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Abstract

Structural components with variable stiffness can provide better performances with respect to

classical ones and offer an enlarged design space for their optimization. They are attractive candidates

for advanced lightweight structural applications whose functionalities often impose the presence of

cutouts that requires accurate and effective analysis for their design. In the present work, a single-

domain Ritz formulation is proposed, implemented and validated for the analysis of buckling and

post-buckling behaviour of variable stiffness plates with cutouts. The plate model is based on the

first-order shear deformation theory with nonlinear von Karman strain-displacement relationships.

The plate generalized displacements are approximated with trial functions built as products of one-

dimensional Legendre orthogonal polynomials. The non linear governing equations system is then

deduced from the stationarity of the energy functional; the involved matrices are numerically computed

by a special integration algorithm based on the implicit description of the cutout via suitable level-

set functions. The formulation has been implemented in a computer code which has been used to

validate the method through comparison with literature solutions for variable angle tow laminates

with circular cutouts. Several investigations on buckling and post-buckling behaviour of variable

angle tow composite plates with cutouts having different shapes and dimensions are then presented

to illustrate the approach capabilities, provide benchmark results and point out features and design

opportunities of the variable stiffness concept for the buckling and post-buckling design of advanced

lightweight structures.
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1 Introduction

The availability of advanced manufacturing technologies [1], such as Automated Fiber Placement, Con-

tinuous Tow Sharing, Automated Tape Layup, 3D Printing, enables the efficient construction of variable

stiffness composite structures [2]. In aerospace, automotive and naval fields this open towards new opti-

mized design of lightweight components with high structural performances especially with regard to their

dynamic, buckling and post-buckling behaviour that can be meaningfully enhanced [3, 4]. Often, these

structural components have complex geometries and can present cut-out openings (e.g. windows, holes,

access cut-outs, etc) due to functional and weight requirements. Thus, to fully exploit the advantages

and opportunities of the variable stiffness concept, it is crucial to develop accurate and efficient tools for

the structural modeling, analysis and optimization of components designed under this paradigm. Starting

from the pioneering works of Hyer and coworkers [5, 6], many studies have been performed in the literature

by using the finite element method (FEM), see e.g. [7, 8, 9, 10, 11, 12, 13], only to cite some recent works,

that largely contributed to the understanding of variable stiffness composites behaviour as regard stress

distributions, buckling, vibrations and failure.Starting from the pioneering works of Hyer and coworkers

[5, 6], many studies have been performed in the literature by using the finite element method (FEM), see

e.g. [7, 8, 9], only to cite some recent works, that largely contributed to the understanding of variable

stiffness composites behaviour. However, in standard finite element formulations, the orientation of the

fibers is typically assumed constant inside each element. This inherently leads to a non-smooth fiber path

and may produce loss in accuracy, unless extremely refined mesh size is employed with the consequent

rapid growth of the required computational resources. This deficiency can be overcome by advanced FEM

formulation such as those based on isogeometric analysis, see e.g. [14], that generally are not available in

industrial commercial software. Numerical approaches alternative to finite elements for variable stiffness

composite analyses have been proposed in the context of meshless methods [15, 16, 17] and generalized

differential quadrature method [18, 19, 20, 21, 22]. On the other hand, semi-analytical methods can be

recognized as computationally efficient to model variable stiffness composite structures especially in view

of optimization procedure application. In particular, the Rayleigh-Ritz method has been extensively em-

ployed to investigate the buckling and post-buckling behaviour of intact variable stiffness plate by Weaver

and co-workers [23, 24, 25, 26, 27], by Guimares et al. [28], by Vescovini and Dozio [29] and by Milazzo

and co-workers [30, 31, 32, 33]. Also cracked variable stiffness plates have been investigated for buckling

and free vibrations by the eXtended Ritz method [34, 35].

Focusing on the structural analysis of composite components with cut-outs, the literature survey
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reveals that FEM is the widely employed approach [6, 36, 37, 38, 39, 40]; problem solutions have been also

proposed using the isogeometric analysis formulation [41], the moving least square meshless method [17],

the Ritz method coupled with the energy effect removal technique [42], the multiregion plate assembly

Ritz method [43] and the Discontinuous Galerkin method [44, 45, 46, 47].

The remarks reported above shows that buckling and post-buckling analysis of variable stiffness plate

with cut-outs is a primary concern in the design of future lightweight structures. In this framework semi-

analytical approaches can significantly contribute as they can provide benchmark solutions and efficient

alternatives to finite elements especially in the preliminary design phase and in optimization procedures.

In view of this, in the present work a novel single-domain Ritz approach is proposed for the buckling

and post-buckling analysis of quadrilateral variable stiffness composite plates with cut-outs and elastically

restrained edges. The cut-out is geometrically described in implicit form by suitable level set function.

The plate structural model is based on the first order shear deformation theory accounting for geometrical

nonlinearity under the von Karman nonlinear plate assumptions. To apply the Ritz method, the problem

primary variable, namely the plate midplane translation and the plate section rotations, are approximated

by a set of trial functions built as products of one-dimensional orthogonal Legendre polynomials. The

plate governing equations in terms of the primary variables unknown Ritz coefficients are then determined

by the stationarity condition of the total energy potential, which provides the nonlinear resolving system.

The characteristic matrices of the resolving system are computed using a special integration technique

that, based on the implicit description of the cut-out via a suitably-defined level set function, allows for

an accurate evaluation of domain integrals over the plate domain. This is the principal novelty and the

core of the proposed novel Ritz approach. Validation results and studies to show the potential of the

method are finally presented.

2 Formulation

Consider a quadrilateral layered composite plate containing a cut-out. Let the plate have variable stiff-

ness arising from material and lay-up characteristics (e.g. variable angle tow laminates) and thickness

distribution The plate behaviour is described in the framework of the first order shear deformation theory

(FSDT), considering nonlinear geometrical description based on the von Karman assumptions holding for

moderately large deflections and rotations [48].
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2.1 Geometry definition and reference systems

Let the plate be referred to a Cartesian coordinate system with the x1 and x2 coordinates spanning its

mid-plane and the x3-axis directed along its thickness. Let Ω denotes the quadrilateral domain occupied

by the plate in the x1x2 plane and let ∂Ω be its boundary. A natural coordinate system ξη is also

introduced that maps the square domain [−1, 1]× [−1, 1] onto the domain Ω via standard bilinear shape

functions [49]. A geometrical sketch of the plate and the introduced reference systems is presented in Fig.

1.
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Figure 1: Plate geometry and reference systems.

The plate cut-out is implicitly-defined via a level set function ϕ of the x1 and x2 coordinates [45]
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and then the reference domain Ωc of the plate with cut-out is given by

Ωc ≡ {(x1, x2) ∈ Ω | ϕ(x1, x2) < 0} (1)

while its boundary ∂Ωc is defined as

∂Ωc ≡ {(x1, x2) ∈ ∂Ω | ϕ(x1, x2) < 0} ∪ Γc (2)

where Γc ≡ {(x1, x2) ∈ Ω | ϕ(x1, x2) = 0} denotes the boundary of the cut-out. It is observed that for a

plate without cut-out, Ωc and ∂Ωc coincide with Ω and ∂Ω, respectively.

The plate is subjected to external loads consisting of: (i) forces per unit area applied to the plate

domain Ωc with components directed along the cartesian reference axes and described by the vector

q =

{
q1 q2 q3

}T
; (i) moments per unit area applied to the plate domain Ωc which are collected in

the vectorm =

{
m1 m2

}T
whose components are the moments around the in-plane cartesian reference

axes; (iii) forces per unit length applied along the boundary ∂Ωc whose components along the cartesian

reference axes are collected in the vectorN =

{
Nn1 Nn2 Nn3

}T
; (iv) moments per unit length around

the in-plane cartesian reference axes, which are applied along the boundary ∂Ωc and whose components

are collected in the vector M =

{
Mn1 Mn2

}T
.

The plate boundary ∂Ωc is elastically restrained by translational springs with stiffness ku1 , k
u
2 and ku3

along the cartesian reference axes and by rotational springs with stiffness kψ1 and kψ2 around the x2 and

x1 axis. It is remarked that a zero spring stiffness value corresponds to free variable boundary conditions

whereas an infinite spring stiffness value fully constrains the corresponding degree of freedom; basing on

this observation the plate kinematical boundary conditions can be numerically enforced via the penalty

concept [50].

Eventually, the plate can exhibit an initial imperfection described by a given transverse deflection

w of its mid-plane with respect to the flat configuration.

2.2 Kinematical model

The plate displacement field dT =

{
d1(x1, x2, x3) d2(x1, x2, x3) d3(x1, x2, x3)

}T
is written as

d = u+ x3Lψ + u (3)
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where uT =

{
u1(x1, x2) u2(x1, x2) u3(x1, x2)

}
is the mid-plane translations vector, ψT =

{
ψ1(x1, x2) ψ2(x1, x2)

}

is the plate rotations vector and the vector uT =

{
0 0 w(x1, x2)

}T
accounts for the initial imperfec-

tion. In Eq. (3) the matrix operator L is defined as

LT =



1 0 0

0 1 0


 (4)

Collecting the Green’s strains into the in-plane and out-of-plane components vectors ep =

{
e11 e22 e12

}T

and en =

{
e13 e23

}T
, respectively, the nonlinear strain-displacements relations under the von Karman

assumptions are given by

ep =DDDpu+
1

2
(DDDp ⊗ u3)DDDnu+ (DDDp ⊗ w)DDDnu+ x3DDDpLψ = ε0 + x3κ (5a)

en = LTDDDnu+ψ = γ (5b)

where the symbol⊗ denotes the Kronecker’s product and the following differential operators are introduced

DDDp =




∂

∂x
0 0

0
∂

∂y
0

∂

∂y

∂

∂x
0




DDDn =




0 0
∂

∂x

0 0
∂

∂y

0 0 0




(6)

It is worth noting that in Eqs. (5) ε0 is the generalized in-plane strains vector, κ is the curvatures vector

and γ is the shear strains vector.

2.3 Plate constitutive law

According to the kinematical model introduced in the preceding subsection, the mechanical state is de-

scribed by the 2nd Piola-Kirchoff stress vector whose components obey the material constitutive law for

generalized elastic orthotopic materials. Assuming a plane-stress state, namely σ33 = 0, at the plate point
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of coordinates (x1, x2, x3), the constitutive law reads as

σ =




σp

σn





=





σ11

σ22

σ12

σ31

σ32





=




Q11 Q12 Q13 0 0

Q12 Q22 Q23 0 0

Q13 Q23 Q33 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55








ε11

ε22

ε12

ε31

ε32





=



Qp 0

0 Qn







εp

εn





= Qε (7)

where the Qij are the material stiffness coefficients [48].

The plate internal actions corresponding to this stress state are the membrane stress resultants

per unit length N =

∫

h

σpdx3, the transverse stress resultants per unit length T =

∫

h

σndx3 and the

moments per unit lengthM =

∫

h

x3σpdx3. They are linked to the generalized strains defined in Eqs. (5)

by the following constitutive equations





N

M

T





=




A B 0

B D 0

0 0 G








ε0

κ

γ





(8)

In the Eq. (8), A, B, D and G are the extensional, bending–extension coupling, bending and shear

stiffness matrices, respectively, which are defined as [48]

⟨A(x1, x2), B(x1, x2), D(x1, x2)⟩ =
∫

h(x1,x2)

⟨1, x3, x23⟩ Qp(x1, x2, x3) dx3 (9)

G(x1, x2) = F (x1, x2)

∫

h(x1,x2)

Qn(x1, x2, x3) dx3 (10)

where F is a 2 × 2 matrix containing the shear correction factors [51]. It is remarked that the stiffness

matrices are generally function of the in-plane coordinates x1 and x2 depending on material and thickness

distributions. In the framework of stiffness variations related to material distributions, let us focus on

variable angle tow (VAT) laminates. They are obtained by stacking fiber-reinforced composite plies whose

fibres are laid at a variable angle in the lamina plane; thus, the fibre orientation angle ϑ depends on the

in-plane coordinates, namely ϑ = ϑ(x1, x2), and consequently at a ply level it results Qij = Qij(x1, x2).

In the present work, the case of ϑ linearly varying along a baseline r lying in the x1x2 plane and inclined
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by the angle ϑ0 with respect to the x1 axis is considered, namely

ϑ(r) = ϑ0 +
1

Lr
(ϑB − ϑA) |r|+ ϑA (11)

where ϑA and ϑB are the fibre orientation angles with respect to the baseline at the point A and B,

respectively, whose distance along the baseline is Lr (see Fig. 2). If the point A corresponds to the

r

ϑ0

ϑB

B

ϑA

A
Lr

x1

ϑ

x2

r

Figure 2: Definition of fibre path for a variable angle tow lamina.

projection of the plate center and the point B belong to a plate edge, fibre paths described by Eq.

(11) correspond to those originally proposed by Gürdal and Olmedo [52] and they are briefly denoted as

ϑ0⟨ϑA|ϑB⟩. It is clear that straight fibers laminates can be analyzed as a subcase of VAT layups when

θA = θB .

2.4 Variational statement and governing equations

Assuming that the strain–displacement relationships, namely Eqs. (5), and the plate constitutive rela-

tionships, namely Eqs (8), are fulfilled, the plate governing equations are obtained by the stationarity

conditions of the following functional Π with respect to the problem primary variable that are the mid-
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plane translations u and the transverse section rotations ψ [53]

Π =

∫

Ωc

1

2

[
εT0Aε0 + ε

T
0Bκ+ κTBε0 + κ

TDκ+ γTGγ
]
dΩ−

∫

Ωc

[
uTq +ψTm

]
dΩ−

∫

∂Ωc

[
uTN +ψTM

]
d∂Ω+

∫

∂Ωc

1

2

[
uTkuu+ψTkψψ

]
d∂Ω

(12)

In the Eq. (12) ku and kψ are 3×3 and 2×2 diagonal matrices collecting the translational and rotational

boundary springs stiffnesses, respectively.

2.5 Ritz solution

The solution of the plate problem outlined in the previous section is obtained through the Ritz method,

which is implemented as described in the following.

2.5.1 Primary variables approximation

The unknown generalized displacement χ, with χ ∈ {u1, u2, u3, ψ1, ψ2}, is approximated as

χ =

Mχ∑

m=0

Nχ∑

n=0

pχnNχ+m
cχnNχ+m

= pχcχ (13)

where pχ is the row vector collecting the trial functions pχnNχ+m
and cχ is the column vector collecting

the corresponding Ritz unknown coefficients cχnNχ+m
. In the present work, the trial functions are chosen

as

pχnNχ+m
= Pm(ξ)Pn(η) (14)

where Pk(ζ) is the Legendre polynomial of k-th order. Accordingly to Eq. (13), the plate generalized

displacements, which are the problem primary variables, are written in compact matrix form as

u =



pu1

0 0

0 pu2
0

0 0 pu3








cu1

cu2

cu3





=



P u1

P u2

P u3


U = PU U (15a)

ψ =

[
pψ1

0

0 pψ2

]{
cψ1

cψ2

}
= P Ψ Ψ (15b)
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2.5.2 Strain-displacement relationships

The plate generalized strain are then expressed as

ε0 = B
p
U U +

1

2
Bnl
U U +B

nl

U U (16a)

κ = B
p
Ψ Ψ (16b)

γ = Bn
U U +Bi

Ψ Ψ (16c)

where

B
p
U = DDDpPU (17a)

B
p
Ψ = DDDpLP Ψ (17b)

Bnl
U = [DDDp ⊗ (P u3

U)]DDDnPU (17c)

Bnl
U = (DDDp ⊗ w)DDDnPU (17d)

Bn
U = LTDDDnPU (17e)

Bi
Ψ = P Ψ (17f)

2.5.3 Nonlinear governing equations

Substituting Eqs. (16) into Eq. (12) provides the Ritz-discretized form of the functional Π whose station-

arity conditions with respect to U and Ψ return the plate governing equations in the form of the following

nonlinear system [53]
(
K0 +K1 +K2 +K0 +K1 +R

)
X = F (18)

where the Ritz unknown coefficients vector XT =

{
UT ΨT

}
has been introduced. The matrices and

vectors appearing in Eq. (18) are defined as

K0 =

∫

Ωc




B
p
U
T
A B

p
U +Bn

U
TG Bn

U B
p
U
T
B BpΨ +Bn

U
TG Bi

Ψ

B
p
Ψ
T
B B

p
U +Bi

Ψ

T
G Bn

U B
p
Ψ
T
D B

p
Ψ +Bi

Ψ

T
G Bi

Ψ


 dΩ (19a)
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K1 =

∫

Ωc




1

2
B
p
U
T
A Bnl

U +Bnl
U

T
A B

p
U Bnl

U

T
B B

p
Ψ

1

2
B
p
Ψ
T
B Bnl

U 0


 dΩ (19b)

K2 =

∫

Ωc




1

2
Bnl
U

T
A Bnl

U 0

0 0


 dΩ (19c)

K0 =

∫

Ωc




B
p
U
T
A Bnl

U +Bnl
U

T
A B

p
U +Bnl

U

T
A Bnl

U Bnl
U

T
B B

p
Ψ

B
p
Ψ
T
B Bnl

U 0


 dΩ (19d)

K1 =

∫

Ωc




Bnl
U

T
A Bnl

U +
1

2
Bnl
U

T
A Bnl

U 0

0 0


 dΩ (19e)

R =

∫

∂Ωc



P T
ukuP u 0

0 P T
ΨkψP Ψ


 d∂Ω (19f)

F =

∫

Ωc





P T
uq

P T
Ψm




dΩ+

∫

∂Ωc





P T
uN

P T
ΨM




d∂Ω (19g)

It is worth noting that overlined matrices refer to the contributions associated with the plate initial

imperfection and that the matrices K2, K1 and K1 depend on the unknown vector X. Solution of

Eq. (18) is achieved by incremental-iterative procedures, which need the computation of the associated

Jacobian matrix defined as

J =K0 +K
t
1 +K

t
2 +KG +K0 +K

t
1 +R (20)

where

Kt
1 =

∫

Ωc




B
p
U
T
A Bnl

U +Bnl
U

T
A B

p
U Bnl

U

T
B B

p
Ψ

B
p
Ψ
T
B Bnl

U 0


 dΩ (21a)
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Kt
2 =

∫

Ωc




Bnl
U

T
A Bnl

U 0

0 0


 dΩ (21b)

KG =

∫

Ωc




Bn
U
T N̂ Bn

U 0

0 0


 dΩ (21c)

Kt
1 =

∫

Ωc




Bnl
U

T
A Bnl

U +Bnl
U

T
A Bnl

U 0

0 0


 dΩ (21d)

(21e)

being

N̂ =



N11 N12 0

N12 N22 0

0 0 0


 (22)

For more details on the derivation of Eqs. (18) and (20) the reader is referred to Refs [49, 50].

2.5.4 Linear buckling equations

The linear buckling eigenvalue problem associated with Eq. (18) is written as [54]

(K0 +R+ λKG)X = 0 (23)

where the eigenvalue λ is the load multiplier and the eigenvectors X contain the Ritz coefficients of the

buckling mode. Note that in Eq. (23), the matrixKG is computed with the membrane stress distribution

of the pre-buckled state, which is determined by linear analysis assuming that it varies in a self-similar

manner as the load grows.

3 Integration

The terms introduced in Eqs.(19) and (21) are defined as the integrals of the trial functions and the stiffness

coefficient matrices over the domain and the boundaries of the plate. When a simple quadrilateral plate

is considered, these integrals are computed by using standard tensor-product Gaussian quadrature rules

defined in the [−1, 1]× [−1, 1] domain spanned by the natural coordinates ξ and η. However, a different

strategy is needed when the plate contains a cut-out. Several approaches may be employed in this case:
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'(x1, x2) = 0

Figure 3: (a) Level set function defined in the Cartesian reference system. (b) Level set function defined
in the natural reference system. (c) Location of the quadrature points.

examples proposed in the literature include partitioning the domain using a hierarchical quad-tree data

structure, see e.g. [55], or using the quadrature rules associated with an explicit parametrization of the

cut-out [42]. Here, the integration algorithm proposed in Ref. [56] is used as it allows evaluating high-

order accurate quadrature rules for implicitly-defined domains and boundaries and has been successfully

employed in 2D and 3D numerical applications involving both fluid [57, 58, 59, 60] and solid/structural

mechanics [45, 46, 61]. In particular, the considered cut-outs are implicitly defined via a level set function of

the Cartesian coordinates x1 and x2, i.e. φ = φ(x1, x2). By using the bilinear shape functions, the level set

function φ is expressed in terms of the natural coordinates ξ and η to obtain φ̃(ξ, η) ≡ φ(x1(ξ, η), x2(ξ, η)),

which is then used to provide the quadrature rules. An example of the domain quadrature rule for a

quadrilateral plate with a circular cut-out is reported in Fig.(3), which shows the plots of the level set

functions φ and φ̃ in figures (a) and (b), respectively, and the location of the quadrature points in figure

(c).

4 Numerical Results

A computer code based on the formulation outlined in Sec. 2 and the integration scheme described in Sec.3

has been implemented and employed to carry out the numerical results presented in this section. These

results refer to square VAT composite plates with cut-outs. The plates have edge length L = 0.254m

and 16–layer layup. The plies elastic properties in the orthotropic material reference system are given

as E1 = 181.0GPa, E2 = 10.273GPa, G13 = G12 = G23 = 7.1705GPa, ν12 = 0.28 , being Ei the

Young’s moduli, Gij the shear moduli and νij the Poisson’s coefficients. The plies thickness is assumed
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constant and equal to 0.1272mm with a corresponding whole laminate thickness h = 2.0352mm. Different

variable stiffness laminates are considered built with VAT plies having linearly varying fibre orientation

angle, see Eq. (11), and [± (θ0⟨θA/θB⟩)]4S layup. The plates are simply-supported along all the edges

with free bending and torsional rotations. In the model, these boundary conditions are simulated by a

penalty technique implemented with suitable values of the boundary spring stiffness corresponding to the

constrained degrees of freedom. In particular, the boundary spring stiffness values are set proportional to

10s times the material maximum Young modulus, with 4 ≤ s ≤ 7 as suggested in Ref. [50]. The plates

undergo uniform compression displacements u1 = ∆ applied along the edges x1 = ±L/2; this loading

condition corresponds to an average edge force resultant per unit length N̄11 that is defined as

N̄11 =
1

L

∫ L/2

−L/2
N11(±L/2, x2)dx2 (24)

Additionally, a reference value for the buckling load is also introduced as the buckling load N̄ cr
11iso cor-

responding to an homogeneous quasi isotropic plate without cut-out having the same dimension and

boundary conditions of the analyzed plates and whose Poisson’s coefficient and Young modulus are eval-

uated as νiso = 0.296 and Eiso = 69.668GPa [25]. An explanatory sketch of the plate geometry with a

central circular cut-out and of the loading conditions is given in Fig. 4.

∆

L

L x1

x2

∆

D

Figure 4: Plate geometry and loading condition.

4.1 Convergence analysis and validation

Preliminarily, convergence studies are performed for both plate buckling and post-buckling referring to a

Ritz approximation scheme corresponding to Eq. (15) whereMχ = Nχ = N and χ ∈ {u1, u2, u3, ψ1, ψ2}.

After the convergence analyses, the approach has been validated by assessing its accuracy against available
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literature results. It is pointed out that due to the huge number of possible VAT plate configurations, for

the sake of brevity and without affecting the drawn considerations, the presented results are limited to

some cases which are deemed representative of the method behaviour.

4.1.1 Buckling

The results of Fig. 5 refer to the convergence of the first four buckling modes with respect to the number

of employed trial functions for the plates with [± (90⟨0/75⟩)]4S layup and a central circular cut-out of

diameter D/L = 0.2 and D/L = 0.6.
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Figure 5: Convergence studies for the [± (90⟨0/45⟩)]4S square plate exhibiting a central circular cut of
diameter D/L = 0.2 and D/L = 0.6.

The analysis of the data shows a good convergence behaviour for both the buckling eigenvalue and

the corresponding buckling average edge force resultant N̄ cr
11 ; as expected in Ritz approaches convergence

of the buckling force is slightly slower than that of displacements. Similar results have been also obtained

for different cut-out geometries (elliptical, square) and plate layups. All of the convergence analyses

suggest that choosing N = 24 provides converged results and then this approximation scheme will be
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retained in the following buckling analyses focusing, as usual, on the first buckling mode.

Validation of the present method has been carried out by comparing the present results with solutions

available in the literature, which also allows for an assessment of the solution accuracy. Table 1 lists the

normalized buckling load for plates with different VAT layups and centered circular cut-outs of different

diameter D. Comparison of the present results with those of Ref. [17] and FEM ones by ABAQUS

[17] shows good agreement demonstrating the capability of the proposed approach to accurately evaluate

buckling loads of variable stiffness plates with cut-outs. Additionally, it is observed that the present

results have been obtained with a relatively low number of degrees of freedom, which indicates a good

effectiveness of the approach.

Table 1: Buckling loads for compressed square plates with a centered circular cutout.

N̄ cr
11/N̄

cr
11iso

Layup D/L Present Ref. [17] FEM [17]

[± (90⟨0/75⟩)]4S

0.0 2.19 2.22 2.19
0.2 2.10 2.13 2.09
0.4 2.06 2.09 2.01
0.6 2.16 2.22 2.12

[± (0⟨60/30⟩)]4S

0.0 1.09 1.17 1.17
0.2 0.93 1.02 0.99
0.4 1.02 1.08 1.03
0.6 1.46 1.56 1.43

[± (45⟨15/0⟩)]4S

0.0 1.20 1.17 1.15
0.2 1.03 1.06 1.04
0.4 1.05 1.09 1.07
0.6 1.48 1.54 1.48

[± (90⟨45/45⟩)]4S

0.0 1.21 1.23 1.24
0.2 1.06 1.12 1.12
0.4 1.08 1.11 1.11
0.6 1.45 1.51 1.51

Eventually, to complete the presentation of the approach potential, buckling modes corresponding

to the cases analyzed in Table 1 are shown in Fig. 6 observing the ability to capture the modal shape

variations with layup and cut-out dimension.
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D/L = 0.0

[± (90〈0/75〉)]4S [± (0〈60/30〉)]4S [± (45〈15/0〉)]4S [± (90〈45/45〉)]4S

D/L = 0.2

D/L = 0.4

D/L = 0.6

0.0 0.2 0.4 0.6 0.8 1.0

u3/u3max

Figure 6: First buckling mode shape for different VAT laminates with a center circular cut-out exhibiting
different diameters D.

4.1.2 Post-buckling

The results presented and discussed to illustrate the post-buckling convergence characteristics focus on the

[90±⟨0|45⟩]4S plate with a D/L = 0.2 centered circular cut-out and an initial imperfection corresponding

to the first buckling mode shape with amplitude equal to the 0.1 % of the plate thickness. Fig. 7a shows
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the equilibrium path for the transverse displacement at cut-out edge, namely at the point of in plane

coordinates (D, 0), with respect to the applied normalized compression strain ε11 for increasing refined

Ritz approximation schemes. On the other hand, Fig. 7b shows the corresponding load-shortening curve

in pre- and post-buckling regime. The data suggest effective convergence features of the method for both

the primary variables, namely displacements, and stress resultants.
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Figure 7: Convergence analysis for the postbukling solution of the [90±⟨0|45⟩]4S plate with a D/L = 0.2
centered circular cut-out.

To validate the method for the post-buckling regime, a set of different VAT laminates containing

a central circular cut-out with various diameters has been solved assuming an initial imperfection corre-

sponding to the first buckling mode shape with amplitude equal to the 0.1 % of the plate thickness. Fig. 8

shows the comparison of the obtained results with the finite element solutions reported in Ref. [17]. Both

equilibrium paths for the maximum transverse displacement and load-shortening curves are reported in

Figs. 8a and 8b, respectively.

They show a general good agreement with the finite element data. It is remarked that some results

actually refer to straight fibres laminates, straightforwardly solvable by commercial FEM codes; these

however have been analyzed employing the numerical procedures developed for the VAT case for code

validation purposes.

In conclusion, the performed convergence and accuracy studies, for which representative cases have

been illustrated in the preceding paragraphs, enables an appropriate level of confidence in the approach.

Thus, it can be employed to ascertain the buckling and post-buckling behaviour of variable stiffness

laminates with cut-outs in the context of design and optimization procedures.
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Figure 8: post-buckling solutions for VAT laminates with central circular cut-outs.

4.2 Examples of parametric studies

The proposed method can be used to perform parametric studies [34, 62, 35] to investigate the behaviour

of variable stiffness plates with cut-outs and provide data for the selection of effective structural solutions.

To show this capability, in the present section some examples are provided considering the variation of the

structural performances with respect to different fibre paths used in the laminate layup [± (θ0⟨θA/θB⟩)]4S ;

material properties and plate geometry are the same as the analyses presented above.

4.2.1 Buckling

Fig. 9 shows the variation of the buckling load with respect to the plies fibre path for the considered

laminates with a central circular cut-out; the reported subplots refer to the plate without cut-out (D/L =

0.0) and to the cut-out cases with different diameters (D/L = 0.2, 0.4, 0.6). Analogously, Figs. 10 and

11 outline the same kind of results for the case of an elliptical and a square cut-out, respectively, whose

geometrical data are sketched in the same figures; once again different dimensions of the cut-out have

been considered in the analysis.

The presented results firstly demonstrate the capability of the method to deal with different geome-

tries. Here basic cut-out geometries have been considered, which are described by the level set functions

reported in Appendix A; however, also more complex cut-outs can similarly analyzed by suitably defining

the corresponding level set functions [56].
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Figure 9: Buckling load for square VAT [± (θ0⟨θA|θB⟩)]4S laminates presenting a central circular cut-out.
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Figure 10: Buckling load for square VAT [± (θ0⟨θA/|θB⟩)]4S laminates presenting a central elliptical cut-
out.
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Figure 11: Buckling load for square VAT [± (θ0⟨θA|θB⟩)]4S laminates presenting a central square cut-out.
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The analysis of these buckling results allows to take some observation on VAT variable stiffness

laminates. For all the examined cut-out geometries, the selection of appropriate fibre path generates

higher buckling loads with respect to the straight fibre case; in particular higher values of ϑB determines

a favourable redistribution of the loading stresses with consequent gain in the buckling loads. This

behaviour, just evidenced in the literature for plates without cut-outs, is also verified for plates with

cut-outs. The dimension of the cut-out affects the buckling load and determines different possible trends

relatable to the ply fibre paths. For a given layup configuration, depending on the selected fibre path:

i) the buckling load initially decreases as the cut-out dimension increases reversing this trend for large

dimensions of the cut-out as a result of the stress redistribution and the change of the original plate

buckling mode into the buckling of the lateral strips; ii) the buckling load monotonically decreases as

the cut-out dimension increases. This trends are better illustrated in Fig. 12 for the case of a square

cut-out. For example, the cited behaviour trends are verified for the [90± ⟨30|45⟩]4S and [90± ⟨30|90⟩]4S
laminates whose buckling load for the different cut-out dimensions are marked by circles in the Figure;

the corresponding buckling mode shape in terms of transverse displacement fringes are also depicted in

the Figure to substantiate the above considerations.
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Figure 12: Buckling load for square VAT [± (90⟨30|/θB⟩)]4S laminates presenting a central square cut-out.
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4.2.2 Post-buckling

To illustrate the capability of the method, some examplesAn example of post-buckling investigations are

is proposed in this section for the VAT laminates with cut-outs of different shape and dimensioncentral

square cut-out having different edge length a. The investigated plate geometry and laminate layups are

the same as the previous examples; an initial imperfection corresponding to the first buckling mode shape

with amplitude equal to the 0.1 % of the plate thickness has been assumed in the analyses. Fig. 13 shows

the load-displacement curves resulting from the analyses for the VAT laminates with a central elliptical

cutout having axes ratio b/a = 0.5 and different characteristic dimension 2a/L. Analogously, Fig. 14

shows the load-displacement curves for the case of central square cut-out with different edge length a/L.

The results clearly evidence the influence of the fibres pattern on the nonlinear post-buckling response of

the plates. Eventually, to exemplify the possible use of the method as a design tool, a The study is

performed focusing on the plates stiffness that can be used to connote the performance in post-buckling

regime; in particular pre-buckling stiffness Kpre and post-buckling stiffness Kpost are extracted from the

computed load versus end-shortening curves [63]. Fig. 15 shows the variation of the Kpre and Kpost with

respect to the ply fibre paths for the [± (90⟨θA/θB⟩)]4S laminates; these stiffnesses are normalized by the

value of Kiso that is the pre-buckling stiffness of the homogeneous quasi isotropic plate without cut-out

corresponding to the investigated laminates [25]. Each curve in Fig. 15 describe VAT laminates with

fixed value of ϑA and varying values of ϑB , more in detail ϑB varies from 0◦ at the left end to 90◦ at the

right end. The figure also reports a baseline curve relative to classical straight fibres laminates. From the

data it is outlined that the variable stiffness concept allows to build laminates that exhibit higher values

of the post-buckling stiffness Kpost with respect to the straight fiber laminate with the same pre-buckling

stiffness Kpre. This circumstance occurs for plates with and without cut-out and confirms the findings

reported in Ref. [25] for intact plates and in Ref. [17] for plates with circular holes. Additionally, as the

cut-out dimension grows the pre-buckling stiffness and initial post-buckling stiffness decreases, following

trends that are similar to those of plates without cut-outs.

5 Conclusions

A Ritz approach for the buckling and post-buckling analysis of variable stiffness laminated plates with cut-

outs has been formulated, implemented and tested. The plate model uses the first order shear deformation
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Figure 13: Load-displacement curves for VAT laminates with a central elliptical cut-out having different
dimension 2a/L.
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Figure 14: Load-displacement curves for VAT laminates with a central square cut-out having different
dimension a/L.
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theory in the framework of non-linear von Karman strains. The primary variables of the model, namely

the plate mid-plane translations and transverse section rotations, are approximated by trial functions

built as products of one-dimensional Legendre polynomials and the governing equations nonlinear system

is inferred by the stationarity conditions of the plate energy functional. The cut-out geometry is implicitly

defined via suitable level set functions, which enables the employment of an accurate special integration

scheme for implicitly-defined domains. Numerical results are presented to validate the method for buckling

and post-buckling analysis of variable stiffness plates with cut-outs, in particular they refer to the analysis

of variable angle tow laminates. After validation, parametric investigations are proposed for buckling and

post-buckling of variable angle tow laminates with cut-outs in order to show the capabilities of the proposed

approach and establish some features of such structures. It is pointed out that the variable stiffness

structural concept implemented via variable angle tow laminates allows to attain better buckling loads

and post-buckling performances with respect to the straight fibres laminates. This circumstance widely

reported in the literature for intact plates is here confirmed also for plates with cut-outs. In conclusion,

it is affirmed that the developed method may provide a valuable tool for the analysis of variable stiffness

laminated plates, whose design space is particularly wide and flexible allowing for improved structural

performances.
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A Appendix

The expressions of the implicit level set functions employed for basic cutouts are provided in this appendix.

They are expressed in the plate domain coordinates x1 and x2

A.1 Circular cutout

Considering a circular cutout, the level set function is expressed as

ϕ = R2 − (x1 − x̄1)
2 − (x2 − x̄2)

2 (25)

where R is the radius and x̄1 and x̄2 are the centre coordinates.

A.2 Elliptical cutout

Let us consider an elliptical cutout. With reference to the geometrical quantities defined in Fig. 16a, the

employed level set function is given by

ϕ = 1− [(x1 − x̄1) cosβ + (x2 − x̄2) sinβ]
2

a2
− [(x2 − x̄2) cosβ − (x1 − x̄1) sinβ]

2

b2
(26)

A.3 Rectangular cutout

The level set function for a rectangular cutout with rounded corners is given by

ϕ =
(a
2

)d
−
[
− (x2 − x̄2) cosβ − (x1 − x̄1) sinβ

r

]d
− [(x1 − x̄1) cosβ + (x2 − x̄2) sinβ]

d
(27)

where the involved quantities are defined in Fig. 16b, r = b/a and the exponent d determines the corner

fillet radius. It is worth noting that high values of d provide low corner fillet radius; in the examples

proposed in the present paper it was set d = 100 which actually simulate sharp corners.
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Figure 16: Cut-out geometry.
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