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In approximation theory, classical discrete operators, like generalized sampling,
Szász-Mirak'jan, Baskakov, and Bernstein operators, have been extensively stud-
ied for scalar functions. In this paper, we look at the approximation of curves by
a class of discrete operators, and we exhibit graphical examples concerning sev-
eral cases. The topic has useful implications about the computer graphics and
the image processing: We discuss applications on the approximation and the
reconstruction of curves in images.
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1 INTRODUCTION

Nowadays, several types of operators have been investigated to approximate bounded and continuous real valued func-
tions of one variable. Here, for approximation, we mean that a family of operators {Sn}n∈N, acting on some function space,
has the property that

lim
n→+∞

(Sn𝑓 )(t) = 𝑓 (t), (1)

when 𝑓 ∶ I → R is a bounded continuous function defined on a interval I ⊂ R (not necessarily bounded) and t ∈ I. A
typical framework consists of discrete operators

(Sn𝑓 )(t) =
∑
k∈J

𝑓 (𝜈n,k)Kn,k(t), 𝑓 ∶ I → R, t ∈ I (2)

defined in terms of the samples 𝑓 (𝜈n,k) of 𝑓 in the point 𝜈n,k and the elementary functions Kn,k, where n ∈ N
+ and k varies

in a finite or countable set J. Classical examples include the generalized sampling operators [1–3] in the case I = R, the
Szász-Mirak'jan [4, 5] and the Baskakov operators [6] in the case I = [0,+∞[, and the Bernstein operators [7] for I = [0, 1].
A lot of works in literature studied these operators or some variations; for instance, [8–16] (for a more complete list see
Section 3).

Since a vector-valued function 𝛾 ∶ I → R
d, d > 1, of one variable is made up of d scalar functions, that is, the

components, the operators above can be used also to approximate vector-valued functions, acting individually in each
component. Using a common terminology, with curve, we refer to a continuous vector-valued function on an interval.

We mention that some of the previous listed operators have been considered for vector-valued functions in [17–20], and
moreover, Bernstein operators are at the base of the definition of the Bézier curves [21].
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Taking into account the idea of approximation by components, in this paper, we look at a class of discrete operators,
their properties of curves approximation, and various supporting examples. Furthermore, we discuss some consequent
applications in the context of computer graphics [21] and image processing [22]. Nowadays, these fields play a crucial role
in modern technology: Computer graphics studies methods to generate and visualize images; image processing investi-
gates operations for enhancing images or for extracting useful information from them. Even though a curve in an image
is represented by a finite number of points, it can be thought as discretization of a curve in the real plane; hence, we
can exploit the operators for its approximation. Anyway, other processes can be done for curves in images starting by the
approximations, for instance, the reconstruction with an increased resolution or affine transformations. We stress that
performing these operations on the approximated curve (which possesses a mathematical expression defined by a contin-
uous, and not discrete, variable) gives better results than those obtained applying the operations directly on the images.
Other kinds of operators [23] found applications in image processing, but not for curves.

Coming back to the theoric aspects, we state the convergence result for curves, considering a class of discrete operators
{Sn}n∈N in a general framework in which the generalized sampling, Szász-Mirak'jan, Baskakov, and Bernstein operators
fit. In details, our setting about {Sn}n∈N follows, with some modifications, the assumptions adopted in [24]. Let I ⊂ R be
an interval (bounded or not), n ∈ N

+, J ⊂ Z an at most countable index set and Γn = (𝜈n,k)k∈J ⊂ I a sequence of points
such that

𝜆n < 𝜈n,k+1 − 𝜈n,k ≤ Λn for every k ∈ J, (3)

where 𝜆n,Λn > 0 and limn→+∞𝜆n = limn→+∞Λn = 0. We consider a family of continuous functions {Kn,k}n∈N+,k∈J , Kn,k ∶
I → R, satisfying the following conditions∑

k∈J
Kn,k(t) = 1 for every n ∈ N

+ and t ∈ I, (4)

∑
k∈J

||Kn,k(t)|| converges uniformly on compact sets of I for every n ∈ N
+, (5)

there exists M0 such that m0(n) ∶= sup
t∈I

∑
k∈J

||Kn,k(t)|| < M0 for every n ∈ N
+, (6)

and

lim
n→+∞

∑
k∈J,|𝜈n,k−t|≥𝛿 ||Kn,k(t)|| = 0 for every 𝛿 > 0 and t ∈ I. (7)

Under this setup, for every n ∈ N
+, we define the operator Sn as in (2). By the assumptions made, the convergence (1)

for bounded and continuous real valued functions holds (Theorem 1), and it implies an analogous result (Corollary 1),
that is, limn→+∞(Sn𝛾)(t) = 𝛾(t), for bounded curves 𝛾 ∶ I → R

d, 𝛾(t) = (x1(t), … , xd(t)), by defining

(Sn𝛾)(t) ∶= ((Snx1)(t), … , (Snxd)(t)), t ∈ I.

The paper is organized as follows. Section 2 is devoted to the approximation results related to {Sn}n∈N for real valued
functions and for curves. In Section 3, we show in more details that the generalized sampling, Szász-Mirak'jan, Baskakov,
and Bernstein operators are special cases of our setting. Some explicit examples of approximations of curves in various
cases (2D or 3D space, open or closed curves) are treated in Section 4. Finally, we discuss the applications about the
approximation and the reconstruction of curves in images in Section 5 providing methods and examples.

2 APPROXIMATION RESULTS

In this section, we state the main approximation results for the operators Sn, firstly for scalar functions and then for curves.
For a bounded real function on a interval I, we write ||𝑓 ||∞ ∶= supt∈I|𝑓 (t)|, while for a bounded function 𝛾 ∶ I → R

d, with
components x1, … , xd, we write ||𝛾||∞ ∶= maxi=1,… ,d(||xi||∞). As preliminary note, we remark the following properties.

Proposition 1. Let𝑓 ∶ I → R be a bounded function and n ∈ N
+. The function Sn𝑓 ∶ I → R is well defined, continuous,

and bounded.
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CORSO and GUCCIARDI 3

Proof. For every t ∈ I, by the boundedness of 𝑓 and by (6), we have the following inequality:

|(Sn𝑓 )(t)| ≤ ∑
k∈J

|𝑓 (vn,k)||Kn,k(t)| ≤ ||𝑓 ||∞m0(n) < ∞.

This proves that Sn𝑓 is well defined and bounded.
Now, let t ∈ I and 𝜖 > 0. Given 𝜌 > 0, by (5), there exists k̄ > 0 such that

∑|k|>k̄|Kn,k(t̃)| < 𝜖 for every t̃ ∈ I, |t− t̃| ≤ 𝜌.
Moreover, by the continuity of Kn,k, for each |k| ≤ k̄, there exists 𝛿k > 0 such that |Kn,k(t) − Kn,k(s)| < 𝜖

2k̄+1
for every|t − s| < 𝛿k. Therefore, putting 𝛿 = min({𝜌} ∪ {𝛿k ∶ |k| ≤ k̄}), we have

|(Sn𝑓 )(t) − (Sn𝑓 )(s)| ≤ |||||
∑
k∈J

𝑓 (𝜈n,k)(Kn,k(t) − Kn,k(s))
|||||

≤ ||𝑓 ||∞ ∑
k∈J

||Kn,k(t) − Kn,k(s)||
≤ ||𝑓 ||∞ ⎛⎜⎜⎝

∑
|k|≤k̄

||Kn,k(t) − Kn,k(s)|| + ∑
|k|>k̄

||Kn,k(t) − Kn,k(s)||⎞⎟⎟⎠
≤ ||𝑓 ||∞(𝜖 + 2𝜖) = 3||𝑓 ||∞𝜖

for every s ∈ I, |t − s| < 𝛿. Thus, Sn𝑓 is continuous. □

The theorem below states that Sn are approximation operators for scalar functions when n goes to infinity (the proof
follows standard steps; see, for instance, [25, Theorem 1]). We will next use it for formulating the result for curves.

Theorem 1. Let 𝑓 ∶ I → R be a bounded function. Then

lim
n→+∞

(Sn𝑓 )(t) = 𝑓 (t),

for every point t of continuity of 𝑓 . Moreover, if 𝑓 is also uniformly continuous and (7) is satisfied uniformly with respect
to t ∈ I, then

lim
n→+∞

||Sn𝑓 − 𝑓 ||∞ = 0.

Proof. The steps to prove the two statements are very similar, so we confine to the proof of the second one. Let 𝜖 > 0.
Since 𝑓 is uniformly continuous, there exists 𝛿 > 0 such that |𝑓 (𝜈n,k) − 𝑓 (t)| < 𝜖 for every n ∈ N

+, k ∈ J and t ∈ I
satisfying |𝜈n,k − t| < 𝛿. We denote by J1 ∶= {k ∈ J ∶ |𝜈n,k − t| < 𝛿}, by J2 ∶= {k ∈ J ∶ |𝜈n,k − t| ≥ 𝛿} and remark that
J1 is finite because of (3). Moreover, by (4),

(Sn𝑓 )(t) − 𝑓 (t) =
∑
k∈J

(𝑓 (𝜈n,k) − 𝑓 (t))Kn,k(t),

so we can write |(Sn𝑓 )(t) − 𝑓 (t)| ≤ s1(t) + s2(t), where

s1(t) =
∑
k∈J1

|𝑓 (𝜈n,k) − 𝑓 (t)||Kn,k(t)| and s2(t) =
∑
k∈J2

|𝑓 (𝜈n,k) − 𝑓 (t)||Kn,k(t)|.
For hypothesis, (7) is satisfied uniformly with respect to t ∈ I. Hence, there exists n̄ such that

∑
k∈J2

||Kn,k(t)|| < 𝜖 for

n ≥ n̄ and for any t ∈ I. Thus, by (6), we have that for n ≥ n̄ and for any t ∈ I,

s1(t) < 𝜖
∑
k∈J1

|Kn,k(t)| ≤ 𝜖m0(n) ≤ 𝜖M0,
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4 CORSO and GUCCIARDI

and that

s2(t) < 2||𝑓 ||∞ ∑
k∈J2

|Kn,k(t)| < 2||𝑓 ||∞𝜖.
Summarizing, ||Sn𝑓 − 𝑓 ||∞ < (M0 + 2||𝑓 ||∞)𝜖 for n ≥ n̄, and so, the proof is concluded. □

In this paper, we are interested to curves in R
d and Proposition 1 and Theorem 1 give, as an immediate consequence,

the following approximation result. For a bounded function 𝛾 ∶ I → R
d, 𝛾(t) = (x1(t), … , xd(t)), t ∈ I, we define Sn𝛾 ∶

I → R
d by

(Sn𝛾)(t) ∶= ((Snx1)(t), … , (Snxd)(t)), t ∈ I,

or, in a more compact form, by

(Sn𝛾)(t) =
∑
k∈J

𝛾(𝜈n,k)Kn,k(t), t ∈ I.

Corollary 1. Let 𝛾 ∶ I → R
d be a bounded function. The following statements hold.

1. Sn𝛾 is a bounded and continuous function (i.e., a bounded curve);
2. limn→+∞(Sn𝛾)(t) = 𝛾(t) for every point t of continuity of 𝛾 ;
3. if 𝛾 is also uniformly continuous and (7) is satisfied uniformly with respect to t ∈ I, then limn→+∞||Sn𝛾 − 𝛾||∞ = 0.

3 SPECIAL CASES OF OPERATORS

As mentioned in the introduction, special cases of our operators setting are the generalized sampling operators, the
Szász-Mirak'jan operator, the Baskakov operator, and the Bernstein operator. We give the details for each of them below.

3.1 Generalized sampling operator
We start recalling that, following [2], a continuous function 𝜒 ∶ R → R is called a kernel if the following conditions are
satisfied:

(i) for every t ∈ R, ∑
k∈Z

𝜒(t − k) = 1;

(ii) ∑
k∈Z

|𝜒(t − k)| converges uniformly for t ∈ [0, 1].

With Equation (2) and the choice I = R, J = Z, 𝜈n,k = k
n

and Kn,k(t) = 𝜒(nt − k), where 𝜒 is a kernel, we recover the
generalized sampling operator

(


𝜒
n 𝑓

)
(t) =

∑
k∈Z

𝑓

(
k
n

)
𝜒(nt − k), 𝑓 ∶ R → R, t ∈ R.

This operator has been studied in [1–3] and under some variations in [11, 12, 14, 15, 26–33]. Assumption (4) follows by
property (i), assumptions (5) and (6) are given by Lemma 1(b) of [2], finally (7) holds (also uniformly with respect to
t ∈ R) by Lemma 1(c) of [2].

Classical examples of kernels are the Fejér kernel and the B-splines [2, 12]. The Fejér kernel, shown in Figure 1A, is

F(t) = 1
2

sinc2
( t

2

)
,
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CORSO and GUCCIARDI 5

FIGURE 1 The graphs of some kernels. (A) Fejér kernel. (B) B-splines of orders 3, 4, and 5 (in blue, red, and orange, respectively). [Colour
figure can be viewed at wileyonlinelibrary.com]

where sinc is the function defined by sinc(t) =

{
sin(𝜋t)
𝜋t

t ≠ 0
1 t = 0.

The B-spline of order m ∈ N
+ is the function Mm defined by

M1(t) =

{
1 t ∈

[
− 1

2
,

1
2

]
0 otherwise,

and

Mm(t) =
1

(m − 1)!

m∑
𝑗=0

(−1)𝑗
(

m
𝑗

)
max

(m
2

+ t − 𝑗, 0
)m−1

, m ≥ 2,

or, equivalently, by the recursive formula

Mm = Mm−1 ∗ M1, m ≥ 2,

where ∗ is the convolution product. In contrast to the Fejér kernel, the B-spline of order m has compact support (namely,[
−m

2
,

m
2

]
). The graphs of some B-splines are displayed in Figure 1B.

3.2 Szász-Mirak'jan operator

From (2) and with I = [0,+∞[, J = N, 𝜈n,k = k
n

and Kn,k(t) = e−nt (nt)k

k!
, we get the Szász-Mirak'jan operator:

(Sn𝑓 )(t) =
+∞∑
k=0

𝑓

(
k
n

)
e−nt (nt)k

k!
, 𝑓 ∶ [0,+∞[ → R, t ∈ [0,+∞[.

Szász-Mirak'jan operator has been studied in [4, 5] and, with some modifications, also in [8-10,34,35].
The continuous functions Kn,k satisfy the assumptions. Indeed, (4) follows by the power series of the exponential func-

tion and trivially implies (6) since Kn,k > 0 for every n ∈ N
+ and k ∈ N. Moreover, let n ∈ N

+, U a compact of [0,+∞[ and
𝜖 > 0. There exists 0 ≤ a < b such that U ⊂ [a, b] and, since Kn,k is strictly increasing on

[
0, k

n

]
, there exists k̃1 such that

sup
t∈U

Kn,k(t) ≤ sup
t∈[a,b]

Kn,k(t) = Kn,k(b) = e−nb (nb)k

k!
, for all k > k̃1.
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6 CORSO and GUCCIARDI

Furthermore, there exists k̃2 such that
∑

k>k̃2

e−nb (nb)k

k!
< 𝜖. Therefore, if k̃ = max(k̃1, k̃2),

∑
k>k̃

Kn,k(t) ≤
∑
k>k̃

e−nb (nb)k

k!
< 𝜖, for all t ∈ U.

In conclusion, also (5) holds true. Finally, (7) is satisfied because the proof of [24, Corollary 2] shows that for 𝛿 > 0∑
k∈N,|𝜈n,k−t|≥𝛿 Kn,k(t) = o(n−1) for n → +∞.

3.3 Baskakov operator

The choice I = [0,+∞[, J = N, 𝜈n,k = k
n

and Kn,k(t) =
(

n + k − 1
k

)
tk

(1+t)n+k leads to the Baskakov operator (introduced in

[6], see also [10, 13, 36–38])

(Bn𝑓 )(t) =
+∞∑
k=0

𝑓

(
k
n

)(
n + k − 1

k

)
tk

(1 + t)n+k
, 𝑓 ∶ [0,+∞[ → R, t ∈ [0,+∞[.

Concerning the assumptions about the continuous functions Kn,k, (4) holds as consequence of the identity 1
1−q

=
+∞∑
k=0

qk,

with q = t
1+t

. Then, (6) is verified since Kn,k > 0 for every n ∈ N
+ and k ∈ N. To prove (5), one can follow steps similar to

those made for Szász-Mirak'jan operators. Finally, in [24, Section 5.2], it is proved that for every 𝛿 > 0 and t ∈ I∑
k∈J,|𝜈n,k−t|≥𝛿 Kn,k(t)(𝜈n,k − t)2 = o(n−2) as n → +∞.

Thus, since 𝛿2Kn,k(t) ≤ Kn,k(t)(𝜈n,k − t)2 if |𝜈n,k − t| ≥ 𝛿, the remaining assumption (7) holds too.

3.4 Bernstein operator

If I = [0, 1], J = {0, 1, … ,n}, 𝜈n,k = k
n

and Kn,k(t) =
(

n
k

)
tk(1 − t)n−k, we recover the Bernstein operator [7] (see also [16,

39–42] for related works)

(n𝑓 )(t) =
n∑

k=0
𝑓

(
k
n

)(
n
k

)
tk(1 − t)n−k, 𝑓 ∶ [0, 1] → R, t ∈ [0, 1].

The assumption (4) can be easily checked, and (5)–(7) are trivially satisfied since J is finite and I is bounded. We also
remark that if 𝛾 ∶ [0, 1] → R

d is a curve, then n𝛾 is a so-called Bézier curve [21] with control points
{
𝛾

(
k
n

)}
k∈J

.
Figure 2 shows the graphs of some elementary functions appearing in the formulations of the generalized sampling,

Szász-Mirak'jan, Baskakov and Bernstein operators.

4 EXAMPLES

In this section, we illustrate some graphical examples of the approximation of curves, as stated by Corollary 1, via the
operators of type (2). We first remark that a curve with bounded domain can be approximated by the operator Sn defined
by (2) even if the domain of the curve is not the interval I. To explain better this idea with some examples, let us assume
that 𝛾 ∶ [a, b] → R

d is a bounded curve where [a, b] is a bounded interval (a < b). We have to analyze different cases
depending on the type of interval I.

If I is a bounded closed interval, then we can consider the new curve 𝛾̃ ∶ I → R
d, 𝛾̃ = 𝛾 ◦ 𝜎, where 𝜎 ∶ I → [a, b] is a

bijective function (for instance, an affine transformation between the domains). Since 𝛾̃ has domain I, we can approximate
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CORSO and GUCCIARDI 7

FIGURE 2 Each subfigure shows some elementary functions Kn,k appearing in the expression of (A) generalized sampling operator with
B-spline kernel of order 3; (B) Szász-Mirak'jan operator; (C) Baskakov operator; (D) Bernstein operator. [Colour figure can be viewed at
wileyonlinelibrary.com]

it by a curve Sn𝛾̃ . Finally, to come back to the domain [a, b], we take into account the inverse transformation 𝜎−1. In other
words, we consider the curves Sn𝛾̃ ◦ 𝜎−1 = Sn(𝛾 ◦ 𝜎) ◦ 𝜎−1 in order to approximate 𝛾 . The result follows by the fact that
for every t ∈ [a, b]

lim
n→+∞

(
Sn(𝛾 ◦ 𝜎) ◦ 𝜎−1) (t) = lim

n→+∞
(Sn(𝛾 ◦ 𝜎))(𝜎−1(t)) = (𝛾 ◦ 𝜎)(𝜎−1(t)) = 𝛾(t).

This is exactly the case of Bernstein operators; in fact,n is defined for functions with domain I = [0, 1], so to approximate
a curve 𝛾 ∶ [a, b] → R

d we can take the curve n(𝛾 ◦ 𝜎) ◦ 𝜎−1 where 𝜎 ∶ I → [a, b] is given by 𝜎(s) = (1 − s)a + sb.
If, instead, I = R (in particular, in the case of generalized sampling operators) we do not have necessity of transform

[a, b]. Indeed, since [a, b] is a subset of R, we can simply extend the curve 𝛾 to a new curve 𝛾̃ ∶ R → R
d setting

𝛾̃(t) =
⎧⎪⎨⎪⎩
𝛾(a) t < a
𝛾(t) t ∈ [a, b]
𝛾(b) t > b.

(8)
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8 CORSO and GUCCIARDI

FIGURE 3 In each subfigures, the open curve in blue is 𝛾 ∶ [0, 1] → R
2, 𝛾(t) = (t cos(𝜋t), t sin(𝜋t)). The curves in red, orange, and purple

are some approximations given by different operators. [Colour figure can be viewed at wileyonlinelibrary.com]

Thus, to have an approximation of 𝛾 we can simply take an approximation Sn𝛾̃ of 𝛾̃ and then a restriction of it in the
interval [a, b]. Note that we have extended 𝛾 as in (8) to have a continuous function (so a curve) and then to apply Corollary
1 for every point of R.

Finally, let us consider I = [0,+∞[ as in the case of Szász-Mirak'jan or Baskakov operators. First of all, [a, b] is not
necessarily a subset of I, so we can appeal to the translation 𝜎 ∶ [0, b − a] → [a, b], 𝜎(s) = s + a, and secondly, we need an
extension to the interval [0,+∞[. Summarizing, we define the curve

𝛾̃(t) =
{

𝛾 ◦ 𝜎(t) = 𝛾(t + a) t ∈ [0, b − a]
𝛾(b) t > b − a, (9)

we approximate it with Sn𝛾̃ , we take the restriction R(Sn𝛾̃) of Sn𝛾̃ on the interval [0, b−a] and, coming back to the original
domain exploiting 𝜎−1, we are able to approximate 𝛾 with the curve R(Sn𝛾̃) ◦ 𝜎−1.

As example, in Figure 3 we consider a curve of the real plane (in blue) and its approximations by the operators of
Section 3 for different values of the parameter n. In particular, we apply the method explained above in the cases of
generalized sampling, Szász-Mirak'jan and Baskakov operators. In Figure 4 we show a curve in the tridimensional space
and an approximation by the generalized sampling operator (the kernel chosen is the B-spline of order 3 and n is equal
to 10).

If 𝛾 ∶ [0, 1] → R
d is, in particular, a closed curve (i.e., 𝛾(0) = 𝛾(1) is satisfied), we would like approximations of 𝛾 which

are closed too. For this end, we extend 𝛾 not as in (8), but periodically, that is, we define

𝛾̃(t) = 𝛾(t − m), for every t ∈ R,m ∈ Z such that t − m ∈ [0, 1]. (10)

Hence, the approximation 
𝜒
n 𝛾̃ with the generalized sampling operator is a closed curve as a consequence of the

following result.

Proposition 2. Let 𝑓 ∶ R → R be a bounded and periodic function with period 1. Then, for every kernel 𝜒 and every
n ∈ N

+, the function 
𝜒
n 𝑓 is periodic with period 1.
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CORSO and GUCCIARDI 9

FIGURE 4 The curve in blue is 𝛾 ∶ [0, 2] → R
3, 𝛾(t) = (cos(2𝜋t), sin(2𝜋t), t). The curve in red is the approximation given by the generalized

sampling operator with B-spline kernel of order 3 (n = 10). [Colour figure can be viewed at wileyonlinelibrary.com]

Proof. Let 𝜒 be a kernel and n ∈ N
+. For every t ∈ R and m ∈ Z, we have

(


𝜒
n 𝑓

)
(t − m) =

∑
k∈Z

𝑓

(
k
n

)
𝜒(n(t − m) − k)

=
∑
k∈Z

𝑓

(
k
n

)
𝜒(nt − nm − k)

=
∑
k∈Z

𝑓

(
k + nm

n

)
𝜒(nt − nm − k)

where in the last equality, we used the periodicity of 𝑓 . Thus, with a change k′ = k + nm, we can write

(


𝜒
n 𝑓

)
(t − m) =

∑
k′∈Z

𝑓

(
k′

n

)
𝜒(nt − k′) =

(


𝜒
n 𝑓

)
(t),

that is, 𝜒
n 𝑓 is periodic with period 1. □

We remark that if 𝛾 ∶ [0, 1] → R
d is a closed curve, then also the approximations n𝛾 by the Bernstein opera-

tor are closed curve, because (n𝛾)(0) = 𝛾(0) = 𝛾(1) = (n𝛾)(1). In Figure 5, a closed curve of the real plane and
some approximations by the generalized sampling operator (making use of Proposition 2) and the Bernstein operator are
presented.

5 APPLICATIONS

The approximation of curves by discrete operators (2) lends itself to some applications about computer graphics and
image processing. In these fields, several types of curves have found utility for problems of approximations, for instance,
trigonometric polynomials [43], Bezier curves, splines and rational Bezier curves [21], and NURBS curves [44]. Coming
back to the general operators (2), we want to discuss some direct consequences of Corollary 1.

To begin with, we recall that a gray-scale image is, under the mathematical point of view, a matrix containing in each
entry (pixel) the corresponding level gray. Curves in images (like, for instance, object contours or sharp transitions of gray
levels) can be considered as discretization1 of curves in the real plane. In particular, if we are interested only to a curve
itself, then we can represent it in a binary image, that is, a matrix with values 0 (for the background) and 1 (for the curve).
In this paper, we consider only image curves that are discretization of curves that does not intersect themselves. Figure 6

1For discretization, we mean the process that round off the coordinates values towards the nearest integer.
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10 CORSO and GUCCIARDI

FIGURE 5 In each subfigures the closed curve in blue is 𝛾 ∶ [0, 1] → R
2 defined by 𝛾(t) = (cos(4𝜋t) + 2 cos(2𝜋t), sin(2𝜋t)). The curves in

red, orange, and purple are some approximations given by different operators. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 An example of a curve in an image. [Colour figure can be viewed at wileyonlinelibrary.com]

shows a binary image with value 0 in the entries represented by a white square and value 1 in the entries represented by
a colored square. The pixels with value equals to 1 constitute a closed curve.

5.1 Approximations of curves in images
The approximation method of curves in images by means of an operator Sn of type (2) consists in the extraction of the
coordinates of the curve points, from which two continuous functions x1 ∶ I → R and x2 ∶ I → R can be defined and
then in the approximation of x1 and x2 in terms of Sn. By Corollary 1, the curve Sn𝛾 = (Snx1, Snx2) is, for n large enough,
an approximation of the curve 𝛾 = (x1, x2), and as consequence, it determines an approximation of the image curve via
discretization.

With the help of Figure 7, we give more details, confining to the case of closed curves (the other case, open curves,
can be treated with little and intuitive changes). First of all, Figure 7A shows a pixel, the eight directions to the nearest
neighborhoods and, following [45] (see also [43]), the ordering from 0 to 7 of them. Figure 7B contains the same curve of
Figure 6 (the square colored in red is the starting and final point of the curve which is, by our convention, the point of the
contour with maximum ordinate and minimum abscissa). Based on the ordering of Figure 7A, a path that runs through
the curve from and to the initial point can be created as in Figure 7B (among the possible directions, the chosen one is
represented by the lowest number).

Collecting the labels of the directions as a sequence, we obtain the so-called chain code [43]. Anyway, for our appli-
cations, we are actually interested to the sequences of abscissas and ordinates.2 For example, the curve represented

2For a point of coordinates (i, 𝑗) of an image curve, we call 𝑗 and i the abscissa and the ordinate of the point, respectively. Note also that we enumerate
the ordinates from above to bottom (see Figure 7B) as it usually done for matrices, that is, for the representation of images.
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CORSO and GUCCIARDI 11

FIGURE 7 (A) The eight directions from a pixel to the nearest neighborhoods and the corresponding ordering as defined in [45]. (B) An
image representing a closed curve with starting and final point in red. The path indicated by the arrows in the second figure is obtained
starting from the red pixel and moving to a nearest neighborhood following the ordering of the directions. [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 The piece-wise linear functions determined by the abscissas and ordinates of the curve of Figure 7B on the left and on the right,
respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

in Figure 7B, and with starting point in red, has chain code c = (0, 1, 1, 2, 4, 4, 3, 5, 6, 7, 6), sequence of abscissas u =
(4, 5, 6, 7, 7, 6, 5, 4, 3, 3, 4) and sequence of ordinates v = (6, 6, 5, 4, 3, 3, 3, 2, 3, 4, 5).

Once the sequences of abscissas u = (u𝑗)N
𝑗=1 and of ordinates v = (v𝑗)N

𝑗=1 are determined, we define a piece-wise linear
function x1 ∶ [0, 1] → R associated to u as

⎧⎪⎨⎪⎩
x1(t) = (𝑗 − Nt)(u𝑗 − u𝑗+1) + u𝑗+1 if t ∈

[
𝑗−1
N
,
𝑗

N

[
and 1 ≤ 𝑗 ≤ N − 1,

x1(t) = N(1 − t)(uN − u1) + u1 if t ∈
[

N−1
N

, 1
] (11)

and, similarly, a function x2 ∶ [0, 1] → R associated to v. In Figure 8, we show the functions x1 and x2 for the example of
Figure 7B.

Next, we approximate x1 and x2 by means of an operator Sn for some n ∈ N
+; that is, we consider Snx1 and Snx2 (we

proceed, in particular, as explained in Section 4 if Sn is not defined for functions with domain [0, 1]). Finally, putting what
we need together, the curve (Snx1, Snx2) constitutes an approximation of (x1, x2) and hence of the image curve after that
the discretization is made.

The entire process is illustrated in Figure 9 with an image (shown in (A)) containing a curve with an higher number
of points. In particular, following the steps above, we extracted the point coordinates according to the path made by
the direction ordering and we defined the abscissas and ordinates functions x1 and x2, which are displayed in blue in
Figure 9C–D. We employed the generalized sampling operator F

n with Fejér kernel and n = 100 to approximate x1 and
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12 CORSO and GUCCIARDI

FIGURE 9 An image with a curve is shown in (A) (the resolution of the image is 200 × 120). The functions x1 and x2 giving the abscissas
and ordinates of the points of the curve are plotted, in blue, in (C) and (D), respectively. The functions in red in (C) and (D) are, instead, the
corresponding approximations F

100x1 and F
100x2 obtained by the generalized sampling operator F

100 with Fejér kernel. The discretization of
the curve (F

100x1,
F
100x2) is shown, in red color, in (B) and is overlaid on the original curve. [Colour figure can be viewed at

wileyonlinelibrary.com]

x2 (the functions F
n x1 and F

n x2 are shown in Figure 9C–D in red). Figure 9B is an image containing the original curve
in black and the approximating curve

(
F

n x1,
F
n x2

)
in red after discretization.

Remark 1. A variation of the method consists in defining x1 and x2 as piece-wise constant functions. More precisely,
if u = (u𝑗)N

𝑗=1 is the sequence of abscissas of a closed curve, then we define x1 ∶ [0, 1] → R associated to u as

x1(t) = u𝑗 if t ∈
[
𝑗 − 1

N
,
𝑗

N

[
and 1 ≤ 𝑗 ≤ N − 1, x1(t) = uN if t ∈

[N − 1
N

, 1
]

and x2 in a similar way in terms of v = (v𝑗)N
𝑗=1 (Figure 10 shows the new cases for the same example of Figure 7B).

As before, we consider Snx1 and Snx2, with n large enough, as approximations of x1 and x2, respectively. Anyway,
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CORSO and GUCCIARDI 13

FIGURE 10 The piece-wise constant functions of abscissas and ordinates of the curve of Figure 7B on the left and on the right,
respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Approximation of a curve from a sequence of few points. (A) A set of points (a given ordering is also defined). (B) The same
set of points and a curve created by applying a generalized sampling operator. [Colour figure can be viewed at wileyonlinelibrary.com]

since in this case x1 and x2 are piece-wise constant, according to Corollary 1 the approximation holds point-wise
except in a finite number of points, of the form 𝑗

N
. Consequently, this happens also for the convergence of Sn𝛾(t) =

((Snx1)(t), (Snx2)(t)) to (x1(t), x2(t)) (note that, even though x1 and x2 are piece-wise constant, Sn𝛾 ∶ [0, 1] → R
2 is still

a curve by Corollary 1). In particular, the values lim
n→+∞

(Snx1)
(

𝑗

N

)
and lim

n→+∞
(Snx2)

(
𝑗

N

)
may differ from the values of

x1 and x2 in a neighborhood of 𝑗

N
. By the way, this does not necessarily constitute an issue for the application. Indeed,

there are some discrete operators Sn with the following properties: if t0 is a jump discontinuity for a function 𝑓 , then
Sn𝑓 (t0) converges, as n → +∞, to an intermediate value between lim

t→t+0
𝑓 (t) and lim

t→t−0
𝑓 (t) (an example is the generalized

sampling operator with some hypothesis about the kernel, see [46, Theorem 2]). Thus, considering these operators
and since the jumps of x1 are equal to 1, the value of lim

n→+∞
(Snx1)

(
𝑗

N

)
after rounding off becomes u𝑗 or u𝑗+1. A similar

statement holds for Snx2. In conclusion, defining x1 and x2 as piece-wise constant (and not piece-wise linear) functions,
the error between the image curve and the approximation curve for n large enough is, at most, of one pixel of distance.

Following the same idea of approximating the coordinates functions, another application can be made: the approxi-
mation of a curve from few given points. Let us consider the problem, as in Figure 11A, of having only few points of a
curve and, in addition, an ordering of them (which follows the path of the original contour). Even though the points are
separate, a piece-wise linear curve can be defined connecting the points in the given ordering. The abscissa and ordinate
functions for such a possible curve can be still defined as in (11). The piece-wise linear curve may give a good represen-
tation of the original contour, but it may be at the same time undesired, since it is not smooth. Thus, we can consider
an approximation operator Sn, so that (Snx1, Snx2), for n large, determines a curve approximating the piece-wise linear
contour and more regular (like in Figure 11B).
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14 CORSO and GUCCIARDI

FIGURE 12 In (A): the curve in a image. In (B): the image in (A) with doubled scale. In (C): the curve in (A) reconstructed by a
generalized sampling operator and dilated (the image has the same scale of (A) but doubled resolution). [Colour figure can be viewed at
wileyonlinelibrary.com]

5.2 Reconstruction of curves in images
The technique described in the previous section leads to move from a discrete object (the curve in an image) to a con-
tinuous object (the curve Sn𝛾). This allows to make some operations on the continuous object that give better results in
comparison to working with the discrete initial object. For example, once we approximate 𝛾 with Sn𝛾 , we can dilate Sn𝛾

and then convert it to a curve in an image by discretization. The result is a larger image which is not a simple scaling of
the original image. Speaking in the imaging language, the operator Sn can be also used to reconstruct the curves in images
with an higher resolution.

In Figure 12, we show the results of this procedure. The curve 𝛾 of the same image case of Figure 9 is shown in
Figure 12A. The resolution of the image is 200 × 120. The image scaled by a factor equals to 2 is displayed in Figure 12B
(the effect is that of a zoom, the resolution is not changed). The generalized sampling operator M3

n with B-spline kernel
of order 3 and n = 200 was applied to approximate 𝛾 as explained in the previous section. The obtained curve M3

n 𝛾 is mul-
tiplied by 2 and then discretized (i.e., the values of the coordinates are rounded off towards the nearest integer). The final
result is in Figure 12C, and by effect of the multiplication, the curve is contained in an image with increased resolution
(400 × 240). Note the difference of quality of the images from a comparison between Figures 12B and 12C.

Other operations that can be performed after the approximating curve Sn𝛾 is obtained are, for examples, translations,
rotations or dilations along specific directions, projections. Working on an auxiliary curve of the real plane as Sn𝛾 , defined
by a continuous and not discrete variable, allows to make operations with better results.
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