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In the past 50 years, the global prevalence of obesity and overweight has tripled,
reaching pandemic proportions and blatantly representing an urgent problem for public
health [1,2]. Many different factors have actively fed the spread of this chronic condi-
tion, from the rising global intake of calorie-dense food to widespread bad behaviors
such as living a sedentary lifestyle [3,4]. The most worrying aspect of this condition is its
correlation with other comorbidities. Indeed, obesity has been proven to be associated
with an increased risk of developing dyslipidemia, hypertension, type 2 diabetes, coro-
nary heart disease, non-alcoholic fatty liver disease (NAFLD), arthritis and even many
types of cancers [1,5,6], all of which severely impact the quality and life expectancy of
affected subjects.

Thus far, the urgent need for intervention strategies focused on tailored targets, as well
as the development of personalized medicine, has been a crucial aim in obesity research [7].

Some of these approaches have been focused on inflammation as a possible target in
the development of effective therapeutic strategies [8,9]. Indeed, inflammation in adipose
tissues represents a primary force that can contribute to the onset of obesity-associated
pathologies [10]. White adipose tissue (WAT) represents an endocrine organ assigned to
store lipid deposits and monitor both metabolism and inflammation through the produc-
tion of adipokines (leptin and adiponectin) and cytokines [11,12]. Indeed, in WAT, many
different cell types, such as adipocyte precursors (AP), adipocytes and immune cell subsets
(i.e., dendritic cells, T and B cells and macrophages) coexist [13], creating a complicated net-
work for the maintenance of the correct metabolic functionality and integrity of adipocytes.
However, substantial evidence has proven that hypoxic conditions fulfill the expansion of
adipose tissue and the upregulation of inflammatory response-related adipokines. As a con-
sequence, hypoxia of fat cells increases glucose consumption, promoting the development
of adipocyte insulin resistance and adipose tissue fibrosis [14].

In this scenario, a consistent amount of extracellular matrix (ECM) proteins (i.e., fibronectin
and many different types of collagen) released by adipocytes, adipocyte progenitors and
fibroblasts accumulate in ECM, modifying WAT plasticity and its functionality [15,16],
two characteristic events which occur in adipose tissue fibrosis. A pro-fibrotic action in
this process is carried out by cytokine secretion by immune system cells as adipose tissue
macrophages and mast cells [17]. In a recent study, Arndt et al., using an ex vivo WAT
organotypic culture system, identified IL-13 and IL-4 as critical pathogenic mediators of
WAT fibrosis. The authors demonstrated that this effect is dependent on WAT-associated
macrophages, since their removal by clodronate liposome treatment decreased the fibrotic
deposition in WAT in mice intraperitoneally injected with IL-4. A strong positive correlation
between fibrosis markers and IL-13/IL-4 receptors was found, but the data seem to indicate
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that both IL-13 and IL-4 can play a role in ex vivo WAT systems, though only partly in
in vivo models [18].

The state of chronic inflammation which characterizes obese subjects contributes to
the development of several chronic diseases [11]. Regarding this connection, it has been
reported that obesity represents a risk factor for myofascial disease, one of the leading
causes of physical disability. Ugwoke et al. highlighted how several pathological pro-
cesses in obesity, including changes in adipose tissue metabolism, chronic inflammatory
state and oxidative stress, may alter the mechanical and biological properties of fascial
hyaluronan [19]. Hyaluronan is the main polysaccharide of the ECM of connective tissues;
it provides mechanical stability and acts as a water reservoir and lubricant. Moreover,
hyaluronan, by binding to cell-surface receptors in adipose tissue, is able to modulate
adipogenesis and adipose tissue metabolism. Alterations in the physical and chemical
properties of hyaluronan alter the viscoelasticity of the matrix and deregulate molecular
signaling, contributing to the development of myofascial disease in obesity.

Some investigations have focused on the identification of pro-inflammatory biomark-
ers in the saliva of obese subjects. A higher level of some matrix metalloproteinases (i.e.,
gelatinases MMP-2 and MMP-9), as well as of IL-1β, were found in the saliva of obese
women compared to the control group, while in obese men, higher contents of MMP-9,
IL-6 and resistin were observed compared to individuals of normal body weight [20].

Zazula et al. demonstrated that an early and sustained inflammatory state favors the
acquisition of persistent muscle changes and typical obesogenic features [21]. Such a study
was performed via subcutaneous injection of monosodium glutamate (MNG) in Wistar rats.
When administered in the perinatal phase, MNG provokes lesions of hypothalamic nuclei
in animal models, leading, in adult life, to hyperphagia and unbalanced consumption of
nutrients, two typical features of obesity [22–24]. In line with this evidence, Zazula’s data
demonstrated that MSG exposure promoted adiposity in Wistar rats, favoring a hyperinsu-
linemic and pro-inflammatory state that were accompanied with fibrosis, oxidative injury
and muscle mass reduction in adult rats. The plasmatic profiles of the animals showed
remarkable increases in glucose content, total cholesterol, LDL and VLDL, as well as in the
amount of triacylglycerols. The analysis of muscle markers in MSG-treated rats provided
evidence of an increase in lactate content and a decrease in creatine kinase with respect to
the control group [21].

The main cause leading to the accumulation of fat in adipose tissue is an excessive
food intake. Several reports have suggested that high sugar consumption is contributing to
the global rise in obesity and type 2 diabetes. To reduce sugar intake and its dangerous
consequences, the ingestion of polyols, natural sweeteners with low caloric content and
a low glycemic index, can be useful [25]. Erythriol and xylitol are two polyols which are
partly adsorbed in the small intestine. Bordier et al. evaluated the enteral adsorption of
erythriol and xylitol and their potential metabolization into the oxidate form erytronate,
whose implications for human health remain to be determined, in healthy volunteers [26].
Based on the results, the authors demonstrated that erythriol is dose-dependently adsorbed
and metabolized in small amounts to erytronate, whereas xylitol absorption is low, and no
metabolization to erytronate takes place.

Other studies have demonstrated that a high-fat diet (HFD) can contribute to adiposity
and obesity status [27]. In particular, the presence of high levels of long-chain saturated
fatty acids (FAs), such as palmitate, in the diet has been associated with hypertrophic
and dysfunctional adipocytes, as well as with a state of low-grade inflammation in white
adipose tissue (WAT) [28]. Thus, reducing the hypertrophy adipose tissue represents a
strategy to counteract the detrimental effects of obesity.

Nowadays, numerous foods rich in antioxidants, phytochemicals and essential oils
have been found to be helpful in maintaining body weight, and can be considered protective
and/or therapeutic against obesity [29,30]. Mango (Mangifera indica L.) is a food appreciated
for its nutritive and nutraceutical properties. Different parts of the mango plant and fruit
have been reported to exert anti-tumoral, antioxidant and anti-inflammatory effects due
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to the high content of polyphenols [31–33]. Pratelli et al. demonstrated that extracts of
Sicilian mango peels and seeds, the main bio-wastes of mango processing, are capable
of counteracting in 3T3-L1 adipocyte lipotoxicity induced by high doses of palmitate,
the main long-chain FA present in the diet. In particular, mango extracts counteracted
palmitate-induced hypertrophy by reducing lipid droplets and triglyceride content, as
well as reducing endoplasmic reticulum stress induced by palmitate. The lipolytic and
antioxidant effects exerted by mango peel and seed extracts seem to be mediated by the
activation of the AMPK and Nrf2 antioxidant pathway [34].

A beneficial effect against HFD-induced lipotoxicity also seems to be also exerted by
4-methylesculetin (6,7-dihydroxy-4-methylcoumarin, 4-ME), a coumarin derivative isolated
from Artemisia annua [35]. Li et al. showed that 4-ME treatment attenuated adipocyte
hypertrophy, macrophage infiltration, hypoxia and fibrosis in epididymal adipose tissue in
HFD-fed mice, thus improving the adipose tissue microenvironment. In addition, 4-ME
reduced liver fibrosis by lowering FAs uptake and de novo lipogenesis. These effects are
correlated with the ability of 4-ME to down-regulate CD36; the free FA cell-surface receptor;
as well as SREBP-1, PPAR-γ and FASN protein, transcription factors and enzymes that
are involved in lipogenesis. Furthermore, 4-ME activated Nrf2, an important antioxidant
transcriptional factor that can also indirectly suppress the expression of SREBP-1 and its
lipogenic target genes [35].

A natural compound that has attracted the interest of researchers is curcumin, a
polyphenol extracted from the rhizome of Curcuma longa L. A consistent piece of evi-
dence has demonstrated that it has different pharmacological properties, including anti-
inflammatory, antioxidant, neuroprotective and anti-tumoral effects [36], and it is also
able to improve glucose and lipid metabolism [37]. However, the potential therapeutic
application of this molecule is strongly limited by its scarce bioavailability as a conse-
quence of its low solubility in water and rapid clearance [38]. Combinatorial treatments
aimed at improving both curcumin bioavailability and its half-life have identified piperine,
an alkaloid extracted by Piper nigrum L. and Piper longum, as a possible candidate to be
co-administered with curcumin. However, in a recent case study, Servida et al. demon-
strated that this combination treatment should be better explored. Indeed, in a patient
exposed to a low-altitude condition, curcumin/piperine co-administration induced severe
hypoglycemia followed by a transient loss of consciousness [38].

Several studies support the conclusion that obesity represents a risk factor for the
development of neurodegenerative diseases, including dementia and Alzheimer’s dis-
ease [39]. Indeed, obesity is associated with chronic low-grade inflammation and oxidative
stress, which contribute to the onset and progression of neurodegeneration. There is an as-
sumption that foods rich in antioxidants may exert protective effects on neurodegeneration.
To this end, Terzo et al. evaluated the effect of combined administration of Sicilian black
bee chestnut honey and D-limonene, which are known to mitigate inflammation and oxida-
tive stress, in HFD-fed mice. After 10 weeks of consuming an HFD, the mice developed
neuronal apoptosis, increased pro-inflammatory cytokines and oxidative stress markers.
Interestingly, all of these alterations were counteracted by the combined administration
of honey and limonene [40]. Notably, they also reduced amyloid plaque processing and
improved synaptic function, thus suggesting that a honey and limonene combination can
represent a potential dietary supplement to counteract HFD-induced brain damage.

In addition to natural compounds, some synthetic molecules with targeted action
showed promising effects for reducing obesity and related diseases. Adenosine recep-
tor subtypes A2A and A2B represent important therapeutic targets for the treatment of
obesity [41]. Theophylline is a non-selective adenosine receptor antagonist that has been
shown to reduce body weight in obese animals [42]. However, its side effects, such as
hyperactivity and heart rhythm disturbances, represent a problem. Kotańska et al. [43]
compared the effect of theophylline with that of PSB-603, a specific adenosine A2B receptor
antagonist, on high-fat/high-sugar diet-fed mice and demonstrated that both the A2B
receptor antagonists significantly lowered the body weights of the mice. However, only
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PSB-603 was also capable of reducing triglycerides and total cholesterol blood levels in
mice, thus suggesting that blocking A2A with a specific antagonist has stronger effects on
lipid reduction than non-selective inhibition.

In addition, several studies supported the existence of an anti-obesity effect of com-
pounds stimulating histamine release [44]. The histaminergic system is involved in the
regulation of food intake and body weight control [44]. Stimulation of the H3 receptor
activates a negative feedback due to histamine release, while H3 receptor inhibition by
specific antagonists shows efficacy in inhibiting weight gain [45]. In a recent publication,
Mika et al. demonstrated that KSK-74, a new specific H3R antagonist, reduced weight gain
in overfeeding rats. It also improved their glucose tolerance and adipocyte hypertrophy,
suggesting its potential use as an anti-obesity compound [46].

Beyond these emerging data, new insights for the development of therapeutic strate-
gies against obesity come from the identification of epigenetic molecular targets. During
adipogenesis, a highly orchestrated gene expression program occurs [47]. It favors the
cell commitment of pluripotent stem cells (first stage) into pre-adipocytes, and then the
terminal differentiation of pre-adipocytes into mature adipocytes (second stage) [48]. A
complex system of epigenetic changes and chromatin remodeling processes alternates
during the differentiation flux, causing the silencing of stemness-associated genes [49]. In
recent years, such an aspect has been a hot topic in the scientific community, pushing the
search for natural and synthetic compounds able to modulate that intricate network of
proteins and transcription factors that are directly involved in stem cell differentiation or in
uncontrolled adipocyte tissue hyperproliferation [50,51]. In this context, metformin and
vitamin D have been revealed as very promising therapeutic agents, since their administra-
tion to adipose-derived stem cells upregulates HDAC1 expression, affected the stem cell
phenotype and modulated the expression of those miRNAs playing a key role in stem cell
adipogenesis [47,52].
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