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Abstract

There is increasing evidence that plant-associated microorganisms play important roles in

defending plants against insect herbivores through both direct and indirect mechanisms.

While previous research has shown that these microbes can modify the behaviour and per-

formance of insect herbivores and their natural enemies, little is known about their effect on

egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this

study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the

plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22

influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg

deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T.

harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had

the opposite effect. However, no variation was observed in the chemical composition of

plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were

not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect

host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can

be used to enhance attraction of egg parasitoids, which could be a promising strategy in

manipulating early plant responses against pest species and improving sustainable crop

protection. From a more fundamental point of view, our findings highlight the importance of

taking into account the role of microorganisms when studying the intricate interactions

between plants, herbivores and their associated egg parasitoids.
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Introduction

Plants engage in multiple biotic interactions that profoundly influence the relationships

between plants and insects [1–3]. Most plants live in close association with diverse microor-

ganisms, including bacteria and fungi, several of which play a crucial role in the interactions

between plants and insect herbivores [4, 5]. Plant-beneficial microorganisms like mycorrhizal

fungi, plant-growth promoting rhizobacteria or plant-growth promoting fungi not only

enhance plant growth [6–8], but also protect plants against herbivores through direct and indi-

rect mechanisms [9–13]. Direct effects may result from the production of deterrents, antifee-

dants or toxins, exerting direct negative effects on the behaviour or performance of the

herbivorous insects [14, 15]. Indirect effects may result from enhanced recruitment of natural

enemies of herbivores or an improvement of their activity [16, 17].

To locate vital resources such as food, mates or oviposition sites, insects are equipped with

a variety of sensory systems, allowing them to perceive and interpret information from their

environment encoded as olfactory, gustatory, acoustic, tactile and visual cues [18]. In their

search for food plants, herbivores predominantly rely on direct cues associated with their host

plant, such as odours and colours [18]. In contrast, the natural enemies of these herbivores,

including predators and parasitoids, rely heavily on the indirect information from plant vola-

tile organic compounds (VOCs) induced by herbivore feeding or egg deposition to locate their

(often concealed) prey or hosts, commonly referred to as “herbivore-induced plant volatiles”

(HIPVs) and “oviposition-induced plant volatiles” (OIPVs) respectively [19–22].

There is increasing evidence that plant-associated microbes can alter the production of

plant volatiles and, hence, modify plant-insect interactions [1, 4, 23]. For example, some stud-

ies have documented enhanced herbivore-repellent characteristics in microbe-inoculated

plants, resulting in diminished feeding damage [11, 24], while others have reported increased

herbivore attraction [25, 26]. Plant-associated microbes have also been shown to prime or alter

plant defence pathways involved in indirect plant defences [17], thereby increasing the attrac-

tion of natural enemies towards herbivore-infested plants [9, 12, 27–29]. However, their effects

do not appear to be exclusively positive [17]. For instance, reduced host location by parasit-

oids, reduced parasitism efficiency or reduced parasitoid emergence have been reported as

well on plants treated with root-colonizing microorganisms [30–33]. Although the mecha-

nisms behind these observations are not yet completely clear, it is evident that microbial colo-

nization may affect the plant chemistry, by influencing the plant’s nutrient uptake [11] or

inducing a cascade of changes in plant metabolism [34, 35]. This in turn can also affect parasit-

oid host quality, and, since parasitoids rely on the quality of their host [36], also parasitoid fit-

ness-related traits [30, 37].

Egg parasitoids are an important group of natural enemies of herbivorous insects as they

kill their hosts in the egg stage before plant damage occurs [38, 39]. When searching for hosts,

egg parasitoids use host-associated cues, especially OIPVs and odours from gravid females [21,

40, 41]. To date, virtually nothing is known about whether the host-seeking behaviour of egg

parasitoids can be modulated by plant-associated microbes. From a biocontrol perspective,

this is remarkable as enhancing the attraction of egg parasitoids towards egg-infested plants

may increase their biocontrol efficacy, especially since host eggs are only available for a short

period of time [42].

The main aim of this study was to investigate whether root inoculation with plant-beneficial

fungi enhances the attraction of egg parasitoids after egg deposition by altering the plant VOC

composition, and how this is mediated by fungal species. Specifically, we evaluated the effects

of root-inoculation of sweet pepper (Capsicum annuum L.; Solanaceae) with the fungal strains

Beauveria bassiana ARSEF 3097 (Hypocreales: Cordycipitaceae) and Trichoderma harzianum
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T22 (Hypocreales: Hypocreaceae) on the olfactory responses of the egg parasitoid Trissolcus
basalis (Wollaston) (Hymenoptera: Scelionidae) to plants infested with eggs of the southern

green stink bug Nezara viridula (Linnaeus) (Hemiptera: Pentatomidae). Trichoderma spp. are

well known for their capacity to stimulate plant growth and protect plants against pests and

diseases [43, 44]. By contrast, the indirect plant protective capabilities of entomopathogenic

fungi that establish endophytic associations with plants like B. bassiana have only recently

been discovered [15, 45, 46], but their full potential still remains to be revealed. Nezara viridula
is responsible for severe damage to major open field crops such as soybean and cotton, and has

become an important pest in greenhouses in Northwestern Europe, where it causes significant

damage to tomato, sweet pepper, eggplant and cucumber [47]. Trissolcus basalis is the main

egg parasitoid of N. viridula, and has emerged as a promising candidate to control the pest in

both open fields and greenhouses [47, 48]. Nevertheless, given the observed variability in its

effectiveness as a biocontrol agent [48–50], enhancing its attraction to egg-infested plants by

applying beneficial microorganisms could serve as an effective strategy to achieve more consis-

tent and reliable outcomes. First, we asked whether fungal inoculation affected parasitoid

olfactory behaviour following stink bug oviposition. As a comparison, stink bug feeding with-

out oviposition was included. Subsequently, we studied the plant’s headspace composition to

see if fungal inoculation affected the chemical composition of induced plant volatiles. Finally,

as microbial colonization may have cascading effects and impact parasitoid fitness-related

traits, we also investigated whether fungal inoculation affected parasitoid fitness-related fea-

tures through body size measurements.

Materials & methods

Study organisms

Trichoderma harzianum T22 (recently re-classified as Trichoderma afroharzianum [51]; for

consistency with previous studies further referred to as T. harzianum) is the active ingredient

in several biopesticides and biofertilizers such as Trianum-P (Koppert Biological Systems, The

Netherlands) from which it was isolated [52, 53]. Beauveria bassiana ARSEF 3097 was

acquired from the Agricultural Research Service Collection of Entomopathogenic Fungal Cul-

tures (ARSEF; New York, USA), and represents the active ingredient in several commercially

available bioinsecticides such as Naturalis1 (Intrachem, Italy). The strain can colonize diverse

plant species endophytically following artificial inoculation, including sweet pepper, besides its

direct entomopathogenic capability [25, 54]. The fungal strains were preserved at -80˚C in

35% glycerol on potato dextrose agar (PDA) plugs, until used in the experiments. For all exper-

iments, sweet pepper (Capsicum annuum L.) cv ‘IDS RZ F1’ (Rijk Zwaan, The Netherlands)

was used. Plants were grown in a 3:1 mixture of potting mix (Universal potting mix; Agrofino,

Belgium) and perlite under controlled conditions in a climate cabinet (MD1400, Snijders Labs,

The Netherlands) at 23 ± 1˚C, 65 ± 2% RH and a 16L:8D photoperiod, with white LED lights

to provide a photosynthetic flux density of 790 μmol photons m-2 s-1.

Nezara viridula was reared in insect cages (47.5 × 47.5 × 47.5 cm) (BugDorm, MegaView

Science Co. Ltd., Taiwan) under controlled conditions (ECL02, Snijders Labs, The Nether-

lands) at 25 ± 1˚C, 70 ± 2% RH and a 16L:8D photoperiod. The population was established

from individuals obtained from the University of Palermo [10], to which yearly newly field-

caught specimens from Flanders (Belgium) were introduced. Stink bugs were fed with seasonal

organic vegetables (such as tomatoes, cabbage and beans) and organic seeds (sunflower, soy-

bean and peanut). A wet cotton roll served as a water source, while sweet pepper plants along

with paper towels were provided as oviposition substrate. Food and water were replaced every

two to three days, and newly laid eggs were systematically collected by carefully removing the
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egg masses from the paper towels, cage mesh or sweet pepper leaves. Both the eggs and N. viri-
dula nymphs that emerged from the collected eggs were kept under the same conditions as

described above, while adults were utilized for the continuation of the rearing and the

experiments.

Trissolcus basalis individuals were kept in 50 mL polypropylene vials with a cotton plug

(VWR International, USA) under the same conditions as described for N. viridula. Every two

days a few drops of honey water (80:20 v/v) were provided on the cotton plug as a food source.

To maintain the parasitoid colony, N. viridula egg masses were individually exposed to two

mated T. basalis females. Parasitized egg masses were then placed in new vials until the emer-

gence of the wasps. Twenty-four hours prior to the experiments, female T. basalis that were

5–7 days old were individually transferred into small 6 mL glass vials sealed with a cotton plug,

and incubated as described above (supplemented with a drop of honey water on a piece of par-

afilm). Subsequently, parasitoids were transferred to the bioassay room and allowed to accli-

mate for approximately 1 h before the tests. To avoid bias from parasitoids reared on different

egg masses, individuals from different egg masses were randomized over the different

treatments.

Fungal inoculation and treatments

The preparation of fungal spore suspensions and subsequent plant inoculation were performed

as outlined previously [6, 25]. In short, stored agar plugs from the fungi were plated on PDA

(Oxoid Holdings Ltd., United Kingdom) (T. harzianum T22) or Sabouraud dextrose agar

medium supplemented with 0.25% yeast extract (SDAY) (Oxoid Holdings Ltd., United King-

dom) (B. bassiana ARSEF 3097), and incubated at 25˚C for seven days. Next, sterile physiolog-

ical saline solution (0.8% NaCl) was added to the plates, and the spores were carefully scraped

off to prepare the fungal spore suspensions. To eliminate mycelial fragments, the suspensions

were filtered through a microcloth (Mira Cloth, Merck, USA) and washed three times with

physiological saline solution. After determining the concentration of conidia using a Bürker

hemocytometer, the spore suspensions were diluted to a final concentration of 1 × 107 conidia

mL-1. Before conducting the experiments, conidial viability was checked by plating an aliquot

of 100 μL of 1 × 103 conidia mL-1 on three agar plates and counting the numbers of germinated

and ungerminated conidia under the microscope after incubation at 25˚C for 24 h. Spores

were considered germinated when the germ tube was at least two times longer than the spore

diameter. The germination tests demonstrated > 90% viability rate for all conidial suspensions

used. Plant inoculation was performed when the plants had reached the first true leaf stage

(BBCH stage 101). Therefore, after rinsing the seedling roots with tap water, the roots were

submerged for 18 h in 10 mL of either the conidial spore suspension (Bb, B. bassiana; Th, T.

harzianum) or physiological saline solution to obtain non-inoculated, control plants (Co).

Subsequently, the seedlings were transplanted in 11 cm diameter plastic pots filled with the

same potting mixture as mentioned above. Plants were then put in controlled conditions as

mentioned before, ensuring that plants subjected to different treatments could not make any

contact with each other.

To perform the experiments, four weeks after inoculation, fungus-inoculated and non-

inoculated plants (ca. six weeks old) were individually exposed to two gravid N. viridula
females or were left untouched. Female stink bugs were allowed to feed only (F) or feed and

oviposit, hereafter simply referred to as oviposit (O). Stinkbugs are known to feed on plant tis-

sues while laying eggs [55]. Hence, this resulted in three treatments: (1) feeding, (2) oviposi-

tion, and (3) no infestation. For the first two treatments, plants were exposed to stink bugs in

cages (30 × 30 × 30 cm) under controlled conditions (23 ± 1˚C, 65 ± 2% RH and a 16L:8D
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photoperiod), while the uninfested plants were incubated in cages under the same conditions.

In both the feeding and oviposition treatments stink bug feeding was confirmed by visual

observation, with females consistently observed inserting their stylets into leaf tissue. Plants

were used in the experiments 24 h after exposure to feeding or within 24 h after discovery of

an egg mass (inspected daily). On average, egg masses contained approximately 80 eggs.

Two-choice olfactometer bioassays

The olfactory responses of T. basalis were assessed in a two-choice Y-tube olfactometer [56]

made from a polycarbonate body (stem 9 cm; arms 8 cm at a 130˚ angle; internal diameter 1.5

cm) sandwiched between two glass plates. Charcoal-filtered air at a flow rate of 0.8 L min-1 was

pumped into each of the olfactometer arms by passing a glass bottle (diameter 12 cm; height

52 cm) containing a test plant as odour source. Plants were carefully placed in the glass bottles

after wrapping the pot and soil with aluminium foil to limit belowground VOCs from moving

into the headspace and impact parasitoid behaviour. The Y-tube olfactometer was positioned

at an incline of 20˚ and homogeneously illuminated from above by four 24 W T5 TL-fluores-

cent tubes (16 × 549 mm, 1350 lumen, 5500 K) to stimulate movement of the insects towards

the bifurcation. The table was closed off by white curtains, to exclude any visual bias from the

surroundings [56]. A single female wasp was introduced at the entrance of the Y-tube and

allowed to walk freely in the olfactometer. Next, the olfactory behaviour of the introduced

wasps was recorded for ten minutes using a camera (Logitech C920), and the recorded videos

were analysed by CowLog 3 software [57]. Wasp responses were recorded for 10 min and

assessed in terms of residence time, i.e., the time spent by the wasps in each arm after crossing

a virtual line, defined at 5 mm distal to the bifurcation of the Y-tube olfactometer. In the Y-

tube olfactometer, females of T. basalis have the tendency to explore first the entire area and

then spend more time in the arm with the most attractive odour. Thus, olfactory responses for

this species are better predicted by analysing residence time data rather than first-choice (first

arm chosen) data as often done for other parasitoids [55, 58, 59]. Each bioassay was replicated

using five pairs of plants, and ten female wasps per pairwise combination were tested (in total

50 wasps). Each wasp was only tested once. The position of the plants was switched after test-

ing five wasps in order to identify any unforeseen bias in the setup. In total, six pairwise combi-

nations were tested, as presented in Table 1. At the end of the assay, all polycarbonate

olfactometer parts were rinsed with fragrance-free laboratory detergent and deionized water,

followed by air-drying. The glass components were rinsed with deionized water and acetone,

after which they were incubated at 175˚C overnight. All bioassays were conducted at 25 ± 2˚C,

Table 1. Overview of the pairwise combinations tested in Y-tube olfactometer assays.

Comparison Odour source 1 Odour source 2

(1): Co versus
Co_O

Non-inoculated control plant Non-inoculated plant subjected to stink bug

oviposition

(2): Co versus
Co_F

Non-inoculated control plant Non-inoculated plant subjected to stink bug feeding

(3): Co_F versus
Bb_F

Non-inoculated plant subjected to

stink bug feeding

Beauveria bassiana-inoculated plant subjected to

stink bug feeding

(4): Co_F versus
Th_F

Non-inoculated plant subjected to

stink bug feeding

Trichoderma harzianum-inoculated plant subjected

to stink bug feeding

(5): Co_O versus
Bb_O

Non-inoculated plant subjected to

stink bug oviposition

Beauveria bassiana-inoculated plant subjected to

stink bug oviposition

(6): Co_O versus
Th_O

Non-inoculated plant subjected to

stink bug oviposition

Trichoderma harzianum-inoculated plant subjected

to stink bug oviposition

https://doi.org/10.1371/journal.pone.0304220.t001
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65 ± 5% RH, and were performed between 09:00 and 18:00. Experiments were set up random-

ized over several days.

Dynamic headspace sampling and analysis of volatile organic compounds

For each treatment, volatiles were collected by dynamic headspace sampling to assess the VOC

composition of the aboveground plant parts according to the procedures described in Wilberts

et al. [25] with a few modifications. Volatiles were sampled from a different set of plants

(n = 9–10) of the same age and treated in a manner identical to those that were tested in the Y-

tube olfactometer bioassays. Plants were placed individually in a glass dome with a height of 20

cm and a diameter of 23 cm. The dome was sealed using aluminium plates around the stem

without constricting the plants. To avoid external VOCs from entering the system, charcoal-

filtered air was pumped in at a rate of 300 mL min-1, while simultaneously air was drawn out

at a rate of 200 mL min-1 through a stainless steel tube (89 mm length; 6.4 mm outer diameter;

5 mm inner diameter) filled with 200 mg Tenax TA adsorbent (20/35 mesh; 165 CAMSCO,

Houston, TX, USA), so that positive pressure was maintained within the dome. Collections

were carried out under controlled laboratory conditions (23 ± 2˚C; 65 ± 5% RH) for a period

of 3 h (lights on), after acclimatization of the plants to the room and the glass domes for 30

min. Between subsequent volatile collections, the glass domes were rinsed with water and ace-

tone and incubated at 175˚C for 2 h. After VOC collection, the above-ground parts of the

plants were cut and weighed for normalization of the VOC data (see below). Background

VOCs from empty glass domes were collected at regular time intervals.

Desorption of volatiles from the Tenax TA, as well as separation and detection of volatiles,

was carried out using a Thermal Desorber TD100-xr (Markes International Ltd., UK) con-

nected to a 7890B gas chromatograph (GC) coupled to quadrupole-time-of-flight mass spec-

trometer (Q-ToF) (both from Agilent Technologies, USA). Volatiles released from the

adsorbent at 250˚C for 10 min under a helium flow of 30 mL min-1 were simultaneously re-

collected in an electronically-cooled sorbent trap (Markes International Ltd., UK) at 0˚C.

Once the desorption and re-collection process was completed, volatile compounds were

released from the cold trap by ballistic heating at 40˚C s-1 to 280˚C, which was then kept for 5

min, while volatiles were transferred to a 30 m length × 0.25 mm inner diameter × 1 μm film

thickness DB-5MS analytical column (Phenomenex, USA), placed inside the oven of a GC

(Agilent Technologies, USA) for further separation. The GC oven temperature was initially

held at 40˚C for 2 min and was raised at 10˚C min-1 to 100˚C, where it was held for 1 min. The

temperature was then raised at 5˚C min-1 to 140˚C and was then immediately raised at 10˚C

min-1 to a final temperature of 280˚C, where it was kept for 1 min under a constant helium

flow of 1.2 mL min-1. Column effluents were ionized by electron impact ionization at 70 eV

and detected with an accurate mass Q-ToF MS (Agilent Technologies, USA), acquiring mass

spectra from 35–400 m/z at an acquisition rate of 5 spectra s-1. The transfer line and ion source

of the Q-ToF MS were set at 280 and 230˚C, respectively.

Chromatograms recorded for the presence of plant volatile compounds using MassHunter

deconvolution software (Agilent Technologies, USA) were converted to Xcalibur data through

a two-step raw data conversion program available in MetAlign software [60]. Automated base-

line correction, peak selection (S/N > 3), and alignments of all extracted mass signals of the

raw data were processed following an untargeted metabolomic workflow using MetAlign soft-

ware, producing detailed information on the abundance (peak height) of the mass signals rep-

resenting the available metabolites [60]. Subsequently, the extracted mass features were

reconstructed into potential compounds using the MSClust software through data reduction

employing unsupervised clustering and extraction of putative metabolite mass spectra [61].
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Chromatograms were visually inspected to ensure that true peaks were selected and that no

peaks were missing. Tentative identification of volatile metabolites was based on a comparison

of the reconstructed mass spectra with those in the NIST 2014 and Wageningen Mass Spectral

Database of Natural Products MS libraries, as well as experimentally obtained linear retention

indices (LRIs).

Fitness-related traits of Trissolcus basalis
In order to assess effects of fungal inoculation on fitness-related traits of T. basalis, we mea-

sured the proportion of parasitized eggs within a single egg mass, laid on fungus treated and

non-inoculated plants. Additionally, the size (i.e. right hind tibia length) of female wasps that

successfully emerged from these egg masses was measured. In insects, and especially in hyme-

nopteran parasitoids, adult body size is known to be positively associated with fitness and is

commonly used to assess parasitoid performance [62]. Within 24 h after N. viridula oviposi-

tion, one T. basalis female was introduced in a fine mesh bag enclosing the leaf containing the

egg mass. After 24 h, the female parasitoid was removed, and the parasitized egg masses were

left on the leaf until right before parasitoid emergence. Then, they were carefully removed

from the leaf and were placed into 50 mL plastic vials until the wasps’ emergence. The propor-

tion of the egg mass that was parasitized was recorded, and freshly emerged wasps were killed

in 96% ethanol and kept in phosphate-buffered saline (PBS) until further use. Measurements

were conducted using a stereoscope (Zeiss SteREO Discovery.V12) with AxioVision SE64 Rel.

4.9.1 software for image acquisition and analysis. A total of ten randomly selected female

wasps from five egg masses were included in the experiment for each of the three treatments.

Statistical analysis

Behavioural data were analysed by linear mixed models (LMMs) with fungal treatment as a

fixed factor and each plant pair (with the parasitoid individual nested within the plant pair) as

a random factor, to account for pseudoreplication [56]. For each pairwise combination, a sepa-

rate LMM was used. Significance of the fixed term in the model was determined using likeli-

hood ratio tests (LRTs), whereas model fit was assessed with residual plots [63]. A similar

LMM test followed by Tukey’s multiple comparison test was also used to analyse the effect of

fungal inoculation on the size of wasps. Prior to statistical analysis of the volatile emissions

data, the peak height of each compound was normalized by dividing by the biomass (above-

ground fresh weight (g)) of the plant used during VOC collection to account for plant-to-plant

variation within treatment groups. To assess whether overall VOC emissions differed between

treatments, a permutational multivariate analysis of variance (perMANOVA) was performed

on the log-transformed values, based on 1000 permutations, using the adonis2 function of the

vegan package [64]. Further, a heatmap of calculated Z-scores was constructed using the heat-

map.2 function from the gplots package [65] to visualize differences in the VOC profiles

among treatments [65]. Z-scores were calculated for the average of the log-transformed data

per treatment, by subtracting the average value of all treatments for the respective compound

from the average value of that treatment and dividing by the respective standard deviation.

Subsequently, the data were analysed in the same pairwise comparisons as those made in the

behavioural assays to explain potential differences in wasp behaviour. Therefore, VOC emis-

sions were visualized by non-metric multidimensional scaling (NMDS) using the Bray-Curtis

dissimilarity measure, in the vegan package in R [64]. Additionally, a perMANOVA was per-

formed as described above to assess differences in overall VOC profiles among treatments.

Furthermore, for each tested pair of treatments, differences in the peak heights of individual

volatile compounds were analysed, after checking assumptions of normality, using a Student’s
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t-test or Wilcoxon rank-sum test (for compounds with a normal or non-normal distribution,

respectively) on log-transformed values. To correct for multiple testing, the raw P values were

adjusted using the Benjamini-Hochberg correction, to control the false discovery rate at 5%

[66]. A significance level of α = 0.05 was used to determine significant differences, and results

were visualized using the ggplot2 package. All analyses and visualization of the data were per-

formed in R version 3.6.3 [67].

Results

Two-choice olfactometer bioassays

In two-choice Y-tube olfactometer bioassays, females of T. basalis significantly preferred sweet

pepper volatiles induced by N. viridula oviposition over volatiles from non-infested control

plants (Co versus Co_O: P = 0.009) (Fig 1). More specifically, the wasps spent 60.5% more time

in the olfactometer arm containing the oviposition-induced plant volatiles. Yet wasps did not

show any significant response when given a choice between non-infested control plants and

plants subjected to N. viridula feeding only (Co versus Co_F: P = 0.868). Likewise, wasps did

not discriminate between volatiles from non-inoculated and fungus-inoculated plants that

were subjected to feeding, regardless of the identity of the fungal strain (Co_F versus Bb_F:

P = 0.158; Co_F versus Th_F: P = 0.440). By contrast, T. harzianum significantly increased the

wasps’ preference to volatiles induced by egg deposition compared to the volatiles emitted by

non-inoculated plants that were subjected to egg deposition, with wasps spending 38.4% more

time in the olfactometer arm from the fungus-inoculated plant (Co_O versus Th_O:

P = 0.019). When eggs were deposited on plants that were inoculated with B. bassiana, wasps

preferred the odour from non-inoculated plants (Co_O versus Bb_O: P = 0.009). In this case,

their residence time in the olfactometer arm containing plant volatiles from B. bassiana-inocu-

lated plants was 36.2% higher compared to the control arm (Fig 1).

Volatile composition

Volatile analysis revealed a total of 75 compounds in the headspace of sweet pepper plants sub-

jected to the different treatments (S1 Table and S1 Fig). These compounds belonged to the

class of terpenoids (52), nitrogen-containing compounds (3), fatty acid derivatives (7), and

benzenoids or phenylpropanoids (13) (S1 Table). PerMANOVA did not indicate any statistical

differences in VOC composition between the different treatments when considering all data

together (F6,59 = 1.462, P = 0.055). When focusing on the pairs of treatments examined in the

olfactometer bioassays, the NMDS ordination plots revealed no clear separation in the VOC

composition among the compared treatments (Fig 2). Likewise, perMANOVA did not reveal

any significant differences in the VOC profiles among the treatments compared (Co versus
Co_O: F1,16 = 1.101, P = 0.307, Fig 2A; Co versus Co_F: F1,16 = 1.521, P = 0.159, Fig 2B; Co_F

versus Bb_F: F1,16 = 1.264, P = 0.264, Fig 2C; Co_F versus Th_F: F1,16 = 0.936, P = 0.414, Fig

2D; Co_O versus Bb_O: F1,16 = 0.650, P = 0.691, Fig 2E; Co_O versus Th_O: F1,16 = 0.567,

P = 0.750, Fig 2F). When looking at the individual detected VOCs, no significant differences

were found after correcting for multiple hypothesis testing (S2 Table).

Fitness-related traits of Trissolcus basalis
Fungal inoculation did not affect the size of T. basalis parasitoid females that emerged from

the egg masses deposited on inoculated sweet pepper plants (χ2 = 1.40, df = 2, P = 0.495; Fig 3).

Overall, hind tibia lengths of wasps were similar across the treatments (B. bassiana-inoculated

plants = 377.17 ± 4.41 μm; T. harzianum-inoculated plants = 389.98 ± 3.22 μm; non-inoculated
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control plants = 381.38 ± 2.99 μm). Likewise, the proportion of the egg mass that was parasit-

ized did not differ between the treatments (χ 2 = 0.25, df = 2, P = 0.882; S2 Fig) (B. bassiana-

inoculated plants = 93 ± 5.7%; T. harzianum-inoculated plants = 97 ± 1.6%; non-inoculated

control plants = 94 ± 4.8%).

Discussion

Plants respond to egg deposition by herbivores by activating a cascade of direct and indirect

defence mechanisms [68]. The latter involve the recruitment of the natural enemies of the

attacking herbivores through the release of induced plant volatiles [21, 69]. Although recruit-

ment of T. basalis upon N. viridula oviposition has been documented in crop species like

broad bean and French bean [55], our findings indicate that T. basalis is also attracted follow-

ing stink bug egg deposition on sweet pepper. This implies that the attraction of T. basalis to

plants infested with N. viridula eggs extends across various plant families, indicating a more

widespread phenomenon. Further, our study provides clear evidence that the plant-beneficial

fungi T. harzianum T22 and B. bassiana ARSEF 3097 affect egg parasitoid behaviour

differently.

In Y-tube olfactometer bioassays, female wasps exhibited enhanced attraction to plants

inoculated with T. harzianum T22 compared to non-inoculated plants when subjected to N.

viridula egg-laying. This is in line with recent investigations suggesting that T. harzianum T22

changes the composition of oviposition-induced plant volatiles and enhances the attraction of

Fig 1. Olfactory behaviour of Trissolcus basalis females in a Y-tube olfactometer when given the choice between odour sources coming from

differently treated sweet pepper plants. Plants were uninfested or subjected to Nezara viridula feeding or oviposition, and inoculated with Beauveria
bassiana ARSEF 3097 (blue) or Trichoderma harzianum T22 (red) or mock-inoculated with physiological saline solution (green). Bars represent the

mean (mean ± SE) time spent by the female wasps (n = 50) in each olfactometer arm over an observation period of 600 s. P values in bold indicate

significant differences in the residence times (P� 0.05), when compared to a 50:50 distribution (linear mixed model).

https://doi.org/10.1371/journal.pone.0304220.g001
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Fig 2. Non-metric multidimensional scaling (NMDS) ordination plots based on Bray-Curtis dissimilarities of plant VOCs

emitted by differently treated sweet pepper plants. Plants inoculated with Beauveria bassiana ARSEF 3097 (blue) or Trichoderma
harzianum T22 (red), or mock-inoculated with physiological saline solution (green), were uninfested (square) or subjected to Nezara
viridula feeding (triangle) or oviposition (circle). Each dot represents an individual sample (n = 9–10 per treatment). The star

represents the group centroid. The circled numbers correspond to the pairwise comparisons in the Y-tube olfactometer assays

(Table 1): (a) Co versus Co_O, (b) Co versus Co_F, (c) Co_F versus Bb_F, (d) Co_F versus Th_F, (e) Co_O versus Bb_O, and (f)

Co_O versus Th_O.

https://doi.org/10.1371/journal.pone.0304220.g002
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T. basalis towards tomato plants induced by N. viridula egg deposition (Alınç, T, unpublished

results). Likewise, the aphid parasitoid Aphidius ervi (Haliday) (Hymenoptera: Braconidae)

exhibited a stronger preference for aphid-infested tomato plants inoculated with T. harzianum
T22 compared to non-inoculated plants [70]. The authors proposed that the behavioural

changes of A. ervi are due to the upregulation of genes involved in the biosynthesis of terpe-

noids and salicylate [34, 70]. In contrast, our results revealed no quantitative or qualitative

changes in either the VOC blend as a whole or any of the individual compounds emitted by

sweet pepper plants inoculated with T. harzianum compared to non-inoculated plants. How-

ever, it has to be noted that, in our study, not only a different plant species was used, but also

Fig 3. Performance of Trissolcus basalis parasitoid individuals (determined by hind tibia length (μm)), emerged

from Nezara viridula egg masses deposited on plants inoculated with Beauveria bassiana ARSEF 3097 (blue) or

Trichoderma harzianum T22 (red), or mock-inoculated with physiological saline solution (green). The lower,

middle and upper lines of the boxplots correspond to the first quartile, median and third quartile, respectively, while

the diamond represents the average.

https://doi.org/10.1371/journal.pone.0304220.g003
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plants were grown in non-sterile potting mix, in contrast to the aforementioned studies that

utilized sterile soil, promoting fungal colonization after inoculation or reducing microbial

activity on control plants. As of now, it remains unclear whether soil sterilization may have led

to more pronounced differences in VOC profiles between fungus-inoculated and control

plants. Similarly to our results, an earlier study, which revealed a greater attraction of the natu-

ral enemy Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) to Trichoderma-inoculated

herbivore-infested plants compared to non-inoculated ones, did not identify a distinct mecha-

nistic foundation for the observed choice pattern through the analysis of VOCs and gene tran-

scription either [28].

When plants were exposed to N. viridula egg deposition, B. bassiana inoculation reduced

wasp attraction, in contrast to the results obtained for T. harzianum. A similar negative effect

has also been reported for the plant-growth-promoting rhizobacterium Pseudomonas fluores-
cens WCS417r, which decreased the attraction of the parasitoid Diaeretiella rapae (M’Intosh)

(Hymenoptera: Braconidae) towards Myzus persicae (Sulzer) (Hemiptera: Aphididae) infested

plants [32]. The authors hypothesized that this was due to significant differences in the emis-

sions of a small number of volatile compounds that they recorded. Our multivariate analysis

showed that B. bassiana-inoculated plants, overall, did not emit significantly different volatile

profiles than non-inoculated plants in response to N. viridula egg deposition. Also, statistical

analyses at the single compound level failed to highlight any possible compound(s) that could

explain the repellent effect of B. bassiana. Together, our findings thus indicate that fungal inoc-

ulation does not always benefit the plant, at least from an indirect defensive perspective.

Indeed, in line with previous research, our study confirms that the outcome of plant-mediated

interactions between plant-beneficial fungi and parasitoids depends on a multifaceted inter-

play involving the herbivore and parasitoid species, as well as the plant and microbial species

(or strain) [12, 27, 32, 37, 54, 70, 71].

Although several studies have reported beneficial microbe-mediated effects on plant VOC

emissions [17, 72, 73], in some cases the differences are only marginally significant [28], or the

VOC analysis cannot explain the behavioural data [74]. Surprisingly, in our study we did not

detect any significant differences in the VOC profiles between oviposition-exposed and con-

trol plants. Previous research on bean plants showed increased emissions of terpenoids such as

linalool, (E)-β-caryophyllene, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), and

(3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in response to feeding and oviposition by N. viri-
dula, but only (E)-β-caryophyllene was emitted in higher quantities in feeding-damaged plants

with an egg mass compared to only feeding-damaged plants [75]. It is conceivable that, in our

case, the causal compounds fell below the detection limit, or were influenced by other factors.

Since the setups used for the Y-tube olfactometer assays and headspace sampling were slightly

different in our study, and a different set of plants was used in these experiments, this also

could have contributed to the discrepancy between our behavioural assays and VOC analysis.

Moreover, parasitoids have evolved highly effective mechanisms for detecting subtle variations

in the complex blends of VOCs associated with their hosts [41, 76]. Additionally, it is well

known that insect behaviour is not always influenced by the volatile blend as a whole or the

presence and abundance of specific compounds in the blend, but rather depends on the level

and ratio of the different compounds [18, 41, 77, 78]. It must also be noted that minor constit-

uents of the VOC blend are often highly important in natural enemy behaviour, in particular

given the highly sensitive olfactory receptor neurons in insect antennae [79]. This suggests that

the olfactometer assays might be more indicative of the parasitoid’s fine-tuned perception of

specific cues that extend beyond the sensitivity range of the analytical tools used. To better

understand the underlying mechanisms explaining the differential recruitment of the parasit-

oids observed in this study, future studies could apply gas chromatography with
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electroantennographic detection (GC-EAD) to assess the responses of T. basalis towards the

odours from the differently treated plants. While techniques like GC-MS allow to assess the

composition of VOC blends, GC-EAD is suitable to identify biologically active compounds

[80, 81].

While we observed contrasting effects of plant-beneficial fungi on the attraction of T. basa-
lis, the performance of the wasps was not affected when emerging from host eggs laid on non-

inoculated versus fungal-inoculated plants. There is increasing evidence that plant-associated

fungi may affect plant traits with cascading effects on the second and third trophic levels [14,

76, 82]. Given that T. harzianum T22 has been demonstrated to directly influence N. viridula
performance through the upregulation of jasmonic acid marker genes [10], it is plausible that

plant-associated microbes affect host quality and parasitoid performance. However, fitness-

related traits of T. basalis, measured in terms of body size, were not affected by fungal treat-

ments, indicating that fungal inoculation did not affect plant-mediated host quality. Thus,

plant-beneficial fungi like T. harzianum T22 may enhance egg parasitoid fitness primarily by

enhancing the attraction of T. basalis which, in turn, leads to higher host discovery rates. How-

ever, once host eggs have been located and parasitized, there are no apparent effects of T. har-
zianum T22 on fitness-related traits of the emerging wasps. Nevertheless, it would be

interesting in future studies to investigate the impact on wasps emerging from eggs laid by

stink bugs that had been feeding on inoculated plants for a larger portion of their life cycle as

well.

This study has shown that T. basalis responds to and is attracted to sweet pepper plants

bearing an N. viridula egg mass. Further, our results showed that plant-beneficial fungi can

affect the recruitment of egg parasitoids, but these effects strongly depend on the fungal spe-

cies. While T. harzianum T22 enhanced attraction of T. basalis following egg deposition, B.

bassiana ARSEF 3097 had the opposite effect. In contrast, fitness-related traits of the wasps,

determined by the hind tibia length, were not altered by either of the two fungi, indicating that

fungal inoculation did not indirectly affect host quality. Altogether, these results suggest that

plant inoculation with T. harzianum T22 can be used to enhance the attraction of egg parasit-

oids, which could be a promising strategy in manipulating early plant responses against pest

insects and improving sustainable crop protection. Further investigations, however, are

required to study its effectiveness under field conditions. From a more fundamental point of

view, our findings underscore the importance of considering the role of microbes in unravel-

ling the complex interactions between plants, herbivores and their associated egg parasitoids.
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10. Alınç T, Cusumano A, Peri E, Torta L, Colazza S. Trichoderma harzianum strain T22 modulates direct

defense of tomato plants in response to Nezara viridula feeding activity. J Chem Ecol. 2021; 47: 455–

462. https://doi.org/10.1007/s10886-021-01260-3 PMID: 33713251

11. Meesters C, Cialdella L, Ingels R, Jacquemyn H, Lievens B. Cultivar-dependent effects of plant-benefi-

cial fungi on plant nutrient composition and feeding damage by Nesidiocoris tenuis. Plant Soil. 2023;

492: 177–190. https://doi.org/10.1007/s11104-023-06165-6

12. Wilberts L, Vuts J, Caulfield JC, Thomas G, Withall DM, Wäckers F, et al. Effects of root inoculation of
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35. Rivero J, Lidoy J, Llopis-Giménez Á, Herrero S, Flors V, Pozo MJ. Mycorrhizal symbiosis primes the

accumulation of antiherbivore compounds and enhances herbivore mortality in tomato. Skirycz A, edi-

tor. J Exp Bot. 2021; 72: 5038–5050. https://doi.org/10.1093/jxb/erab171 PMID: 33884424

36. Chen Y, Ruberson JR, Ni X. Influence of host plant nitrogen fertilization on hemolymph protein profiles

of herbivore Spodoptera exigua and development of its endoparasitoid Cotesia marginiventris. Biol

Control. 2014; 70: 9–16. https://doi.org/10.1016/j.biocontrol.2013.12.002
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