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Abstract: Transitioning to a circular economy is crucial for sustainable energy development; yet,
current energy supply chains lack comprehensive assessment tools. This study introduces the
Holistic Multi-Indicator Decision Support System (HMI_DSS), an innovative tool grounded in life
cycle thinking and advanced multi-criteria decision-making methodologies, including Entropy and
PROMETHEE II. The HMI_DSS quantifies and assesses sustainability and circularity in energy sys-
tems by employing 49 indicators, with a focus on energy efficiency and greenhouse gas emissions. A
case study on the rice straw energy supply chain for biogas production illustrates the tool’s effec-
tiveness, comparing a baseline scenario to an alternative. The results show that the global warming
potential (GWP) of the baseline is 122 gCO2eq/kWh, while the alternative is 116 gCO2eq/kWh.
However, the baseline scenario has lower energy consumption (1.72 × 107 MJ annually) than the
alternative (1.98 × 107 MJ). Overall, the alternative outperforms the baseline in terms of sustainability
and circularity. The HMI_DSS offers a flexible and robust framework for evaluating trade-offs in
energy systems, providing valuable insights for energy companies and researchers in adopting
circular economy principles to achieve sustainable development.

Keywords: decision support system; sustainability; circular economy; circularity; life cycle thinking;
multi-criteria decision-making

1. Introduction

Transitioning to the circular economy (CE) is essential for achieving sustainable devel-
opment [1,2]. A recent study [3,4] estimated that application of CE principles across the
EU economy could boost the gross domestic product (GDP) by 0.5% in 2030 and create
approximately 700,000 new jobs. There is also a clear business opportunity for companies.
Since manufacturing companies in the EU spend around 40% of their budget on materials,
adopting circular business models can increase their profits while also protecting them
from fluctuations in resource price. It is estimated that eco-design and waste prevention
could result in net savings of up to EUR 600 billion for EU companies while reducing
greenhouse gas emissions by 2–4% [5,6]. Furthermore, additional measures to enhance the
efficiency of resources by 30% by 2030 could create two million jobs and boost the average
GDP of the EU by almost 1%.
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Adopting circular business models (CBMs) is central to the transition to a CE [7]. The
application of CBMs focuses on using resources efficiently, reducing waste, and restor-
ing natural systems, thereby benefiting the economy, the environment, and society. By
incorporating circular principles, companies can move from the traditional linear “take-
make-dispose” paradigm to a more sustainable, robust, closed-loop system [3,7]. This
change requires designing products and processes for long-term use, remanufacturing,
refurbishing, recycling, and repurposing, decreasing material consumption and waste
generation. Adopting a CBM can result in numerous advantages, including cost savings
through waste reduction, increased competitiveness, greater resilience against resource
price volatility, a stronger brand image, and new revenue streams. The adoption of CBMs
also inspires innovation, promotes collaboration among stakeholders, and contributes to
achieving global sustainability goals, such as the United Nations Sustainable Development
Goals (SDGs) [1]. To successfully move to a CE, businesses must develop comprehensive
strategies incorporating product design, supply chain management, business model inno-
vation, and stakeholder engagement. In addition, ongoing adaptation, monitoring, and
enhancement are required to maximize the prospective benefits of a circular approach and
assure long-term success in this dynamic environment.

However, selecting the “best” alternative CBM for a company to improve its circularity
and also its sustainability is challenging because circularity and sustainability are measured
by using various indicators, including environmental, economic, social, recycling, reuse
and many others. For example, Azevedo et al. (2017) suggested an index to evaluate
manufacturing companies’ sustainability and circularity, which is composed of four envi-
ronmental, three economic, seven social, and four circularity indicators [8]. This index is
versatile and straight-forward, enabling the assessment of sustainability and circularity
practices in manufacturing companies. However, this index is used for the individual
company and cannot be used for the whole supply chain. Pollard et al. (2022) developed
circularity indicators to evaluate the CE performance of electrical and electronic manufac-
turers’ products [9]. These circularity indicators were divided into 25 environmental, nine
social, and six economic indicators. This study also considered the relationship between
indicators and the life cycle product stage. De Pascale et al. (2021) provided a complete
overview of CE indicators, considering 61 indicators in total: 14 indicators at the macro
level, 15 indicators at the meso level, and 22 indicators at the micro level [10]. In addition,
circularity indicators were also published by the European Commission (EC) [11] and the
Ellen MacArthur Foundation [12].

Some indicators assessing aspects of sustainability and circularity of different alterna-
tives are subject to conflict and trade-offs [13–15]. Options that are beneficial for the environ-
ment tend to sacrifice economic criteria, whereas options that are beneficial for the economy
tend to be less advantageous for the environment and society [13]. Furthermore, circularity
altenatives sometimes are not sustainable. The trade-off between cost-effective performance
and environmental sustainability is also mentioned in Gružauskas et al. (2018) [16], which
showed that a strategy which reduced transportation costs by 18.4% led to a 43% increase
in CO2 emissions.

In this context, decision support systems (DSS) based on the life cycle thinking (LCT)
approach are considered valuable tools for evaluating and selecting the optimal option
for the supply chain. De Luca et al. (2017) demonstrated three ways for combining life
cycle tools with multi-criteria decision analysis (MCDA) in agriculture for sustainability
assessments [13]. In the first way, the MCDA techniques were integrated into a life cycle
framework to enhance the results of sustainability evaluations. For example, MCDAs were
used to choose the scenarios, the functional unit, the impact categories for defining the
goal and the scope of the life cycle assessment (LCA). In addition, the typical elements of
MCDA, such as normalization and weighting, were applied to finalize the result of the
life cycle tool. In the second way, the life cycle results were used to provide information
for MCDAs. The third way was to fully combine life cycle tools and MCDA methods, in
which they were considered to be equally important. According to De Luca et al. (2018), life



Energies 2024, 17, 5179 3 of 31

cycle tools, including LCA, life cycle costing (LCC), and social life cycle assessment (SLCA),
were used to calculate sustainable indicator values [17]. Then, based on these indicator
values, the Analytic Hierarchy Process (AHP) approach was employed to evaluate the
overall sustainable level of the scenarios. Ekener et al. (2018) developed a decision-making
tool that combine the Multi-Attribute Value Theory (MAVT) technique with the Life Cycle
Sustainability Assessment (LCSA) approach to evaluate the sustainability performance of
products [18]. This study used LCSA to calculate life cycle impact indicators, and the MAVT
was used to weigh and rank these indicators. Ren & Toniolo (2018) and Ren et al. (2015)
employed LCC, LCA, and SLCA to gather data on the alternative hydrogen production
pathways concerning economic, environmental, and social criteria, respectively [19,20].
Based on the results of LCA and LCC, the data on the alternative hydrogen production
pathways concerning environmental and economic criteria was determined. SLCA was
used to define the data concerning the criteria in the social aspect. Subsequently, a decision-
making matrix of various alternatives and criteria can be founded. These studies used
the Decision Making Trial and Evaluation Laboratory technique for ranking alternatives.
Abu et al. (2021) proposed a framework that combines these approaches to evaluate and
prioritize sustainability options more effectively [21]. The paper examines how LCA can
provide comprehensive environmental data, while MCDA helps in balancing this data with
other criteria such as economic and social factor. Moro (2023) compared LCA methods
with durability parameters and MCDM methods for evaluating concrete mixtures [22].
It finds that supplementary cementitious materials improve concrete performance and
emphasizes the importance of reducing cement content, while MCDM methods provide
consistent rankings of concrete mixtures compared to variable results from LCA methods
with integrated durability. Torkayesh et al. (2022) presented a framework for integrating
LCA- Multi-Criteria Decision-making (MCDM) approaches to assess sustainable waste
management [23]. In this framework, the LCT approach was used to define criteria of sus-
tainability, scope, data gathering and sustainable impact while MCDM methods are used to
weigh criteria and rank sustainable waste management options. Lombardi & Todella (2023)
Integrated LCA with MCDM methods to have comprehensive environmental impact analy-
sis with systematic decision-support frameworks [24]. This integration allows for a holistic
evaluation of sustainability by assessing various environmental, economic, and social
criteria alongside traditional LCA metrics.

These decision-support tools in the literature have some limitations. These tools are
subjective and challenging to use for companies. For example, the tool developed by
Ren et al. (2015) used some qualitative indicators and compared pairs of indicators that
are based on expert judgements, which makes decision results variable depending on
the experts’ knowledge and experience [19]. De Luca et al. (2018) used AHP method for
weighting criteria, but this study employed 15 experts to expressing their subjective opinion
in pairwise comparisons of criteria [17]. Ekener et al. (2018) only focused on identifying
environmental indicators, while social and economic indicators were sourced from the
available literature, which might not exactly reflect the situation of the supply chain [18].
Furthermore, to the authors’ knowledge, no research considered both sustainability and cir-
cularity indicators. In addition, available studies only focused on describing methodology
development, not to mention the creation of a computational tool.

This work aims to address the lack of DSS tools that holistically evaluate and prioritize
circular supply chain alternatives within the energy context. By resolving conflicts and
trade-offs between sustainability and circularity aspects, and minimizing subjective bias, the
proposed DSS leverages a multi-indicator approach to provide a comprehensive framework
for decision-making. In this paper, authors present the development of this tool and
demonstrate its applicability in supporting sustainable and circular supply chain decisions.
The tool is called “HMI_DSS: Holistic Multi-Indicator Decision Support System”. In this
tool, the LCT approach is combined with multi-criteria methodologies, including the
Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II
and entropy methods. The HMI_DSS is a flexible tool for selecting the best alternative
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or scenario for a supply chain based on different sustainability and circularity aspects,
for example, choosing according to one of four aspects of environment, economy, society
and circularity, or total aspects. A set of 49 sustainability and circularity indicators has
been selected to use as criteria in this tool that aligns with the United Nations SDGs and
the European Commission’s guidelines for transitioning to a CE [3]. Furthermore, in this
paper, a new decision support framework has been also proposed for a company in the
supply chain. The objective of this methodology framework is to evaluate sustainability
and circularity of a company, including assessment of sustainability and circularity for
the present situation, and identifying the best sustainability and circularity alternative.
In this framework, the weighting indicators are taken in multiple ways, which can help
users analyze the sensitivity of sustainable alternatives according to indicator weight. By
using PROMETHEE II and entropy methods, the ranking process directly uses results
from the LCT approach. This is necessary to have a comprehensive assessment and reduce
subjective and expert-dependent decision-making. The HMI_DSS tool can be used for
guiding enterprises in the supply chain in the application of CE and sustainability models
based on a LCT approach and, the achievement of SDGs.

In summary, the results of this work is a new tool developed, that integrates the
PROMETHEE II method with multi-weighting techniques to provide objective and sub-
jective ranking results and adaptability to company-specific conditions. The key tasks
include constructing an indicator system aligned with SDGs and European Commission
guidelines, applying the tool in a case study of the rice straw supply chain, and addressing
data accessibility challenges. The results demonstrate the tool’s effectiveness in evaluating
sustainability and circularity, with suggestions for future improvements.

In the following sections, some issues relevant to the HMI_DSS tool are presented.
The methodology for developing the HMI_DSS tool is presented in Section 2. The main
features of the HMI_DSS tool are described in Section 3, including selecting sustainability
and circularity indicators, proposing HMI_DSS methodology framework, and designing
and creating software for the HMI_DSS tool. In Section 4, the paper presents a simple
application of the HMI_DSS tool to the rice straw supply chain for assessing and selecting
scenarios of circularity and sustainability. Section 5 presents a discussion on the strengths
and limitations of the HMI_DSS tool. Finally, Section 6 presents conclusions of paper.

2. Methodology for Developing HMI_DSS Tool

The HMI_DSS tool was developed in eight steps (Figure 1).

• Step 1 defines the main issue that needs to be addressed. The issue is to create a
tool for companies in supply chain to assess and select circularity and sustainability
alternatives that include the identification of sustainability and circularity indicators
and a methodology framework for DSS applied to a company.

• Steps 2 to 3 aim to divide sustainability and circularity indicators into groups according
to the LCT approach and then identify a specific formula for calculating the value of
each indicator.

• In step 4, the selection of the MCDM method for decision-making is carried out. This
selection considers the kind of indicators to be examined (qualitative and quantitative
indicators), the potential for addressing trade-offs, the representation of results (per-
formance score, ranking, visual interpretation, distance to target, probability), method
transparency, computational time, and data collection cost.

• Step 5 is related to the selection of the method for indicator weighting. The selection
of the method for indicator weighting is crucial and is guided by various criteria,
including the type of indicators (qualitative or quantitative), solving trade-off, reducing
subjectivity, analyzing sensitivity, and incorporating decision-makers’ preferences.

Several methods are considered, each with its advantages and disadvantages depend-
ing on the scenario:
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- Entropy Method: This method is highly objective and data-driven, making it suitable
for situations where quantitative data is abundant [25]. It minimizes subjectivity and
is efficient for analyzing data variability. However, it lacks the ability to incorporate
qualitative insights or expert judgment, which might limit its application in scenarios
requiring stakeholder engagement.

- AHP: AHP allows for the integration of expert input, which can be particularly
useful in complex scenarios that require qualitative assessments or when stakeholder
preferences need to be incorporated. While it handles trade-offs well [26], it can be
time-consuming and subjective, especially when used in larger, multi-criteria decision-
making environments. It’s ideal for situations where expert judgment is key, but
enterprises need to be prepared to invest time in the process.

- Fuzzy AHP: This method extends AHP by incorporating uncertainty, which is benefi-
cial in contexts where data or expert opinions are uncertain or imprecise [27]. However,
its complexity makes it harder to implement, requiring more advanced computational
tools and expertise, which might not be practical for all enterprises.

- Weighted Sum Model (WSM): This method is simple and easy to apply, making it suit-
able for small-scale or less complex decision-making processes [26]. However, it does
not handle trade-offs between conflicting criteria well, which limits its effectiveness in
more complex decision scenarios.

Figure 1. Steps of developing the HMI_DSS tool.

Enterprises with limited resources or data might prefer simpler methods like WSM
or AHP, while those with access to rich datasets and computational resources might find
Entropy or Fuzzy AHP more effective. By allowing for flexibility in method selection, the
tool can adapt to different enterprise needs and capacities.
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• Step 6 involves creating a methodology framework for a DSS with LCT approach
and MFA. This step entails considering utilizations of indicator calculation results
obtained by the LCT approach and MFA for MCDM methods to address two key
issues: weighting indicators and ranking alternatives. Based on these combinations,
the methodology framework is developed, adhering to the following requirements:
transparent presentation and the establishment of favorable conditions for developing
a flexible DSS tool.

• In step 7, the DSS tool is developed. First, this step involves designing the structure
of the DSS tool based on the methodology framework developed in step 6. Then, the
programming language is selected to be compatible with the mathematical formulas
and algorithms used in the calculation of these indicators and MCDM methods. This
selection is critical to ensure that the chosen language can accurately and efficiently
handle tasks such as matrix operations, statistical analysis, and optimization. Pro-
gramming languages like Python 3.12.7, MATLAB 2021b, R-4.4.1, or Julia 1.11 are
typically considered due to their strengths in scientific computing and data analysis.
These languages are widely used in scientific research and have extensive libraries for
numerical and statistical analysis, making them well suited for implementing indica-
tor formulas. In addition, these languages have large user communities, providing
access to a wealth of resources, tutorials, and libraries that facilitate development and
problem solving. After that, the programming process created DSS tool is taken. This
process considers some criteria of the DSS tool, such as facilitating easy collection
and importation of data, enabling monitoring and storage of results, and providing
visibility into each calculation step. The result of this step is a new DSS tool created.

• The final step is the testing and validation of the tool. In here, the DSS tool is applied
to a specific case study. The obtained results are used to test how the tool works. The
weaknesses and strengths of the tool are also assessed.

The methodology for developing the HMI_DSS tool builds on the foundational struc-
ture of existing DSS and MCDM tools [13,22,24,28], specifically addressing key limitations
and gaps in sustainability and circularity assessments. Current tools often exhibit inflex-
ibility in adapting to varying operational contexts and fail to integrate both qualitative
and quantitative indicators effectively. For example, many tools are rigid in their indicator
selection, which can hinder firms from making context-specific decisions. The primary
objectives of the HMI_DSS tool are to enhance adaptability, ensure comprehensive indicator
coverage, and improve user-friendly applications for firms across different sectors. Key
principles guiding its development include (1) integrating sustainability and circularity
indicators that align with global frameworks such as the UN SDGs and EC guidelines,
(2) enabling user-defined customization of indicator weightings to reflect specific organi-
zational priorities, and (3) providing a balanced inclusion of qualitative and quantitative
measures to ensure actionable and context-relevant insights. These improvements aim to
address the limitations of existing tools by offering greater flexibility, transparency, and
practical relevance for decision-makers.

3. Developing Holistic Multi-Indicator Decision Support System Tool—HMI_DSS

The HMI_DSS tool is programmed by GUI and Script of Matlab. Matlab GUI has been
used to design User interfaces [29], while the Script has been employed to program the
main program and subprograms [30]. After programming, the HMI_DSS tool is created.
Some main points of developing this tool are presented in sub-sections below, including
the following:

Defining sustainability and circularity indicators of the company within the supply
chain (Step 1–3 of Figure 1);

Proposing the decision support methodology framework of the HMI_DSS tool (Step 4–6
of Figure 1);

Creating and testing the HMI _DSS tool (Step 7,8 of Figure 1).
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3.1. Defining Company Sustainability and Circular Economy Indicators for Use in the
HMI_DSS Tool

This tool uses 49 indicators for evaluating sustainability and circularity concerning
the achievement of the SDGs with the EC’s guidelines transitioning to a CE [31]. To choose
this set of indicators, sustainability indicators were collected from sources such as SDG,
ReCiPe midpoint [32], UNEP/SETAC (2009) [33], and relevant literature on sustainable
assessment and decision-making [20,31,34–40]. Circularity indicators were drawn from
additional literature and the EC’s indicator set [9,11,41–44].

A systematic process for constructing the indicator system consists of four main
steps. First, sustainability and circular economy indicators are collected from sources
such as the SDGs, ReCiPe, and UNEP/SETAC. This ensures a solid foundation based
on recognized frameworks and standards. Next, these indicators are evaluated for their
applicability to companies, with a focus on prioritizing quantitative indicators and ensuring
data accessibility. In the third step, the indicators are carefully reviewed for their relevance
to the characteristics of companies in the energy sector, with irrelevant indicators being
excluded. During this phase, any indicators, that were deemed irrelevant based on specific
criteria, such as lack of direct applicability or insufficient data availability, were excluded.
Finally, the indicators are standardized and consolidated, leaving 49 indicators to be used
for evaluating the DSS of these companies.

The selection was influenced by the indicators’ applicability at different levels—micro,
meso, and macro—and their potential to provide actionable insights. A balance between
qualitative and quantitative indicators ensures both measurable data and a contextual
understanding of sustainability challenges. Data availability and quality were critical to
ensure that selected indicators deliver reliable, practical assessments, addressing both
operational and strategic needs [45]. The explanations for each indicator are provided in
the Supplementary Materials, Table S1.

Furthermore, the chosen indicators address sustainability and circularity challenges
specific to supply chains by reflecting key environmental, social, and economic risks. For
example, supply chain disruption and economic viability are captured through indicators
that assess resource dependency and operational resilience. Additionally, flexibility in
weighting allows companies to prioritize certain risks, such as economic risks in highly
competitive markets or environmental risks in resource-intensive industries.

The indicators defined within the HMI_DSS tool are crucial for guiding decision-
making by providing insights into sustainability and circularity dimensions. Their selection
aligns with the United Nations SDGs and European Commission guidelines, ensuring
practical relevance across various sectors. Organizations can prioritize indicators based on
their operational contexts; for instance, firms with high-energy consumption may focus on
energy-related indicators, while those emphasizing social responsibility might highlight
measures assessing social impact. This adaptability allows the tool to yield actionable
insights tailored to specific circumstances.

Moreover, the flexibility in adjusting indicator weightings enhances decision-making
capabilities, enabling companies to align their sustainability goals with practical, data-
driven choices. By modifying the importance of specific indicators, firms can effectively
navigate the complexities of sustainability assessments, ensuring that decisions are in-
formed by a balanced consideration of environmental, social, and economic factors. This
approach provides a balanced consideration of environmental, social, and economic factors,
ultimately delivering a robust framework for organizations to improve their sustainability
performance while managing risks and adapting to evolving market conditions.

To assess sustainability indicators (environment, society, and economy), LCT tools are
popularly employed, including LCA, LCC, and SLCA. Meanwhile, Material Flow Analysis
(MFA), LCA, and Input–Output (IO) analysis are important methods used to calculate
circular economy indicators [46,47]. In this paper, LCA, SLCA, LCC, and MFA are chosen
for developing the HMI_DSS tool. According to the potential of applying these methods for
defining indicator values, 49 selected indicators are re-divided into four groups: circularity,
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environment-energy, economy, and society (Figure 2), corresponding to the MFA, LCA,
LCC, and SLCA methods.

Figure 2. Company circularity and sustainability indicators using in HMI_DSS tool.

3.2. Proposing Decision Support Methodology Framework of the HMI_DSS Tool

In the proposed methodology framework (Figure 3), the LCT approach has been
employed to collect data for determining the indicator values of alternatives. Specially, the
LCA approach has been employed to determine environmental impacts for the alternatives
of the supply chain, i.e., climate change, particulate matter formulation, human toxicity,
land use, and fossil depletion [37,39,48–51]. The LCC approach has been used to compute
economic criteria aspects of alternatives, such as net present value (NPV), total cost, and in-
ternal rate of return (IRR) [36,38–40,52,53]. The SLCA approach has been used to determine
social criteria data for alternatives, i.e., fair salary, job creation, working hours and social
investment [28,54–59]. Besides that, the Material Flow Analysis (MFA) approach has been
employed to calculate the circularity criteria data for alternatives based on the material
flows [60–63]. The results of these approaches can be used for evaluating the circularity
and sustainability of a company in the present situation or to create the decision-making
matrix that is used in MCDM methods for weighting indicators and ranking alternatives.

Because of the requirement of evaluating various sustainability and circularity indica-
tors and the potential for solving their trade-offs, MCDM methods are considered suitable
choices. Techniques such as AHP, Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), analytic network process (ANP), PROMETHEE, and VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) are feasible for ranking alternatives, while
AHP, expert judgment, and Entropy methods can be used for weighting indicators.
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Figure 3. Methodology framework of DSS based on life cycle approach.

Although there are various MCDM methods for ranking alternatives, this study
selected the PROMETHEE II method for developing the methodology framework for the
following reasons:

• PROMETHEE II directly uses the values of indicators for ranking alternatives. This
is a strong point of these techniques compared to AHP and ANP, which transfer
indicator values into the Saaty scale. The Saaty scale typically consists of values from
1 to 9, with each value representing a different level of importance or preference [64],
and the process of transferring indicator values into the Saaty scale is subjective.
Therefore, using PROMETHEE II is easier and more advantageous for programming
and reducing subjectivity in decision-making.

• The PROMEETHEE II method is relatively simple, both in concept and practice,
compared to the other MCDM methods [65].

• PROMETHEE’s lack of weighting ability can be solved when combined with other
methods. It facilitates the use of a variety of weighting methods for sensitivity analysis.

• PROMETHEE is considered an effective approach for prioritizing and choosing among
a limited set of option actions, while considering multiple conflicting criteria [65].

Weight selection is a pivotal aspect of the MCDM technique that allows for the incorpo-
ration of stakeholders’ preferences into the process of decision-making. It had a profound
impact on the resulting decisions. In this study, the Entropy method and user/decision-
maker definition were selected for weighting indicators based on some points:
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• The Entropy method is also a relatively simple ranking method, both in concept and
practice, compared to the other MCDM methods.

• Using the Entropy method promotes objectivity and reduces the risk of bias by dis-
tributing weights based on the information entropy of indicators (directly using values
of indicators like PROMETHEE II).

• Choosing the Entropy method to weight the indicators can be appropriate because
it does not require expert judgment, which is subjective and sometimes difficult for
companies to obtain. By directly using values of indicators, the Entropy method also
gives objective weighting factor results.

• By using the Entropy method, decision-makers can ensure that no single indicator
overly influences the decision outcome. Instead, the method promotes a balanced
consideration of all indicators, leading to more robust and fair decision-making.

• Unlike the Entropy method, user definition allows decision-makers to explicitly
express their subjective judgments and priorities regarding the importance of
different indicators.

• If only using the Entropy method for weighting method, it is also difficult to perform
sensitivity analysis by changing indicator weights. Meanwhile, user definition offers
flexibility and customization, as decision-makers can tailor the weights to fit with their
specific decision context and objectives.

To sum up, in this framework, for identifying criteria (indicator) weights, the Entropy
method or user/decision-maker definition has been used, while the PROMETHEE II
method has been utilised for ranking alternatives [66–70]. The Entropy method is a multi-
criteria technique that is useful for evaluating and making decisions involving multiple
factors. This method was developed based on Shannon’s (1948) information entropy
principle in the field of information theory [71]. Entropy can be employed to measure the
uncertainty (or variability) of information. The Entropy method allows to identify weights
of criteria without decision-makers intervention [25,72–75]. PROMETHEE II is an extension
of the original PROMETHEE method, designed to provide a comprehensive alternative
ranking in MCDM issues [66–70]. PROMETHEE II maintains its focus on assessing and
prioritizing alternatives according to multiple criteria while accounting for decision-maker
preferences [70]. In this framework, Entropy only uses a decision-making matrix to weight
indicators while the PROMETHEE II uses both decision-making matrix and indicator
weights to rank alternatives.

The methodology framework also shows that, before ranking alternatives by PROMETHEE
II, the selection of weight values must be carried out. The value of the index weight
significantly influences the decision-making outcome. When choosing objective weight
values, the decision outcome will be more accurate and objective. In this methodological
framework, selecting index weights involves two options. One option is to choose index
weights using the Entropy method for calculation; the second is to select index weights
according to the decision-maker.

When selecting the Entropy method to identify index weights, the value of the weights
is considered objective due to the method’s inherent impartiality and reliance on mathemati-
cal principles (details in Section 3.3.3). This method objectively assigns weights to indicators
based on the variability and uncertainty present in the data, rather than relying on subjec-
tive judgements or preferences of individuals. By considering the inherent characteristics
of the data without bias towards any specific criteria, the Entropy method ensures fairness
and objectivity in the determination of indicator weights. When PROMETHEE II uses these
weights for ranking alternatives, the ranking results ensure fairness in contributions from
the indicators and are considered objective.

Conversely, when the second option is selected, the weights are completely defined due
to the decision-maker’s knowledge and preferences. Therefore, the indicator weights are
highly subjective. In this case, the decision-maker’s inclinations toward specific evaluation
indicators will heavily influence and potentially skew the final decision. However, in this
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study, this option is mainly used for sensitivity analysis based on changes in the weights of
the indicators.

Compared with Torkayesh et al. (2022) [23] and other studies (Section 1), this method-
ology framework is well-suited for evaluating both sustainability and circularity, providing
a higher level of comprehensiveness. The selected MDCM method directly takes advantage
of the calculation results of the LCT approach for ranking. Thus, the results of the ranking
are objective and reduced dependence on expert judgements. In addition, this framework
allows for the selection of different weighting methods (Entropy or decision-maker defini-
tion). This helps users to have a more comprehensive assessment when choosing the best
alternative because sensitivity analysis is easily performed by changing indicator weighting.
This also allows using expert opinions or decision-maker expectations for ranking if it is
necessary. Furthermore, this framework also allows not only ranking alternatives but also
calculating the indicators of situational status for sustainability and circularity assessment.

3.3. Creating HMI _DSS Tool

To program the HMI_DSS tool, a structure of software for the DSS tool was built.
The structure of a software system refers to the organization of the system into distinct
components and the relationships that exist among these components [76]. In this study,
the structure has to cover all methods and functions used in the proposed framework. It is
also organized to effectively program and easily monitor the results of the calculated steps.
This structure includes three components, including a User interface, a Main-program, and
sub-programs. The DSS tool structure is reported as shown Figure 4.

Figure 4. Structure of DSS tool-HMI_DSS.

Figure 4 reveals the relationship between components: The User interface directly
connects with the Main-program to perform selections and monitor calculation results; the
sub-programs link to the Main-program to perform calculations of indicators and ranking



Energies 2024, 17, 5179 12 of 31

alternatives. Sub-programs are categorized into two groups, including sub-programs
used to calculate indicators and sub-programs relevant to ranking alternatives. There are
two calculation options in the Main-program, including the calculation of indicators for
the present situation and ranking alternatives. To calculate sustainability and circularity
indicators of the current situation for the supply chain, Main-program uses indicator
calculation sub-programs. Meanwhile, indicator calculation and ranking sub-programs are
employed by the Main-program to perform the ranking of circularity and sustainability
alternatives. In addition, Figure 4 also shows that importing input data and exporting
results are performed in the Main-program.

3.3.1. Designing User Interface

The User interface is designed for selecting calculation options, indicator types, prefer-
ence function of PROMETHEE II, weighting criteria, and result display. The DSS tool User
interface is presented in Figure 5. The left corner of the User interface is used for selection.
Specifically, there is a text box to choose the calculation options by typing 0 or 1. If users
want to calculate present situation indicators, 1 is typed in this text box. Meanwhile, 0 is
typed for ranking alternatives. There are four click boxes to select the sustainability and
circularity indicators. The click box is also used to choose the method of weighting indica-
tors. In addition, the text box for selecting the preference function of the PROMETHEE II
method is mounted in this corner. This method has six preference function, which are pro-
posed by Brans and Vincke (1985) [77] (usual, V-shape, U-shape, linear, level, and Gaussian
function) [66]. These functions are used to aggregate the user preferences on each criterion.
The right side of the User interface is used to monitor the indicator calculation results of
the supply chain’s current situation or ranking alternatives. The results are displayed in the
middle-bottom of the User interface. The best alternative is also shown at the bottom of the
User interface. The calculating, reset and exit buttons at the bottom of User interface are
used to compute, reset, and exit the program. Additionally, the ranking result is presented
in graphical form.

Figure 5. User interface of HMI_DSS tool.

The User interface will appear when the user runs the HMI_DSS tool. The application
process of the HMI_DSS tool involves the following processes, as shown in Figure 6a. The
selection of data from the Excel-2016 file for calculation is shown in Figure 6b.
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Figure 6. (a) Guide to using the HMI_DSS tool, (b) Selecting data for importing.

3.3.2. Designing Main_program

The Main_program is designed to import input data, perform calculations of indicators
and ranking alternatives, and export results. For carrying out the calculation options, the
input data, including numbers and text formats, is imported from Excel files. The data
for indicator calculation includes the supply chain inputs/outputs and the specific impact
factors of each indicator corresponding to each input and output (Figure 6b). Additionally,
for calculating economic indicators, some general information must be included in the
Excel file, such as life span, discount rate, etc. The input data for indicator calculations is
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organized in four Excel files corresponding to four indicator groups, such as environmental,
economic, social, and circular indicators. Each file in Excel contains two main sheets of data:
the amount of input or output and specific impact factors of indicators. The imported data
are also used to rank alternatives if users use weighting indicators from external sources
to present their expectations. The importing of data is carried out in the Main-program
according to selection at the User interface. After importing input data, the calculations are
carried out by using sub-programs.

The Main-program also exports calculation and ranking results to an Excel file and
displays them in the User interface. For example, the resulting file of situation calculation
includes five sheets, each sheet containing the results of the total, the environmental, the
social, the economic, and the circularity indicators. In the environmental indicator sheet,
the indicator results of each input or output are stored in a row, so users can monitor and
calculate impacts for stages of the life cycle (if they want). This is also similar to social and
circularity sheets. In the economic sheet, the costs are shown in columns corresponding to
each input or output and the sum of them, including initial, operation, maintenance and
fuel costs. Additionally, the cash flow of a project’s lifetime is also present when economic
indicators are calculated. Furthermore, the ranking result file consists of the indicator value
of the alternatives, the decision matrix, the normalization matrix, the criterion weights, and
the outranking results. Each result is presented on an individual sheet. Therefore, users
have more advantages in assessing and checking results.

3.3.3. Designing Sub-Program for Calculating Indicators and Ranking Alternatives

The sub-programs in this tool are divided into two groups (Figure 4). One includes
sub-programs for the indicator calculation: environmental, economic, social and circularity
indicators. In this paper, these indicators are calculated for case study based on data
collected from the rice straw supply chain in Northern Italy, applying the LCT approach
and MFA. These data are sourced from Main-program. The calculation of these indicators
not only provides an overview of environmental impacts but also assesses economic and
social efficiency, and the contribution to CE models. Another one comprises sub-programs
for ranking alternatives and weighting indicators. This ranking is performed using MCDM
methods, such as the Entropy and PROMETHEE II methods, allowing for optimal decision-
making by balancing environmental, economic, social, and circular factors. In this paper,
the results from the indicator calculations for the rice straw supply chain are used as
inputs for these sub-programs. The output of the sub-programs provides the scores of the
alternatives. All of them were programmed in Matlab Script. The mathematical basics for
programming sub-programs are described as follows:

1. Calculated indicator sub-programs

The sub-programs for calculating indicators are programmed based on formulas to
identify indicators’ values. For example, environmental indicators can be defined using the
input or output and specific impact factors, as shown in Equation (1).

ik = ∑N
i=1 ∑Mi

j=1 IFkij.mij (1)

Here, the variables are defined as follows:
Ik—Environmental indicator k (unit of indicator k).
IFkij—Specific impact factor for environmental indicator k of output or input data j of

stage i of the supply chain (unit of indicator k per unit of output or input).
mij—Amount of inputs/outputs j of stage i.
N—Number of stages in the supply chain.
Mi—Number of inputs/outputs/emissions of stage i.
Other equations for calculating the remaining indicators are presented in the Supple-

mentary Materials.
Four indicator calculation sub-programs were created for the HMI_DSS tool that

correspond to environmental, economic, social, and circularity indicators. This makes
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the HMI_DSS tool more flexible in terms of indicator selection priorities in assessment. It
also gives users an advantage in collecting and preparing data for calculation when each
indicator category is based on an individual methodology.

The LCT and MFA results are used to establish the matrix of alternatives and indicators,
which is called the decision-making matrix.

X11 X12 · · · X1n
X21 X22 · · · X2n
· · · · · · · · · · · ·
Xm1 Xm2 · · · Xmn


In this matrix, X11 to Xnm are the values of indicators of alternatives.

2. Weighting and ranking sub-programs

The weighting and ranking sub-program are programing based on Entropy and
PROMETHEE II methods.

a Entropy method

The Entropy method is based on information theory, quantifying uncertainty by
analyzing the distribution of values across indicators. It identifies indicators with significant
variation, thereby providing valuable information while minimizing subjective bias by
relying solely on data instead of personal preferences. Weights are assigned based on the
data’s inherent characteristics, ensuring that indicators that are more variable receive higher
weights. This results in a balanced, data-driven approach that enhances decision-making,
accurately reflecting the true impact of each indicator without preconceived biases.

This method requires the declaration of m alternatives and n indicators. The evaluation
of the indicator j in the alternative i is represented by Xij. In this paper, Xij is provided by
the decision-making matrix.

First, the evaluated value Xij is normalized. The normalized value of the indicator j in
the alternative i, denoted as pij, is calculated as follows [78]:

pij =
Xij

∑m
i=1 Xij

with (j = 1, 2, . . . n) (2)

In the entropy weighting method (EWM), the entropy value Ej of the indicator i is
defined as follows [78]:

Ej = − 1
ln(m)∑

m
i=1 pijln(p ij

)
with (j = 1, 2, . . . n) (3)

In fact, assessment utilizing the EWM, Ej is typically set when pij = 0 for the advantage
of calculation.

The entropy value Ej ranges from 0 to 1. The difference in the indicator j of assessed
alternatives is largest, when Ej approaches 1 and vice versa. In the EWM, the weight
calculation is expressed by the following equation [78]:

wj =
1 − Ej(

n − ∑n
j=1 Ej

) with (j = 1, 2, . . . n) (4)

b. Method of PROMETHEE II

The ranking process of the PROMETHEE II technique includes the following steps:
Step 1 aims at normalize the matrix of decision-making to range 0–1 by using the

following equations [65]:

Rij =
Xij − Xijmin

Xijmax − Xij min
If criteria j is positive. (5)
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Rij =
Xijmax − Xij

Xijmax − Xij min
If criteria j is negative. (6)

where Xij is the evaluation value, which is provided by the LCT tool or MFA, i is the
alternative number i = {1, 2, . . ., m} and j is the criteria number j = {1, 2, . . ., n}.

Step 2 involves calculating the preferred degree value for each criterion in every
possible decision pair. gj(a) is the value of indicator j in alternative a and gj(a) = Raj. dj (a, b)
is the difference between indicator j of the two alternatives a and b.

dj(a, b) = gj(a)− gj(b) (7)

Pj (a, b) represents the priority degree of indicator j for two alternatives a and b. The
preference functions that are employed to calculate these priority degrees are identified as
follows [66]:

Pj(a, b) = F
(
dj(a, b)

)
with ∀x ∈ (−∞, ∞), F(x) ∈ [0, 1] (8)

Step 3 refers to identifying all criteria priority degrees for each pair of possible de-
cisions. For each possible choice pair, a priority index is computed. C represents the set
of indicator and wj is the weight of indicator j. In this case, the priority index for two
alternatives a and b is identified using the following calculation [65]:

π(a, b) = ∑jϵC wj × Pj(a, b) (9)

Step 4 focuses on calculating the outranking flows. The positive and negative out-
ranking flow (φ−(a) and φ+(a)) are computed for each alternative a when it is compared
with remaining alternatives. A represents the set of the alternatives and n is the number of
alternatives. The positive (and negative) outranking flows of the alternative a are defined
using the following equations [65]:

φ+(a) =
1

n − 1∑xϵA π(a, x) (10)

φ−(a) =
1

n − 1∑xϵA π(x, a) (11)

In the last step (Step 5), the ranking of all alternatives is established using the net
outranking flows. The positive (and negative) outranking flows are used to determine
the net outranking flows for each alternative. φ(a) represents the net outranking flow for
alternative a, which is calculated as following equation [65]:

φ(a) = φ+(a)−φ−(a) (12)

A higher net outranking flow value for alternative a indicates that the alternative a is
more favorable.

3.3.4. Creating and Run Software of DSS Tool

After programming with Matlab GUI and Script, the DSS software HMI_DSS-V1 is
generated as an executable (exe) file. The DSS tool comprises several files located in the
same folder, including.exe files for running the tool, Excel files used for data input following
a template structure, and some text files for the guide.

4. Testing HMI_DSS Tool
4.1. Selecting a Case Study

The case study described in this work concerns an anaerobic digestion (AD) plant
using rice straw as a feedstock to produce biogas in Northern Italy. The biogas is, in
turn, transformed into electricity and heat. The supply chain based on this AD plant
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was selected to apply the HMI_DSS tool for sustainability and circularity assessment for
the baseline configuration and the proposed alternatives. Figure 7 shows the baseline
configuration (A0) for energy production from the rice straw assessed in the case study. The
rice straw is initially collected and transported to the AD plant. Before feeding to the AD
plant, the rice straw, with 91.4% total solids, is pretreated in a steam explosion (SE) unit to
partially deconstruct the biomass, thus increasing the potential of biogas production up to
450 m3/ton of straw with a methane content of 53% by volume. After the SE treatment, the
straw, with 37.86% total solids, is mixed with animal manure to reach the optimal ratio of
C/N required for the AD plant feeding. Water is also introduced to the digester to reduce
the total solid content of the slurry to 15%.

Figure 7. The baseline configuration of the rice straw supply chain.

The raw biogas is then cleaned by sodium hydroxide scrubbing for sulfur removal
and utilized to produce energy (heat and electricity) in a Combined Heat and Power (CHP)
plant. The electricity generated is partly used for self-consumption in the AD and CHP
sections, with the surplus being supplied to the local electrical grid.

The digestate co-produced in the AD section is extracted from the bottom of the
digester using a centrifugal shredder pump and sent to a separator. The output includes a
solid fraction (15% w/w) and a liquid one (85% w/w). Both digestate fractions are kept in
open concrete tanks and used as biofertilizers.

In the alternative option (A1), the raw biogas is sent to a separation section to produce
biomethane and purified liquid CO2, intended for the domestic market. In the considered
scenario, the biomethane is only fed to the CHP section. A further option involves the
injection of biomethane into the local natural gas grid, but it was not included in this
study due to the strong dependence on incentives that can vary a lot in different countries,
making the results not widely usable.

4.2. Examination of Sustainability and Circularity of Rice Straw Supply Chain by DSS_HMI Tool

To calculate the indicators, input data for the HMI_DSS tool was collected from the
plant site, Ecoinvent database [79] and literature [35,80,81]. The data collection process
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started with collecting documents describing the technological processes of the plants.
Technical specifications were taken from the plant introduction and Ecoinvent, while data
on production process parameters was taken directly from the plant.

Data was categorized as input or output to calculate the respective indicator groups.
Impact factors for each input and output were sourced from Ecoinvent and literature. For
instance, greenhouse gas emissions (GWP) at the harvesting and collection stages were
taken from Ecoinvent [79] and literature [35,80–82]. Before being processed in the AD, the
biomass undergoes pre-treatment via steam explosion (SE). Data on SE processes were
provided by Leona’s plants and the Teofipol plant in Ukraine [83]. With environmental data,
the data on the input/output amount of the stage-treatment stage were collected from the
plant site database (Table 1). Material data for AD plant construction were collected from
Ecoinvent (Table 2) and then scaled to real AD plant size [35]. This transparent approach
ensures that all values used in calculating indicators are backed by credible, traceable
sources, enhancing the reproducibility and reliability of the analysis.

Table 1. Amount of input/output of pretreatment stage.

Input/Output List of Input/Output Unit Amount Ref.

Infrastructure Steam explosion unit 1.00 × 100 [83]
input Biomass Block tone/year 6.00 × 103 [83]
input Electricity kWh/year 6.31 × 105 [83]
input Water for pretreatment tone/year 1.20 × 104 [83]
input Diesel MJ/year 6.55 × 105 [83]

output Rice straw after pretreatment tone/year 1.75 × 104 [83]
output Packaging material waste tone/year 2.25 × 10−1 [80–82]
output Loss of biomass tone/year 6.00 × 101 [83]
output Plastic waste tone/year 1.13 × 101 [80–82]
output Wastewater tone/year 3.66 × 103 [83]

Table 2. Data of AD plant construction with a capacity of 170 kWel AD-CHP, adapted from [79].

Input AD Amount
(per MWh)

Concrete 8.50 × 10−3 m3

Reinforced steel 7.10 × 10−1 kg
Chromium steel 8.50 × 10−4 kg

Copper 8.00 × 10−3 kg
Laminated timber 6.00 × 10−4 m3

High-density polyethylene 3.00 × 10−3 kg
High-impact polystyrene 3.70 × 10−4 kg

Polyvinyl chloride 5.00 × 10−3 kg
Synthetic rubber 2.00 × 10−2 kg

The calculation of the present situation is shown in Table 3. The results of the baseline
situation indicate 49 indicators of environmental, economic, and social aspects and the
circularity rate. For example, the GWP of the supply chain is 1.46 × 106 kgCO2eq/year or
122 gCO2eq per kWh of electricity, while the acidification potential (AP) of rice straw in this
study is 9.47 × 103 kg SO2 eq per year (0.797 gSO2 eq per kWh). The economic indicator
results reveal that the internal rate of return (IRR) for the rice straw supply chain case study
in Northern Italy is 6.62%. In addition, the net present value (NPV) for this case study is
EUR 1.10 million, calculated for the entire lifespan of the project. The relatively low NPV is
due to the high investment cost of the steam explosion unit and the significant labor costs
associated with its operation. Furthermore, the results of the social indicators also show
that the rate of informal labor is high (82.10%) because most of them are farmers who plant
and harvest biomass. The results also show that child labor is zero, because there is no data
recorded (child labor is prohibited by law Legge 17 Ottobre 67). The circularity indicators
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results show that the recycling rate out of all waste is 70.77% because the digestate of AD
plant is used as biofertilizer. On the other hand, the circular material use is at 80.61%, and
the proportion of material losses in primary material is 14.61%.

Table 3. The value of the indicators for the current status of rice straw supply chain.

No Indicators Unit Current Status

1 Water consumption m3 4.06 × 106

2 Primary energy consumption MJ 1.72 × 107

3 Global warming potential kgCO2eq 1.46 × 106

4 Particulate matter kg PM2.5 eq 1.72 × 103

5 Eutrophication, marine kg N eq 9.84 × 102

6 Ozone depletion kg CFC11 eq 1.48 × 101

7 Ionizing radiation human health kg U235 eq 9.96 × 105

8 Ionizing radiation ecosystem kg CTU eq 1.85 × 10−1

9 Photochemical ozone formation kg NOx eq 1.25 × 105

10 Acidification kg SO2 eq 9.47 × 103

11 Eutrophication, freshwater kg P eq 6.00 × 102

12 Eutrophication, terrestrial mol N eq 1.09 × 105

13 Human toxicity, non-cancer kg 1.4 DCB 1.08 × 107

14 Ecotoxicity, marine kg 1.4 DCB 4.59 × 104

15 Ecotoxicity, freshwater kg 1.4 DCB 3.65 × 104

16 Human toxicity, cancer kg 1.4 DCB 8.60 × 103

17 Land use/transformation m2a 5.11 × 104

18 Abiotic depletion potential kg Cu eq 2.22 × 104

19 Primary renewable energy consumption sharing % 5.84 × 101

20 Total cost million Euro 2.59 × 101

21 Revenue million Euro 2.17 × 100

22 NPV million Euro 1.10 × 100

23 IRR % 6.62 × 100

24 Circular investment million Euro 1.42 × 100

25 The proportion of employees with education and training out of total employment % 2.44 × 101

26 The proportion of women in managerial positions out of total employment % 1.41 × 101

27 The proportion of informal employment out of total employment % 8.21 × 101

28 Fair salary times 1.07 × 100

29 Child labour risk hour 0.00 × 100

30 Fatal and non-fatal occupational injuries case 5.60 × 100

31 Research and development expenditure as a proportion of revenue million Euro 2.05 × 10−2

32 Social investment million Euro 3.20 × 10−1

33 Number of health workers in company person 1.00 × 10−1

34 Forced labour person 1.00 × 101

35 Local employment person 8.00 × 101

36 Job creation man year 2.11 × 101

37 Income generated by jobs million Euro 5.06 × 10−1

38 Working hours hour 5.27 × 104

39 Employee participation in the circular model person 7.40 × 101

40 Self-sufficiency of raw materials tone 9.91 × 101

41 Generation of waste tone 3.51 × 104

42 Percentage of recycling rate of all waste % 2.42 × 102

43 Percentage of recycling rate of plastic waste % 2.50 × 10−2

44 Percentage of recycling rate of paper and paperboard % 2.05 × 10−4

45 Circular material use rate % 8.06 × 101

46 The proportion of material losses in primary material cycles. % 1.46 × 101

47 Use of raw materials for producing one unit of the main product tone per kWh 5.05 × 10−1

48 Reuse, manufacturing process tone 4.49 × 104

49 Food waste tone 0.00 × 100
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Furthermore, the result calculation is exported to an Excel file, which allows users to
monitor indicator values for all life cycle stages. For example, the GWP can be calculated for
each stage, as shown in Table 4. The results show that the hotspot point of the GWP indicator
is pretreatment (45.92%) because this stage uses a lot of water and energy for processing.
Comparing the existing reference with a similar process system (AD-CHP) [35,84], the
value of the indicators calculated by the HMI_DSS tool is reliable to assess the supply chain
and provide helpful evidence for decision-making. For example, the GWP of the AD-CHP
system calculated by Fusi et al. (2016) [35] ranges from −39 to 408 gCO2eq per kWh, while
in this paper, it is 122 gCO2eq per kWh. The IRR of this rice straw supply chain is 7.57%,
while the AD-CHP system carried out by Pasciucco et al. (2023) is 5.94% [84].

Table 4. The value of the GWP indicator in life cycle stages.

Life Cycle Stage Amount Unit Rate Note

Collection and harvesting 1.43 × 105 kgCO2eq/year 9.83%
Transportation and storage 3.49 × 104 kgCO2eq/year 2.39%
Pretreatment (SE) 6.70 × 105 kgCO2eq/year 45.92%
Conversion (AD plant) 2.84 × 105 kgCO2eq/year 19.46%
Cleaning biofuel 1.98 × 100 kgCO2eq/year 1 × 10−4%
Waste management −1.64 × 105 kgCO2eq/year −11.21% Negative value by fertilizer avoided
Energy production (CHP plant) 4.90 × 105 kgCO2eq/year 33.61%
Total 1.46 × 106 kgCO2eq/year 100.00%

4.3. Ranking Alternative
4.3.1. Ranking with Indicator Weighting by Entropy

In this analysis, the Entropy method is utilized to rank alternatives when multiple
options are considered. The scenarios include (a) all indicators, (b) only environmental,
(c) only economic, (d) only social, (e) only circularity, and (f) both environmental and
economic indicators. The results of the ranking for all six scenarios are presented in
Figure 8. Specifically, Figure 8a monitors ranking results for scenario (a). In this scenario,
the outranking value of A0 is −0.9728 while A1 is 0.9728, indicating that A1 is better than
A0. Figure 8a also shows a diagram of the outranking results. In addition, the value of
indicators is also shown in the right part of the User interface. The result of indicator
calculation and indicator weighting factors by Entropy for scenario (a) are also shown in
Table 5. Meanwhile, Figure 8b–f present diagrams of outranking for different scenarios.

Table 5. Result of calculating alternative indicators and weighted factors by Entropy method.

No Indicators Unit Current Status
(A0)

Alternative
Option (A1)

Weighted
Factors by
Entropy

1 Water consumption m3 4.06 × 106 4.06× 106 1.30 × 10−9

2 Primary energy consumption MJ 1.72 × 107 1.98 × 107 1.51 × 10−2

3 Global warming potential kgCO2eq 1.46 × 106 1.21 × 106 2.84 × 10−2

4 Particulate matter kg PM2.5 eq 1.72 × 103 1.70 × 103 4.99 × 10−5

5 Eutrophication, marine kg N eq 9.84 × 102 9.79 × 102 2.20 × 10−5

6 Ozone depletion kg CFC11 eq 1.48 × 101 1.47 × 101 7.77 × 10−5

7 Ionizing radiation human health kg U235 eq 9.96 × 105 9.97 × 105 6.30 × 10−8

8 Ionizing radiation ecosystem kg CTU eq 1.85 × 10−1 1.86 × 10−1 2.75 × 10−5

9 Photochemical ozone formation kg NOx eq 1.25 × 105 1.25 × 105 6.79 × 10−8

10 Acidification kg SO2 eq 9.47 × 103 9.42 × 103 2.83 × 10−5

11 Eutrophication, freshwater kg P eq 6.00 × 102 6.02 × 102 8.00 × 10−6

12 Eutrophication, terrestrial mol N eq 1.09 × 105 1.08 × 105 3.94 × 10−5

13 Human toxicity, non-cancer kg 1.4 DCB 1.08 × 107 1.08 × 107 2.02 × 10−5

14 Ecotoxicity, marine kg 1.4 DCB 4.59 × 104 4.59 × 104 5.01 × 10−10

15 Ecotoxicity, freshwater kg 1.4 DCB 3.65 × 104 3.66 × 104 3.09 × 10−6
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Table 5. Cont.

No Indicators Unit Current Status
(A0)

Alternative
Option (A1)

Weighted
Factors by
Entropy

16 Human toxicity, cancer kg 1.4 DCB 8.60 × 103 1.03 × 104 2.69 × 10−2

17 Land use/transformation m2a 5.11 × 104 5.11 × 104 0.00 × 100

18 Abiotic depletion potential kg Cu eq 2.22 × 104 2.22 × 104 4.32 × 10−11

19 Primary renewable energy consumption sharing % 5.84 × 101 6.37 × 101 6.15 × 10−3

20 Total cost million Euro 2.59 × 101 2.74 × 101 2.59 × 10−3

21 Revenue million Euro 2.17 × 100 2.34 × 100 4.49 × 10−3

22 NPV million Euro 1.10 × 100 1.68 × 100 1.44 × 10−1

23 IRR % 6.62 × 100 7.14 × 100 4.60 × 10−3

24 Circular investment million Euro 1.42 × 100 2.57 × 100 2.77 × 10−1

25 The proportion of employees with education
and training out of total employment % 2.44 × 101 2.63 × 101 4.55 × 10−3

26 The proportion of women in managerial
positions out of total employment % 1.41 × 101 1.38 × 101 5.23 × 10−4

27 The proportion of informal employment out of
total employment % 8.21 × 101 8.00 × 101 5.23 × 10−4

28 Fair salary times 1.07 × 100 1.06 × 100 7.05 × 10−5

29 Child labour risk hour 0.00 × 100 0.00 × 100 0.00 × 100

30 Fatal and non-fatal occupational injuries case 5.60 × 100 6.37 × 100 1.35 × 10−2

31 Research and development expenditure as a
proportion of revenue million Euro 2.05 × 10−2 3.91 × 10−2 3.23 × 10−1

32 Social investment million Euro 3.20 × 10−1 3.48 × 10−1 5.69 × 10−3

33 Number of health workers in company person 1.00 × 100 1.00 × 100 0.00 × 100

34 Forced labour person 1.00 × 101 1.20 × 101 2.70 × 10−2

35 Local employment person 8.00 × 101 8.20 × 101 4.97 × 10−4

36 Job creation man year 2.11 × 101 2.40 × 101 5.86 × 10−3

37 Income generated by jobs million Euro 5.06 × 10−1 5.52 × 10−1 6.18 × 10−3

38 Working hours hour 5.27 × 104 5.80 × 104 7.57 × 10−3

39 Employee participation in the circular model person 7.40 × 101 7.60 × 101 5.80 × 10−4

40 Self-sufficiency of raw materials tone 9.91 × 101 9.91 × 101 1.64 × 10−10

41 Generation of waste tone 3.51 × 104 3.03 × 104 1.75 × 10−2

42 Percentage of recycling rate of all waste % 2.42 × 102 2.96 × 102 3.26 × 10−2

43 Percentage of recycling rate of plastic waste % 2.50 × 10−2 2.90 × 10−2 1.75 × 10−2

44 Percentage of recycling rate of paper and
paperboard % 2.05 × 10−4 2.37 × 10−4 1.75 × 10−2

45 Circular material use rate % 8.06 × 101 8.06 × 101 9.70 × 10−8

46 The proportion of material losses in primary
material cycles. % 1.46 × 101 1.55 × 101 2.68 × 10−3

47 Use of raw materials for producing one unit of
the main product tonne per kWh 5.05 × 10−1 5.11 × 10−1 8.41 × 10−5

48 Reuse, manufacturing process tone 4.49 × 104 4.96 × 104 8.06 × 10−3

49 Food waste tone 0.00 × 100 0.00 × 100 0.00 × 100

As shown in Figure 8b, A0 is better than A1 if only the environmental aspects are
taken into account. In contrast, in all remaining scenarios, A1 is better than A0. This is
because in alternative A1, capturing CO2 and converting it into liquefied CO2 increases
revenue and NPV, making it higher than that of A0; it also makes the IRR of A1 higher than
that of A0 (as presented in Figure 8c, with consideration of only economic impacts). In
addition, A1 can improve social impacts like increasing jobs and income generated by jobs
and working hours (as presented in Figure 8d, with consideration of only social impacts).
Furthermore, some circularity indicators are also improving, such as the rate of recycled
waste, reducing waste generation, and increasing labor participation in the circular model
(as presented in Figure 8e).
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Figure 8. Outranking result diagram of six scenarios (a) all, (b) only environmental, (c) only economic,
(d) only social, (e) only circularity and (f) both environmental and economic indicators.

The trade-off is shown in the ranking results in Figure 8a,f. A1 is better than A0
when all aspects of sustainability and circularity are considered (Figure 8a). Moreover,
in case the environmental effects are compensated by the economic benefits, the A1 is
better than A0 (Figure 8f). Additionally, the trade-off is shown in each indicator of the
group. For example, in the environmental-energy group, A1 consumes more energy than
A0 (1.98 × 107 MJ per year and 1.7 × 107 MJ per year, respectively), but it has lower GWP
impact than A0 (1.21 Mton CO2 per year with 1.46 Mton CO2 per year, respectively). This
is because in A1, a biogas upgrade device is added to the system to capture CO2. The
addition of this equipment needs more material and energy input, which causes an increase
in energy consumption in A1. Meanwhile, this equipment captures CO2, which brings a
lower GWP in A1. To sum up, A1 is a better choice for sustainability and circularity than
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A0, so applying the CE principle is a promising alternative to improve sustainability for
the rice straw supply chain.

To deepen the analysis, a sensitivity analysis will be conducted to assess the impact
of different weighting methods on the final rankings. While the Entropy method offers a
balanced approach by normalizing indicator values, the sensitivity analysis will explore
how alternative weighting methods influence decision outcomes. The details of this analysis
are provided in Section 4.3.2.

4.3.2. Sensitivity Analysis with Different Weighting Indicators by Using Other
Weighting Method

To evaluate the reliability and robustness of the final ranking, it is essential to assess
sensitivity of each the criterion’s weights. The weights assigned to each criterion are crucial
in determining the priority of alternatives. In the DSS tool, the sensitivity evaluation is
taken when users select the weighting method by user definition. The indicator weight
is imported from an Excel file, so users can give a high value to some indicators that are
considered important. Otherwise, some indicators, which users do not want to concern
themselves with, can obtain a value of 0. For example, the user can give the indicator
weight factors the same weight of 1/49 or they can give the index groups the same weight
of 0.25, and indicators of each group also have the same value (equal to 0.25/number of
indicators in the group) (Table 6).

Table 6. Value of indicator weights defined by Entropy and users/decision-makers.

No Indicators Equality
Indicator Weight

Equality
Groups Weight

1 Water consumption 2.04 × 10−2 1.32 × 10−2

2 Primary energy consumption 2.04 × 10−2 1.32 × 10−2

3 Global warming potential 2.04 × 10−2 1.32 × 10−2

4 Particulate matter 2.04 × 10−2 1.32 × 10−2

5 Eutrophication, marine 2.04 × 10−2 1.32 × 10−2

6 Ozone depletion 2.04 × 10−2 1.32 × 10−2

7 Ionizing radiation human health 2.04 × 10−2 1.32 × 10−2

8 Ionizing radiation ecosystem 2.04 × 10−2 1.32 × 10−2

9 Photochemical ozone formation 2.04 × 10−2 1.32 × 10−2

10 Acidification 2.04 × 10−2 1.32 × 10−2

11 Eutrophication, freshwater 2.04 × 10−2 1.32 × 10−2

12 Eutrophication, terrestrial 2.04 × 10−2 1.32 × 10−2

13 Human toxicity, non-cancer 2.04 × 10−2 1.32 × 10−2

14 Ecotoxicity, marine 2.04 × 10−2 1.32 × 10−2

15 Ecotoxicity, freshwater 2.04 × 10−2 1.32 × 10−2

16 Human toxicity, cancer 2.04 × 10−2 1.32 × 10−2

17 Land use/transformation 2.04 × 10−2 1.32 × 10−2

18 Abiotic depletion potential 2.04 × 10−2 1.32 × 10−2

19 Primary renewable energy consumption sharing 2.04 × 10−2 1.32 × 10−2

20 Total cost 2.04 × 10−2 5.00 × 10−2

21 Revenue 2.04 × 10−2 5.00 × 10−2

22 NPV 2.04 × 10−2 5.00 × 10−2

23 IRR 2.04 × 10−2 5.00 × 10−2

24 Circular investment 2.04 × 10−2 5.00 × 10−2

25 The proportion of employees with education and training out of total employment 2.04 × 10−2 1.67 × 10−2

26 The proportion of women in managerial positions out of total employment 2.04 × 10−2 1.67 × 10−2

27 The proportion of informal employment in total employment 2.04 × 10−2 1.67 × 10−2

28 Fair salary 2.04 × 10−2 1.67 × 10−2

29 Child labour 2.04 × 10−2 1.67 × 10−2

30 Fatal and non-fatal occupational injuries 2.04 × 10−2 1.67 × 10−2

31 Research and development expenditure as a proportion of revenue 2.04 × 10−2 1.67 × 10−2

32 Social investment 2.04 × 10−2 1.67 × 10−2
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Table 6. Cont.

No Indicators Equality
Indicator Weight

Equality
Groups Weight

33 Number of health workers in company 2.04 × 10−2 1.67 × 10−2

34 Forced labour 2.04 × 10−2 1.67 × 10−2

35 Local employment 2.04 × 10−2 1.67 × 10−2

36 Job creation 2.04 × 10−2 1.67 × 10−2

37 Income generated by jobs 2.04 × 10−2 1.67 × 10−2

38 Working hours 2.04 × 10−2 1.67 × 10−2

39 Employee participation in the circular model 2.04 × 10−2 1.67 × 10−2

40 Self-sufficiency of raw materials 2.04 × 10−2 2.50 × 10−2

41 Generation of waste 2.04 × 10−2 2.50 × 10−2

42 Percentage of recycling rate of all waste 2.04 × 10−2 2.50 × 10−2

43 Percentage of recycling rate of plastic waste 2.04 × 10−2 2.50 × 10−2

44 Percentage of recycling rate of paper and paperboard 2.04 × 10−2 2.50 × 10−2

45 Circular material use rate 2.04 × 10−2 2.50 × 10−2

46 The proportion of material losses in primary material cycles. 2.04 × 10−2 2.50 × 10−2

47 Use of raw materials for producing one unit of the main product 2.04 × 10−2 2.50 × 10−2

48 Reuse—manufacturing process 2.04 × 10−2 2.50 × 10−2

49 Food waste 2.04 × 10−2 2.50 × 10−2

By using the HMI_DSS tool, the alternative ranking results of different indicator
weights are taken, as shown in Table 7.

Table 7. Outranking results with weighting indicators by Entropy and users concerning all indicators.

Alternatives Entropy Weighting Equality Indicator Weight Equality Groups Weight

A0 −0.9728 −0.2041 −0.2889
A1 0.9728 0.2041 0.2889

The application of different weighting methods is crucial for robust decision-making.
When all indicators are assigned equal weights, A0 has an outranking value of −0.2041,
while A1 has a value of 0.2041. This indicates that A1 is preferred over A0 when weights
are uniformly distributed. When equal weights are applied to indicator groups, A0’s
outranking value is −0.2889, and A1’s is 0.2889. This demonstrates how the group-based
weighting alters the ranking compared to the indicator-level weighting.

Furthermore, choosing one or some groups of indicators to rank in sub-Section 4.3.1 is
also considered a case of sensitivity analysis. In the scenarios above, unselected indicators
are equivalent to giving them zero weight. The selected indicators are weighted by Entropy.

Figure 8b–f demonstrate that while A1 consistently ranks better than A0 in most
scenarios, the choice of weighting method influences the outcomes. Sensitivity analysis
reveals that variations in weight assignments can lead to substantial changes in rankings.
For example, if environmental indicators are given higher weights, A0 might rank higher
due to its lower environmental impact compared to A1. Conversely, if economic indicators
are weighted more heavily, A1’s higher revenue and NPV would improve its ranking.

Selecting indicator groups combined with Entropy for weighting indicators is consid-
ered a helpful approach in sensitivity analysis, which provides result rankings in various
scenarios of priority indicator groups. This combination also represents the effect of subjec-
tive and objective factors in decision-making. Here, the weighting of indicators is objective,
while selecting groups is subjective due to user expectations. These sensitivity analyses
show how changes in indicator weights can significantly influence decision outcomes.
For instance, prioritizing environmental indicators can result in alternatives with lower
environmental impacts ranking higher, while emphasizing economic indicators may favor
options with greater revenues and net present values.
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Additional sensitivity analysis results demonstrate how variations in weight assign-
ments can lead to differing rankings. The findings indicate that uniformly distributing
weights across all indicators simplifies the ranking process but may not accurately reflect
the significance of specific criteria. In contrast, employing the Entropy method provides
an objective approach based on data distribution; however, it may overlook the subjective
preferences of decision-makers.

Alternatively, applying Entropy-based weights provides an objective measure based
on data distribution, but it may not fully capture the decision-makers preferences or the
relative importance of different indicators. This approach is useful for scenarios with a
large number of indicators where subjective judgments might be less reliable.

To sum up, the HMI_DSS tool allows decision-makers to have a more comprehensive
view based on the multiple weighting methods. The results of total cases seem to show A1
better than A0, as shown in Table 6 and Figure 8. The results of ranking allow decision-
makers to have a more comprehensive view. However, with the weight of the indicator
defined by users, the selecting result is subjective and varies with the user’s knowledge.

5. Discussion

The HMI_DSS tool stands as an effective means for assessing sustainability and
circularity indicators for companies within the supply chain, offering several noteworthy
advantages. It provides a comprehensive array of indicators, enabling the evaluation of
businesses based on circular economy models and sustainable development principles.
One of its key strengths lies in its simultaneous assessment of sustainability and circularity
indicators, aided by the integration of the PROMETHEE II method, which facilitates the
appraisal of alternatives across various supply chain stages. Unlike decision support
systems that use other MDCM techniques (AHP and ANP), HMI_DSS can yield objective
ranking results because it directly uses indicator results obtained from the LCT approach
and MFA, reducing reliance on subject matter experts [13,15,17,18,20]; for example, De Luca
employed 15 experts [17]. Furthermore, its adaptability to company-specific conditions
allows for its implementation using data from individual companies. By utilizing MFA and
life cycle tool results as the input for the MCDM method, the tool equips decision-makers
with valuable and comprehensive information for making informed choices in complex
scenarios involving multiple criteria and trade-offs. Presenting results according to each
life cycle stage and each step of the calculation process in Excel format also helps users
effectively observe hotspots in the life cycle and data errors during the calculation process.

Despite the advantages of PROMETHEE II and Entropy methods, they have inherent
limitations. When all alternatives have the same values for some indicators, these methods
cannot perform normalization of the decision-making matrix. Thus, the ranking alternative
process cannot be taken. However, the HMI_DSS tool has addressed these issues by giving
zero value for these indicators, so the final result ranking is still performed. This tool
also provides two distinct quantification techniques for indicator weighting, Entropy-
based quantification and decision-maker-determined weights, so it can help users make
better decisions according to their priorities. These approaches not only help mitigate
potential drawbacks but also enhance the tool’s usability and reliability in the assessment
of circularity and sustainability indicators in the supply chain.

However, the HMI_DSS tool requires users to collect impact factor values for inputs
and outputs because they are not available in the tool. Therefore, it is an issue for companies
to collect these data due to the level of their available databases. When the number of
inputs and outputs is large, it can take a lot of effort to collect data on impact factors. To
improve the HMI_DSS tool, a centralized impact factor database should be integrated
or linked to open-access databases, reducing the need for manual data collection. Addi-
tionally, automating data collection through interfaces that capture impact factor values
from external sources would further streamline the process. These enhancements would
minimize user effort and make the tool more efficient. As a result, future versions of the
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HMI_DSS tool would be more practical and user-friendly, accommodating companies with
different data capabilities.

In addition, circularity indicators of the HMI_DSS tool are used for the general supply
chain. However, some specific fields, such as electronics or construction, need to add more
CE indicators that are important for these fields, for example, the electronic waste recycling
rate, the recycling construction and demolition waste rate, or the ecologically certified
material proportion in material use [41,45]. To enhance the tool’s relevance and accuracy
for these industries, it is essential to expand and refine the circularity indicators to reflect
their specific characteristics and requirements. Future research should focus on integrating
these industry-specific indicators to improve the tool’s applicability and effectiveness.

Furthermore, in this study, the application of the new tool is conducted for a single
case study. Although the results provide a comprehensive reflection of the circularity and
sustainability of the rice straw supply chain, they do not fully capture the tool’s potential
for all biomass energy production chains. To enhance its applicability, it is essential to
conduct additional experimental calculations and gather feedback on its implementation
across various companies and supply chains in different industries and countries, such
as forestry, agricultural waste management, and bioenergy production. The results of
the case study application highlight that large biomass chains, which may span multiple
regions and countries, present significant data collection challenges due to the volume and
diversity of information required. Additionally, varying national policies can significantly
affect evaluation results and the selection of the final optimal solution. Addressing these
issues will be critical in future research to establish the universality and robustness of the
HMI_DSS tool.

Despite these limits highlighted, the advantages considered above render the HMI_DSS
a promising tool for effectively evaluating sustainability and circularity indicators within
the supply chain.

6. Conclusions

This study shows that the HMI_DSS tool has been developed as an effective and
innovative solution for the comprehensive evaluation of both sustainability and circularity
levels of the supply chain, which is lacking in the existing DSS framework. Its integration
of the PROMETHEE II method with multi-weighting methods makes this tool robust in
solving trade-offs, and its adaptability to individual company conditions makes it a valuable
decision-support tool for transitioning to a CE. This tool employs a set of 49 indicators
that align with the United Nations SDGs and the European Commission’s guidelines for
transitioning to a CE. In addition, the definition of these indicators completely unifies the
approach under the LCT approach. This makes this tool a comprehensive evaluation and
suitable for the company’s objectives in the transition to a circular economy and sustainable
development. To sum up, the tool’s strengths lie in its objectivity, detailed presentation,
and flexibility in weighting indicators, providing decision-makers with a holistic view of
alternatives at various supply chain stages.

The application for the case study in the energy sector reveals that the HMI_DSS tool
can also give companies helpful information on sustainability and circularity levels for
their present supply chain. For example, in the case study, some important indicators are
calculated, such as the GWP (122 gCO2eq/kWh of electricity), IRR (6.62%), and NPV (EUR
1.1 million). This information is scientifically fundamental for defining alternative actions
to improve sustainability and circularity.

Nevertheless, the HMI_DSS tool has limitations. It requires users to collect impact
factor values, which may pose challenges due to data availability issues. Additionally,
indicators used in this tool are general, so there is a need for the inclusion of industry-
specific circularity indicators. Further research is recommended to address these limitations,
ensuring a more seamless and industry-tailored application of the tool.

Overall, the HMI_DSS tool is a promising asset for guiding enterprises towards
embracing circular economy models and sustainable practices. Its comprehensive approach
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fits the United Nations SDGs and the European Commission’s guidelines, making it a
valuable contribution to the field of decision support systems for sustainable and circular
supply chain management. As the circular economy landscape evolves, ongoing refinement
and expansion of the tool’s capabilities will contribute to its continued relevance and
effectiveness in fostering sustainable and circular practices within diverse industries.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/en17205179/s1, Table S1: Indicators of circularity and sustainability
for company in supply chain.
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