.2b). The graphs

are obtained with the values in Table 1, εr = 0.4 and εw = 0.01.

Also the remaining equations (5.20)2,6,8 can be analytically integrated but the so-
lution assumes a too complicate form to be written here due to the combinations
of the three velocities in (5.20)2. For this reason we show in this chapter only the
numerical evaluation of these solutions. In particular in Fig.2 the velocity fields of
both cells is illustrated. No differences between them can be observed. Finally, the
solutions of the field equations (5.20) predict small but non-vanishing component of
the heat flux qα

z in the direction of the flow. This kind of solution imply a correction
of the Fourier law of heat conduction and, for gases is in agreement with the kinetic
theory. Also some components of the traceless parts of the stress tensor ρα

<11> and
ρα
<22> and this solution is a correction of the Navier-Stocks laws. In addition, we also

have a non-vanishing dynamic pressure for red and white blood cells.

5.6 Conclusions and Final Remarks

In this chapter we introduced a model in the context of Rational Extended Thermo-
dynamics in order to describe the behavior of white blood cells in small vessels. The
linearized field equations are integrated analytically. The solutions reveals that also
the white blood cells aggregate in the center of the channel as the red ones, in agree-
ments with the Fahraeus-Lindqvist effect. As expected, the effect of the white blood
cells is small, since they constitute only a very small fraction of total blood volume,
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and they do not modify the behavior of the red blood cells. It is intention of the
authors to incorporate to the model also the effect of platelets.
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Chapter 6

A hyperbolic reaction-diffusion
model of chronic wasting disease

6.1 Introduction

Chronic wasting diseases affect several animal species, such as deer and elk, goats
and sheep. Mad cow disease, which can be transmitted to humans by ingesting in-
fected meat, is an example. These diseases are caused by misfolded proteins, called
prions. Generally, prions are harmless proteins, present in nerve tissues, but when
they are poorly folded, they are very dangerous because they cause deterioration
of the nervous system and consequently a decline in the cognitive and motor abili-
ties of the affected animal. It is observed that prions are transmitted to susceptible
animals mainly through ingestion of soil rather than direct transmission from in-
fected animals. So, Miller et al. [Miller, Hobbs, and Tavener, 2006] elaborated a
susceptible-infected model for chronic wasting diseases in deer, where they added
an environmental reservoir of the disease that can re-infect the susceptible popu-
lation, instead of direct transmission from infected individuals. Sharp and Pastor
[Sharp and Pastor, 2011] modified this model, replacing the constant birth rate with
a logistic growth term, which is more suitable for models of diseases in wildlife pop-
ulations. Barbera [Barbera, 2020] introduced the diffusion effect, taking into account
the spatial dependence of the fields.

Reaction-diffusion equations are often adopted to describe dynamics of popula-
tions that interact through different mechanisms. If the diffusion effect is described
by the Fick law, the model turns out to be parabolic. A drawback of parabolic model
is that it provides an instantaneous relation between cause and effect which, implies
the diffusion of a biological population at an infinite speed. So many authors de-
veloped various hyperbolic models by means of different mathematical approaches,
see [Hillen, 2002] and the references therein.

In this chapter in order to overcome the problem, we replace parabolic equations
with hyperbolic ones, using Extended Thermodynamic theory (RET) [Müller and
Ruggeri, 2013] based on universal physical principles, such as the entropy principle
and the principle of relativity. RET has been applied to many biological problems,
such as acquatic food chains acqua, chemotaxis , dryland ecology, blood flow and
gas bubbles with very interesting results.

Following the first model in [Barbera, 2020], in this Chapter a hyperbolic model
in the context of RET able to study chronic wasting diseases caused by prions is
developed. In detail, in Sect.2, the classical model is presented and the hyperbolic
system is constructed. In Sect.3 the stability character of steady states is discussed
analytically and in Sect.4 the numerical solutions are shown. Finally, in Sect.5 the
behavior of the acceleration waves is described, which are expected to occur at finite
velocity. Conclusions and remarks are present in Sect.6.
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6.2 Hyperbolic model

The dynamics of wasting disease can be described through the following system of
partial differential equations

∂S
∂t +

∂JS

∂x = bS− S2

K − γSE−mS = f (S, I, E) ,

∂I
∂t +

∂J I

∂x = γSE− (m + µ) I = g (S, I, E) ,
∂E
∂t = εI − τE = h (S, I, E) ,

(6.1)

where S and I are the number of susceptible and infected animals/100Km2, and E is
the quantity of infected material/100Km2. The term bS represents the births of indi-
viduals, which is proportional to S. The two parameters m and µ are the mortality
rates due to natural reasons (b > m) and to the disease, respectively. K represents
the carrying capacity, typical of the logistic growth, and γ represents the probability
of the disease transmission from the environment to susceptible animals via random
encounter. In the last equation, ε is the rate by which the infected material is voided
from infected animals into the soil, while τ is the loss rate of active infected material.

In system (6.1), JS and J I are the diffusive fluxes which, in agreement with the
Fick’s law, are usually assumed to be proportional to the gradient of the correspond-
ing density, that is

JS = −DS
∂S
∂x ,

J I = −DI
∂I
∂x

(6.2)

with constant DS > 0 and DI > 0 diffusion coefficients (DS > DI).
Substitution of (6.2) into the balance equations (6.1) leads to a parabolic reaction-

diffusion model based on the instantaneous diffusive effects that imply an unrealis-
tic infinite propagation rate. Therefore, instead of assuming the Fick relations (6.2),
we consider JS and J I as additional field variables, together with S, I and E, satisfy-
ing the following balance equations

∂JS

∂t + ∂MS

∂x = NS,

∂J I

∂t + ∂MI

∂x = N I .
(6.3)

The fluxes MS and MI and the productions NS and N I must be determined in terms
of
(
S, I, E, JS, J I) through constitutive functions. Since we are interested in processes

not far from thermodynamical equilibrium, where JS = 0 and J I = 0, we can assume
a linear dependence of these functions on the two fluxes:

MS = ϕ (S, I, E) + ϕ1 (S, I, E) JS + ϕ2 (S, I, E) J I ,

MI = χ (S, I, E) + χ1 (S, I, E) JS + χ2 (S, I, E) J I ,

NS = υ (S, I, E) + υ1 (S, I, E) JS + υ2 (S, I, E) J I ,

N I = µ (S, I, E) + µ1 (S, I, E) JS + µ2 (S, I, E) J I .

(6.4)

Then, requiring that the evolution equations (6.3,6.4) reduce to the Fick laws (6.2)
in the stationary case, one gets the following restrictions on (6.4):

MS = ϕ (S) , NS = − ϕ′(S)
DS

,

MI = χ (I) , N I = −χ′(I)
DI

,
(6.5)
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where the prime stands for the derivative of the function with respect to its argu-
ment. Consequently, the evolution equations (6.3) become

∂JS

∂t + ϕ′ (S) ∂S
∂x = − ϕ′(S)

DS
JS,

∂J I

∂t + χ′ (I) ∂I
∂x = −χ′(I)

DI
J I .

(6.6)

A further restriction on the constitutive quantities ϕ′ (S) and χ′ (I) arises from
the compatibility of the system (6.1,6.6) with the entropy law. Indeed the entropy
principle assumes the existence of a concave entropy density η, an entropy flux φ
and a positive entropy production Σ satisfying the balance law

∂η

∂t
+

∂φ

∂x
= Σ ≥ 0 (6.7)

for all the solutions of the field equations. In this way, the field equations (6.1,6.6)
can be considered as constrains for the validity of equation (6.7). As shown in Liu,
1972, these constrains can be taken into account by using the Lagrange multipliers,
Λ, Γ, X, Ω and Π. The entropy quantities and the Lagrange multipliers must be
considered as constitutive functions of

(
S, I, E, JS, J I) like in (6.4). In this way, the

validity of the entropy principle is ensured if

η = η̄0 (S) + η̂0 (I) + η̃0 (E) + Ω1(S)
2

(
JS)2

+ Π1(I)
2

(
J I)2 ,

φ = Λ0 (S) JS + Γ0 (I) J I ,

Λ = Λ0 (S) +
Ω′1(S)

2

(
JS)2 ,

Γ = Γ0 (I) + Π′1(I)
2

(
J I)2 ,

X = X0 (E) ,

Ω = Ω1 (S) JS,

Π = Π1 (I) J I

(6.8)

with

η̄′0 (S) = Λ0 (S) , η̂0 (I) = Γ0 (I) , η̃0 (E) = Γ0 (E) ,

Λ′0 (S) = ϕ′ (S)Ω1 (S) , Γ′0 (I) = χ′ (I)Π1 (I)
(6.9)

together with the residual inequality

Σ = Λ0 f + Γ0g + X0h +

(
Ω′1 f

2
− Ω1ϕ′

DS

)(
JS
)2
−
(

Π′1 f
2
− Π1χ′

DI

)(
J I
)2

. (6.10)

On the other hand, the concavity condition for with respect to the field variables
leads to

Ω1 (S) < 0, Π1 (I) < 0, ϕ′ (S) > 0, χ′ (I) > 0 (6.11)

which guarantees that the relaxation times τS = DS/ϕ′ (S) and τI = DI/χ′ (I) are
positive as expected.

For further purpose, system (6.1,6.6) is recast in the following vector form

Ut + A (U)Ux = B (U) , (6.12)
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where

U =


S
I
E
JS

J I

 , A =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
ϕ′ 0 0 0 0
0 χ′ 0 0 0

 , B =


f
g
h
− ϕ′ JS

DS

−χ′ J I

DI

 (6.13)

Relations (6.11) ensure the reality of the non-vanishing characteristic speeds λ1,2 =
±
√

ϕ′ (S) and λ3,4 = ±
√

χ′ (I), that are the eigenvalues of A. The corresponding
eigenvectors are

d1,2=


1
0
0

λ1,2
0

 l1,2=
1
2


1
0
0
1

λ1,2

0


T

d3,4=


0
1
0
0

λ3,4

 l3,4=
1
2


0
1
0
0
1

λ3,4


T

(6.14)
As a consequence of the required concavity condition, the field equations (6.1,6.6)

are symmetric-hyperbolic in the sense of Friedrichs and Lax Giallo when the La-
grange multipliers are chosen as variables and the Cauchy problem is well-posed
for suitable smooth initial data.

In the particular case τS → 0 and τI → 0, the hyperbolic system (6.1,6.6) reduces
to the parabolic one [Barbera, 2020].

6.3 Linear stability analysis

System (6.1,6.6) admits three spatially homogeneous equilibrium states of the form
U∗ =

(
S∗, I∗, E∗, JS∗, J I∗), found as solutions of B (U) = 0, that are

U∗1 = (0, 0, 0, 0, 0) , U∗2 = (K (b−m) , 0, 0, 0, 0) ,

U∗3 =
(

τ(m+µ)
εγ , τÊ

ε , Ê, 0, 0
)

with Ê = 1
γ

[
(b−m)− τ(m+µ)

εγK

]
.

(6.15)

The first two equilibria, which represent the trivial and the disease-free states
always exist, since we assumed b > m. The third equilibrium, that represents the
coexistence state, exists if the carrying capacity K satisfies

K > Kc =
τ (m + µ)

εγ (b−m)
. (6.16)

The subsequent analysis is devoted to give an insight into the behavior of these
equilibria with respect to uniform and nonuniform perturbations by assuming K
as control parameter. First of all, we linearize system (6.1,6.6) around U∗ for small
space and time dependent perturbations of the form

U = U∗ + Ûeσt+ikx, (6.17)

where σ ∈ C is the growth factor and k is the wave number. Then, inserting (6.17)
into (6.1,6.6), we get [

σI− (∇UB)∗ + ikA∗
]

Û = 0 (6.18)
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FIGURE 6.1: Fig.1a: Real (black) and imaginary (red) parts of the two
complex roots of Eq.(6.24) in terms of the control parameter K. In
Figure 1b, such a dependence is illustrated for both homogeneous
(k = 0) and non-homogeneous perturbations (k = 1 and k = 2).
The graphs are obtained using the values in Table 1, DS = 0.1 and

DI = 0.01, ϕ′ (S) = χ′ (I) = 103.

with I the identity matrix,∇U the gradient with respect to the field variables whereas
the asterisk stands for the evaluation of the quantities at U∗. System (6.18) admits a
non-trivial solutions if the following characteristic equation holds

det
[
σI− (∇UB)∗ + ikA∗

]
= 0 ∀σ. (6.19)

For the trivial state U∗1 the characteristic equation (6.19) becomes[
σ2 −

(
b−m + ϕ′

DS

)
σ + (b−m)ϕ′

DS
+ k2ϕ

′
]
×

×
[
σ2 +

(
m + µ + χ′

DI

)
σ + (m+µ)χ′

DI
+ k2χ′

]
(σ + τ) = 0,

(6.20)

whose solutions can be easily determined. Since at least one solution has positive
real part, we can conclude that the empty equilibrium state U∗1 is unstable.

For the disease-free state U∗2 the characteristic equation (6.19) becomes[
σ2 +

(
b−m + ϕ′

DS

)
σ + (b−m)ϕ′

DS
+ k2ϕ′

]
×

×
{(

σ + χ′

DI

)
[(σ + (m + µ)) (σ + τ)− Kγε (b−m)] + k2χ′

}
= 0.

(6.21)

It is easy to see that two solutions have negative real parts. In order to understand
the signs of the other three real parts, we write explicitly the second factor of (6.21)
as

σ3 + a1σ2 + a2σ + a3 = 0 (6.22)

with suitable coefficients ai. Following the Rooth-Hurwitz criterium, which asserts
that the real parts of these three solutions are negative if

a1 > 0, a3 > 0, a1a2 > a3, (6.23)

it is easy to ensure that the equilibrium state U∗2 is stable if K < Kc.
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FIGURE 6.2: Solution of the PDE’s (6.1,6.6) obtained with the values
in Table 1, DS = 0.1, DI = 0.01, ϕ′ (S) = χ′ (I) = 103 and K = 4.
Fig.2a,b show susceptibles and infected in terms of x and t. In Fig.2c,d
the time dependence of the solutions at x = 0 is presented with the
corresponding trajectory described in the phase plane. The solution
illustrates as a little initial perturbation evolves in time and diffuses

in space, till the constant equilibrium state U∗3 is reached.

Finally, the characteristic equation (6.19) evaluated in the coexistence state U∗3
becomes a 5th degree polynomial in σ of the form

σ5 + â1σ4 + â2σ3 + â3σ2 + â4σ + â5 = 0 (6.24)

with suitable coefficients âi. Following the Rooth-Hurwitz criterium for a 5th order
polynomial, the coexistence state U∗3 is stable if

â1 > 0, â3 > 0, â1 â2 > â3, â1 â2 â3 + â1 â5 > â2
3 + â2

1 â4,

â1 â2 â3 â4 + â2 â3 â5 + 2â1 â4 â5 > â2
3 â4 + â2

1 â4 + â1 â2
2 â5 + â2

5.
(6.25)

Under the assumption of small relaxation times, it is possible to prove that the
coexistence state U∗3 is stable if the the carrying capacity K satisfies

Kc < K < KH with

KH =
τ(m+µ)+(m+µ+τ)2+

√
[τ(m+µ)+(m+µ+τ)2]

2
+4τ(b−m)(m+µ)(m+µ+τ)

2(b−m)γε
.

(6.26)

For K > KH the coexistence state U∗3 become unstable and a Hopf bifurcation
occurs with a limit cycle surrounding U∗3 .

The results here obtained are in complete agreement with the analogue ones for
the parabolic case [Barbera, 2020]. Furthermore, when k = 0, they correspond to
those of the ODE model in [Sharp and Pastor, 2011], where the space variable is not
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FIGURE 6.3: Solution of the PDE’s (6.1,6.6) obtained with the values
in Table 1, DS = 0.1, DI = 0.01, ϕ′ (S) = χ′ (I) = 103 and K = 15.
Fig.3a,b show susceptibles and infected in terms of x and t. In Fig.3cd
the time dependence of the solutions at x = 0 is presented with the
corresponding trajectory described in the phase plane. The solution
illustrates as a little initial perturbation evolves in time and diffuses
in space till when the constant equilibrium state U∗3 is reached after

some oscillations.

taken into account.

6.4 Numerical investigation

Numerical investigation reveals that equation (6.24) has always three real negative
roots, while the other two solutions change depending on K. In Fig.1 both real and
imaginary parts of these two roots are plotted versus K. Fig.1a shows their behavior
for k = 0, while Fig.1b illustrates their real parts for different k.

From Fig.1a follows that, for Kc ∼= 2.5 < K < 4.3 the characteristic polynomial
(6.24) admits two real negative solutions, therefore the equilibrium U∗3 is stable. This
behavior corresponds to the numerical solution of the field equations (6.1,6.6) shown
in Fig.2 that is obtained for K = 4, the initial condition

S (0, x) = 2I (0, x) = 2
{

1− x2 for −1 < x < 1
0 otherwise (6.27)

vanishing E (0, x) and fluxes.
For 4.3 < K < KH ∼= 17.5 the two roots of the characteristic polynomial (6.24) are

complex with negative real parts (Fig.1). In this case, the constant equilibrium state
U∗3 is stable. Due to the complex parts, the numerical solution of the whole system
of field equations (6.1,6.6) tends to U∗3 with oscillations, as shown in Fig.3 obtained
with K=15.
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FIGURE 6.4: Solution of the PDE’s (6.1,6.6) obtained with the values
in Table 1, DS = 0.1, DI = 0.01, ϕ′ (S) = χ′ (I) = 103 and K =
18. Fig.4a,b show susceptibles and infected in terms of x and t. In
Fig.4cd the time dependence of the solutions at x = 0 is presented
with the corresponding trajectory described in the phase plane. The
figure illustrates as a little initial perturbation evolves in time and
diffuses in space till when the stable limit cycle around the unstable

state U∗3 is reached.

Finally, for K > KH ∼= 17.5 the roots of the characteristic polynomial (6.24) are
complex with positive real parts (Fig.1). So the constant equilibrium state U∗3 is un-
stable and a limit cycle occurs. This can be easily seen in Fig.4 obtained integrating
numerically the whole system of field equations (6.1,6.6) with K=18.

6.5 Acceleration wave

We consider a moving curve called wave front, across which the fields are continu-
ous whereas their first derivatives may be discontinuous Boillat, 1974. As it is well
known, the normal speed of propagation V is equal to the eigenvalue evaluated in
the unperturbed field Ur whereas the jump of the normal derivative of the fields Π

is proportional to the right eigenvector d evaluated in Ur, that is

V = λ (Ur) , Π = Πd (Ur) . (6.28)

The amplitude Π of the jump satisfies the Bernoulli equation Boillat, 1974

dΠ
dt

+ α (t)Π2 + β (t)Π = 0 (6.29)

where d/dt = ∂/∂t + λ (Ur) ∂/∂x stands for the time derivative along character-
istic lines. If the unperturbed state coincides with a constant equilibrium U∗, the
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FIGURE 6.5: Acceleration waves and critical time obtained from
(6.31,6.32) with the values in Table 1, DS = 0.1, DI = 0.01 Barbera,
2020, ϕ′ (S) = χ′ (I) = 10 and ϕ′′ (S) = 10 (Fig. 5a,b) or ϕ′′ (S) = −10
(Fig. 5c,d). In Fig5a, since the β < 0, if Π (0) > −β/α ' −31 the ini-
tial perturbation Π (0) is attenuated and the wave amplitude evolves
rapidly to zero. If Π (0) < −β/α the initial discontinuity is too strong
to be attenuated, so it becomes unbounded and the acceleration wave
evolves into a shock wave at the critical time illustrated in Fig.5b in
terms of the initial amplitude. Fig.4c,d illustrate a different situation,
when ϕ′′ (S) < 0. In this case, the acceleration waves evolve to the

shock waves for Π (0) > −β/α ' 31.

coefficients α (t) and β (t) become constant and they are given by

α = (∇Uλ · d)∗ , β = − (l · ∇UB · d)∗ . (6.30)

So integration of the Bernoulli equation leads to

Π (t) =
Π (0) βe−βt

β−Π (0) α
(
e−βt − 1

) (6.31)

being Π (0) the initial wave amplitude. From equation (6.31) we observe that if
α 6= 0 the discontinuity becomes unbounded so that the acceleration waves may
evolve into shock waves at the critical time

tcr =
1
β ln 1

1− Πcr
Π(0)

with Πcr = − β
α . (6.32)

γ µ ε m b 1/τ

0.787 yr−1 0.567 yr−1 0.111 yr−1 0.4 yr−1 1.9 yr−1 3 yr

Table 1: The parameters of the model [Miller, Hobbs, and Tavener, 2006].
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In order to show the behavior of acceleration waves, we evaluate α and β in the
more interesting equilibrium state U∗3 . The obtained values are

α1,2 = ± ϕ′′(S∗3)

2
√

ϕ′(S∗3)
α3,4 = ± χ′′(I∗3 )

2
√

χ′(I∗3 )

β1,2 = (m+µ)τ
2Kγε +

ϕ′(S∗3)
2DS

> 0 β3,4 = m+µ
2 +

χ′(I∗3 )
2DI

> 0
(6.33)

Figure 5 shows the results for the acceleration waves propagating with velocity V =
λ1 =

√
ϕ′ (S) in the constant state U∗3 assuming the derivative ϕ′′ (S∗3) a positive or

a negative function. In Fig.5a,c the behavior of the dimensionless amplitude Π (t)
for different values of Π (0) is shown, while in Fig.5b,d the critical time is depicted
(where it exists) as a function of the initial amplitude.

6.6 Conclusion and final remarks

In this Chapter an hyperbolic model is introduced in the context of Extended Ther-
modynamics which generalizes the ODE model in [Sharp and Pastor, 2011] and the
parabolic one [Barbera, 2020]. By analytical calculations and numerical solutions
was shown that, when the relaxation times are small, the hyberbolic model has the
same characteristic of the parabolic one [Barbera, 2020]. For higher values of the
relaxation times, the study of the acceleration waves is illustrated and the evolution
of initial perturbation in the derivatives is depicted together with the critical time.
The model can be generalized to the two dimensional case, providing more general
results.
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