
Verification of Symbolic Distributed Protocols for
Networked Embedded Devices

Andrea Augello†, Rosolino D’Antoni∗, Salvatore Gaglio†‡, Giuseppe Lo Re†, Gloria Martorella†, and Daniele Peri†
∗ rosolino.dantoni@community.unipa.it, †{andrea.augello01, salvatore.gaglio, giuseppe.lore, gloria.martorella, daniele.peri}@unipa.it

∗†‡ Engineering Department, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
‡ICAR-CNR, 90146 Palermo, Italy

Abstract—The availability of versatile and interconnected em-
bedded devices makes it possible to build low-cost networks with
a large number of nodes running even complex applications
and protocols in a distributed manner. Common tools used
for modeling and verification, such as simulators, present some
limitations as application correctness is checked off-board and
only focuses on source code. Execution in the real network
is thus excluded from the early stages of design and verifica-
tion. In this paper, a system for modeling and verification of
symbolic distributed protocols running on embedded devices is
introduced. The underlying methodology is rooted in a symbolic
programming paradigm that makes it possible to model protocols
with a high level of abstraction still permitting their execution
on resource-constrained devices. The preliminary experimental
results shown in this paper concern verification of a distributed
averaging protocol in a simulated network at increasing number
of nodes. The results support the feasibility of the approach to test
distributed applications running on large networks of resource-
constrained nodes.

I. INTRODUCTION

Performance evaluation of distributed protocols [1] is a
daunting task, especially considering the limited software and
hardware resources available to embedded systems. In the
relative abundance of methods and tools [2], network simu-
lators are used to evaluate distributed protocols [3], mostly.
Simulators differentiate according to a series of simulation
parameters [4]. Despite the abundance of these tools [5], [6],
[7], simulators fail to reproduce all the physical and natural
phenomena of a real network [8]. Network emulators try
to offset simulators shortcomings by executing the required
code directly on real hardware and through the use of ap-
propriate software interfaces [9], [10]. However, emulators
do not scale easily as their application is bound to specific
hardware. Adequate level of realism can only be achieved
through the use of testbenches [11], [12]. These consist of
a set of physical nodes distributed in well-defined areas,
usually, accessible through a web-based interface supporting
only preestablished and controlled scenarios. Several studies
have analyzed the performance of distributed protocols starting
from the performance evaluation of WSNs through specialized
tools [13], [14], [15]. These studies evidenced that important
limits of network simulators lie in their source-code focus and
in checking protocol correctness only off-board. Hybrid verifi-
cation tools instead include at least a real node in simulations.
Nevertheless, these tools suffer from timing problems between

the real part and the virtual one, and this error increases with
the number of nodes in the network [16].

This work introduces an approach supporting the verifica-
tion of distributed protocols during their execution on actual
hardware. The approach is based on a rule-based system that
contains the formal description of the code that carries out
certain operations of a protocol and the related code for
verification. The system is, therefore, able to send code to the
nodes that can verify the correctness of the protocol, which
is to say that the results obtained conform with the expected
ones.

This paper shows the assessment of the feasibility of the
approach through the simulated verification of a distributed
average protocol. In detail, Section II describes the adopted
methodology, and outlines each element of the proposed
system. Section III describes the modeling and verification
strategies. The case study is presented in Section IV and
the corresponding experimental evaluation in Section V. Sec-
tion VI concludes the paper discussing improvement areas and
future development plans.

II. APPROACH AND PROPOSED SYSTEM

The methodology discussed in this paper is based on the
symbolic execution environment DC4CD [17] running on
network nodes. Code is a concatenation of executable symbols,
called words. The symbolic execution environment DC4CD
is based on the Forth language and has been used to turn
on-board hardware specifications into automatic verification
code for resource-constrained subsystems [18]. Words are
contained in a dictionary and new words can be easily added
to this dictionary by including their definition, based on
previously defined words. The REPL execution mechanism of
the environment interpreter waits for a list of words executing
one word after another [19]. Parameters and return values are
passed between words through a stack.

For example, the program that allows a node to measure the
temperature can be simply run by executing the word

temperature
which leaves the measured temperature value on the stack.
Distributed processing is implemented by letting nodes ex-
change symbolic code.
To this purpose, the symbolic environment provides that the
sequence of words included between the words tell: and



:tell is sent to the remote node specified by the physical
address left on the stack. This simple but powerful construct
carries out the exchange of executable symbolic code and
it fully supports the implementation of distributed protocols.
When the symbolic placeholder tilde (˜) is executed, it is
replaced with the value placed on the top of the stack. For
example, to tell a remote node to measure the temperature,
send the response back, and make the requesting node print
its value, the requesting node executes:

tell: temperature reply tell: ˜. :tell :tell
where the word dot (.) pops the topmost value of the stack
and prints it. Exchanged messages do not need to have a fixed
structure since symbolic code is included as the payload of
datalink level packets. Since the code is sent as a sequence
of symbols, the nodes can exchange data, symbolic rules, and
even algorithms.

The proposed system is composed of two main parts: the
rules system (RS) running on the host computer and the
symbolic platform running on the nodes (Fig. 1).

The rules system generates the requests including the sym-
bolic verification code. The requests are transmitted to the
bridge node, the one connected to the host computer, and
forwarded by the latter to the specified remote nodes which
run the symbolic platform and execute the protocol along with
its verification code.

As shown in Fig. 1, communication between the rules
system and the bridge node is achieved through a USB serial
interface, while communication between remote nodes and
bridge node occurs through radio links. Once the verification
results are sent back to the bridge node in the form of
executable code, their execution leaves the verification values
on the stack of the bridge. Finally, results can be picked up
and analyzed by the rules system. Verification code is sent
as simple text directly to each node and executed without
intermediate translation steps. Symbolic text code abstracts
the characteristics and the representation of target hardware
extending its scope to a broad range of devices, improving
interoperability, unlike network emulators.

Rule
system

. . .

Node n

Node 1 Node 2

Bridge
Node

Distributed system based on DC4CD

Symbolic code 
verifier

Knowledge base

Protocol
models

Network 
structure

Fig. 1: Block diagram of the proposed system.

III. MODELING AND VERIFICATION

The Knowledge Base (KB) in the RS contains rules defin-
ing primitives for communication protocols (Fig. 1). Some

of these model messages and transmission, including ac-
knowledgments, between the network nodes. Other primitives
manage recovery situations starting from possible errors that
occur during communication. Routes, storage of incoming
messages, and transmission times are also modeled. The KB
also models the distribution within the network and their
location using a two-dimensional Cartesian coordinate system
as in the following definitions:

node(a, [2.4,3.1]). % node a at (2.4,3.1)
node(b, [4.1,1.0]). % node b at (4.1,1.0)

The RS also keeps track of which nodes are reliable so to
base verification on their trustworthy replies.

While the primitives are modeled into the RS, the exe-
cutable steps of a protocol specification are stored directly on
the nodes as symbolic programs. Loading of the executable
symbols defining the protocol under test (PUT) is done in the
network initialization phase. The RS starts the PUT by sending
the initiating code to the network through the bridge node.

The key aspect of verification is the association between the
symbolic code of high-level operations and the symbolic code
that verifies its execution on remote nodes. During the protocol
execution and at proper time, the symbolic verification code
is automatically generated by the rules system and sent to the
network nodes.
To this purpose, in the KB are defined rules of this type:

verific_code(Label, ValueList,
VerificCode, RightMsg, WrongMsg)

in which Label specifies the operation to be verified,
ValueList indicates possible return values expected for that
operation, and VerificCode indicates the verification code
that must be transmitted by the rules system, and executed
by the network nodes to retrieve the desired results. The
last two parameters indicate the message which correspond
to a successful and to a failed verification for that specific
operation. Verification of sensor network protocols concerns
the proper collection of real or simulated readings of physical
quantities but also the correct execution of the communication
schemes as specified in the KB. Due to the flexibility of
the symbolic platform, the same symbol may be defined
differently on nodes. This way different behaviors can be
modeled on a node-by-node basis for the same operation
leading to a broader range of test configurations.

An example of a physical quantity that can be measured on
nodes is temperature. The temperature value can be actually
measured on a node through sensors or simulated on the
node based on a specific model useful for the test (eg.
expected trends). For communication schemes, an example
is the verification of acknowledgment reception (ACK). This
mechanism is modeled by returning a predefined numerical
value (eg. 99). Unlike the temperature calculation, in this
case the word definition for acknowledgment transmission and
reception changes depending on whether the node is the bridge
or not:

• for the bridge, the ACK definition is



: ack 99 ;
since the node in question must simply put the value on
the stack.

• for a remote node the ACK definition is
: ack reply [tell:] 99 [:tell] ;

since the node in question must reply to the bridge with
the ACK value.

IV. CASE STUDY

As a case study we analyzed a simple protocol for dis-
tributed aggregation of physical quantities, instantiating it to
collect temperature data (Fig. 2). Briefly,

1) the RS makes the bridge node execute the sym-
bolic code: bcst tell: 0 0 update :tell The
bcst keyword specifies that the message be broadcast
to the network;

2) each receiving node sets the content of two of its
local variables to 0. The first variable (num) stores the
number of nodes that already carried out the temperature
measurement. The second (aggr) stores the current
aggregate temperature value, i.e. the sum of the mea-
surements communicated by the nodes so far;

3) each node waits for a time proportional to its physical
ID. When this time expires, the node performs the
temperature measurement and updates the values of its
local variables. The node also updates the value of an-
other local variable (avg) containing the average value
of the temperatures measured up to this point. Then
the node executes the symbolic code bcst tell:
<num> <aggr> update :tell, broadcasts the up-
dated values of the variables num and aggr. The receiv-
ing nodes then execute the code updating the values of
the two corresponding local variables as in the first step;

4) the protocol ends when all the network nodes have
performed step 3. This happens when the time corre-
sponding to the maximum ID expires.

The proposed system allows many verification schemes, in
this work two are shown.
In the first scheme, a single request to retrieve the values of
the three local variables is transmitted to one of the reliable
nodes (Fig. 3). The verification here consists in checking that
the number of received values is equal to three and that the
value of the num variable equals the number of nodes involved
in the communication. This verification is carried out at the
end of the protocol execution.

In the second scheme, at the end of the protocol execution,
all the nodes are requested to send the values of the three
local variables. Then, a control ensures that each response
generated exactly three values. After this, it is verified that
all the triplets of retrieved values are equal and that the value
of the num variable equals to the number of nodes involved
in the communication.

V. EXPERIMENTAL EVALUATION

Even though the proposed system is meant to perform
hybrid tests on heterogeneous networks made of real hardware

Bridge
(No sensor)

Node 1
(Temp = 17°C)

Node 2
(Temp = 14°C)

2 31 update

2 31
 update

Bridge
(No sensor)

Node 1
(Temp = 17°C)

1 17 update

Node 2
(Temp = 14°C)

1 17
 update

Bridge
(No sensor)

Node 1
(Temp = 17°C) 0 0 update

Node 2
(Temp = 14°C)

0 0 update

Fig. 2: Code sent by nodes during the execution of the
distributed averaging protocol.

Bridge node
(No sensor)

Node 2
(Temp = 17°C)

Trusted node
(Temp = 13°C)

 2 30 15 

Bridge node
(No sensor)

Trusted node
(Temp = 13°C)

num @ aggr @ avg @ reply tell: ~ ~ ~ :tell

Node 2
(Temp = 17°C)

Fig. 3: Messages exchanged during trusted node verification.

nodes, in this preliminary work we tested our approach by per-
forming several simulated experiments measuring the number
of exchanged messages and the average required time.

The exchanged messages during the protocol execution
and verification only refer to that messages needed to verify
the protocol itself, while the time required value includes
execution of the distributed averaging protocol.

The verification mode that interrogates only a reliable
remote node is the most efficient, but it is necessary to be
sure that the reliable node gives the right results. The second
verification mode provides the assurance that the protocol has
been performed correctly but requires a longer verification
time and a higher number of exchanged messages. To test
the scalability of the proposed verification tool, experiments
were performed by simulating nodes in the RS, modeling
waiting times as a fixed delay specified for each node in



the knowledge base, calculated accounting for the serial line
baud rate, the IEEE 802.15.4 bandwidth and the processing
time of the interpreter on the actual nodes. The PUT assumes
that all the nodes are 1-hop neighbors, so the propagation
delay is considered negligible. A subset of the simulated nodes
(10%) was defined as unreliable. Queries to unreliable nodes
would always return incorrect values. For both “Reliable”
and “All nodes” schemes five repetitions of the protocol
verification were carried out randomly simulating a network
with increasing number of nodes. For each repetition, fifteen
runs of verification were carried out, measuring the number of
exchanged messages and the average required time. Since the
protocol execution time depends on the node IDs, they were
randomly generated with a different seed on each run.

Table I collects all the results of the tests. The exchanged
messaged for the ”All nodes” scheme were twice the number
of nodes minus one as we include the message that starts
the protocol execution in the count but the bridge does not
take part on the computation. The time for verification grows
linearly with the number of nodes as nodes are queried
sequentially, so, before querying the next node, the RS must
wait the reply from the previous one and read it from the serial
interface.

Results show that verification time is comparable to protocol
execution, hinting at an effective application of the tool to the
test of distributed applications.

Reliable node All nodes

Nodes Time
required (s)

Exchanged
messages

Time
required (s)

Exchanged
messages

10 163.64 3 257.77 19
20 173.87 3 386.18 39
50 176.39 3 743.97 99
100 177.77 3 1337.41 199

TABLE I: Results of the verification of the distributed aver-
aging protocol at increasing network size.

VI. CONCLUSIONS

In this paper a system for modeling and verification of
symbolic distributed protocols running on embedded devices
was introduced. The underlying methodology is rooted in a
symbolic programming paradigm that makes it possible to
model protocols with a high level of abstraction still permitting
their execution on resource-constrained devices.

The preliminary experimental results shown in this paper
concern verification of a distributed averaging protocol in a
simulated network at increasing number of nodes. The results
support the feasibility of the approach to test distributed
applications running on large networks of resource-constrained
nodes.

Future work will consider testing the protocols during their
execution, rather than only at the end, to detect failure earlier
and avoid wasting resources, running experiments on physi-
cal nodes alongside virtualized ones. Finally, more complex
protocols, like CTP, will be modeled and tested to assess the
scalability and efficiency of the system.

REFERENCES

[1] S. Park, A. Savvides, and M. B. Srivastava, “SensorSim: A simulation
framework for sensor networks,” in Proceedings of the 3rd ACM
international workshop on Modeling, analysis and simulation of wireless
and mobile systems, 2000, pp. 104–111.

[2] M. Imran, A. M. Said, and H. Hasbullah, “A survey of simulators, emu-
lators and testbeds for wireless sensor networks,” in 2010 International
Symposium on Information Technology, vol. 2. IEEE, 2010, pp. 897–
902.

[3] A. Nayyar and R. Singh, “A comprehensive review of simulation tools
for wireless sensor networks (WSNs),” Journal of Wireless Networking
and Communications, vol. 5, no. 1, pp. 19–47, 2015.

[4] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A performance com-
parison of recent network simulators,” in 2009 IEEE International
Conference on Communications. IEEE, 2009, pp. 1–5.

[5] B. Musznicki and P. Zwierzykowski, “Survey of simulators for wireless
sensor networks,” International Journal of Grid and Distributed Com-
puting, vol. 5, no. 3, pp. 23–50, 2012.

[6] M. Jevtić, N. Zogović, and G. Dimić, “Evaluation of wireless sensor
network simulators,” in Proceedings of the 17th telecommunications
forum (TELFOR 2009), Belgrade, Serbia. Citeseer, 2009, pp. 1303–
1306.

[7] H. Sundani, H. Li, V. Devabhaktuni, M. Alam, and P. Bhattacharya,
“Wireless sensor network simulators a survey and comparisons,” Inter-
national Journal of Computer Networks, vol. 2, no. 5, pp. 249–265,
2011.

[8] A. El-Mouaffak and A. E. B. El Alaoui, “Considering the
environment’s characteristics in wireless networks simulations and
emulations: Case of popular simulators and WSN,” in Proceedings
of the 3rd International Conference on Networking, Information
Systems & Security, ser. NISS2020. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3386723.3387821

[9] H. Wu, Q. Luo, P. Zheng, and L. M. Ni, “VMNet: Realistic emula-
tion of wireless sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 18, no. 2, pp. 277–288, 2007.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems,
2003, pp. 126–137.

[11] J. Albesa, R. Casas, M. T. Penella, and M. Gasulla, “Realnet: An
environmental wsn testbed,” in 2007 International Conference on Sensor
Technologies and Applications (SENSORCOMM 2007). IEEE, 2007,
pp. 502–507.

[12] L. P. Steyn and G. P. Hancke, “A survey of wireless sensor network
testbeds,” in IEEE Africon ’11, 2011, pp. 1–6.

[13] U. M. Colesanti, C. Crociani, and A. Vitaletti, “On the accuracy of
omnet++ in the wireless sensornetworks domain: simulation vs. testbed,”
in Proceedings of the 4th ACM workshop on Performance evaluation of
wireless ad hoc, sensor, and ubiquitous networks, 2007, pp. 25–31.

[14] X. Xian, W. Shi, and H. Huang, “Comparison of OMNET++ and
other simulator for WSN simulation,” in 2008 3rd IEEE Conference on
Industrial Electronics and Applications. IEEE, 2008, pp. 1439–1443.

[15] P. Nayak, “Comparison of routing protocols in WSN using netsim
simulator: LEACH vs LEACH-C,” International Journal of Computer
Applications, vol. 106, no. 11, 2014.

[16] S. Saginbekov and C. Shakenov, “Testing wireless sensor networks with
hybrid simulators,” arXiv preprint arXiv:1602.01567, 2016.

[17] S. Gaglio, G. Lo Re, G. Martorella, and D. Peri, “DC4CD: A Platform
for Distributed Computing on Constrained Devices,” ACM Transactions
on Embedded Computing Systems, vol. 17, no. 1, Dec. 2017. [Online].
Available: https://doi.org/10.1145/3105923

[18] ——, “WSN Design and Verification Using On-Board Executable Spec-
ifications,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 710–718, 2019.

[19] ——, “A Lightweight Middleware Platform for Distributed Computing
on Wireless Sensor Networks,” Procedia Computer Science,
vol. 32, no. 0, pp. 908 – 913, 2014, the 5th International
Conference on Ambient Systems, Networks and Technologies
(ANT-2014), the 4th International Conference on Sustainable
Energy Information Technology (SEIT-2014). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050914007108


