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Abstract: La Palma is one of the youngest of the Canary Islands, and historically the most active.
The recent activity and unrest in the archipelago, the moderate seismicity observed in 2017 and
2018 and the possibility of catastrophic landslides related to the Cumbre Vieja volcano have made
it strongly advisable to ensure a realistic knowledge of the background surface deformation on the
island. This will then allow any anomalous deformation related to potential volcanic unrest on the
island to be detected by monitoring the surface deformation. We describe here the observation results
obtained during the 2006–2010 period using geodetic techniques such as Global Navigation Satellite
System (GNSS), Advanced Differential Synthetic Aperture Radar Interferometry (A-DInSAR) and
microgravimetry. These results show that, although there are no significant associated variations in
gravity, there is a clear surface deformation that is spatially and temporally variable. Our results are
discussed from the point of view of the unrest and its implications for the definition of an operational
geodetic monitoring system for the island.

Keywords: A-DInSAR; GNSS; gravimetry; La Palma; Canary Islands; volcanic unrest; surface
deformation; volcano geodetic monitoring

1. Introduction

The detection of the accumulation and ascent of magma from depth can have a practical application
providing advance warning of future eruptive activity [1]. A basic tool for this is to use geodetic
deformation and gravity data [2,3]. Their use, together with appropriate inversion techniques, allow
exploring the geometry, volume and location of magmatic reservoirs along the volcano plumbing
systems, thus helping to understand the mechanisms and characteristics of unrest and eruption [4].
Recent decades have seen an explosion in the quality and quantity of volcano geodetic data [3],
in particular using satellite radar interferometry (InSAR). This technique gives the option to have high
precision and high spatial resolution, spanning decades, measurements of deformation for a large
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number of active volcanic areas and allows carrying out a time study of magma movements along their
plumbing systems. Many volcanic active regions are characterized by complex patterns of ground
deformation resulting from multiple natural (e.g., inflation, deflation, dike intrusion, active faulting,
flank instability and landslides) and anthropogenic sources [5–9]. Therefore, geodetic data are usually
applied to study the main natural and anthropogenic sources of deformation as well as their associated
hazards on active volcanic areas. Considering this, we applied geodetic observation techniques to
study La Palma, Canary Islands, during 2006–2010.

The Canary Islands are located in the northwestern part of the Nubian (African) tectonic plate,
relatively far from major plate boundaries and close to the thickened Western African craton continental
lithosphere. They comprise a group of seven major islands forming a roughly east–west trending
archipelago, and dated rocks show an age progression from Fuerteventura and Lanzarote in the east to
La Palma and El Hierro Islands in the west (Figure 1). In general, older islands offer clearer evidence of
longer erosional periods.
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Figure 1. Location map of the Canary Islands, La Palma Island and its position relative to the West
African coast (inset), as well as a map showing the structural geomorphological characteristics of
La Palma Island, the main areas of interest for geodetic monitoring of the island and GNSS monitoring
stations of the episodic geodetic network. Former IGN stations are shown with stars. All other new
stations in the network are shown with circles.
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The islands rest on a transitional crust that is overlain by a sedimentary cover with a maximum
thickness of 10 km in the eastern zone and a minimum of 1 km in the western sector [10]. Even after a
century of study, their origins remain under discussion, and several hypotheses have been proposed.
A summary of the geological and geodynamic framework of the Canary Islands was reported by
Fernández et al. [11] (references therein). The anomalous seismicity detected on Tenerife Island between
2003 and 2006 [12–15], the recent eruption in El Hierro in 2011 [16–19] and the anomalous seismicity
observed in La Palma in 2017 and 2018 [20], coupled with economic and population security issues,
point to the need for in-depth study to design a monitoring system for the entire Canary Islands
(Figure 1), currently the only active volcano system in Spain [11].

This study includes aspects of geodetic volcano monitoring, which is an important part of the
monitoring system [3,11,21]. To complete this study, the baseline deformation state of each island must
be determined to identify possible anomalies that may be associated with volcanic unrest.

Within this framework, Fernández et al. [11] were the first to determine the background deformation
field on Fuerteventura Island based on a dataset of 23 descending orbit ENVISAT satellite radar
images from the ESA archive, acquired during the period 2003–2010 using advanced differential
radar interferometry (A-DInSAR). They concluded that in the time interval studied the Island of
Fuerteventura was stable overall, which is consistent with the lack of recent volcanism in the area.
However, a review and update of previous InSAR studies and their results is still pending for the rest
of the Canary Islands.

La Palma is the second youngest and historically the most active island in the Canarian archipelago.
It accounts for most of the historic eruptions that have occurred in the archipelago over the last 500 years,
and all the eruptive events have taken place along the Cumbre Vieja rift to the south of the island [22]
(Figure 1).

La Palma is a salient example of a steep-sided composite volcano [23]. Its volcanic edifice rests
on the oceanic crust at a sea-floor depth of 4000 m, and the subaerial topographic elevations reach
around 2500 m. It is a triangular shaped island with dimensions of 45 km from north to south and
27 km from east to west at its widest part (Figure 1). It has an area of 708.32 km2. The structural and
geological development of La Palma is complex, with interactions between large intrusions linked with
effusive episodes inserted between periods of erosional gap, together with gravitational mass-wasting
phenomena [24]. At least two debris avalanches have occurred in La Palma [25–27]. Cumbre Vieja is
the last volcanic expression of a succession of growing and overlapping volcanic centers in La Palma.

A more detailed description of the main characteristics of the structure and volcanology of
La Palma is given in [23,28,29] (and their references).

The volcanic activity in La Palma includes six eruptions (in A.D. 1585, 1646, 1677, 1712, 1949 and
1971), of which the 1971 Teneguía eruption was the last sub-aerial eruption in the Canary Islands,
and the absence of any operational geodetic monitoring system implemented on the island before the
1990s points to A-DInSAR as a basic information source for the study of surface displacements. Several
geodetic studies using GNSS, gravimetry and InSAR techniques have been carried out on the island
since the late 1990s [11,23,30]. Table 1 lists a summary of these studies.

The tsunami caused by the earthquake in SW Asia on 26 December 2004, with its enormous
human and economic cost, spotlighted the works published on the likelihood and possible effects of a
catastrophic landslide on La Palma Island [5,6,31] and stressed the importance of determining whether
there are any displacement on the island that might be associated with possible landslides [23].

Recently, from the discussion of seismic and geochemical anomalies during 2017 and 2018,
Torres-González et al. [20] found evidence of a stalled magmatic intrusion in La Palma at a depth of ca.
25 km, with a volume of between 5.5 × 10−4 and 3 × 10−2 km3. They did not detect any significant
displacement using a GPS network comprising of only six stations on the island.

Both the landslide hazards and this new result make it even more important to determine the
background deformation field on La Palma Island in order to detect any future anomalous deformation
that could be associated with the rise of magma at shallower depths prior to a possible eruption or
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landslide and to study the most appropriate geodetic monitoring approach for the island. This paper
therefore continues the work started by Fernández et al. [11] on La Palma. We update the works
(Table 1) prior to 2010 and use an A-DInSAR processing technique including an error estimation for the
line of sight (LOS) mean velocity and deformation time series to determine the background deformation
status. More specifically, we use the satellite C-band SAR data from the ENVISAT image archive of
the European Space Agency (ESA) acquired in ascending and descending orbits, supplemented with
GNSS and gravity measurements collected during the same time interval. This study is the first part of
a more ambitious work that also includes the interpretation by state-of-the-art inversion techniques of
the deformation measured with A-DInSAR techniques integrated with the 3D crustal density structure
of the island.

Table 1. Previous geodetic research for the La Palma Island.

Reference Time Period Studied Technique Used Main Results

Moss et al. [5] 1994–1997

Observation of a geodetic
network on the western flank of
Cumbre Vieja using EDM and

rapid-static GPS.

A coherent pattern of displacement
vectors but with no statically significant

values [4,22]

Massonet and
Sigmundsson [32] 1992–1995

Classical InSAR without
topographic correction using

only 1 pair of ERS radar images.

No deformation of the order of tens of
cm. Smaller deformations could be

masked by topographic fringes.

Fernández et al. [33] 1992–1999
Classical InSAR without

topographic correction using
ERS radar images.

No deformation at the level of tens of
cm in LOS. Smaller deformations could

be masked by topographic fringes.

Perlock et al. [30] 1992–2000

InSAR phase analysis techniques
(coherent pixels technique, CPT;

coherent target modelling
method; and stacking) using

ERS radar images.

Subsidence on the Teneguía volcano,
where the last eruption (1971) took

place. No deformation on the northern
part of the island.

Prieto et al. [28] 2006–2008 GNSS surveys with a geodetic
network comprising 27 stations

Subsidence and horizontal
displacement detected in the area of the

Teneguía volcano.

Arjona et al. [34] 1992–2008 A-DInSAR using CPT and ERS
and ENVISAT radar images

Negative LOS displacement in the
Teneguía volcano area and on the

western flank of the Cumbre
Vieja volcano.

González et al. [23] 1992–2000;
2003–2008

DInSAR using stacking with
ERS and ENVISAT radar images

Two clear negative LOS displacements
in the Teneguía volcano area and on the

western slopes of the Cumbre
Vieja volcano.

Torres-González et al. [20] 06/2017–06/2018 Continuous GNSS observations
in a network of six stations No deformation was detected

2. Geodetic Observations and Results

2.1. GNSS

To complement the previous geodetic GNSS works carried out on La Palma Island prior to the
2000s [2], a dense spatial sample of the island’s ground deformation field was obtained from the
La Palma episodic GNSS Monitoring Network established in 2006 [28,35]. It includes the national
high-precision REGENTE geodetic network of seven sites, originally designed as a geodetic reference
frame [11,36], and a set of new geodetic markers for monitoring volcano and geodynamic activity
associated with the geology and structure of the island (Figure 1).

The geodetic network was designed to cover the areas of greatest susceptibility to potential
significant surface deformation [37]. These are the rift-type structures and polygenic volcanic edifices
such as the north–south rift of Cumbre Vieja; the areas of tensional stress caused by the continued
injection of dikes on both sides of these rift structures; and calderas and valleys caused by debris
avalanches such as Taburiente and Cumbre Nueva, as well as possible emerging calderas such as the
hypothetical caldera resulting from the failure of the eruption of the San Juan volcano in the Llano del
Banco area (Figure 1), after the 1949 eruption [31].

In addition to all these areas, the GNSS monitoring network covers the entire island with 26 GPS
stations [28], as shown in Figure 1. There are two different types of geodetic network markers. The first
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type corresponds to the stations belonging to the former IGN network which consist of 1.20-m concrete
pillars on top of a 1.00 m square concrete foundation anchored to the rock (Figure 2a). The pillars are
equipped with a centering device that allows us to set the GNSS antenna with repeatability of over
1 mm. The second type of monumentation of the new monitoring stations consists of a benchmark
steel bolt anchored to the rock (Figure 2b), as used routinely in other geodetic studies [38].
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Surveys were carried out to monitor the island in 2006, 2007, 2008 and 2011. The 2006 and 2007
campaigns used seven Ashtech Z-Xtreme and Trimble 5700 GPS receivers with dual frequency geodetic
antennae, while the 2008 and 2011 campaigns were both performed with six Topcon Hiper-Pro receivers
and Topcon CR-G3 dual frequency choke ring antennae. In all four campaigns, at least two different
sessions were carried out per station to minimize systematic local and/or user errors. For the bolt
anchored stations, leveled fixed-height poles were used as antenna monument [38] to ensure a height
repeatability of 1 mm with a random horizontal error of less than 2 mm [28]. The observations covered
periods of 5–8 h, depending on the baseline lengths involved in each session.

The first GNSS data results were obtained by Prieto et al. [28]. Here, we report a new and
comprehensive processing of all the acquired GNSS data by using the GAMIT/GLOBK 10.4 software [39,40]
and by taking into account precise ephemerides from the IGS [41] and Earth orientation parameters from
the International Earth Rotation Service [42]. To improve the overall configuration of the network and
link the regional measurements to an external global reference frame, data from over 15 continuously
operating global tracking stations, mainly permanent IGS networks [43], were introduced in the
processing. Station coordinates and Earth orientation parameters were estimated with daily double
differenced GNSS phase observations. The observations were weighted according to the elevation
angle, with a cut-off angle of 10◦. Absolute IGS antenna phase center and atmospheric zenith delay
models [44] were used, and Global Mapping Functions [45] were adopted for the neutral atmosphere.
The results of this processing step are daily estimates of loosely constrained station coordinates and
other parameters, along with the associated variance-covariance matrices.

In a subsequent step, the loosely constrained daily solutions were used as quasi observations
in a Kalman filter (GLOBK) to estimate a consistent set of daily coordinates (i.e., time series) for all
sites. All the time series were inspected to eliminate anomalous solutions (based on the maximum
uncertainty) and to correct possible jumps related to antenna changes. The time series for each station
are shown in Figures S1–S26. As a final step, the loosely constrained solutions and their full covariance
matrices were combined using the GLORG module of GLOBK to estimate a consistent set of positions
and velocities in the ITRF2008 reference frame [46], by minimizing the horizontal velocity of the
15 continuously operating global tracking stations. To adequately show the crustal deformation pattern
over the study area, we aligned our estimated GNSS velocities to a fixed Nubian reference frame
(see [47] for details). Annual mean velocities and their associated uncertainties are shown in Figure 3
and summarized in Table S1.
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It should be noted that the deformation detected at the GNSS stations is, as a general rule,
nonlinear. However, when the GNSS time series of these deformations are studied and compared
(Figure 4 and Figures S1–S26), it can be seen that they depart very little from the linear trend. This is
because the deformations are not large, and the interval studied is limited to five years. For this reason,
the annual mean velocities estimated from the time series represent well the general movements that
have taken place during this period.
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Figure 4. 3D GNSS displacement time series and adjusted linear fits for the JEDE station. This station
was used as one of the velocity seeds with zero cm/year (in LOS projection) for A-DInSAR processing
of descending orbit images. The red lines on the subfigures show the linear fit to the time series used to
estimate the mean annual velocities.
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2.2. A-DInSAR

Advanced Differential Synthetic Aperture Radar Interferometry (A-DInSAR) is a microwave
remote sensing technique that allows us to investigate surface deformation phenomena with a
centimeter to millimeter precision and with a large spatial coverage capacity [48,49]. In particular,
the A-DInSAR technique uses the phase difference, often referred to as an interferogram, between
two suitable SAR images to temporally separate observations in a study area, and it provides a
measurement of the ground deformation projection along the radar line of sight (LOS) [50]. For our
A-DInSAR analysis, we used Synthetic Aperture Radar (SAR) data from the ESA’s ENVISAT satellite
to retrieve ground deformation maps in the time period covered by the four GNSS campaigns.

Envisat satellite described a Sun-synchronous low-Earth orbit. This type of orbiting satellites
has an ascending pass that occurs when the satellite moves northward toward the equator and a
descending pass, on the other side of the planet, where the satellite moves southward. Since A-DInSAR
technique retrieves the displacement in one dimension (in the LOS direction), studying both geometries
allow to retrieve more information on the deformation.

The descending orbit of the same SAR dataset was previously used in other studies (see Table 1).
González et al. [23] used interferogram stacking with 19 radar images for the period 2003–2008. Arjona
et al. [34] used A-DInSAR techniques with 18 radar images for the period 2006–2008. Arjona et al. [34]
used 15 ENVISAT radar images acquired in the ascending orbit for the period 2004–2007.

In this study, the A-DInSAR analysis was performed using the Subsidence software, based on
the Coherent Pixels Technique (CPT) [51]. This software allows us to improve on previous results in
several ways: by studying two geometries (ascending and descending) and including a deformation
time-series for each coherent pixel within our study area and an error estimation of the velocity
results [52]. The CPT algorithm and Subsidence software have been successfully used to perform
multiple studies of different scenarios [8,53–55]. We also increased the time period considered, from
2004 to 2010, and the number of radar images. The use of a more advanced technique and a larger
number of images covering a longer time period, led to more precise results.

2.2.1. SAR Dataset

The dataset used in this study comprises 68 ENVISAT Single Look Complex (SLC) images:
42 obtained in descending orbit and 26 in ascending orbit. These images were acquired and provided
by ESA and the dataset includes all the available images for this sensor, acquisition mode (IS2) and our
region of interest. All the images are from tracks 359 and 431 for descending and ascending orbits,
respectively. The list of all the SLC images used is given in Table S2.

ERS-2, a C-Band satellite launched in 2002 and operational until 2011, products were also provided
by ESA for the same tracks and frames. They were originally considered for inclusion in this study, but
subsequently discarded due to high Doppler centroid frequency differences between the images for
this period. This is due to the fact that a single gyroscope operation mode was used from February
2000 owing to the failure of five of the six onboard gyroscopes [56].

An area covering the entire island of about 33 km × 47 km was cropped from the original
100 km × 100 km SLC images. All SLC images were co-registered to make the dataset appropriate
for subsequent A-DInSAR processing. To minimize perpendicular and temporal baselines, images
20070711 and 20080204, for ascending and descending orbits, respectively, were selected as reference
images for co-registration [57].

Interferograms were generated using all possible pairs within 350 m perpendicular baseline
and 400 days temporal baseline, discarding pairs with large perpendicular and temporal baselines
(over 150 m and 150 days simultaneously). This criterion was used for both geometries. A Delaunay
triangulation was also considered, although a larger set of interferograms was found to offer better
results. This selection mode generated a total of 150 interferograms for descending orbit and 54 for
ascending (see Tables S3 and S4 for the complete list). The number of descending interferograms was
larger because of the higher number of SLC images, which reduces the temporal baseline between
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interferometric pairs. Since we were unable to use images acquired before 2006, our study needed
to be reduced to cover the time span from March 2006 to April 2009 for ascending orbits and up to
October 2010 for descending orbits. Figure S27 represents the spatial and temporal baselines obtained
for the ascending and descending orbits.

An external high-resolution Digital Elevation Model (DEM) was used to remove the topographic
phase from the interferograms. This DEM was generated with data from the Spanish public agency
Instituto Geográfico Nacional (IGN), which provides these data for scientific and civilian use. The data
consisted of orthometric heights for the entire La Palma Island and a geoid model (EGM08-REDNAP).
A 25 m × 25 m ellipsoidal height DEM was generated with these data and used to remove the phase
component due to the topography.

2.2.2. A-DInSAR Processing

We used the Coherent Pixels Technique algorithm (CPT) to obtain the surface displacements [51].
This is a coherence-based method that works with distributed scatterers at low-resolution over
the multi-looked interferograms, similar to the widely-used Small Baselines Subset (SBAS) [50,58].
The geological characteristics of the surface and the available dataset make this kind of analysis more
suitable than a full-resolution approach such as the Point Scatters (PS) method [59]. A mean coherence
map was processed to establish a coherence-based pixel selection, using a multilook window of 15 lines
in azimuth and three samples in range. This multilook results in low-resolution pixels obtained from
the average of 45 pixels from the original interferogram, corresponding to 60 m × 60 m of ground
spatial resolution.

A coherence criterion was chosen to select the pixels with sufficient phase quality to obtain the
surface deformation. A medium coherence threshold of 0.35 was applied, corresponding to a phase
standard deviation of 18◦ [49]. This value provides good spatial coverage and sufficient phase quality
to obtain a convergent solution. A Delaunay triangulation was used between pixels, and a limit of
800 m was established to reduce the atmospheric artifacts in the linear processing. To estimate linear
velocity, CPT requires velocity and DEM error seeds, points with known velocity and altitude for
the entire time period studied [51]. The GNSS stations JEDE and TIRI were used as velocity seeds,
as their locations (on the eastern and western flanks of the Cumbre Vieja volcano) and the knowledge
of their almost zero displacement rates from the GNSS measurements indicated that they would be
good choices (see Figure 4 for the JEDE station and Figure S26 for the TIRI station). An additional seed
was placed in Los Canarios village in the southern part of the island for descending processing, which
was required to obtain LOS displacements in the Teneguía area due to a zone of very low coherence
between this area and the TIRI seed. Points with low topography were selected for DEM error seeds
(see Figure 5b).

The atmospheric contribution to the phase must be calculated to obtain the nonlinear velocity.
Atmospheric perturbations are considered as a low spatial frequency signal in each interferogram due
to their approximately 1-km correlation distance. However, the atmospheric contribution of a given
pixel can be considered as a white process in time, as atmospheric conditions can be considered a
random variable for each acquisition date. For instance, troposphere characteristics vary from one
day to another. However, nonlinear movements have a narrower correlation window in space and a
low-pass behavior in time. In view of all these considerations, atmospheric artifacts can be estimated
with a filtering process in both the spatial and time domains [57,59,60].

A low-pass temporal filtering was applied to nonlinear estimation results to further reduce
residual noise that was not removed in the second step of the processing (estimation of the nonlinear
deformation component).
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Figure 5. (a) Mean coherence map for a multilook of 15 lines in azimuth and three samples in range
for the island. White areas represent high coherence zones and dark areas represent low coherence
zones. (b) Selected pixels that met the coherence criteria and the Delaunay triangulation between them.
Velocity and DEM error seeds are marked as a rhombuses and triangles, respectively. Note that these
images are in radar coordinates, and there is a mirroring effect along the horizontal axis due to the
acquisition geometry in descending orbit.

2.2.3. A-DInSAR Results

La Palma Island is characterized by its high topography and areas of dense vegetation, which are
the main reasons that A-DInSAR analysis is not optimal to study certain areas of the island. We processed
the entire island in our study, but, due to the low number of pixels selected for the northern part of the
island, we limited the results to the southern part, south of Caldera de Taburiente and the Cumbre
Nueva volcano. Figure 5a shows the mean coherence of the multilook used (15 lines in azimuth
and three samples in range direction); the northern part of the island is characterized by very low
coherence values.

In our analysis, 19,082 and 10,533 pixels were selected in ascending and descending orbits,
respectively. Some pixels shown in Figure 5b do not appear in Figure 6, as they were not assigned a
linear velocity value. To obtain the linear velocity, each pixel must fulfil certain coherence criteria and
be connected to a seed, and since no seeds are used in the northern part of the island the velocity of
these points is not calculated.

The linear results for the region show a range of velocities between +1 and −2 cm/year in LOS
direction. Positive values indicate pixels that move toward the satellite and negative values correspond
to pixels that move away from the satellite. Note that some previous works discussed here [23] use the
opposite sign convention.

The next step in our study consists of atmospheric filtering, calculating nonlinear displacements,
and estimating statistical errors [52]. The final result is the time series of LOS displacements with
an error estimation for each selected pixel in the region of interest. We selected three pixels for each
geometry to show the results (see Figures 6 and 7). Pixels 1 and 4 present the maximum displacement
rates on the flank of the Teneguía volcano. Pixels 2 and 5 are located in a stable zone during the period
considered, on the western flank of the Cumbre Vieja volcano, with close to zero displacement. Pixels 3
and 6 are located in the northern part of the study area, in the southern part of the Cumbre Nueva
volcano in the Aridane Valley, and also show significant LOS displacements.
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Figure 6. LOS linear velocity results for La Palma Island using the CPT A-DInSAR technique applied
to ENVISAT radar images for the period 2006–2010. Displacements are in cm/year. (a) Results for
ascending ENVISAT radar images and (b) descending ENVISAT radar images. Numbers 1–6 mark the
locations of the selected pixels for which the LOS time series are shown in Figure 7. Positive values
indicate pixels that move toward the satellite and negative values correspond to pixels that move away
from the satellite.
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Figure 7. Time series of LOS displacements for selected pixels representing three different areas with
different displacement patterns. Subfigures 1 and 4 show the displacement obtained at the Teneguía
Volcano (pixels 1 and 4 in Figure 6). Subfigures 2 and 5 show two stable points (pixels 2 and 5
on Figure 6). Subfigures 3 and 6 show the displacement of two pixels (3 and 6 in Figure 6) in the
southern part of Cumbre Nueva with significant LOS displacement. Vertical axis corresponds with the
displacement measured in cm. The left-hand column shows ascending orbit results and the right-hand
column descending orbit results. See Figure 6 for pixel locations.
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These results show that the uncertainties are very homogeneous over the study area, in the
0.25–0.35 cm interval range. This is a good result considering the number of images, the density of
acquisitions for the time period and the perpendicular baselines between images.

2.3. Micro-Gravimetry Observations

To detect any possible signals related to additional masses or mass redistributions under the
surface of La Palma, and taking into account the results reported in the literature [5,6,28,30,31],
a micro-gravity network consisting of 12 stations was established in the SW part of the island and
measured for the first time in June 2008 [35]. The geographic locations of the stations are shown in
Figure 8, while their altitudes are represented in Figure 9. Coordinates are given in Table S5.Remote Sens. 2020, 11, x FOR PEER REVIEW 12 of 24 
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Figure 8. Geographic locations of the 12 micro-gravity locations on La Palma.
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Figure 9. Graphic representation of the altitudes of the different stations in the micro-gravimetric
network on La Palma Island.

Four observation campaigns were carried out in June 2008, August 2009, July 2011 and June 2014.
The network was measured ten times during each survey, over a five-day observation period. One full
measurement was taken in the morning and another in the afternoon, and the total observation time
was around 13 h. The stations were represented by paint marks on rocks or concrete (see Figure 10).
The observation methodology was the usual one for microgravimetry surveys [12,61], and each
observation was corrected considering calibration factors, tidal variations, drift and possible jumps in
the recording. A precise GNSS survey was carried out in parallel with each gravimetric observation
to obtain high-quality altitudes for the microgravimetry stations. Two GNSS survey methods were
applied (e.g., rapid-static and real time kinematic), depending on the station conditions. Due to
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the different precisions of the two methods and the geoid model used (EGM08-REDNAP), a final
adjustment was made with a different weighting strategy based on each variance factor, following the
same procedure as [41]. This is a very controlled technique that has been proven in high-precision
studies when calculating recorded observations and coordinates with different levels of precision [62].
The adjusted relative gravity values for each survey are listed in Table S6.
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Based on the relative gravity values obtained, we opted to make a single global adjustment
which allowed us to estimate simultaneously the corrections to the calibration factors for the different
campaigns, the gravity variation rates (µGal/year) and the corrected gravity values at each station.
All this was done without assuming any station to be stable, with a zero-variation rate (considering we
have no available information that properly identifies a station as being stable throughout the study
time period covered by the study) or any gravimeter as being perfectly calibrated.

Let gij be the relative gravity values obtained (after reducing the observation data) for each station
i (i = 1, . . . , n, where n is the total number of stations, n = 12) and for each campaign j (j = 1, . . . , m,
where m is the number of campaigns, m = 4). These values can be somewhat heterogeneous, and they
are affected, among other things, by minor inaccuracies e j in the calibration factors used for the
gravimeters. If we denote the homogenized gravity values as Gij, we can write:

Gi j = gi j
(
1 + e j

)
, j = 1, . . . , m. (1)

Let ti be the periods (in years) when the campaigns were carried out. Let to be a mean reference
date (for example 2010) and let Gi0 be the homogenized gravity value corresponding to that central
moment j = 0. In these circumstances, we can introduce the annual variation rate vi. in each station as
given by:

Gi j = Gi0 + vi(ti − to), j = 1, . . . , m, i = 1, . . . , n. (2)

The value Gi0. is expressed as a function of the average value for the m campaigns, in the form:

Gi0 =
1
m

∑m

j=1
gi j + δi = gi + δi, i = 1, . . . , n. (3)

Combining Equations (1)–(3) we can write:

gi j − gi = vi(ti − to) + δi + gi je j, j = 1, . . . , m, i = 1, . . . , n, (4)
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where the unknowns are vi (i = 1, . . . , n), δi (i = 1, . . . , n) and e j (j = 1, . . . , m).
The resulting system of equations is clearly ambiguous or range-deficient (an ill-posed problem)

as no scale is fixed. We solve this problem using the Tikhonov damping factor technique, a method of
regularization of ill-posed problems [63]. It is also known as ridge regression and is particularly useful
to mitigate the problem of multicollinearity in linear regression, which commonly occurs in models
with a large number of parameters. The method generally provides improved efficiency in parameter
estimation problems in exchange for a tolerable amount of bias.

In essence, for the system of observation Equations (4), which we now write in vector form as
Ax − b = r, with A being the design matrix, x denoting the vector of unknowns, b being the vector of
independent terms and r denoting the vector of residuals. Solution x is computed as:

x̂ =
(
ATA + α I

)−1
A b, (5)

where I is the identity matrix (corresponding to the number of unknowns) and α > 0 is the Tikhonov
factor. In this case, the usual minimization of ‖Ax− b‖2 is replaced by the minimization of ‖Ax− b‖2 −
α‖x‖2, which, in addition to the size of the residuals, takes into account the size of the unknowns.

The gij data are the values contained in Table S6 for each of the n = 12 stations and each of the
m = 4 dates. Applying the previously described adjustment process (and considering, after tests,
an α = 1 value), we arrived at the values shown in Table S4 and Table 2. The root mean square of the
adjustment is 5.9 µGal, which is quite acceptable given the physical conditions of the network (very
rugged relief and connected by means of winding forest tracks), but perhaps insufficient for studying
such subtle variations.

Table 2. Adjusted temporal gravity rates for the 12 gravity stations.

Station Altitude (m) Annual Rate
(µGal/Year)

Standard Deviation
(µGal/Year)

Hotel 65 0.0 ±2.0
Cancajos 76 4.6 ±2.0
Pista10 576 2.0 ±2.5
Pista20 1390 −6.5 ±4.5
Pista30 637 −0.1 ±2.7

Gasolinera 1273 −0.7 ±4.4
Teneguia10 669 2.6 ±2.8
Teneguia20 799 −1.6 ±3.3

PIRS 1296 3.3 ±4.8
Jedey 812 0.0 ±3.6

Figures in bold indicate changes that are significantly higher than the respective estimated error.

Figure 11 shows the estimated annual rate and standard error for each of the 12 gravimetric stations
in the network. It can be seen that the adjusted annual rate values and the standard error values are
generally small. Two stations have values exceeding the standard error: Pista 20 (6.5 ± 4.5 µGal/year)
and Cancajos (4.6 ± 2.0 µGal/year), although neither clearly exceeds twice the value of the standard
error. This points to two conclusions: (1) the quality of the gravimetric network is acceptable (estimated
standard errors of the order of ± 5 µGal/year for the annual rate values and mean root square residual
of 5.9 µGal), although perhaps insufficient due to the small magnitude obtained for the variations
measured; and (2) none of the adjusted annual rate values is significant. No significant variations in
gravity are therefore detected in the gravity network, at least at the level of precision obtained.
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3. Discussion

3.1. GNSS

As is the case for many of the Canary Islands, it is not evident where future eruptions will
take place in La Palma because their likelihood (with varying probability) is not limited to a specific
area but affects the whole island [11,21,64,65]. Another phenomenon that must be monitored on the
island is the possibility of displacements that could be associated with a landslide motion in the area
of the Cumbre Vieja volcano [6,66,67]. It was therefore necessary to install a geodetic monitoring
system that extensively covered the island [11,21,68] and was the reason for defining a GNSS network,
as previously described.

Two important aspects must be considered when assessing the applicability of this network for
monitoring displacements on the island. The first is related to the comparison of the observed/expected
magnitude of the displacements (when these values are available) in terms of the precision of the
observation technique (between 0.5 and 1 cm in the different displacement components), while a
second aspect concerns the possibilities for interpreting these displacements.

Some conclusions can be drawn from a study of the LOS displacements detected using A-DInSAR,
which are of the order of 0.5–1.5 cm/year in absolute values, and their locations with respect to the GNSS
stations. The first is that we are already at the detection limit of the survey mode GNSS observation
used in the network [28,37], and the second is that the separation between the GNSS stations, which
varies from approximately 1 to 10 km, combined with the magnitude of the displacement itself, implies
that the temporal GNSS observation of the network defined for the interpretation/inversion of the
displacements is of very limited applicability during the initial stages of unrest. This technique would
therefore be more suitable when the displacement is on the order of tens of centimeters and a longer
decay wavelength.

These limitations, coupled with the cost of GNSS observations [69], pointed to A-DInSAR as
the primary technique for monitoring deformation on the Island of La Palma in an operational way.
The main applicability of the GNSS network at the present is therefore the validation and scaling of
the displacements, comparing the GNSS and A-DInSAR results. It would be very useful if some of
the network stations were with continuous recording to complement the campaign mode. Obviously,
the station locations must be selected taking into account volcanological, structural, geological and
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geodynamic information as well as the results obtained from the radar observations. Unfortunately,
this last aspect was not considered for the definition of the GNSS network in the study, as it was not
available at the time of configuring the network.

3.2. GNSS-InSAR Comparison

It is interesting to note that, in the areas where the A-DInSAR results were obtained using
ascending and descending radar images, the A-DInSAR results sometimes have a different sign for the
LOS velocity in each geometric configuration. The signs of both LOS displacement velocities agree for
the western flank of the Cumbre Vieja volcano, but they differ for the Teneguía volcano and Aridane
Valley areas (see Figure 5). This is a very rough estimate because the LOS depends heavily on the
look angle.

In a qualitative way, this clearly indicates that, in the first zone—the western flank of the Cumbre
Vieja volcano—it is basically the vertical displacement component that contributes to the LOS and
comprises mainly subsidence. This is confirmed by the GNSS results for the same area in Figure 3.
This is not the case for the Teneguía area, where there is a contribution of both vertical and horizontal
displacement components (E–W) in the LOS. This is again confirmed in Figure 3 for the GNSS stations
located in this area. In the Aridane Valley area, there is only one station unable to represent the entire
deforming area (see Figure 6).

To compare the GNSS and A-DInSAR information in a quantitative way, the three-dimensional
variation of coordinates from the GNSS values for each station must be projected into LOS direction.
We can do this using the equation [70]:

dLOS = vGNSS · u =
[
vx, vy, vz

]
·


− sinθ cosα
sinθ sinα

cosθ

,
where

[
vx, vy, vz

]
are the three components of the GNSS velocity, θ is the incidence angle and α is the

azimuth angle of the satellite track. In our sign criterion, positive values of dLOS indicate that the pixel
moves toward the satellite and negative values indicate that the pixel moves away from the satellite.
Figure 12 shows both values for several GNSS stations from the network. It was basically observed
from the error bars that the agreement is quite good, validating the conclusions described previously
in the discussion of the GNSS results.

Because SAR is sensitive in the perpendicular direction to its azimuth and the satellite moves
along an almost polar orbit, the LOS displacement can be assumed to be produced by vertical and
E–W motion, and the N–S motion is neglected. To obtain the vertical and E–W components of the
displacement, the ascending and descending LOS motions must be combined in areas where both are
present [8]. However, if we consider the magnitude of the displacements observed using A-DInSAR
and GNSS (Figures 3 and 6), it is clear that the computation of this decomposition will not produce
good (i.e., sufficiently precise) results due to methodological aspects, as well as because the magnitude
of the E–W motion is at sub-centimeter level in many of the coherent pixels, or very close to zero, i.e.,
of the same order or even lower than the A-DInSAR uncertainty [8]. We therefore did not calculate it.

A comparison of Figures 3 and 6 shows that the GNSS and A-DInSAR observations are also
complementary in terms of coverage. There are GNSS pixels in some areas where there are no coherent
SAR pixels, although the number of stations is very limited. Considering the magnitude of the
displacements observed, as previously mentioned, it would also be more convenient to use continuous
GNSS observations in place of the survey observation mode in some very well selected areas to increase
the precision.

In view of all the aspects discussed in this section, our results show that, as in other environments [8],
the ad-hoc establishment of survey mode GNSS networks improves the spatiotemporal monitoring
of the 3D displacement of the island subjected to volcano hazard and complements the A-DInSAR
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observations. As is well known [3], this is a valuable monitoring technique with a variety of applications
at different stages of volcanic activity/unrest, ranging from complementing A-DInSAR (facilitating its
validation and scaling) to data inversion, helping to obtain the characteristics of the deformation sources.
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3.3. Comparison of the DInSAR Results with Previous Ones

We now compare our A-DInSAR results with the previous results obtained from images from
the ESA’s ENVISAT satellite [23,34]. However, it should be noted that we use a different processing
methodology, consider a different time period and process a different number of images. Each of these
aspects can produce differences in the results.

González et al. [23] estimated only the mean velocity using stacking, without time series or
error estimation and corrected the atmospheric contribution by applying elevation-phase dependence.
Their study focuses only on descending geometry and a total of 19 ENVISAT SLC images acquired
between 2004 and 2008, which they compared with the results of the first analysis of only three GNSS
surveys carried out between 1994 and 2007. It should also be noted that, in the case of their estimates
for the linear rate from the 2004–2008 period, the images were noisier, mainly due to the smaller dataset,
thus they recommended they should be considered with caution.

Arjona et al. [34] used a previous version of the Subsidence software without error estimation,
processing both ascending and descending geometries. They included 15 images acquired between
2004 and 2007 for the ascending orbit and 18 images in the period 2006–2008 for the descending one.

The present work used the most recent version of the Subsidence software, which offers the
latest developments in atmospheric filtering, error estimation, interferogram formation and velocity
calculation. We used the complete available ENVISAT catalog for La Palma and processed a greater
number of SLC images than in previous works, with 25 images for ascending geometry in the period
2006–2009 and 39 for descending geometry between 2006 and 2010 (Table S2). Updated GNSS results
obtained from five surveys carried out between 2006 and 2011 were used for comparison, in parallel to
the radar observation. Table 3 shows a comparison of the results obtained in these three works.
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Table 3. Comparison of A-DInSAR results obtained using ENVISAT data for La Palma. The sign
convention used by González et al. [23] was reversed, for the sake of comparison, to the one in this work.

Area of Study
González et al. [23] Arjona et al. [34] This Work

Asc. Orbit Desc. Orbit Asc. Orbit Desc. Orbit Asc. Orbit Desc. Orbit

Western flank of
Cumbre Vieja volcano – −0.5 cm/year – stable – Stable or no data

Eastern flank of
Cumbre Vieja volcano – – +1 cm/year – +1 cm/year +1 cm/year

Teneguía volcano area – −0.5/−0.8 cm/year +1 cm/year −2 cm/year +0.7 cm/year −0.8 cm/year
Aridane valley – stable stable stable −1 cm/year +1 cm/year

Table 3 shows that, with a few exceptions, our findings agree with those obtained in previous
works. Even considering that the results presented by Arjona et al. [34] were obtained using a smaller
number of images and an older version of the Subsidence software, they concur with our result, except
for the Aridane Valley area, which they described as stable while our processing shows displacements
in both geometries. This difference may be due to the location of their seed. This area could be a good
choice for locating a velocity seed since it is mostly flat with high coherence (large urban areas) and
with no deformation signal detected by GNSS observation throughout the study period. Since the
location of the seed is not described in their work [28], this is the most likely cause of the discrepancy
between the results, coupled with the aforementioned differences between the two processing methods.

The discrepancies in the rest of the cases appear to be more closely related to the processing
methodology or software version, the number of images and the time period. In this last aspect,
if (in addition to Table 3) we consider the results of the ERS-1/2 images [23,30], it is clear that between
1992 and 2011 the magnitude and location of the LOS displacement rates (mean linear velocities) have
changed across the study area, and they may be associated to some unrest in the island, as proposed
by Torres-González et al. [20].

3.4. Microgravimetry Results

If there has been some unrest on the island, there may be new masses (magma) at shallow depths
below the surface. This can be checked by using the gravity variation values obtained from the
micro-gravity network observations. The possible variations in gravity could derive from: (i) free-air
effects derived from vertical deformation produced by volcanic unrest, among other possible sources;
or (ii) the contribution of additional masses, magma intrusions and/or density redistribution below the
surface produced by internal and surface deformation.

The displacements detected using A-DInSAR in the gravity observation area (see Figures 3, 6
and 8) show that the deformation in the gravimetric stations is of the order of few mm/year, except
perhaps in the Cancajos-Hotel, Gasolinera and Teneguia 10–20 stations, where LOS displacement
values of the order of 0.8 cm/year may be reached. Assuming that these are all elevation rate values,
the gravity variation corresponding to this maximum displacement would be lower than 3 µGal, which
is clearly below the measurement precision.

Despite the difficulties posed by the observations with the La Palma microgravimetry network
(given the rugged nature of the relief, and the distances and slopes to be traveled from point to point
along forest dirt tracks), the adjusted quality parameters suggest that the observational work was
satisfactory, with a standard deviation of around 5 µGal. At this level of precision, no significant
geographically extensive variations in gravity were detected. It is conceivable that the variations in
gravity associated with density redistribution must be very small (the deformations are minor) and
the expected changes in mass, if any, are therefore not large enough to be detectable. As we did not
measure any significant gravity changes, non-significant additional masses (magma) appear to be
present at the shallow crustal level in the study area and time period.
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4. Conclusions

A review and follow-up of previous InSAR studies is justified to determine the background
surface displacement field for La Palma Island considering the existing hazards and risks [65,71].
We therefore studied this phenomenon for the period 2006–2010, using several last-generation geodetic
observational techniques simultaneously (GNSS, A-DInSAR and microgravimetry).

The observational results show a broad deformation but with low magnitude and rates of
0.5–2 cm/year, without any significant gravity changes. This implies that there is no additional mass
(magma) in the shallow crust below the Cumbre Vieja Volcano.

These displacements are within the detection limit of the survey mode of the GNSS method used
in the network. The magnitude of the displacement and the separation between the GNSS stations
(1–10 km approximately) indicates that GNSS has limited application in the interpretation/inversion
of the displacements during quiescent periods and early stages of unrest, but is more useful at more
evolved stages with shallow intrusions, when displacements of the order of tens of centimeters with a
longer wavelength decay may appear.

In view of these limitations and the cost of GNSS observations, A-DInSAR is the primary method
recommended for an operational volcanic geodetic monitoring system on La Palma Island, using
advanced techniques as seen in this work. The main applicability of the GNSS network observations
during quiescent periods or in the early stages of unrest is currently the validation and scaling of the
A-DInSAR displacements. It would also be useful for some of the stations in the network to carry
out continuous observations to complement the survey mode. The observational results described
here suggest that the station locations must be selected based not only on volcanological, structural,
geological and geodynamical information, but also considering the results of the radar observations.
The GNSS stations should be installed in the most effective locations for validating and complementing
the A-DInSAR results, potentially leading to significant reductions in the cost of geodetic monitoring.
The GNSS network used in this study should therefore be redesigned in some areas of the island,
and according to the current distribution of continuous GNSS stations.

We obtained new A-DInSAR results for La Palma, including time series of LOS displacements
and error estimation, using images obtained in ascending and descending orbits. It should be noted
that in areas where we have deformation results, the LOS obtained using ascending and descending
radar images sometimes have different signs, as in the case of the Teneguía volcano and Aridane
Valley areas. However, the sign of both LOS displacement velocities is the same for the eastern flank
of the Cumbre Vieja volcano. This provides qualitative evidence that it is essentially the vertical
displacement component that contributes to the LOS on the eastern flank of the Cumbre Vieja volcano,
and it is mainly subsidence, as confirmed by the GNSS results for the same area. However, for the
other two areas—the Teneguía volcano and Aridane Valley—both vertical and horizontal displacement
components (E–W) contribute to the LOS. This is confirmed by the GNSS results for the Teneguía
volcano area, although in the case of the Aridane Valley there is only one station, and the results cannot
be checked against the GNSS results. In any case, there is good agreement between the GNSS and
A-DInSAR results at a regional scale.

The GNSS and A-DInSAR observations can also be seen to be complementary in terms of coverage.
There are GNSS stations in areas where there are no SAR pixels, although the number of stations is very
limited, and it is worth studying whether the observation cost in terms of the results obtained would
compensate for the increase in the number of GNSS stations. In summary, our results again show that
the ad-hoc configuration of survey mode GNSS networks combined with satellite radar observation
can improve the spatiotemporal monitoring of the 3D displacement field of areas subjected to volcano
hazard. Both observations techniques have different and complementary applications throughout the
various stages of volcanic quiescence and unrest.

These findings, in conjunction with the results of previous works (see Table 1), clearly show
that LOS displacement rates (mean velocities) and displacement time series for coherent pixels have
changed over time from 1992 to 2011, and spatially along the surface of the study area. This may be
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associated to some unrest on the island, as recently proposed by Torres-González et al. [20]; this same
conclusion is suggested by considering our results together with the degassing results obtained in
La Palma during a similar time period. Padrón et al. [72] reported the results of three soil helium
surveys undertaken at the Cumbre Vieja volcano (2002, 2003 and 2004), which support the hypothesis
of contemporary degassing at Cumbre Vieja from magmas stored at different depths under the island.

An increase in the solid 3He/4He ratio was also observed toward the southern part of the Cumbre
Vieja volcano [72]. It was interpreted as the result of residual degassing of volatiles from magma bodies
stored at lithospheric levels beneath the southern part of the volcano, which were responsible for the
last volcanic eruption of Cumbre Vieja in Teneguía in 1971. This result agrees with those obtained for
the Teneguía volcano area both here and in previous works [23,30].

As mentioned above, this is the first part of a more ambitious work intended to also include
the interpretation of deformation by means of state-of-the-art inversion, integrated with the
three-dimensional crustal density structure of the island. This additional study is the subject of
a future manuscript.
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