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Introduction

This doctoral thesis presents an exploration of Bayesian statistical methods, focus-

ing on two primary areas: spatial modeling using the INLA-SPDE approach and

mediation analysis. The study also investigates a combined approach to estimate

mediational effects in presence of spatial correlation.

The first Chapter of the thesis introduces an application of the INLA-SPDE ap-

proach in the context of marine ecology, exploring the effect of the environmental

temperature on the faunal composition of the Central Mediterranean Sea. We ex-

ploit the modeling flexibility of this approach, using the SPDE approximation to

Gaussian fields along with stochastic smoothing techniques to provide insights into

the potential impacts of climate change on demersal fish communities.

The second Chapter of the thesis shifts the focus to nonlinear mediation analysis.

Mediation models are commonly used in biology, social sciences and epidemiology

to assess the indirect effects of an exposure on an outcome through an intermediate

variable, which is called mediator. In many real-world applications, the presence of

either interaction terms in the models or not normally distributed variables, which

requires link functions different from the identity, implies the non-applicability of

techniques typical of traditional mediation to estimate mediational effects. This

issue has primarily been addressed in literature using non-parametric counterfactual-

based approaches, but very few solutions have been proposed to deal with nonlinear

models in a path-analytic framework.

First, in the context of a healthcare research, we use a two-step approach com-

bining graphical models and counterfactual-based nonlinear mediation analysis to

investigate the effect of socio-economic status on cancer mortality as mediated by

out-of-region mobility, focusing on lung and colon cancer patients in Sicily, Italy.

The study highlights the role of extra-regional mobility as a mediator and its impli-

cations for health policy.

Than, we move into the path-analytic framework offering a comprehensive dis-

cussion of the derivative-based method for nonlinear mediation analysis proposed by

Geldhof et al. (2018), addressing some of its potential issues through novel solutions.
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Chapter 0 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

We also present a real data application, exploiting some of our developments.

In the third Chapter it is addressed, in the context of a work-in-progress, the

possibility to combine the INLA-SPDE method and the derivative-based approach

to mediation analysis for estimating non-linear mediational effects with spatially-

correlated data, enabling the computation of a spatial conditional indirect effect.

With very few exceptions of recent explorations into spatial variability in causal

inference (Reich et al., 2021), the literature on mediation analysis predominantly

lacks consideration for spatial heterogeneity. With simulations and an application on

real data, we illustrate the advantages of considering spatial correlation in mediation

analysis, particularly in improving the accuracy of the estimation of the indirect

effect.
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Chapter 1

Applying the INLA-SPDE

approach to explore the effects of

temperature on the faunal

composition of the Central

Mediterranean Sea

1.1 Introduction

In this chapter, we initially introduce the Integrated nested Laplace approximation

technique for the estimation of Bayesian models. Than, we illustrate the concept of

employing Gaussian fields for spatial data analysis, and how they can be approxi-

mated using the Stochastic Partial Differential Equation (SPDE) method. Subse-

quently, we present a modellistic approach, which exploits the modeling flexibility

of INLA-SPDE within the realm of marine ecology.

1.2 Integrated nested Laplace approximation

Within the Bayesian inferential framework, prior beliefs about unknown parameters

are updated using information from observed data, obtaining the parameters’ pos-

terior distribution. From the posterior distribution, relevant statistics related to the

parameters of interest are computed, like marginal distributions, mean values, vari-

ances, quantiles, among others (for an extensive treatment of the Bayesian approach

to statistical inference see, for example, Gelman et al., 2013).

However, in real-world applications, the main obstacle lies in the fact that com-
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Chapter 1 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

puting the posterior distribution analytically is rarely feasible, hence computational

procedures to obtain the posterior distribution must be employed. Several ap-

proaches are available, with the most renowned being using Markov chain Monte

Carlo (MCMC) techniques (Robert et al., 1999). This method involves drawing a

sample from the joint posterior distribution and conducting inference based on this

posterior sample. However, MCMC methods are computationally demanding, and

generally require a substantial amount of time to reach convergence.

As an appealing alternative to MCMC methods, the integrated nested Laplace

approximation (INLA) has been proposed by Rue et al. (2009), and further devel-

oped by Martins et al. (2013). The INLA method has been successfully applied to

various types of analyses, such as spatio-temporal models for meteorological data

(Lindgren et al., 2011), epidemiology (Bisanzio et al., 2011), pollution risk map-

ping (Cameletti et al., 2013), disease mapping and spread (Schrodle and Held, 2011;

Schrodle et al., 2012), fishing practices (Cosandey-Godin et al., 2014), econometric

models (Gómez-Rubio et al., 2015a), mixed generalized linear models (Fong et al.,

2010), log-Gaussian Cox processes (Gómez-Rubio et al., 2015b; Illian and Sørbye,

Rue, H. et al., 2012) and survival analysis (Martino et al., 2011). An extensive list

of applications of INLA can be found in Rue et al. (2017).

A model can be estimated with INLA if for a random variable Y its expected

value µ can be modeled through a link function g(·) in an additive way as

g(µi) = ηi = β0 +
M∑

m=1

βmxmi +
L∑
l=1

fl(zli), (1.1)

where β0 is the intercept, the coefficients β = {β1, . . . , βM} quantify the effect of

the explanatory variables x on the response variable yi and f = {f1(·), . . . , fL(·)} is

a collection of unknown functions defined on a set of covariates z. Given that the

terms fl(·) can take different forms, the class of models which could be expressed as

in Equation (1.1) is very large (Fahrmeir and Lang, 2001).

INLA assumes Gaussian priors to the vector of parameters θ = {η, β0,β,f}. In
particular, INLA applies properly only if θ can be written as a Gaussian Markov

Random Field (GMRF), because the conditional independence structure of GMRFs

allows to use appropriate efficient computational techniques (Rue and Held, 2005).

The vector θ may depend on some hyperparameters ψ (e.g. variances or correlation

parameters) with, in general, dim(ψ) ≪ dim(θ).

The marginal posterior distributions of the parameters are given by

p(θi | y) =
∫
p(θi,ψ | y) dψ =

∫
p(θi | ψ,y)p(ψ | y) dψ, (1.2)
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Chapter 1 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

while those of hyperparameters are given by

p(ψk | y) =
∫
p(ψ | y) dψ−k, (1.3)

which cannot be solved in closed form. Rue et al. (2009) proposed to approximate

p(ψ | y) as

p(ψ | y) ≈ p(y | θ,ψ)p(θ | ψ)p(ψ)
p̃(θ | ψ,y)

∣∣∣∣
θ=θ∗(ψ)

≡ p̃(ψ | y), (1.4)

where p̃(θ | ψ,y) is the Gaussian approximation of p(θ | ψ,y), applied according

to the Laplace method (Tierney and Kadane, 1986), and θ∗(ψ)is the mode of p(θ |
ψ,y) for a given ψ. The key point is that the Gaussian approximation is applied to

a quantity that is generally close to Gaussian, resulting in a high degree of accuracy

in the majority of cases.

The approximated marginal distributions p̃(ψk | y) are obtained, after choosing

a grid of values ψk, using a numerical integration technique (Martins et al., 2013).

For the marginal distributions of the parameters θi, Rue et al. (2009) propose three

different approaches to compute an approximation of p(θi | ψ,y): 1) Gaussian

approximation; 2) Laplace approximation, and; 3) simplified Laplace approximation.

The Gaussian approximation is the easiest to be obtained but it provides poorer

results. At the cost of being computationally expensive, Laplace approximation

produces better results. The simplified Laplace approximation is a simplification of

the last approach and it gives satisfactory results with a good computational time.

After choosing one of these methods, the posterior marginal distributions can be

computed as

p̃(θi | y) ≈
∑
j

p̃(θi | ψ(j),y)p̃(ψ(j) | y)∆j, (1.5)

where ψ(j) are specific integration points and ∆j are the corresponding weights.

In summary, the accuracy and the computational efficiency of INLA are obtained

by reformulating the problem in order to use the nested Laplace approximation to a

quantity which is generally close to Gaussian, by employing efficient computational

techniques for GMRF, and by using appropriate integration methods to retrieve the

marginal posterior distributions of interest.
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Chapter 1 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

1.3 Gaussian fields in spatial analysis

In general, spatial data can be considered as realizations of a stochastic process

indexed in space (Cressie, 1993):

{Y (s) : s ∈ D}, (1.6)

where s is the vector of spatial coordinates associated to Y in a d-dimensional

euclidean space and D is the observed portion of space, with D ∈ Rd. In the case

of d = 2, generally s contains latitude and longitude of Y . In particular, in the

geostatistical approach (see, e.g., Cressie and Wickle, 2011) point-referenced data

consists of a set of measurements (realizations) of Y taken at a finite set of points

(s1, . . . , sn) in D, and the spatial index s can take any value in the continuum in D.

The interest, typically, is in inferring the main characteristics of the spatial process

such as its mean and variability and predicting values of Y at unobserved points in

space using information derived from the analysis of observed data y.

An useful approach for the estimation of a geostatistical model is to assume

that there is a spatially continuous variable underlying the observations that can be

modeled using a Gaussian random field (GRF) U(s), which is a random function

for which holds that, for every finite set of points (s1, . . . , sn) (Abrahamsen, 1997),

u ∼ Nn(µ,Σ), (1.7)

where u = {u(s1), . . . , u(sn)} is a realization of U(s) at n locations, and µ and Σ

are the mean vector and the covariance matrix of the process, respectively.

The GRF incorporates the correlation structure of the process by means of its

covariance matrix Σ = (Σi,j), i, j = (1, . . . , n), which is constructed from a covari-

ance function. A common choice for the specification of the covariance function,

which is of main interest here, is the Matérn function (Matérn, 1960), which implies

that each single element Σij of the covariance matrix Σ is defined as

Σij = CovM(u(si), u(sj)) =
σ2
u

Γ(ν)2ν−1
(k||si − sj||)νKν(k||si − sj||), (1.8)

where σ2
u is the marginal variance of the process, ν > 0 is the smoothing parameter,

k > 0 is a scale parameter, ||si−sj|| is the euclidean distance between si and sj and

Kν is the modified Bessel function of second kind and order ν > 0. Instead of the

parameter k, for better interpretability we generally consider the range parameter

r, i.e. the distance such that the spatial correlation between two points is very
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Chapter 1 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

small (about 0.14). The range is defined empirically by the following relationship:

(Lindgren and Rue, 2015):

r =

√
8ν

k
. (1.9)

1.4 The SPDE approach

Although the use of GRFs proves convenient due to their good analytical properties,

parameter estimation is often problematic in practice, especially with large data

sets. Indeed, inference on the parameters of the Equation (1.8) has a computational

cost equal to O(n3), as it requires factoring fully dense n × n covariance matrices

(Lindgren et al., 2011). Furthermore, the fitting of a model in a Bayesian inferential

paradigm is traditionally based on Markov chain Monte Carlo algorithms, which

require these calculations at each iteration, making the task even more difficult

(in this regard, see Banerjee et al., 2003, p. 387). An approach to overcome this

problem, which is the one that was applied in this study, has been developed by

Lindgren et al. (2011). An extended list of applications of this method in various

fields of research can be found in Bakka et al. (2018).

The method consists in representing a GRF, which is a continuous spatial pro-

cess, by approximating it to a spatial process with discrete index (i.e. a GMRF).

Thus, thanks to the sparsity of the precision matrix of such a GMRF, which is

induced by the conditional independence structure of the process, appropriate com-

putation techniques for sparse matrices can be used (for an extensive description, see

Rue and Held, 2005). This approach is mainly based on the following two results.

First, a stationary GRF U(s) with zero mean and Matérn covariance function,

with ν > 0 and α = ν+ d/2 integer, is the exact stationary solution of the following

stochastic partial differential equation (SPDE) (Wittle, 1954):

(k2 −∆)α/2(τuu(s)) = W (s), (1.10)

where s ∈ Rd, ∆ =
∑d

i=1 δ
2/δs2i is the Laplacian operator, α is a smoothing pa-

rameter, k is the scaling parameter of the Matérn function, τu controls the variance

and W (s) is a Gaussian white noise spatial process. The connection between Equa-

tion (1.10) and the parameters of the Matérn function is as follows:

ν = α− d/2 (1.11)

σ2
u =

Γ(ν)

Γ(α)(4π)d/2 k2ν τ 2u
∝ 1

τ 2u
. (1.12)
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Second, an approximate solution of Equation (1.10) can be calculated by inter-

polation using the finite element method (FEM) (Ciarlet, 1978). In short, it consists

in dividing the domain into a set of non-intersecting triangles, which can also be

irregular; the vertices of the triangles are called nodes, and each node corresponds

to a base. The solution of the SPDE and its properties depend on the choice of

bases. The approximation is as follows:

ũ(s) =
m∑
j=1

ϕj(s)wj, (1.13)

where m is the number of vertices, ϕj are deterministic functions (bases) and wj are

the weights to be estimated. The bases are such that ϕj = 1 at vertex j and ϕj = 0

at the other vertices. This discretization of the study region is called mesh. The

Equation (1.13) can be rewritten as

ũ(s) =
m∑
j=1

Aj(s)wj, (1.14)

where Aj(s) = ϕj(s) is the generic element of the sparse matrix An×m which maps

the GMRF ũ from the m triangulation vertices to the n observation locations.

The projector matrix A contains the basis function value for each basis, with one

basis function at each column. For example, if the mesh includes only observation

locations as mesh vertices, the matrix A has one nonzero value (equal to 1) for each

row. Conversely, if a spatial location si is placed inside a triangle, matrix A has

three nonzero elements on the ith row whose sum is equal to 1.

It can be shown that it is possible to specify an a priori distribution for the

weights w in Equation (1.13) such that ũ(s) ≈ u(s) in the distribution; for example,

for α = 2 such an a priori distribution is

w ∼ N (0,Q−1
w ) (1.15)

Qw = τ 2u(k
4C + 2k2G+GC−1G), (1.16)

where Cii =
∫
ϕi(s) d(s) and Gij =

∫
∇ϕi(s)∇ϕj(s) d(s) (∇ is the gradient).

So, ũ(s) is a GMRF with distribution N (0,Q−1
w (τu, k)). Since Qw is a sparse ma-

trix, the hyperparameters τu and k can be effectively estimated, within the Bayesian

framework, using INLA (Rue et al., 2009). For a GMRF model in R2, the com-

putational cost is typically O(n3/2) (Lindgren et al., 2011), which is a significant

improvement over the O(n3) cost of the Gaussian field (GF). Generally, for bet-

ter interpretability, the estimation results are expressed in terms of σ2
u and r. The
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approach just described provides a discrete representation (GMRF) of a continu-

ous process (GRF), while preserving the continuity of the correlation structure and

taking into account the exact location of the points in space.

For instance, let y(s) denote the observed value of the response y measured at

location s. We can assume that

y(s) = β0 + x(s)β + u(s) + ϵ(s), (1.17)

where β0 is a regression intercept, ϵ(s) ∼ N (0, σ2
ϵ ) is the measurement error,

x(s) is a vector of covariates of interest with corresponding vector of regression

coefficients β, and u(s) is the value of the spatial field u | (σ2
u, r) at location s.

The spatial field u is represented by its GMRF approximation ũ(s) as described

in Section 1.4. We assume a Gaussian prior distribution for parameters β0 and

β, and the GMRF prior in Equation (1.15) is assigned to u and v. Hence, the

latent field θ = (β0,β,u) is jointly Gaussian distributed with hyperparameters

vector ψ1 = (σu, r). The observations y are assumed to be independent given θ and

ψ2 = σϵ. Denoting the vector of all the hyperparameters as ψ = (ψ1,ψ2), the joint

posterior distribution is then

p(θ,ψ | y) ∝
n∏

i=1

p(yi | θ,ψ)× p(θ | ψ)× p(ψ), (1.18)

where index i denotes the generic spatial point si. The model just described is a

three-level hierarchical model with a latent Gaussian structure, hence the posterior

marginal distributions for each component of θ and ψ can be efficiently estimated

using INLA (for further details see, e.g., Rue et al., 2009, 2017).

1.5 An INLA-SPDE analysis of temperature ef-

fects on Central Mediterranean ecosystem

In this section a novel application of the INLA-SPDE modeling approach is de-

scribed, which is aimed at investigating the effect of climate change on the faunal

composition of the Central Mediterranean Sea area, using trawl surveys biomass

indices. Examples of applications of the INLA-SPDE approach in the field of ma-

rine ecology can be found in Bleuel et al. (2021); Cosandey-Godin et al. (2014);

Lezama-Ochoa et al. (2020); Munoz et al. (2013); Pennino et al. (2014). To the best

of our knowledge, this is the first time that this methodological approach is applied

to investigate the relation between climate change and thermal affinity of marine
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Chapter 1 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

communities.

The content of this section was first introduced in Rubino et al. (2021) and than

extended in Rubino et al. (2024).

1.5.1 Motivation of the study

Human activities are deeply impacting the global climate with strong consequences

to the biotic and abiotic components of the ocean ecosystems (Hoegh-Guldberg and

Bruno, 2010). Also, climatic phenomena and global warming are recognized to be

the main drivers for sea temperature increase (Levitus et al., 2000). Species may

respond to ocean warming by modifying their vertical distribution (Dulvy et al.,

2008) and/or latitudinal range (Perry et al., 2005). Over the years, all of these

changes due to ocean warming led to profound and documented impacts on fish-

eries due to an expected increase of warm-water species in fish communities and,

in turn, in fisheries catch (Baptista et al., 2014; Cheung et al., 2013, 2010).There-

fore, assessing the effects of climate change on fisheries is one of the challenges for

their sustainable management (Leitão et al., 2014). The mean temperature of the

catch (MTC) is a well-recognized index to assess the effects of climate change, espe-

cially in terms of warming, on fisheries catches (Cheung et al., 2013). Particularly,

the MTC, computed from the average inferred temperature preference of exploited

species, weighted by their biomass in the catch, was shown to correlate with trend

in Sea Surface Temperature (SST) (Cheung et al., 2013). It was recently used to

assess the effect of ocean warming both in large marine ecosystems and at local level:

e.g. Eastern Mediterranean (Keskin and Pauly, 2014; Tsikliras et al., 2015; Tsikli-

ras and Stergiou, 2014), Caribbean (Maharaj et al., 2018), Adriatic Sea (Fortibuoni

et al., 2015). The Mediterranean Sea has a long history of fishing activity that has

led to overexploitation most of the Mediterranean fish stocks (Colloca et al., 2013)

increasing their vulnerability to climate variability. In fact, SST is increasing at a

higher rate than the global average leading to fast changes in the catch composition

of fisheries. Therefore, understanding the spatio-temporal relationship between en-

vironmental changes and community variations could be of help for correct resource

management. Understanding how climatic variability is affecting MTC is relevant

also to predict future changes in fish communities and related fisheries catches un-

der different climatic scenarios. In this regard is important to consider that the

response of a target variable, like MTC, to the explanatory variables is frequently

not immediate but rather exhibits a delay (Legendre and Legendre, 1998; Olden and

Neff, 2001).
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1.5.2 The data

The Strait of Sicily is a transition area in the south-central Mediterranean Sea con-

necting the Western and Eastern Mediterranean sectors. Along the southern coast

of Sicily (south Italy), the continental shelf is characterized by two wide and shallow

(100 m depth) banks in the western (Adventure Bank) and eastern sectors (Malta

Bank), separated by a narrow shelf in the middle part. Recent studies highlighted

that this area is a biodiversity hotspot in the Mediterranean Sea including a high

diversity and biomass of demersal communities over the offshore detritic bottoms of

the Adventure bank (Consoli et al., 2016; Di Lorenzo et al., 2018).

We collected georeferenced biomass indices of fish within the demersal trawl sur-

veys MEDITS (Mediterranean International Trawl Survey program) (Bertrand et al.,

2002), performed in the study area between 1995 and 2018. The MEDITS survey

is carried out annually in late spring-early summer, providing a long-term dataset

of fishery-independent data relating to demersal species abundance, demographic

structure, and spatial distribution. Sampling followed a random design stratified by

depth (depth strata: 10–50 m, 51–100 m, 101–200 m, 201–500 m, 501–800 m) with

the number of haul per stratum proportional to each stratum surface.

In the present work, only the hauls located on the continental shelf (depth < 200

m) are considered, assuming that the organisms that inhabit this area have a greater

probability of being influenced by changes in the sea temperature (Figure 1.1).

Figure 1.1: Locations of the catch points in the study area.

At each trawl station, fish species are sorted, weighted, counted and measured,

and their relative abundance is expressed as kg/km2. Each species’ preferred tem-

perature (median, 25th and 75th percentile) is acquired from the on-line database

FishBase (http://www.fishbase.org). The MTC was then calculated for each haul as

the average of the temperature preference of all the exploited fish species weighted
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by their annual MEDITS catch, that is

MTCht =

∑n
i=1 TiChti∑n
i=1Chti

, (1.19)

where Chti are the catches of species i for year t in haul h, Ti is the median tem-

perature preference of species i and n is the total number of species in the annual

catch. An increase of the level of MTC in an area indicates a change in the ther-

mofilic composition of the MEDITS catch, which suggest an increase in dominance

of warm-water species in that area (Cheung et al., 2013).

In order to assess the temporal and spatial changes of the MTC in the Strait

of Sicily, several factors, which are assumed to be related to the MTC level, were

also considered: the annual mean of the SST and the annual mean of the Bottom

Sea Temperature (BST, both measured in Celsius degrees); the depth of the catch,

categorized in three levels (low: [10-60m], medium: (60-100m], high: (100-200m],

based on a hierarchical cluster performed on community bray Curtis dissimilarities

matrix); and the spatial (latitude and longitude) and temporal (year) coordinates.

Raster annual maps of SST and BST were constructed by averaging monthly

continuous digital maps (downloaded from the website http://marine.copernicus.eu

- MEDSEA MULTIYEAR PHY 006 004 - 0.042° × 0.042° pixel resolution). Also,

considering that a change in temperature may take time to express its effects on the

faunal composition, time lags of one, two and three years were considered in mod-

elling the effects of SST and BST on MTC. Initially, variables related to undersea

currents and salinity (downloaded from the website http://marine.copernicus.eu -

MEDSEA MULTIYEAR PHY 006 004 - 0.042° × 0.042° pixel resolution) were also

taken into account by means of a preliminary analysis, from which, however, there

was no evidence of any significant impact of them on the level of the MTC; so, they

were excluded from the study.

Figure 1.2 shows the smoothed trend of BST during the time interval 1995-2018,

according to each level of depth. The BST trend appears to have almost constantly

increased in shallow areas, which are likely to be the most susceptible to changes in

external environmental temperature.

1.5.3 The INLA-SPDE model for MTC

Let y(s, t) denote the observed value of the MTC level measured at location s and

year t = 1, . . . , T . We assume that

y(s, t) = β0 + x(s, t)β + u(s) + vl(t) + ϵ(s, t), (1.20)
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Figure 1.2: Smoothed trend of BST during the time interval 1995-2018, according
to each level of depth.

where β0 is a regression intercept, ϵ(s, t) ∼ N (0, σ2
ϵ ) is the measurement error, x(s, t)

is a vector of covariates of interest (namely, BST and Depth) with corresponding

vector of regression coefficients β, and u | (σ2
u, r) is a realization of the Gaussian

spatial field at location s, which is represented by its GMRF approximation as

described in Section 1.4. Moreover, in order to investigate the overall trend of the

MTC according to each level l of depth, a random walk vl(t) of order 1 has been

included into the model as a smoothing latent component to take care of possible

non-linear relationship, with

vt+1,l − vt,l ∼ N (0, σ2
v), (1.21)

where σ2
v , together with σ

2
ϵ , controls the smoothness of the function (a detailed

description of the use of random walk models for smoothing methods with INLA

can be found in Wang et al., 2018).

Figure 1.3 shows the measurement locations (red dots) within the mesh in two

dimensions. The vertices of the triangles represent the nodes (bases) of the Equa-

tion (1.13), the number of which is 351. The blue line delimits the region of interest.

The addition of the outer edge is to avoid boundary effects (Simpson et al., 2016).

Taking into account the accuracy/computational cost trade-off, a low resolution was

set for the outer region (which is of no practical interest) while a higher number of

nodes was allowed in the study region in order to compute an accurate approxima-

tion of the Gaussian field in that area: maximum triangle side length was 0.1 degree

for the study region and 0.5 degree for the outer region. Also, in order to avoid

the construction of small triangles the minimum triangle side length was set to 0.08

degrees. Details on the mesh construction criteria can be found in Krainski et al.
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(2019). The α parameter of the Matérn function (see Equation 1.12) was set equal

to 2.

Figure 1.3: Triangulation of the study region, delimited by the blue line, and mea-
surement locations (red dots).

Because no prior information was available, a non-informative zero-mean Gaus-

sian prior distribution was used for the parameters β0 and β. Also, the GMRF prior

in Equation (1.15) and the random walk prior in Equation (1.21) were assigned to w

and v, respectively. In practise, R-INLA employs an internal reparameterization of

the hyperparameters, based on which their respective prior distributions have been

assigned. The hyperparameters of the SPDE component (defined in Section 1.4) are

internally reparametrized as λ1 = log(τu) and λ2 = log(κ), for which we assumed

a joint Normal prior with expected values µλ1 = −2.31 and µλ1 = 1.05, precision

τλ1 = τλ2 = 0.1 and covariance zero. These values are chosen heuristically to provide

fairly vague prior information, with the prior median for the spatial range set at a

fifth of the approximate domain diameter, and the median prior variance set equal

to 1. We also set a log-Gamma distribution with (a, b) parameters as a prior for the

precisions τv = 1/σ2
v and τϵ = 1/σ2

ϵ , with a = 1 and b = 5× 10−5.

The latent field θ = (β0,β,w,v) is jointly Gaussian with hyperparameter vector

ψ1 = (λ1, λ2, τv). The observations y are assumed to be Normally distributed and

independent given θ and ψ2 = τϵ. Denoting the vector of all hyperparameters by

ψ = (ψ1,ψ2), the joint posterior distribution is then

p(θ,ψ | y) ∝
n∏

i=1

p(yi | θ,ψ)× p(θ | ψ)× p(ψ). (1.22)

The model just described is a three-level hierarchical model with a latent gaussian
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structure, hence the posterior marginal distributions for each component of θ and

ψ can be efficiently estimated using INLA. All the computations were done using

the INLA package in R software.

1.5.4 Results of the analysis and discussion

Posterior densities of regression coefficients and hyperparameters, estimated by the

INLA-SPDE model, are shown in Figure 1.4 and 1.5, respectively. Their relevant

statistics are reported in Table 1.1, along with their 95% HPD (Highest Posterior

Density) intervals. In order to assess the statistical significance of an effect (in a

Bayesian sense), it can be considered whether its HPD interval contains zero or

not. Graphical representations of model results and checks can also be found in

Figures 1.6 and 1.7.

Table 1.1: Statistics of the estimated posterior distributions of regression coefficients
and hyperparameters.

Coefficient Mean SD Median Mode HDI low HDI high

Intercept 7.66 1.29 7.66 7.68 5.13 10.17
BST lagged (3 years) 0.27 0.08 0.27 0.27 0.10 0.43
Depth medium (ref: high) 1.07 0.19 1.07 1.07 0.69 1.46
Depth low 1.55 0.25 1.55 1.55 1.06 2.04

Hyperparameter Mean SD Median Mode HDI low HDI high

SD of Gaussian observations 1.14 0.03 1.14 1.15 1.08 1.21
SD of SPDE 0.60 0.11 0.59 0.57 0.41 0.82
Range of SPDE 0.22 0.08 0.21 0.19 0.09 0.37
SD of random walk 0.29 0.07 0.29 0.28 0.16 0.43

The estimated posterior mode of the SD of the SPDE random component (0.57°C)
suggests that its inclusion into the model allowed to capture some spatial hetero-

geneity unexplained by the other covariates. This can also be seen by looking at

Figure 1.6, which shows the estimated posterior mean of the SPDE component across

the study region.

Figure 1.7 shows the estimated Matérn correlation as a function of distance.

Considering the dimension of the rectangle which contains the study area (about

374.6×130.8 km), spatial correlation seems to decrease fairly quickly (the posterior

mode of the range is 19◦ ≈ 21.06 km), suggesting a relatively high variability in

the spatial distribution of species. Figure 1.8 illustrates the estimated effect of

the Random Walk smoothing component, which allowed to capture the non-linear
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Figure 1.4: Estimated posterior densities of coefficients. Blue segments represent
HD intervals.

Figure 1.5: Estimated posterior densities of hyperparameters. Blue segments repre-
sent HD intervals.
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Figure 1.6: Posterior mean values of the spatial field. Spatial heterogeneity, unex-
plained by the other covariates, appears to be present; the estimated posterior mode
of the SD of the field is 0.57. The flat area is the one outside the study region.

Figure 1.7: Estimated Matérn correlation function. The red dashed line represents
the posterior mean value of the range.
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temporal evolution of the MTC. This effect also appears to vary across different

depth strata.

Figure 1.8: Random Walk smoothing of the MTC trend, according to depth level of
the catch.

Using BST as the environmental temperature variable, compared with SST led

to a decrease in Deviance Information Criterion (Spiegelhalter et al., 2002) (DIC)

equal to 6.39. BST turned out to have a significant effect on the MTC level, with

the best fit given by its three years lag (DIC values are 2444, 2450, 2443 and 2442

for lag 0, 1, 2, 3, respectively). We also run a 10-fold cross-validation (Hastie et al.,

2009) comparing SST and the different lags of BST. We considered the Root Mean

Square Error (RMSE) as the out-of-sample performance measure, computed using

the differences between posterior means of the MTC and its observed values (RMSE

results are 1.2154, 1.2104, 1.2193, 1.2155 and 1.2103 for SST and BST lag 0, 1, 2,

3, respectively). Although the comparison based on the results of DIC and cross-

validation showed rather marginal differences, a preference emerged for the inclusion

of BST lag 3 in our model. This choice is also substantiated by the understanding

that changes in species abundance in response to temperature variations are not

typically observable within the same or the subsequent year. This delay is due

to the necessary growth period organisms require before they can be effectively

captured in nets, considering each species’ minimum size of retention. The lag 3

thus reflects a more realistic temporal frame to observe the impacts of temperature

on species abundance, acknowledging the biological growth cycles intrinsic to the

species under study. In general, the significant effect of BST suggest a positive

relationship between environmental temperature variations and change in MTC.

Many marine species, including ectotherms like fish, crustaceans, and mollusks,

operate near their upper thermal tolerance, making them highly susceptible to even

minor temperature increases (Harley et al., 2006; Helmuth et al., 2005). These
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changes can significantly affect their survival, adaptation abilities, biodiversity, and

community structure (Doney et al., 2012; Pörtner and Farrell, 2008).

Considering the estimated posterior mode of the coefficient of BST, a one-degree

increase of BST results in an increase of 0.27°C of MTC, on average. This value,

being less than 1, means that communities that live or will live in warmer waters

will be further away from their thermal optimum, and possibly this relationship

will be exacerbated in the future. Studies have shown that marine communities

living in warmer waters are often farther from their optimal temperature range

compared to those living in colder waters (Sunday et al., 2015). This means that

in warmer regions, species are often living closer to their upper thermal limits and

may be more vulnerable to the impacts of warming, such as reduced metabolic rates,

reduced growth, and increased susceptibility to disease and predation.

There is evidence that the response of marine communities to environmental

change can have a temporal lag of several years (Poloczanska et al., 2013). Under-

standing this lag is critical for predicting the long-term impacts of environmental

change on marine ecosystems and for developing effective conservation strategies.

Our study highlights a time lag also for the central Mediterranean communities,

and this could be explained by two possible hypotheses: hypothesis a) over time,

also the central Mediterranean communities have adapted to the changes, acquir-

ing a certain resilience and resistance; hypothesis b) thermophilic species are also

increasing in our communities, which are more resistant to change.
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Figure 1.9: Estimated overall trend of the MTC, according to depth level of the
catch.

Figure 1.9 shows the estimated overall trend of the MTC, according to each level

of depth, which was computed from the joint posterior predictive distribution of the

MTC, marginalizing for year and depth strata. To evaluate the reliability of the

overall trend estimation, a retrospective analysis has been done by removing 1 to
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Figure 1.10: Posterior mean of the predicted MTC in the study area, for each year.
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Figure 1.11: Estimated rate of change of the MTC, calculated as the difference
between model predictions at t and t− 1 time values.
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4 years from the end of the study period, to see how much the trend estimate was

affected by that. Figure 1.12 shows a visual comparison of the estimated curves,

including that of the model estimated with the complete dataset (0 years removed),

from which it can be seen that trend estimations appears to be fairly stable.

Figure 1.12: Retrospective comparison of the overall trend for 0 (complete dataset)
to 4 years removed from the end of the studied period.

Figure 1.10 shows the posterior means of the predicted values of the MTC across

the study area (upper and lower bounds of the corresponding credible intervals

are represented in Figure 1.14 and 1.13, respectively), excluding point with depth

> 200m (hence the white pixels).

Also, to highlight both the direction and the rate of the change of the MTC

level, the difference between model predictions at t and t − 1 time values has been

computed for each time point, across the study area (Figure 1.11). In particular,

it can be noticed that the MTC increase that began in 2002 has become faster

from 2005 to 2006. Than, a quite rapid decrease has happened between years 2010

and 2012. The MTC does not appear to increase linearly; instead, it displays a

dynamic characterized by step-like changes (Figure 1.8 - low depth) because the

distribution of marine species is not uniform in the ocean (Figure 1.10), and their

spatial distribution may vary non-linearly with climate change. The warming of the

oceans can lead to the redistribution of marine species, as they move away from

their original distribution areas in search of cooler waters or adapt to new climatic

conditions. This can lead to a step-like dynamic of the MTC, in which the average

temperature of the catches remains relatively stable for a certain period of time and

then increases sharply due to the redistribution of marine species.

The estimated overall trend of the MTC level, as is shown in Figure 1.8, suggests

a clear increase starting in 2003 in shallow-water area, but not in the medium and

deep strata. The observed MTC increase suggests an alteration in the relative
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Figure 1.13: Lower limits of the credibility intervals of the predicted MTC in the
study area.
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Figure 1.14: Upper limits of the credibility intervals of the predicted MTC in the
study area.
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catch proportions of species; the thermophilic species (those that prefer warmer

temperatures) increased in proportion in the catches over the time series, while

psychrophilous (those that prefer colder temperatures) decreased (until 2015). Such

change could be due to the displacement of the thermophilous species to a higher

latitude and the shift of the psychrophilous species in mean latitude or depth or

both.

The MTC significantly decreases with depth, as expected (estimated posterior

mode of the coefficients for medium and low depth are 1.07 and 1.55, respectively,

with baseline category being high depth): regions characterized by shallow waters

are, in general, inhabited by species with higher preferred temperature. Overall,

the decrease in MTC with depth highlights the importance of considering depth as

a factor in fisheries management and conservation. Understanding the factors that

contribute to this pattern can inform the development of more effective management

strategies that account for the unique characteristics of different fish communities

at different depths.

1.6 Conclusions

In this Chapter, first we described the INLA-SPDE approach to the approximation

of Gaussian random fields in spatial analysis. Then, we showed how we exploited the

computational efficiency and the modeling flexibility of the INLA-SPDE approach

to analyse the effects of environmental temperature on the MTC of demersal fish

communities in the central Mediterranean Sea from 1995 to 2018. The proposed

hierarchical model, which involves a GF and a stochastic smoother for the trend,

allowed us to quantify the effect of ambient temperature (BST) and depth on the

MTC, as well as to describe the spatio-temporal evolution of the MTC in the study

area. The study emphasises the vulnerability of ectothermic organisms to even

slight increases in temperature, as they operate near the upper limits of thermal

tolerance. A one-degree increase in BST translates into an average 0.27°C increase

in MTC, indicating a shift away from optimal temperature conditions for marine

communities. The change in MTC patterns in the study area, particularly since

2003, reflects a shift towards thermophilic species and a decline in psychrophilic

species, indicative of a redistribution due to warming waters. The potential of

deep-water environments as refugia for species affected by climate change was also

explored. Our results highlight the importance of considering depth in fisheries

management and conservation. The significant decrease in MTC as depth increases

underlines the need for customised strategies to protect different fish communities.
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As a direction for future research, it would be beneficial to investigate the response

of individual species to climate change in a multivariate statistical framework, in

order to identify species that exhibit greater challenges in adapting to changing

environmental conditions.
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Chapter 2

Approaches to mediation analysis

with nonlinear models

2.1 Introduction

In several applied research fields, it is common that the effect of a variable on

a response of interest is not entirely direct, but is transmitted by one or more

intermediate variables called mediators. Mediation analysis is nowadays a widely

spread approach to address such settings. It was developed by social scientists

Baron and Kenny (1986b), relying on the path-analytic framework developed by

Wright (1934) and subsequently further extended to structural equation models

(SEM, Bollen, 1989).

The SEM framework assumes linearity; that is, the mediator and the outcome

models are assumed to be linear (identity link functions and no interactions). This

allows us to estimate the indirect effect of the exposure on the outcome, i.e. the part

of the effect conveyed by the mediator, as a product of regression coefficients (Baron

and Kenny, 1986b; Bollen, 1989; MacKinnon, 2008a). This approach takes the name

of product method, and the obtained indirect effect is interpreted as the change in

the outcome associated to a one-unit change in the exposure via the mediator.

However, in many real-world applications, linearity may fail to hold because of

interaction terms in the models or the presence of not normally distributed variables

requiring link functions different from the identity. For instance, consider a situation

where researchers are examining the effect of environmental pollution on respiratory

diseases (coded as a binary variable indicating the presence or absence of the disease)

mediated by the level of physical outdoor activity, which itself might be a categorical

variable (such as low, medium, or high activity levels). Another scenario could

involve studying the impact of dietary habits on the likelihood of developing type
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2 diabetes, mediated by body mass index (BMI), a continuous but not normally

distributed variable. In these instances, the assumption of normality cannot hold,

with mediators being categorical or non-normally distributed continuous variables,

and outcomes being binary.

Despite the widespread of such variables in applied research, mediation analysis

with nonlinear models has primarily been addressed using non-parametric estimands

of the indirect effect based on counterfactuals, typical of a causal framework (Albert

and Nelson, 2011; Doretti et al., 2022; Gaynor et al., 2019). This non-parametric

formalisation allows for a certain flexibility in the model specification when one fits

parametric models for the mediator and the outcome.

However, in general the estimands in the counterfactual-based approach require

the introduction of a different notation and several, sometimes untestable, assump-

tions for them being identified (i.e. expressed in terms of observed variables), which

scholars may not be willing to do. On the other hand, to date, very few approaches

have been proposed to deal with the issue of nonlinear mediation models using an

associative, path-analytic approaches, typically used in traditional mediation (Rijn-

hart et al., 2021a,b), and they are based either on standardising coefficients (MacK-

innon and Dwyer, 1993), or on the less employed difference method (Schluchter,

2008).

An exception is given by a generalisation of the product method based on partial

derivatives, proposed in the ’80s by Stolzenberg (1980), and recently revived by

Hayes and Preacher (2010) and Geldhof et al. (2018). Although quite intuitive, this

approach is not widely known and applied by practitioners, and for this reason it is

not well developed, presenting theoretical shortcomings yet to be addressed.

It is worth mentioning that while counterfactual-based approaches to mediation

analysis are inherently causal, traditional path-analytic methods can in some situa-

tions only be used to test the presence of a mediated effect (VanderWeele, 2015).

In the following Sections, examples of estimating nonlinear mediation models

within both the counterfactual-based framework and the associative mediational

setting are presented.

In Section 2.2, an application of a counterfactual-based method developed by

Imai et al. (2010) is described. The study (Rubino et al., 2022a) is aimed at in-

vestigating the effect of socio-economic status on interregional mobility and mor-

tality among cancer patients residing in Sicily (Italy). A novel two-step approach

is employed, in which graphical models are initially used as an exploratory tool to

investigate the joint structure of relationships between all variables in the system.

Thereafter, mediation analysis focused on the estimation of causal effects.
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In Section 2.3, we delve into the derivative-based approach: first, we describe

the method; then we move to some of its aspects which have received little attention

from practitioners, and we believe should be deepened, also carrying out a simulation

study addressing some of these issues; finally we present an application, examining

the relationship between high school background and academic success. The content

of this Section is taken from Rubino et al. (2022b) and Di Maria et al. (2024).

2.2 Socio-economic inequality, interregional mo-

bility and mortality among cancer patients:

A counterfactual-based approach

2.2.1 Motivation of the study

Interregional mobility involves a patient travelling to another region of their county

of residence for the purpose of receiving planned healthcare. The phenomenon of

extra-regional hospitalizations in Italy is remarkable: extra-regional hospitalizations

number almost 1 out of 10, involving approximately 730, 000 patients in 2018 (Min-

istero della Salute, 2020). The most significant pattern of patient mobility involves

predominantly southern regions, which display the highest negative mobility bal-

ances. This implies that southern regions pay a higher amount for hospital care

services used by residents outside their region of residence than the amount received

as reimbursement from other regions (Balia et al., 2014). This, therefore, generates

additional financial flows in favour of central-northern areas in Italy (Berta et al.,

2021).

Moreover, the travel burden, associated with a long-distance trip, can exacerbate

inequalities in access to healthcare services. Consequently, the topic of patient

mobility regards considerations of health disparities. Indeed, the association between

socio-economic status and health has been widely demonstrated, and, nowadays, the

adjustment for socio-economic condition is routine in epidemiological analyses (Adler

et al., 1994; Pickett and Pearl, 2001). Nonetheless, while geographical differences in

cancer treatment are well documented (Stitzenberg et al., 2009), we contend that

the relationship between socio-economic status, patient mobility and health outcome

has not yet been suitably investigated.

From a methodological point of view, the majority of studies regarding patient

mobility explore the issue according to a framework of choice models. Accordingly,

standard conditional logit models (Aggarwal et al., 2020; Verevkina et al., 2019),
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or their variations, such as the heteroscedastic conditional logit model (Balia et al.,

2014) or multilevel logistic regression (Aggarwal et al., 2019), have been used in the

majority of cases. Other approaches, also in relation to the response variable under

consideration, have used: partial proportional odds models for ordinal response

variables (Meleddu et al., 2020), quantile regression (Knisely et al., 2020; Propper

et al., 2007), and Cox proportional hazard modeling, in the context of survival

analysis (Moten et al., 2020; Turner et al., 2020). Within the general topic of survival

from cancer analysis, a growing body of literature is beginning to apply mediation

analysis to evaluate the direct and indirect effects of socio-economic status on health

outcomes (Bedir et al., 2021; Li et al., 2013, 2016; Russell et al., 2020). Nonetheless,

to the best of our knowledge, none of these studies has jointly considered the effects of

socio-economic status and patient mobility on health outcomes within a framework

of mediation analysis.

In the analysis outlined here, patient-level data regarding regional and extra-

regional hospitalizations in cancer patients residing in Sicily (Italy) have been used

to evaluate 3-year mortality. This research involves two different cancer sites by

type, namely: i) the colon, and ii) the trachea, bronchus and lungs (hereafter ab-

breviated to TBL). By combining the two most common approaches to health dis-

parities discussed in the literature, namely equal opportunities and equal outcomes

(Abatemarco et al., 2020), this study will investigate the complex relationship among

patients’ characteristics (including age, comorbidities and socio-economic status), in-

terregional mobility, and mortality among cancer patients. Moreover, this approach

will initially make use of graphical models to discover the relationship structure

among the considered variables. And, secondly, mediation analysis will be used to

measure the direct and indirect effect of socio-economic status on mortality.

2.2.2 Data

Patient-level data from the hospital discharge records (SDO) of patients residing in

Sicily were made available from the Epidemiology Department of the Sicily Region.

The analysis included all those living in Sicily who had been diagnosed with one of

two selected cancer sites, namely: the colon (ICD-9-CM: 153, 154, or 1590), and TBL

(ICD-9-CM: 162). These two cancer sites are those which are responsible for the

highest share of male and female cancer-related deaths in Sicily, and the mobility

of these patients has been described by some scholar as “remarkable” (Cislaghi

et al., 2013). Values of extra-regional hospitalizations of approximately 7% for colon

cancer and 7.6% for TBL in 2020 have been observed. And, despite other cancer

sites presenting higher fatality rates involving a higher share of mobility (e.g. brain
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and nerve cancer), they were not included in the analysis due to their much lower

incidence among the population being analysed.

These patients had been hospitalized within and beyond Sicily between 1 January

2010 - 31 December 2012. Further selection criteria stipulated that patients had not

been hospitalized for cancer in the previous seven years, and that each patient had

only one type of cancer. The SDO dataset was also used to determine whether the

hospitalization occurred in- or extra-region and other patient-level characteristics,

including sex, age, and the Charlson comorbidity index (Charlson et al., 1994). Mo-

bility was defined as a dummy variable; it had value of ‘0’ if the first hospitalization

event occurred in Sicily and ‘1’ if it occurred in another region of the country. Only

the first hospitalization event was considered during the 3-year follow-up period.

Information relating to a 3-year mortality period was obtained from the Regional

Register of Causes of Death (in Italian: ReNCaM). And, the availability of data re-

garding the census tract of residence for those patients residing in municipalities

with more than 10,000 inhabitants permitted the inclusion of the deprivation in-

dex (Caranci et al., 2010) pertaining to that census tract of residence. In line with

other proposals at the international level (Shavers, 2007), this index is a composite

indicator which considers five dimensions of deprivation, namely: the share of pop-

ulation with at least primary level education, the proportion of unemployed people,

the share of families with one parent and dependent offspring living together, the

proportion of rented households, and the number of people by 100m2 at the census

tract territorial level. A categorization of the deprivation index based on quantiles

of the cohort distribution under analysis has been used in this study.

The cohort being analysed comprised 6, 667 incident episodes of hospitalization

of patients, who had been diagnosed with colon (n = 3, 912), and TBL (n = 2, 755)

cancer. Approximately 5.5% of the patients under investigation were hospitalized

out-of-their region: 5.1% for colon cancer and 6% for TBL cancer. The 3-year case-

fatality rate was approximately 51.7%, ranging from 34.4% for colon cancer to 76.3%

for TBL cancer.

The distribution of factors potentially associated with patient mortality and

the corresponding case-fatality rate for the cancer sites considered are reported in

Table 2.1. The 3-year case-fatality rate increased with age and the Charlson index

category for both cancer sites; lower values of the 3-year case-fatality rate were also

found for patients who had been hospitalized extra-regionally compared to those

who had not. The case-fatality rate seemed to be influenced by sex only for TBL

patients (0.70 for females vs 0.78 for males); generally an increase in the deprivation

level appeared to be associated with case-fatality rates.
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Table 2.1: Distribution of patient-level characteristics and 3-year case-fatality rate
by cancer site. The Colon column collates the descriptive statistics for the patient
cohort with colon cancer; the TBL column collates the statistics of the patient cohort
with trachea, bronchus and lung cancer

Colon TBL

n Case-fatality rate n Case-fatality rate

Deprivation
1 (Low) 978 0.33 689 0.73
2 978 0.32 689 0.78
3 980 0.35 688 0.77
4 (High) 976 0.38 689 0.78

Mobility
0 (No) 3713 0.35 2589 0.77
1 (Yes) 199 0.21 166 0.61

Charlson
[0, 2] 2081 0.21 794 0.65
3 594 0.30 468 0.65
[4, 6] 347 0.43 355 0.80
>6 890 0.66 1138 0.87

Sex
Female 1917 0.34 631 0.70
Male 1995 0.34 2124 0.78

Age
<60 794 0.23 569 0.67
(60,80] 2366 0.31 1791 0.77
>80 752 0.56 395 0.86

2.2.3 Methods

The methods employed in the analysis will be described in this Section. First,

graphical models were used as an exploratory tool to investigate the joint structure

of relationships between all variables in the system. Thereafter, mediation analysis

focused on the estimation of causal effects, which were related to the subset of

variables of main interest, namely: deprivation index, out-of-region mobility and

3-year mortality.
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Graphical models

A graphical model is a statistical technique whose rationale and philosophy can be

described within the framework of parametric statistical modelling (Lauritzen, 1996;

Whittaker, 2009). Its main advantage is that the conditional independence among

a set of random variables from a graph composed of nodes (representing the random

variables) and a collection of links (representing the dependent association) can be

ascertained.

Formally, a graph is an object G = {V,E}, where V = {V1, . . . , Vd} is a finite

set of nodes, and E ⊆ {{Vi, Vj} : (Vi, Vj) ∈ V 2} is a finite set of links between the

nodes. Undirected graphs assume unordered pairs, and thus the edges are visualized

by lines, whereas directed graphs consider arrows to visualize ordered pairs and the

edges. Undirected graphs where the set of random variables is discrete will be the

focus in this study.

Let Y = (Y1, . . . , Yd) = (Yv)v∈V be a set of discrete random variables, observed on

n statistical units, where the total number of units has been fixed. Write the number

of levels of Yv as card|Yv|. Write a generic observation (or cell) of the contingency

table as i = (i1, . . . , id), and the set of possible cells as I. Express the raw case

list in an aggregated list by adding a column representing the frequencies of each of

the levels of the random variables and suitably aggregating the levels. Denote the

observed frequency with n(i) and its r.v. with Y (i). Given a graph G and the joint

probability of the observed contingency tables

Pr({n(i)}i∈I |{π(i)}i∈I) =
N !∏

i∈I n(i)!

∏
i∈I

π(i)n(i), (2.1)

this model belongs to the class of discrete graphical models if the joint probability

can be expressed as a product of maximum cliques (a subset of nodes forming a

complete graph). This fact implies that pair, local and global Markov properties

can be directly read from the graph.

The parameter π(i) in (2.1) must be estimated. If the probabilities are not re-

stricted in any way (except requiring that they are non-negative and sum to one),

then it can be easily demonstrated that the maximum likelihood estimates are given

by π̂(i) = n(i)/N for i ∈ I. However, such an unrestricted model would imply a

complete graph (i.e. all nodes connected). Generally, it is of interest to identify a

more parsimonious graph, which represents the complexity of the data. Decompos-

able graphical models are a subclass of graphical models, for which the Maximum

Likelihood estimate for π(i) in a closed form can be ascertained. Alternatively, it-

erative algorithms, such as iterative proportional scaling (Denteneer and Verbeek,
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1985) and message passing (Wainwright, 2015), are required for non-decomposable

models.

Using graphs to represent models shifts the emphasis of the analysis from esti-

mating the parameters for a given model to estimating the model structure, that

is, selecting an appropriate graph. Model selection is challenging mainly because

the number of possible graphs is huge. Many different methods for selecting graph-

ical models have been proposed and they typically have a threefold classification:

low-order conditional independence tests; heuristic search methods which optimize

a given criterion; and Bayesian methods, often involving Markov chain Monte Carlo

methods (Højsgaard et al., 2012). Heuristic search methods, which optimize an in-

formation criterion, have been considered in this study. The Akaike Information

Criterion (AIC) assigns the following score −2ℓ+ kp, to each model, where ℓ is the

likelihood, p is the number of parameters to be estimated in the model, and k = 2

is a penalty parameter. A popular alternative to AIC is the Bayesian information

criteria (BIC), which sets k to the logarithm of the number of observations. In

general, a larger k penalizes complex models more severely and thus tends to se-

lect simpler graphs. The heuristic methods incrementally search by default from an

initial graph, adding or deleting the edges which significantly decreases the AIC or

BIC: if no edge satisfies this characteristic, the process terminates. The search is

also directional: either forward (adding edges) or backward (deleting edges). The

choice of k is usually made based on asymptotic considerations.

In order to be able to answer queries (e.g. P (Yd|Y1, Y2)), a marginalization must

be effected, according to the graph structure. This marginalization is made via the

propagation algorithm by working twice through the set of cliques and passing the

“messages” between neighbouring cliques: initially from the final clique in the RIP

(running intersection property) ordering (Højsgaard et al., 2012) towards the first,

i.e. inwards in the junction tree, and subsequently passing messages in the other

direction (Dawid, 1992; Green, 2005).

One limitation of the graphical model is that there is no way of measuring indi-

rect effects, whereas the graph assists our understanding of the association structure

among variables. Having identified the model structure among the considered vari-

ables, a causal mediation analysis within a counterfactual framework can, therefore,

be relied upon in a second step to quantify the indirect effect of an exposure X

(e.g. deprivation) on a response Y (e.g. mortality) passing through a mediator

M (e.g. mobility), controlling for various confounders (e.g. age, sex, the Charlson

comorbidity index ).
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Causal mediation analysis

Mediation analysis can be used to investigate how the effect of an exposure on a

certain outcome of interest spreads, whether that be directly or indirectly through

a third variable called a mediator. Let X,M and Y denote the exposure of interest,

the mediator and the outcome respectively. Classical methods of mediation analysis

rely on the assumption of a normally-distributed outcome and mediator (Baron and

Kenny, 1986a; MacKinnon, 2008b). Indeed, this assumption is not appropriate in

our case since the mediator (mobility) and the outcome (mortality) are discrete. A

more general approach to causal mediation analysis has, therefore, been described

in this study; this approach was developed within a counterfactual framework, per-

mitting researchers to deal with different kinds of variables and use a wide range of

models (Imai et al., 2010).

For each subject i, Mi(x) and Yi(x) are defined as the counterfactual values of

the mediator and the outcome respectively, if the exposure were set to x. Similarly,

Yi(x,m) is the counterfactual value of the outcome for the i-th subject if X were set

to x and M to m. For two different values of the exposure, x and x′, the (average)

total causal effect ofX on Y on the difference scale can be defined as E[Yi(x)−Yi(x′)],
i.e. the expected difference in the outcome under two interventions, one intervention

setting X to a treatment value x, the other to a control value x′. In the absence of

unobserved confounding and if this expectation differs from zero, thenX has a causal

effect on Y . If a third variable M mediates the exposure-outcome relationship, the

total effect can be decomposed into the natural direct and indirect effects as (Pearl,

2001; VanderWeele, 2015a)

NDE = E[Yi(x,Mi(x
′))− Yi(x

′,Mi(x
′))] (2.2)

NIE = E[Yi(x,Mi(x))− Yi(x,Mi(x
′))]. (2.3)

The direct effect in Equation (2.2) is the change in response under two different

values of the exposure. This change is not mediated by M , which is indeed kept

fixed to the natural value that it would assume if X were x′. Vice versa the indirect

effect is the effect of X on the response only through the mediator: it measures the

extent to which the response would change if X were fixed to x, and the mediator

to the natural value it would assume under two interventions, one setting X to x,

the other to x′ (notice that the arguments of the M(·) counterfactuals differ).
Evidently, the only quantities observable for each subject are those corresponding

to the actual value of the subject’s exposure. That is, if for subject i, Xi = x, then

Mi(x) = Mi and Yi(x) = Yi, while Mi(x
′) and Yi(x

′), for any x′ ̸= x, are not
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observable. Nonetheless, it can be proved that, under a set of assumptions known

as sequential ignorability (Imai et al., 2010; VanderWeele, 2015a), the mediational

effects can be identified, i.e. they can be expressed as functions of the observed data.

As detailed in Imai et al. (2010) and VanderWeele (2015a), these assumptions entail

the absence of unobserved confounders of the exposure-mediator, exposure-outcome

and mediator-outcome relationships. Assuming that the set of covariates considered

includes all the relevant confounders, identifiability can be deemed to hold.

In the setting described in this study, the focus of interest is the deprivation effect

on mortality, which has been measured three years after the initial hospitalization,

either direct or mediated by mobility. In order to estimate the mediational effects,

the following two logistic models were considered:

logit(πM
i ) = β0 + β1Xi + β

′
2Zi (2.4)

logit(πY
i ) = γ0 + γ1Xi + γ2Mi + γ

′
3Zi (2.5)

where i denotes individuals, both mobility (M) in Equation (2.4) and 3-year mor-

tality (Y ) in Equation (2.5) are assumed to follow a Bernoulli distribution with

parameters πM
i = P (Mi = 1|X,Z) and πY

i = P (Yi = 1|X,Z) respectively; X is the

deprivation index categorised according to the quartiles, Z is a vector of covariates

(age, sex and the Charlson index), and (β0, β1,β2) and (γ0, γ1, γ2,γ3) are regression

coefficients.

First, the regression models expressed in Equations (2.5) and (2.4) were fitted and

the model parameters estimated, using frequentist GLM approach. Thereafter they

were deployed, by means of a quasi-Bayesian Monte Carlo approach, to simulate

the counterfactuals of interest relating to two different values of X in order to

estimate the effects in Equations (2.2)-(2.3). This algorithm was implemented in

the mediation package, and a detailed description can be found in the Appendix of

the work by Imai et al. (2010).

2.2.4 Results

The results of the graphical model (Section 2.2.3) and the causal mediation analysis

(Section 2.2.3), as applied to the two data sets described in Section 2.2.2, will be

elaborated in the following. The analyses were performed with the R statistical

software, namely the gRim package (to estimate the graph), the gRain package

(to propagate the probabilities) and igraph package (to visualize the graph). The

vcdExtra package was used to visualize the propagated conditional probabilities,

and, in order to perform the mediation analysis, the mediation package was used.
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Decomposable Log-linear Graphical Models

A search was conducted for a conditional independence model, within the class of

log-linear decomposable graphical models. The decomposable class of models is

commonly employed to model conditional independence relationships in graphical

models. In such models, closed-form expressions for maximum likelihood estimates

exist, which allows to use triangulated graph based, efficient algorithms (Højsgaard

et al., 2012). A model selection was made in order to select the optimal graph via

a heuristic search algorithm, considering the AIC score. The analysis started with

a fully connected graph, from which the links were removed, until the graph still

summarized the dataset.

Given three set of variables, let’s say A, B and C, if A and B are separated by

C in the graph, then A ⊥⊥ B | C in the model. Figures 2.1a and 2.1b show the

graphs which were estimated for the patient cohorts who had been diagnosed with

colon and with TBL cancer, respectively. These graphs display a similar conditional

independence structure. Referring to both cancer sites under consideration, 3-year

mortality was observed to be associated with mobility, age and the Charlson index.

The only identified difference in the conditional probability structure was the link

between sex and 3-year mortality, which only appeared in Figure 2.1b. That is,

mortality seems to be influenced by sex only for TBL cancer patients, consistently

with the results in Table 1.

Conditional probabilities estimated after applying the propagation algorithm,

conditioning on age = (60 − 80], are represented in Figure 2.2. In analysing these

probabilities, the effects of various potential confounders must be taken into con-

sideration. These include: age, the Charlson index and sex. Referring to both

cancer sites, advanced age increases the chance of dying three years after the initial

hospitalization; the higher the Charlson index, the higher the probability of dying,

while mobility seems to decrease this chance (Figures 2.2a and 2.2b). Moreover,

Figure 2.2b reveals no clear trend for the sex variable. Having analysed the afore-

mentioned probabilities, the deprivation effect on mobility was the subsequent focus.

It was less probable for patients characterized by a higher degree of deprivation (the

worst economic conditions) to travel outwith their region of residency across all age

categories. And age also affects mobility since younger people typically have more

chances to move out of Sicily: the lower the degree of deprivation, the higher the

probability to move outside the region (Figures 2.2c and 2.2d).

Finally, an analysis was performed on the effect of the deprivation and the Charl-

son index on the probabilities of 3-year mortality after initial hospitalization for

colon cancer (Figure 2.3a); and after initial hospitalization for TBL cancer (Fig-
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Figure 2.1: (a) Undirected graph, estimated from a log-linear decomposable graphi-
cal model for the patient cohort, diagnosed with colon cancer (n=3,912). (b) Undi-
rected graph, estimated from a log-linear decomposable graphical model for the
patient cohort diagnosed with trachea, bronchus, lungs (TBL) cancer (n=2,755).
The covariates are colored in blue, while the exposure, mediator, and outcome vari-
ables are colored in gray, green, and red, respectively.

ure 2.3b). The conditional probabilities in Figure 2.3a have been estimated after

the propagation step, conditioning on age = (60 − 80]; and the conditional proba-

bilities in Figure 2.3b have been estimated after the propagation step conditioning

on age= (60 − 80] and sex = male. The effect of deprivation is visually negligible

for both types of cancer, although that on TBL seems slightly more pronounced.

Causal Mediation Analysis

In this Section, the results of the mediator and the outcome regression models will be

initially discussed individually. Thereafter, the focus will be on mediation analysis

outputs. For any estimate, a significance level of 0.05 was considered. The re-

sults of the mediator and outcome models, which were described in Equations (2.4)

and (2.5), regarding colon and TBL cancer types respectively, are shown in Table

2.2. This Table reports estimates relating to the exponentiated coefficients (odds

ratios), in addition to 95% confidence intervals. Referring to the former (media-

tor models), the probability of interregional mobility is lower for older patients for

both cancer sites, and it is unaffected by sex. Health conditions, as measured by

the Charlson comorbidity index, show a significant (non-linear) effect only for TBL

cancer patients. While improved health conditions seem to be positively correlated

with interregional mobility, the two Charlson index categories that are associated

with the lowest probability of mobility comprise the two intermediate categories. By
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(a) (b)

(c) (d)

Figure 2.2: Conditional probabilities estimated after applying the propagation al-
gorithm conditioning on age = (60− 80]. Figure (a) shows conditional probabilities
of death due to colon cancer, given changes in the levels of mobility and Charlson
index. Figure (b) shows conditional probabilities of death due to TBL cancer, given
changes in the levels of mobility, Charlson index and sex. Figures (c) and (d) show
the conditional probability of mobility, by patient cohort (containing patients who
had been diagnosed with colon cancer and TBL respectively) given changes in the
levels of deprivation. The numbers on the right y-axes indicate the value of the
conditional probabilities.

considering the effect of socio-economic conditions on interregional mobility, a signif-

icant association between the deprivation index and interregional mobility emerges

for both cancer sites: those patients residing in areas characterised by higher levels

of deprivation are less likely to move outwith the region. The results of the out-

come models suggest that the relative risk of 3-year mortality for both cancer types

is significantly lower for patients who experienced interregional mobility, compared

with the risk of those who did not. The effect of sex is significant only for the TBL

site, with males constituting the highest risk group. For both cancer sites under

consideration, the risk of dying significantly increases with age and according to the
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(a) (b)

Figure 2.3: Conditional probabilities estimated after the propagation algorithm,
conditioning on age = (60 − 80]. Figure (a) shows deprivation and the Charlson
index effect on the probability of dying three years after the initial hospitalization
for colon cancer. Figure (b) shows deprivation and the Charlson index effect on the
probability of dying for TBL cancer. Both graphs are conditioned on sex = male.

Charlson index. The deprivation effect on mortality, accounting for mobility and

the other covariates, proved to be statistically significant and positive only for TBL

site.

Based on these findings, there is clearer evidence to suggest that deprivation

may have a direct impact on the 3-year mortality for TBL cancer compared to

colon cancer. This would indicate a differential impact of socio-economic status

on cancer survival across the various cancer types (Woods et al., 2006; Yu et al.,

2008). However, it is worth mentioning that the non-significance of the deprivation

coefficient in the model for colon cancer mortality does not exclude the possibility

that the deprivation effect is entirely mediated by mobility; this hypothesis cannot

be tested by merely examining the model coefficients. This is the rationale for a

mediation analysis, the results of which are reported in Table 2.3.

At this stage in the analysis, interest is focused on the extent to which a change

in deprivation status (from less to the most deprived) can affect mortality, either

directly and indirectly. Since the response variable (3-year mortality) is binary,

the mediational effects can be interpreted as differences in the probability of dy-

ing three years after initial hospitalization, comparing two interventions as shown

in Equations (2.2) and (2.3). The two interventions considered are a (hypothet-

ical) intervention setting the deprivation status to 1 (less deprived patients) and

an intervention setting the deprivation status to 4 (most deprived patients) for all

patients.

It can be noticed that the indirect effect of deprivation on mortality through mo-
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Table 2.2: Point estimates and 95% confidence intervals for mediator and outcome
models effects on colon and TBL mortality.

Colon TBL

Mobility 3y-Mortality Mobility 3y-Mortality

Deprivation 2 1.087 0.963 0.839 1.363
(Ref: 1) (0.754, 1.569) (0.779, 1.191) (0.562, 1.249) (1.053, 1.768)

Deprivation 3 0.673 1.084 0.534 1.193
(0.445, 1.010) (0.879, 1.337) (0.337, 0.832) (0.923, 1.544)

Deprivation 4 0.544 1.212 0.424 1.422
(0.350, 0.832) (0.984, 1.493) (0.258, 0.678) (1.095, 1.848)

Mobility Yes − 0.516 − 0.533
(Ref: No) (0.348, 0.751) (0.377, 0.758)

Age (60,80] 0.730 1.674 0.724 1.661
(Ref: <60) (0.528, 1.020) (1.361, 2.065) (0.509, 1.042) (1.328, 2.075)

Age>80 0.307 5.227 0.208 3.546
(0.171, 0.526) (4.090, 6.706) (0.084, 0.439) (2.500, 5.091)

Charlson 3 0.649 1.425 0.458 0.851
(Ref: [0,2]) (0.387, 1.034) (1.150, 1.761) (0.256, 0.777) (0.663, 1.093)

Charlson [4,6] 0.767 2.037 0.450 1.576
(0.394, 1.367) (1.583, 2.616) (0.220, 0.839) (1.160, 2.159)

Charlson>6 0.988 8.037 0.695 3.761
(0.693, 1.389) (6.705, 9.658) (0.489, 0.989) (2.984, 4.757)

Sex M 0.936 1.099 0.743 1.528
(Ref: F) (0.701, 1.249) (0.947, 1.276) (0.524, 1.066) (1.234, 1.889)

Intercept 0.104 0.128 0.228 0.764
(0.070, 0.151) (0.099, 0.165) (0.143, 0.356) (0.565, 1.035)

Observations 3,912 3,912 2,755 2,755
Log Likelihood −765.752 −2,116.610 −597.303 −1,375.842
Hosmer & Lemeshow

0.826 0.521 0.289 0.501
test P-value

Note: reported estimates are exponentiated coefficients (odds ratios).

bility is positive and significant for both cancer sites, which is consistent with the

results derived from graphical models and with that expected from the output of re-

gression models. A reduced capability to receive medical treatment extra-regionally

(due to belonging to the highest rather than the lowest level of deprivation) leads
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Table 2.3: Point estimates, 95% confidence intervals and p-values for mediational
effects on colon and TBL mortality.

Colon TBL

Effect P-value Effect P-value

NIE 0.0029 0.0136 0.0054 0.0024
( 0.0005, 0.0062) (0.0014, 0.0110)

NDE 0.0347 0.0696 0.0586 0.0080
(-0.0028, 0.0718) (0.0153, 0.1009)

Total Effect 0.0376 0.0508 0.0641 0.0048
(-0.0001, 0.0747) (0.0205, 0.1058)

to an increased risk of death from colon and lung cancer of 0.29 and 0.54 percent-

age points respectively. The presence of a significant positive direct effect only for

TBL, which was not detected by graphical model shown in Figure 2.1 (b), can also

be noticed. The absence of a link in a graph is compatible with a non-null causal

effect since the information conveyed by the two methodologies (graphical models

and causal mediation analysis) is different, albeit complementary. As previously

mentioned (at the beginning of Section 4), graphical models can be used in an ex-

ploratory way in order to estimate the joint density of variables in the system, and

graphs display the conditional (in)dependencies among these variables. This ap-

proach can be said to be ‘associational’ and it can be applied to a sample which

is naturally stratified by the covariates. Such an approach will take into account,

for example, whether a group of subjects is more deprived, while other individuals

display lower levels of deprivation. In contrast, the approach used to perform the

mediation analysis is causal, and this implies the conceptualisation of an interven-

tion throughout the entire sample, setting the deprivation status of all individuals

to 4 and 1 (the deprivation categories chosen for the estimation of effects) in turn.

The focus of causal mediation analysis is not, therefore, on conditional indepen-

dencies but on the expected difference between the (simulated) potential outcomes

corresponding to the two interventions.

The total effect of deprivation on mortality relating to TBL cancer is positive

and significant. The p-value which is linked to the total effect of deprivation on colon

cancer mortality is almost at the edge of the significance level. In such cases (where

one of the mediational effects is significant but the total is not, or its significance

is doubtful), following Tingley et al. (2014) (page 7), a joint interpretation of all
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effects is advisable. Examining the results, the significance of the direct effect of

deprivation on mortality due to colon cancer seems rather weak, while that of the

indirect effect, mediated through mobility, appears more pronounced. In contrast,

in the case of TBL cancer, the indirect effect of deprivation also appears to be

significant; however, the evidence of a direct impact of deprivation on mortality is

more clear.

This difference may not be surprising to the reader since it has been observed

that socio-economic differences can act in a variety of ways on cancer survival. Some

of these ways include: tumour characteristics, patient characteristics and healthcare

factors (Woods et al., 2006). For example, differences in the disease stage at diag-

nosis are one of the ways in which socio-economic status can play a role (Yu et al.,

2008). In this regard, Halpern et al. (2008) have demonstrated that cancer patients

in the United States who were uninsured or inadequately insured were significantly

more likely to be diagnosed at an advanced stage for several major cancers. This

consideration may also provide an explanation to the differences observed regarding

the significance of the direct effect between TBL and colon cancer. In addition,

Booth et al. (2010) analysed the impact of socioeconomic status on stage of cancer

at diagnosis and survival in Ontario (Canada): they reported that differences among

social groups in stage of disease at diagnosis have an effect on survival disparity for

breast cancer but not other disease sites, the latter including the colon.

2.3 The derivative-based approach to nonlinear

mediation models: insights and applications

The traditional associational framework, in its most basic specification, involves

three variables: an exposure X, a mediator M and an outcome Y . Variables M and

Y are continuous and are modelled as linear

µ
M
= β0 + β1X (2.6)

µ
Y
= γ0 + γ1X + γ2M, (2.7)

where µ
M

and µ
Y
denote the conditional expectations E[M |X] and E[Y |X,M ],

respectively.

The coefficient γ1 represents the direct effect of X on Y, while, as discussed in

Baron and Kenny (1986b) and Bollen (1989), the indirect effect can be estimated

as the product β1γ2, i.e. the product of regression coefficients lying on the X →M

and M → Y paths. Alternatively, considering the marginal model for the outcome,
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i.e. the model including only the exposure

µ
Y
= α0 + α1X, (2.8)

the indirect effect can also be estimated as the difference between α1, the total effect

of X on Y , and the direct effect γ1, that is α1−γ1. This approach is called difference

method, and it is easy to prove that, in the linear case, the product and difference

methods yield the same indirect effect estimate (MacKinnon, 2008a).

In the presence of nonlinearities, such as interaction terms or link functions

different from identity, the indirect effect cannot be estimated as a simple product,

and its value generally differs from that estimated through the difference method

(MacKinnon and Dwyer, 1993). When the mediator and the outcome are not normal

and are modelled with link functions different from identity, for example, using

generalised linear models (GLMs), few approaches have been proposed to estimate

the indirect effect. MacKinnon and Dwyer (1993) and MacKinnon (2008a) focus on

the case of a binary outcome modelled via logistic or a probit model. The indirect

effect is obtained as a product of standardised regression coefficients. Schluchter

(2008) addresses the wider class of GLMs, proposing an extension of the difference

method based on generalised estimating equations (GEE). Both these approaches

suffer from limitations, the former because it works only for binary outcomes and

the latter because it does not allow for exposure-mediator interaction or other forms

of nonlinearity in the mediator and the outcome models. It is also worth mentioning

the work by Tsai et al. (2006), which extends SEMs to the GLMs framework, but

does not discuss how to formalise and estimate indirect effects.

The approach discussed here is based on the simple idea that the indirect effect

can be interpreted as the variation in the outcome Y corresponding to a change in

the exposure X through the variation in the mediator M (Stolzenberg, 1980). Such

a definition can be formalised in terms of derivatives, that is:

∂Y

∂M

∂M

∂X
, (2.9)

i.e. the product of the derivative of Y with respect toM and that ofM with respect

to X. Let us consider a typical GLM setting with the following models:

g1(µM
) = β0 + β1X → µ

M
= h1(β0 + β1X) (2.10)

g2(µY
) = γ0 + γ1X + γ2M → µ

Y
= h2(γ0 + γ1X + γ2M), (2.11)

where g1 and g2 are possibly non-linear link functions, connecting the conditional
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expectations of the mediator and the outcome to their linear predictors, and hk =

g−1
k , k ∈ {1, 2}.
Notice that in the trivial case of identity link functions, the indirect effect in

formula (2.9) reduces to the traditional expression obtained via the product method

γ2β1.

In contrast, when at least one of the g functions differs from identity, the indirect

effect assumes a more complex form. In this case, the expression of the indirect

effect is not a single value but depends on X and/or M via the derivatives of h1

and h2. Assuming a continuous exposure, the researcher chooses some values of

X of potential interest, say x1, . . . , xp and, if the expression of the indirect effect

also involves the mediator, its values should be selected accordingly to those of X,

as the predicted values corresponding to x1, . . . , xp, obtained from the fitted model

µ
M|x1

, . . . , µ
M|xp

. For this reason, Geldhof et al. (2018) suggest calling the effect in

Equation (2.9) Conditional Indirect Effect (CIE), since its values are conditional to

those of X. To illustrate the concept of conditional indirect effect further, let us

consider the case where both the mediator and the outcome are binary variables.

Let us also assume that they are both modelled using logistic regression. In this case

the indirect effect relative to xp, using the model specification in Equations (2.10)

and (2.11) is found as:

CIE|xp =
β1 · exp(β0 + β1 · xp)

(1 + exp(β0 + β1 · xp))2
·
γ2 · exp(γ0 + γ1 · xp + γ2 · µM|xp

)

(1 + exp(γ0 + γ1 · xp + γ2 · µM|xp
))2
.

As highlighted above, in the presence of these nonlinearities, the indirect effect

becomes dependent on the values of xp and µ
M|xp

, and this explains why the effect

was named ‘conditional’ by Geldhof et al. (2018).

The main focus here is on mediation analysis with GLMs; nonetheless, it is

worth remarking that the derivative-based approach can also be used in situations

where the mediator or the outcome depends on nonlinear transformations of their

regressors, such as X2 or log(X), see Hayes and Preacher (2010) for some examples.

Moreover, this approach is crucial even when the distributions of variables M and

Y do not belong to the exponential family. In such cases, the key is establishing

appropriate link functions that enable us to calculate the derivatives and obtain the

CIE.

49



Chapter 2 INLA-SPDE Spatial Modelling and Bayesian Mediation Analysis

2.3.1 Potential issues

In this section, we discuss some relevant aspects of the derivative-based method

which have not been addressed or satisfactorily deepened in the previous literature

on the topic.

Binary, categorical and discrete exposures

The mathematical definition of derivatives is based on the concept of ‘small incre-

ment’ in the argument of the function to differentiate. Thus, the derivative of the

mediator with respect to the exposure conceptually relies on a small increment of

X, and analogously for the derivative of the outcome with respect to the mediator.

This definition makes sense if the support D
W

of the variable W with respect to

which differentiation is made is continuous. The derivative is a continuous function

defined over D
W

or a subset. However, when W is discrete, the interpretation of the

derivative becomes more challenging, as that of the indirect effect in Equation (2.9).

Let us start from a setting with a binary exposure. The mediator expectation is

then a discrete function which can assume only two values. Consequently, the con-

cept of infinitesimal increment is misspecified since the only increment meaningful

to conceive is a unit increment. Derivatives cannot be applied to discrete functions;

therefore an alternative definition to express change is required. We can use finite

differences

Dx,w[f ] =
f(x+ w)− f(x)

w
(2.12)

where f is the function of interest and w is the difference between two points in D
X
.

Notice that, when w → 0, Dx,w(f) ≡ df
dx
. Going back to our mediational setting, and

following the notation introduced in Equation (2.10), the derivative of the mediator

in the case of binary exposure can then be written simply as the difference

D0,1[h1] = h1(1)− h1(0). (2.13)

It is easy to prove (see Section 2.3.3) that the chain rule for composite functions

holds also in the discrete case, and the indirect effect can then be written as

Dµ
M

(x),wDx,w[µ
M

(x)][µY
(µM)] ·Dx,w[µM

(x)],

where we explicitly wrote the functional dependence of µ
M

and µ
Y
.

The case of binary exposure easily extends to that of categorical exposure. Sup-

pose that X is a categorical variable with k categories. Without loss of generality,

assume that the k-th category is the one chosen as baseline. The mediation model
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can be rewritten as

h1(µM
) = β0 +

k−1∑
j=1

βjXj, (2.14)

where the Xj are binary variables assuming value 1 if X is in category j, 0 otherwise.

In this case, it is necessary to specify the variable with respect to which one takes the

difference or, in other words, the category with respect to which the indirect effect

is estimated. An increment from 0 to 1 represents the passage from the baseline to

this selected category.

The same line of reasoning holds for discrete exposures, for example, number of

cigarettes smoked in a day or number of panic attacks in a month.

Binary mediator

As already mentioned, when the expression of the indirect effect involves bothX and

M , the values ofM cannot be chosen arbitrarily, instead they should be fixed at the

values the mediator takes in correspondence of the selected values of X, determined

by the fitted model. This is generally straightforward unless the mediator is binary

when some issues arise.

Consider a setting with a binary mediator, where g1 in Equation (2.10) is the

logit link and, and g2 in the outcome model in Equation (2.11) is a generic func-

tion different from identity, say the logarithm to fix ideas. Therefore, applying the

formula in Equation (2.9), the CIE is given by

β1γ2
exp (β0 + β1X)

(1 + exp (β0 + β1X))2
exp (γ0 + γ1X + γ2M),

which, as can be seen, depends on both X and M . However, when coming to the

estimation of such an effect, the choice of the mediator value is not so immediate.

Indeed, the mediator is binary, assuming only two values, while, for any selected

value of X, its predicted values from model (2.10) with a logit link are probabilities,

ranging in the continuum from 0 to 1. Which values to select, then? This issue

is addressed neither by Hayes and Preacher (2010) nor by Geldhof et al. (2018).

We believe that the most appropriate solution consistent with a data-generating

mechanism of this type is to include binary values of the mediator obtained by the

corresponding expected probabilities π̂M |X by means of a cutoff c such that

M̂ |X =

1 if π̂M |X ≥ c

0 if π̂M |X < c
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For example, a possible criterion for the choice of c could be selecting the value

for which the sensitivity and specificity of the classification are equal. The most

trivial choice c = 0.5 may often not be appropriate, for example when classes are

unbalanced. A possible alternative criterion for the choice of c could be selecting the

value for which the sensitivity and specificity of the classification are equal based on

the ROC curve, which can ensure a better performance. Clearly, other approaches

are possible, for example maximizing the Youden’s index or the F1-score (Berrar,

2019).

Inclusion of covariates

The models in Equations (2.10)-(2.11) are intentionally very simple, but real-word

data generally require adjustment for covariates. Including covariates Z in the me-

diator and the outcome models affects the expression of the indirect effect, which

may depend on the covariates’ values in addition to those of X and M . For exam-

ple, consider models as in Equations (2.10)-(2.11), where h1 is the identity (i.e. the

mediator model is linear), and h2 is the exponential function, and include two (pos-

sibly overlapping) sets of covariates ZM and ZY for the mediator and the outcome,

respectively:

µ
M
= β0 + β1X +

p∑
k=1

βk+1ZMk

µ
Y
= exp (γ0 + γ1X + γ2M +

q∑
k=1

γk+2ZY k).

The indirect effect is

β1γ2 exp (γ0 + γ1X + γ2M +

q∑
k=1

γk+2ZY k)

i.e., substituting µ
M

to M ,

β1γ2 exp (γ0 + γ1X + γ2(β0 + β1X +

p∑
k=1

βk+1ZMk) +

q∑
k=1

γk+2ZY k)

As already mentioned, the formula also includes covariates. Hayes and Preacher

(2010) suggest estimating the indirect effects conditional on the values of X and M ,

setting the covariates to their mean values. The authors do not address the scenario

where the covariates act as effect modifiers, i.e. when they interact with the exposure

or the mediator. This simply makes the partial derivatives in Equation (2.9) more
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complex but does not add any conceptual difficulty. An important interaction term,

which is often included in the outcome model, is that between the exposure and the

mediator. This is the case when the exposure moderates its own indirect effect on the

outcome through the mediator by moderating the effect of M on Y . To see how the

presence of such a term influences the indirect effect, it is sufficient to consider linear

models for both the mediator and the outcome and include a term γ3XM in the

outcome model. The indirect effect is β1(γ2+γ3X), which depends on X, in contrast

to the indirect effect obtained from models excluding the presence of an exposure-

mediator interaction, i.e. the simple product β1γ2. The expression β1(γ2 + γ3X)

is consistent with that obtained by VanderWeele (2015b) in a counterfactual-based

framework.

Extension to multilevel models

Geldhof et al. (2018) claim that the derivative-based approach can be easily extended

to the multilevel case, but we are not aware of any study addressing this issue. In the

following, we discuss how the derivative-based method can be applied to generalized

mixed-effect models (GLMMs).

Consider a setting with J clusters and I =
∑

j nj subjects, where nj is the

number of individuals belonging to each cluster. Typical examples of clustered

data are children within classrooms, employees in an organization’s departments, or

patients in hospitals. Let us start from linear multilevel models where all variables

are measured at the subject level (level 2), i.e. a 1 → 1 → 1 design, using the

notation introduced by Krull and MacKinnon (1999, 2001)1:

µ
Mij

= (β0 + b
0j
) + (β1 + b

1j
)Xij (2.15)

µ
Yij

= (γ0 + g
0j
) + (γ1 + g

1j
)Xij + (γ2 + g

2j
)Mij (2.16)

where j denotes the cluster and i the subject, Greek letters denote fixed effects and

(b
0j
, b

1j
, g

0j
, g

1j
, g

2j
)′ is the vector of random effects, which are assumed to be from

a multivariate normal distribution with mean 0 and covariance matrix Σ possibly

non-diagonal (i.e. random effects are allowed to have non-null covariances). Ran-

dom effects capture the interdependence of units belonging to the same cluster and

represent cluster-specific deviances from the average intercept or slope levels.

1Single observation and cluster level measurements are indicated by 1 and 2, respectively, which
substitutes X, M and Y in the X → M → Y setting. E.g., 1 → 2 → 2 indicates that the exposure
is measured at the single observation level, and the mediator and the outcome are both measured
at the cluster level.
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Using Equation (2.9), the indirect effect is the product:

(β1 + b
1j
)(γ2 + g

2j
), (2.17)

which depends on b
1j
and g

2j
, for j = 1, . . . , J , or, in other words, the indirect effect

is cluster-specific. To obtain a unique, average indirect effect, it is necessary to

integrate random effects out. If b1 and g2 are uncorrelated, then the indirect effect

is simply the product β1γ2; when, however, they are correlated, then the indirect

effect is given by

β1γ2 + σ
b1g2

, (2.18)

where σ
b1g2

is the covariance between b1 and g2 (Kenny et al., 2003). The estimation

of such a covariance term in the traditional multilevel setting is complex and requires

ad hoc solutions, like those proposed in Kenny et al. (2003) and Bauer et al. (2006),

or to address multilevel models from a structural perspective (Bauer et al., 2006;

Curran, 2003; Preacher et al., 2011, 2010). Another option could be moving to a

Bayesian framework (Di Maria et al., 2022; Yuan and MacKinnon, 2009a), which

allows us to obtain the posterior distribution of σ
b1g2

and of the indirect effect, also

making the estimation of confidence intervals straightforward.

When at least one between h1 and h2 differs from identity, or, in other words,

when the mediator and/or the outcome model is a generalized mixed model, esti-

mation becomes more complex. For example, if the mediator is a count variable and

we model it using a log link,

µ
Mij

= exp{(β0 + b
0j
) + (β1 + b

1j
)Xij}

while the outcome follows a linear model as in Equation 2.16, the indirect effect is

CIE = (β1 + b
1j
)(γ2 + g

2j
) exp{(β0 + b

0j
) + (β1 + b

1j
)Xij},

for which integrating out random effects and obtaining a closed form expression may

be complex or even not feasible. In this case, numerical integration methods may

be necessary.

So far, we have focused on the 1 → 1 → 1 design, the one generally most complex

due to the potential presence of a product between two random effects. Analogous

considerations can, however, be extended to other multilevel mediational designs,

like 2 → 1 → 1 or 2 → 2 → 1 2. When both the mediator and the outcome

2It is important to remark that, according to Krull and MacKinnon (1999, 2001), these are
the only designs that can be addressed in the traditional multilevel framework. Other designs,
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models are linear, the integration of random effects is straightforward, while when

one or both models are nonlinear, some difficulties may arise, especially in the case

of correlated random effects.

Confidence intervals for the indirect effect

Estimating confidence intervals (CIs) for the indirect effect poses challenges even in

the linear case, since the distribution of the product β1γ2 does not follow a Normal

distribution although the two coefficient estimators are assumed to be Normal (Lom-

nicki, 1967; Springer and Thompson, 1966). Indeed, the distribution of the product

may be asymmetric and difficult to approximate with distributions traditionally

used in statistics, see MacKinnon (2008a). This issue is potentially exacerbated in

a nonlinear setting, where the indirect effect assumes complex forms, the distribu-

tion of which may be impractical (or simply impossible) to derive in closed form.

Therefore, it seems convenient to rely on sampling-based approaches to retrieve an

empirical distribution of the indirect effect, from which to compute statistics of in-

terest. Geldhof et al. (2018) suggest using non-parametric bootstrap or Monte-Carlo

confidence intervals (for a reference see, e.g., Efron and Tibshirani, 1994; Rubinstein

and Kroese, 2016). The former creates B samples by resampling statistical units in

the original sample, and for each of them, the parameter of interest is estimated,

the indirect effect in our case.

The latter method does not require data resampling, but it generates samples of

regression parameters in (2.10)-(2.11), assuming that they come from a multivariate

normal distribution. Each of these samples is associated to an estimate of the

indirect effect or, more generally, to the parameter of interest.

Supported by a growing body of literature which highlights its desirable prop-

erties (see, for example Biesanz et al., 2010; Koopman et al., 2015; Miočević et al.,

2017; Yuan and MacKinnon, 2009a), we believe that another valuable option for

the estimation of CIs could be the Bayesian approach (for an introduction see, e.g.,

Gelman et al., 2013). Each parameter is endowed with an a priori distribution,

and an empirical (posterior) distribution of the indirect effect can be obtained via

one of several methods available for this purpose, e.g. Monte Carlo Markov Chains

(MCMC). Moving to the Bayesian framework can also provide additional advan-

tages, like the possibility to embed prior information into the mediation model, if

available, in order to improve estimates efficiency, ease of extension to the multilevel

case, even assuming complex a priori correlation structures of fixed and random

effects, and exact inference for small samples, for which asymptotic assumptions

including 1 → 2 components, i.e. bottom-up effects, cannot be dealt with
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might not hold.

To the best of our knowledge, no simulation studies have been run so far to

compare the performance of these three approaches for indirect effects estimated

through the derivative-based method. This is the primary focus of Section 2.3.2.

2.3.2 Simulation study

In order to overcome the issues related to the closed-form estimation of confidence

intervals for indirect effects in a non-linear context, sampling-based approaches may

be a possible alternative. In particular, we focused on Bootstrap, Monte Carlo

and Bayesian intervals, conducting a simulation study in order to compare their

behaviour under different conditions. Namely, we considered three sample sizes (n =

30, 100, 200) and two combinations of assumed distribution and link function for both

the mediator and the outcome models, that is Bernoulli distribution and logit link in

one case and Poisson distribution and log link in the other, with expectations as in

Equations (2.10)-(2.11). We generated the exposure variable X from a N (0, 52), and

we arbitrarily chose three different exposure values (x1 = −5, x2 = 0 and x3 = +5)

on which to condition the indirect effect. The parameter values were arbitrarily set

as follows: β0 = 0.8, β1 = 0.2, γ0 = 0.3, γ1 = 0.40, γ2 = −0.7. Values of the indirect

effect have been computed according to the derivative-based method as expressed

in Equation (2.9).

For computing Bootstrap and Montecarlo intervals, we estimated GLM expressed

in Equations (2.10) and (2.11) using frequentist approach. Bootstrap estimates are

obtained by drawing 1,000 samples of size n, with replacement, from the original sim-

ulated dataset. Then, with each bootstrap sample, we fit models in Equations (2.10)

and (2.11) and at each iteration we saved coefficients’ estimates. To retrieve Monte

Carlo samples, we sampled 1,000 regression coefficients values from a N (θ̂, Σ̂θ̂),

where

θ̂ =

[
β̂

γ̂

]
Σ̂θ̂ =

[
Σ̂β̂ 0

0 Σ̂γ̂

]
(2.19)

β̂ and γ̂ being the vectors of estimated coefficients of mediator and outcome mod-

els, respectively, and Σ̂β̂ and Σ̂γ̂ their asymptotic estimated covariance matrices.

Matrix Σ̂θ̂ is block diagonal because we assume that Cov(β̂, γ̂) = 0. Bayesian

posterior coefficients samples have been derived using diffuse priors (N (0, 103)) for

each parameter, by means of Monte Carlo Markov Chains, from two chains of length

10 000 with burn-in = 5 000. Graphical inspection of the chains showed that all the
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chains converged. Simulations were carried out in R, using the package rjags for

the bayesian part.

We repeated the process 500 times, each time computing quantile-based 95%

intervals of the indirect effect from its empirical distribution for each approach and

scenario. We compared the three approaches in terms of the average length of

the intervals and the proportion of intervals which contain the “true” value of the

indirect effect (i.e. coverage rate). Results are shown in Figures 2.4 and 2.5 and in

Table 2.4.
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Figure 2.4: Results of the simulation study: coverage rates

As expected, the average lengths of the confidence intervals and the differences

between the three methods decrease as the sample size increases. When the sam-

ple size is n = 30, it is observed that the coverage rate of Monte Carlo confidence

intervals is slightly higher compared to the other two methods, while the Bayesian

approach fall in between. Analysis of the average length of the credibility inter-

vals in Figure 2.5 provides insights into the uncertainty of effect estimates obtained

through the three methods; in scenarios with small samples, the Bayesian approach

generally performs better than its counterparts. Generally, Bayesian intervals ap-

pears to perform well compared to the others and can be considered a reasonably

good alternative.
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Figure 2.5: Results of the simulation study: average CI lengths

2.3.3 A real-data example: evaluating high school back-

ground’s impact on academic success

In this section, we analyse data from the ANS (Anagrafe Nazionale Studenti), which

serves as the database for Italian university students3. Each record in the database

represents a statistical unit, specifically a freshman enrolled at an Italian university.

These records contain variables about the student’s high school background and

university career. For this study, we have chosen to focus on the 2015 cohort, the

most recent available cohort, which covers a sufficiently long time span to observe

the completion of the degree. We have decided to limit the analysis to students

enrolled at a non-online Sicilian university, comprising N = 19 770 individuals. It

is worth emphasising that the exclusion of students enrolled at online universities is

driven by their unique behavioural patterns concerning degree completion (Priulla,

2023).

Our analysis employs associational nonlinear mediation analysis to examine the

relationship between high school background and academic success. Specifically,

the goal is to examine the impact of the high school final mark (HSFM) on the

probability of achieving a bachelor’s degree (BD) within four academic years while

also exploring the mediating role of the number of University Credits (UC) earned

3Database MOBYSU.IT [Mobilità degli Studi Universitari in Italia], research protocol MUR
- Universities of Cagliari, Palermo, Siena, Torino, Sassari, Firenze, Cattolica and Napoli Federico
II, Scientific Coordinator Massimo Attanasio (UNIPA), Data Source ANS-MUR/CINECA
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at the end of the first year.

In addition to the HSFM, CU and BD variables, which act as exposure, mediator

and outcome, respectively, we included a set of covariates to control for possible

confounders. The three variables of interest and the selected covariates are briefly

described below:

• HSFM: final mark obtained by the student at the end of high school. In Italy,

the final mark ranges from 60 (‘Sufficient’) to 100 cum laude, coded as 101.

Decimal scores are not allowed.

• UC: number of university credits obtained by the student within the first year

from his enrollment to their current degree course. Generally, the maximum

number of credits a student can get during the first year is 60.

• BD: binary variable, taking value 1 if the student graduates within four years

from their enrolment to the current degree course, 0 otherwise.

• TUSS: Type of Upper Secondary School diploma. In Italy, there are vari-

ous types of upper secondary schools, each offering a different curriculum and

training students for a particular career or academic path. In this study they

have been categorized in Classical lyceum, Scientific lyceum, Technical insti-

tute, Industrial Technical institute, Vocational institute, Industrial Technical

institute, Other lyceum (baseline), and Abroad/Other.

• sex: student’s biological sex, male and female (baseline).

• TDC: area of the degree course at which the student is enrolled, categorised

in “Agriculture, forestry, fisheries and veterinary” (baseline), “Arts and hu-

manities”, “Engineering, manufacturing and construction”, “Health and wel-

fare”, “Business, administration and law”, “Natural sciences, mathematics and

statistics (NsMS)”, “Services”, “Social sciences, journalism and information”,

“Education”, and “Information and Communication Technologies (ICTs)”.

• age: student’s age.

In this case study, the variables UC and BD acting as the mediator and outcome,

respectively, do not follow a Gaussian distribution, suggesting the need for nonlinear

mediation analysis. Specifically, the UC variable is bounded between 0 and 60, as

mentioned before. To account for this, we first transformed UC into the proportion

of UC (PUC) obtained in the first year, dividing UC by 60; then, to make these scores
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strictly in the interval (0,1), we applied the transformation proposed by Smithson

and Verkuilen (2006):

PUC ′ =
PUC · (N − 1) + 0.5

N
,

and employed a Beta model with logit link for analysis:

logit (E[PUC ′|X,Z]) = β0 + β1HSFM+ β2TUSS + β3sex + β4TDC + β5age.

Regarding the outcome, BD is a binary variable that takes the value of 1 if the

student successfully graduates on time. To examine the relationship between HSFM

and PUC′, we employed a logistic regression model as follows:

logit (P [BD = 1|M,X,Z]) = γ0+γ1HSFM+γ2PUC
′+γ3TUSS+γ4sex+γ5TDC+γ6age.

An important point to highlight is that the exposure variable, HSFM, is a dis-

crete variable. Consequently, estimating the indirect effect requires the use of finite

differences methodology. Since the model also includes some other covariates, they

need to be fixed to specific values. Specifically, we fixed TUSS, TDC, and age to

their joint mode (i.e. the most recurrent profile of covariates in the data): TUSS

= Scientific lyceum, TDC = Engineering, manufacturing and construction, and age

= 19. In contrast, the variable sex has not been explicitly assigned. Indeed, we

calculated the CIEs for both males and females, enabling a meaningful comparison.

The indirect effect for the i-th value of HSFM is found as:

CIEi = logit−1(ηi+1)− logit−1(ηi), i = 1, . . . , 41, (2.20)

where

ηi = γ0 + γ1HSFMi + γ2PUC
′
|HSFMi

+ γ
(TUSS=Sci)
3 + γ4sex + γ

(TDC=Eng)
5 + γ6 · 19

and

PUC ′
|HSFMi

= logit−1(β0 + β1HSFMi + β2
(TUSS=Sci) + β3sex + β4

(TDC=Eng) + β5 · 19).

Note that HSFM1 = 60 and HSFM42 = 101. In this terms, CIEi quantifies how

the probability of achieving BD changes when HSFM increases by one unit, from

HSFMi to HSFMi+1, considering the mediating effect of PUC′.

The coefficients involved in the estimation of the CIEs, estimated using frequentist
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Table 2.5: Estimates and pvalues of regression coefficients involved in the estimation
of CIEs

Mediator Outcome

Name Coef Estimate pvalue Coef Estimate pvalue

Intercept β0 -2.683 < 2e-16 γ0 -2.900 < 2e-16
HSFM β1 0.039 < 2e-16 γ1 0.0004 0.774
PUC′ - - - γ2 4.583 < 2e-16
TUSS = Sci β2 0.361 < 2e-16 γ3 -0.050 0.345
sex = male β3 -0.032 0.124 γ4 -0.039 0.321
TDC = Engineering β4 -0.114 0.015 γ5 -0.302 0.001
age β5 -0.034 < 2e-16 γ6 -0.001 0.903

approach, are reported in Table 2.5, while the whole set of coefficients is provided

for reference in Table 2.6 in Section 2.3.3.

The results in Table 2.5 seem to suggest that the relationship between HSFM and

BD is fully mediated by PUC′ since the effect of HSFM in the outcome model, γ1, is

not significant. HSFM is positively and significantly associated with PUC′, which is

in turn positively and significantly associated with BD. The magnitude of the latter

coefficient is remarkable (4.583). To formally test if the indirect effect is significant,

we estimated the CIEs (as shown in Equation 2.20) and their confidence intervals

using the three approaches discussed before. As in Section 2.3.2, Bootstrap and

Monte Carlo intervals are based on frequentist models, while the Bayesian intervals

are computed using MCMC. Figure 2.6 shows the results obtained using the Bayes

approach, while those obtained with the other approaches are almost identical; ac-

tually, this is in agreement with what we observed in simulations in the scenario

with a large sample size, as it is here.

Each point in the graph represents the difference in the probability of graduating

within four years for a unitary increase in HSFM mediated by PUC′. It is worth

noting that all the estimated CIEs are positive and significant (their CIs does not

contain zero), meaning that getting a higher HSFM is associated with a higher prob-

ability of graduating on time through PUC′. However, the curve has a monotonic

increasing trend until HSFM reaches 92, then it slightly starts to decrease. This

may suggest that the mediating role of PUC′ becomes more and more important

as HSFM increases until 92, at which point it becomes slightly less relevant. In

addition, we can notice that the indirect effect for females is slightly larger than

those of males; however, the confidence intervals overlap for all values of HSFM,

implying that the observed differences in CIEs magnitude are not significant. This
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Figure 2.6: CIEs for male and females and their confidence intervals estimated with
the Bayesian approach

is consistent with the regression model’s results.

Supporting material

Chain rule for finite differences

Let f(x) and g(x) two discrete functions and f ◦ g ≡ f(g(x)) the function obtained

from their composition. We want to prove that

Dx,w[f(g)] =
f(g(x+ w))− f(g(x))

w

can be written as a product of differences, deriving a chain rule analogous to that

for derivatives of continuous functions. Indeed, Dx,w[f(g)] can be written as

f(g(x+ w))− f(g(x))

w
=
f
(
g(x) + w g(x+w)−g(x)

w

)
− f(g(x))

w

=
f (g(x) + wDx,w[g])− f(g(x))

w
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Noting that

Dg(x),wDx,w[g][f(g)] =
f(g(x) + wDx,w[g])− f(g(x))

wDx,w[g]
,

it is easy to derive that

Dx,w[f(g)] = Dg(x),wDx,w[g][f(g)] ·Dx,w[g].

Regression coefficients

Table 2.6: Estimates and pvalues of regression coefficients.

Mediator Outcome

Name Coef Estimate pvalue Coef Estimate pvalue
Intercept β0 -2.683 < 2e-16 γ0 -2.900 < 2e-16
HSFM β1 0.039 < 2e-16 γ1 0.0004 0.774
PUC′ - - - γ2 4.583 < 2e-16
TUSS = Sci β2 0.361 < 2e-16 γ3 -0.050 0.345
TUSS = Clas 0.209 < 2e-16 -0.301 < 2e-16
TUSS = Tech -0.209 < 2e-16 -0.137 0.039
TUSS = Voc -0.38 < 2e-16 -0.338 0.002
TUSS = Ind Tech -0.101 0.047 -0.066 0.525
TUSS = Abroad 0.021 0.894 0.189 0.54
sex = male β3 -0.032 0.124 γ4 -0.039 0.321
TDC = Engineering β4 -0.114 0.015 γ5 -0.302 0.001
TDC = Arts 0.438 < 2e-16 0.092 0.331
TDC = Health 0.326 < 2e-16 -0.555 < 2e-16
TDC = Business -0.017 0.708 -0.865 < 2e-16
TDC = NsMS -0.425 < 2e-16 0.453 < 2e-16
TDC = Education 0.734 < 2e-16 -0.921 < 2e-16
TDC = ICTs -0.299 <0.001 -0.141 0.419
age β5 -0.034 < 2e-16 γ6 -0.001 0.903
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Estimates of CIEs on real data
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Figure 2.7: CIEs for male and females and their confidence intervals estimated with
the Bootstrap approach
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Figure 2.8: CIEs for male and females and their confidence intervals estimated with
the Montecarlo approach
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2.4 Conclusions

In this Chapter, we focused on the estimation of nonlinear mediation models. The

existing literature primarily focuses on nonlinear mediation models within the coun-

terfactual framework, which requires different assumptions and notation compared

to the associational framework commonly used in mediation analysis.

Initially, we described a healthcare study conducted into the counterfactual

framework. Namely, we investigated the effect of socio-economic status on cancer

mortality as mediated by out-of-region mobility, focusing on lung and colon cancer

patients in Sicily, Italy. We followed a novel two-step approach: first, we derived the

structure of association among the variables from the data, using log-linear graph-

ical models; than, we estimated mediational effects using a counterfactual-based

approach.

The findings of the study highlight the existence of a complex structure of re-

lationships among individual characteristics, patient mobility and health outcomes,

herein described in a 3-year mortality in cancer patients. In line with much of previ-

ously published literature, older patients and those with a poorer profile in terms of

comorbidities have demonstrated a lower probability of receiving treatments extra-

regionally.

The results of the expounded graphical model have highlighted that most de-

prived patients have a diminished probability of travelling outwith their region of

residence, and this holds across all age categories. Contemporaneously, mobility de-

creases the 3-year mortality for both cancer sites under consideration in this study.

Given the complex structure of the relationships among deprivation, mobility and

the 3-year mortality, the mediation analysis outlined in this study has permitted

the quantification of the indirect deprivation effect on mortality, as mediated by

mobility. The results obtained have highlighted that, as regards TBL cancer, a

state of deprivation acts on mortality indirectly (via considerations of mobility)

and directly (via unmeasured factors, which are different in nature to mobility).

In contrast, the effects of deprivation are mainly indirect for colon cancer. When

considering the different effect of socio-economic status on cancer survival, further

research is required to analyze the extent to which deprivation may be confounded

by co-morbidity and lifestyle.

Our study acknowledges several limitations and identifies areas for future re-

search. Key limitations include the absence of detailed medical information such as

cancer stage, malignancy type, histological features, and tumor genetics in the hos-

pital records, which are critical factors in determining 3-year mortality rates. While

patient comorbidity was assessed using the Charlson index, more comprehensive
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methods could be employed for a deeper analysis. Due to the study’s cross-sectional

nature, important dynamic factors over time were not captured, which could be ad-

dressed in future longitudinal studies using, for example, those approaches developed

in Didelez (2019) and Aalen et al. (2020).

The second part of the Chapter is devoted to the derivative-based approach to

the estimation of the indirect effect in an associational mediational context. Stolzen-

berg (1980) proposed to estimate the indirect effect as the derivative of a composite

function, and Geldhof et al. (2018) discussed some applications of this approach in

the GLM context. We offered a comprehensive discussion of the derivative-based

method for nonlinear mediation analysis by deepening some aspects of the proposal

of Geldhof et al. (2018), addressing some of its potential issues through novel solu-

tions.

Specifically, we proposed how to address discrete exposures through a discrete

version of the derivative method based on finite differences; we tackled binary media-

tors, proposing a way to select an appropriate value to include in the outcome model

and discuss potential extensions to the multilevel framework and the application of

the Bayesian framework for obtaining confidence intervals. Through a simulation

study, we provided evidence that Bayesian intervals are a valid alternative compared

to the Bootstrap-based and Montecarlo ones used by Geldhof et al. (2018).

Also, we present a real-data application which investigated the relationship be-

tween high-school background and academic success. By calculating finite differ-

ences, we were able to capture the effects of the mediator on the outcome variable

while accounting for the discreteness of the high-school background variable. The

results obtained through this approach were then interpreted accordingly, acknowl-

edging the specific characteristics of the variables involved.

We believe that this work can serve as a guide for researchers who need to address

a mediational setting with nonlinear models without switching to the counterfactual

framework. This work can be extended in several ways, for example, by investigating

the relationship between the total and indirect effects. Indeed, in the classical linear

setting, the total effect is the sum of the direct and indirect effects; however, this

property does not hold in the case of nonlinear models. Another possible venue for

future research is clustered data, for which multilevel models are often employed.

Settings with categorical mediators also need further investigation. This issue has

traditionally received little attention by scholars, either in the counterfactual and

the associational framework, and can be a promising research direction.
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Chapter 3

Derivative-based spatial mediation

with INLA-SPDE

3.1 Introduction

Mediation analysis, as introduced in Chapter 2, is commonly used in various disci-

plines like biology, social sciences and epidemiology to assess the indirect effect of

an exposure on an outcome through a mediator variable. In those fields, encoun-

tering data with inherent spatial structure is a common occurrence. The presence

of spatial correlation, which may occur at the level of either the mediator or the

outcome, acts as an unmeasured confounder. In an associative mediational setting,

this can introduce bias in the estimation of mediational effects. Furthermore, within

a causal framework, this violates the foundational assumptions of causal models.

However, although recent explorations into spatial variability in causal inference

indicate viable paths (Reich et al., 2021), the literature on mediation analysis pre-

dominantly lacks consideration for spatial heterogeneity, particularly in the context

of spatial exposures, mediators, or outcomes. While not directly addressing spa-

tial mediation, referring to the broader field of spatial causal inference, techniques

such as case-control matching (Jarner et al., 2002), spatial smoothing adjustments

(Schnell and Papadogeorgou, 2019), and propensity-score methods (Davis et al.,

2019) have been developed to address bias due to missing spatial confounders. Ap-

proaches aimed at addressing the problem of interference, which occurs in cases

where the treatment in one location affects outcomes in other locations, can be

found in Zigler et al. (2012) and (Tchetgen Tchetgen et al., 2021). Also in Reich

et al. (2021) are discussed spatial causal methods based on the potential outcomes

framework (Rubin, 1974) and on Granger causality (Granger, 1969). All this ap-

proaches deal with areal data. Considering point-referenced data, in which the
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treatment and response variables can be modeled as continuous random fields over

an uncountable number of spatial locations (as described in Section 1.3), Reich

et al. (2021) mention the possibility of using the INLA-SPDE approach to remove

the effects of spatially-smooth confounding variables, viewing that as an extension

of Simultaneous Autoregressive (SAR) models to the continuous spatial domain.

In Chapter 1 we have shown how the SPDE approximation to Gaussian spatial

fields can be effectively applied to estimate Bayesian geostatistical models, exploiting

all the model flexibility and the computational efficiency offered by INLA. Also, in

Chapter 2 we described how the derivative-based approach can be used to estimate

conditional indirect effects in nonlinear mediational settings. Following a growing

body of literature (Yuan and MacKinnon, 2009b), we also explored the possibility

to estimate Bayesian credibility intervals for the CIE. Although it is still a work-

in-progress, in this Chapter we wanted to report some evidence on the opportunity

to combine the INLA-SPDE approach and the derivative-based method, within the

Bayesian inferential paradigm, in order to estimate nonlinear mediational effects

while taking into account spatial correlation in the data.

3.2 The spatial conditional indirect effect

In estimating mediational effects using data observed in a spatial domain, it is rea-

sonable to consider that spatial correlation can occur at the mediator level, at the

outcome level, or both. Following the notation and general framework introduced in

Chapter 1 and 2, and assuming the presence of spatial correlation at both the media-

tor and the outcome level, the mediation model expressed earlier in Equations (2.10)

and (2.11) becames

g1(µM(s)) = β0 + β1X(s) + uM(s) (3.1)

g2(µY (s)) = γ0 + γ1X(s) + γ2M(s) + uY (s) (3.2)

where X, M and Y are the exposure, the mediator and the outcome, respectively,

observed at location s in a spatial domainD ∈ Rd, uM(s) and uY (s) are two different

spatial Gaussian processes which take care of the spatial correlation at the mediator

and the outcome level, respectively, g1 and g2 are possibly non-linear link functions,

connecting the conditional expectations of the mediator and the outcome to their

linear predictors, and hk = g−1
k , k ∈ {1, 2}.

In order to compute the conditional indirect effect according to the derivative-

based approach, it is necessary to compute the partial derivatives of the mediator and
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the outcome model, as expressed in Equation 2.9. Table 3.1 shows partial derivatives

of mediator and outcome spatial models, for three link functions of common choice,

i.e. identity, log and logit. To simplify the notation, from now on we omit the

dependence of X, M and Y on the spatial coordinates s.

Table 3.1: Partial derivatives of spatial mediator and outcome models for identity,
log and logit link functions.

Link function
∂Ŷ

∂M

∂M̂

∂X

Identity γ2 β1

Log γ2 exp (γ0 + γ1X + γ2M + uY (s)) β1 exp (β0 + β1X + uM (s))

Logit
γ2 exp (γ0 + γ1X + γ2M + uY (s))

(1 + exp (γ0 + γ1X + γ2M + uY (s))
2

β1 exp (β0 + β1X + uM (s))

(1 + exp (β0 + β1X + uM (s))2

For example, in the case of a binary outcome and a counting variable as a

mediator, assuming that g1() = log() and g2() = logit(), the conditional indirect

effect can be computed as

β1 exp (β0 + β1X + uM(s))× γ2 exp (γ0 + γ1X + γ2M + uY (s))

(1 + exp (γ0 + γ1X + γ2M + uY (s))
2 . (3.3)

3.3 Spatial mediation with INLA-SPDE: an ex-

ample

Following the discussion reported in Section 1.4 of Chapter 1, an useful approach

for estimating the spatial models expressed in Equations (3.1) and (3.2) is by using

the SPDE approximation to the Gaussian field, as demonstrated in Lindgren et al.

(2011). To ascertain the convenience of taking into account spatial correlation when

estimating indirect effects with point-referenced data, we used simulated data to

compare a traditional mediation model with a spatial mediation model. The spatial

model includes a Gaussian spatial process at both the mediator and the outcome

level.

3.3.1 Simulation of the data

We generated n = 150 point locations randomly in a unit square, simulating a higher

density of points in the lower left corner, as shown in Figure 3.1.
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Figure 3.1: Simulated locations in the unit square.

Then, we arbitrarily set parameter values for the two spatial processes, that is

σ2
uM

= σ2
uY

= 5, κ = 7 and ν = 1. After calculating the distances between each

point, the Matérn covariance matrices of the two processes have been calculated as

shown in Equation 1.8. Then, values from the spatial fields uM and uY have been

generated randomly using Cholesky decomposition.

To focus exclusively on the exclusion/inclusion of the spatial process, we have

considered the non-generalised case (using the identity link function) assuming that

both the mediator and the outcome have Normal errors ϵM and ϵY , respectively,

distributed as N (0, 2). Parameters of the mediator and outcome models have been

set, respectively, as β0 = 4.5, β1 = 1.5 and γ0 = 10, γ1 = 0.8, γ2 = 0.4. Hence,

according to the formula reported in Table 3.1, the indirect effect is β1 × γ2 = 0.6.

Also, we set exposure X ∼ N (10, 16). Figure 3.2 shows simulated mediator and

response values in the unit square (the values in the legend are provided just to

indicate the correspondence between the size of the points and the values of the

variables).

3.3.2 Models estimation

We estimated posterior densities of parameters with INLA for both the spatial and

non-spatial mediation models, using non-informative priors. In particular, for the

spatial mediation model, we fitted an INLA-SPDE model as described in Section 1.4.

For the hyperparameters of the SPDE component, we assumed a joint Normal prior

for hyperparameters λ1 and λ2 with expected values µλ1 = −3.23 and µλ1 = 1.96,

precision τλ1 = τλ2 = 0.1 and covariance zero.
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(a) (b)

Figure 3.2: Simulated mediator (3.2a) and response (3.2b) values.

Figure 3.3 shows the mesh of the simulated locations for the INLA-SPDE model.

The vertices of the triangles represent the nodes (bases) of Equation (1.13), the

number of which is 390. To avoid boundary effects, we added an outer edge as

suggested by Simpson et al. (2016). Considering the trade-off between accuracy

and computational cost, we set a lower resolution for the outer region, which is

of no practical interest, and allowed a higher number of nodes in the study region

to compute an accurate approximation of the Gaussian field in that area. The

maximum triangle side length is set to 0.2 in the interior and 0.3 in the outer region.

Figure 3.3: Mesh of the simulated locations (red dots) for the INLA-SPDE model.

Table 3.2 shows a comparison of the DIC of the non-spatial vs spatial mediation

models fitted to the simulated dataset. It can be seen how accounting for spatial

correlation by including the spatial processes at both the mediator and the outcome
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(a) (b)

Figure 3.4: Histograms of the posterior distribution of the indirect effect computed
using estimates from the non-spatial mediation model (3.4a) and from the spatial
mediation model (3.4b). Red lines represent HDI intervals, and blue lines indicate
the posterior mean. The true value of the indirect effect is equal to 0.6.

level improves the performance of the models.

Table 3.2: Comparison of the DIC of the non-spatial vs spatial mediation models
fitted to the simulated dataset.

DIC

Mediator model Outcome model

Without spatial GF 664.35 756.07
With spatial GF 595.25 561.34

Recall that the indirect effect is a function of parameters from both the medi-

ator and the outcome models. Therefore, to compare the estimates of the indirect

effect obtained from the two approaches under comparison, from the joint poste-

rior distribution we simulated S = 1000 values of parameters β1 and γ2, that is

βp
1 = {β(1)

1 , . . . , β
(S)
1 } and γp

2 = {γ(1)2 , . . . , γ
(S)
2 }, for both the spatial and non-spatial

mediation models. We then retrieved the posterior sample of the indirect effect as

βp
1⊙γ

p
2 (where ⊙ indicates the Hadamard product), from which we computed statis-

tics of interest, specifically Highest Density Intervals and posterior means. These

are illustrated in Figure 3.4 and reported in Table 3.3.

It turns out that the spatial mediation model has provided more accurate and

precise estimates of the indirect effect compared to the non-spatial model.
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Table 3.3: Posterior mean and HDI of the indirect effect estimated with the non-
spatial and with the spatial mediation models.

Posterior statistics of the IE

Mean HDI

Without spatial GF 0.422 (0.10, 0.73)
With spatial GF 0.590 (0.36, 0.82)

3.4 Simulation study

In order to evaluate the impact on the estimation of the indirect effect of includ-

ing/excluding the GFs, we conducted a simulation comparing 16 different scenarios.

These scenarios varied in sample sizes and spatial correlation structures (i.e., com-

binations of parameter values r and σ2
u). For each scenario, we repeated the process

described in Section 3.3 300 times. At each iteration, we collected the highest poste-

rior density intervals estimated from either model. We then computed their average

length and coverage rate (i.e., the proportion of intervals that cover the ’true’ in-

direct effect of 0.6), which are reported in Table 3.4. Given that the size of the

finite-dimensional Gaussian approximation to the solution of the SPDE is solely de-

pendent on the desired resolution and not on the number of observations, we kept

the mesh construction parameters constant, as specified in Section 3.3.2.

An increase in sample size from 50 to 200 shows an improvement in the coverage

rate for the spatial model compared to the non-spatial model, suggesting that the

inclusion of the GF becomes more effective as the sample size increases. The average

interval length decreases for both approaches with larger n, but this reduction is

more pronounced for the spatial model.

A larger spatial range (increasing from 0.2 to 0.8) appears to enhance the cover-

age rate for the spatial model, especially in larger samples (n = 200). This indicates

greater adaptability of the spatial model in scenarios with higher spatial variability.

As σ2
u increases from 5 to 15, the coverage rate for the non-spatial model signif-

icantly drops, whereas that of the spatial model remains relatively stable. This

demonstrates that the spatial model better accommodates the increase in variance

compared to the non-spatial model.

In terms of coverage rate, the spatial model generally outperforms the non-spatial

model across almost all scenarios, particularly in larger samples and with higher

spatial variance (σ2
u). Regarding average interval length, the GF produces shorter

credibility intervals, indicating greater precision in estimating the indirect effect. In

summary, the differences between the two models are more pronounced in scenarios
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with larger sample sizes, wider ranges, and higher spatial variance. This suggests

that ignoring spatial correlation in the data could be particularly detrimental under

these conditions.

3.4.1 Correlated processes

Until now, we assumed that uM ⊥⊥ uY . In this Section, we consider the scenario in

which the two spatial processes uM and uY are jointly Gaussian distributed, i.e.

uM ,uY ∼ N (0uM ,uY
,ΣuM ,uY

), (3.4)

where 0uM ,uY
is a zero vector of expected values of length 2n and ΣuM ,uY

is a

2n× 2n joint (block) covariance matrix. The joint covariance matrix ΣuM ,uY
is as

follows:

ΣuM ,uY
=

[
ΣuM

ΣuM ,uY

ΣT
uM ,uY

ΣuY

]
, (3.5)

where ΣuM
and ΣuY

are the covariance matrices of uM and uY , respectively, and

the generic element of the extra-diagonal blocks, that is

ρ×
√

Cov(uM(si), uM(sj))× Cov(uY (si), uY (sj)), (3.6)

is the covariance between the two processes for locations si and sj, which is

governed by the parameter ρ.

Table 3.5 presents the results of the simulation study comparing the performance

of the spatial and non-spatial mediation models, across different combinations of

sample size n and the ρ parameter, which governs the correlation between the two

spatial fields uM and uY . We evaluated the coverage rate and the average length of

credibility intervals for both models.

The table results suggest that, for both models (spatial and non-spatial), there is

a decrease in the coverage of credibility intervals and an increase in the average length

of intervals as ρ increases. This suggests that higher correlation between spatial

models negatively impacts the precision of estimates. This is expected, as both

models fail to take into account the correlation between the two spatial processes.

However, despite the increase in ρ, the spatial model appears to maintain better

performance compared to the non-spatial model, as indicated by higher coverage of

credibility intervals and lower average length of intervals for most combinations of

n and ρ. Furthermore, increasing sample size seems to improve the performance

of both models, as evidenced by higher coverage of credibility intervals and lower
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average length of intervals for higher values of n.

3.5 An application on real data

3.5.1 Motivation of the study

One of the areas where spatial mediation can prove particularly useful is the anal-

ysis of ecological data, which often exhibit spatial correlation along with a complex

structure of association among the factors involved. In order to illustrate an applica-

tion on real ecological data (albeit as a small example rather than a comprehensive

study), we investigate the effect of depth on the abundance of the Pandora (pagellus

erythrinus) fish species, as mediated by temperature.

The Pagellus erythrinus is a fish species widely distributed in the Mediterranean

Sea, the Black Sea, and the Atlantic waters adjacent to southern Europe. Its dis-

tribution is closely related to abiotic factors such as temperature and water depth.

Studies have shown that Pagellus erythrinus prefers environments with temperatures

between 12 and 24°C, exhibiting a strong preference for coastal waters and rocky

or mixed bottoms (Massut́ı et al., 2000). Understanding its distribution patterns

is crucial for the development of species management and conservation strategies,

considering also the impact of fishing activities and climate change on its habitat

(Dulčić and Grbec, 2000).

3.5.2 The data

The data are sourced from the multivariate dataset of marine species described in

Section 1.5.2 of Chapter 1. Specifically, we analysed n = 56 catches of Pandora,

considering its abundance (biomass) measured in grams/km², the Bottom Sea Tem-

perature (BST) measured in Celsius degrees and the depth of the catch measured

in meters. The depth of the catches ranges between 18m (minimum observed depth

in the dataset) and 75m (the thermocline, beyond which temperature no longer

decreases with increasing depth), considering only the most recent available period

from 2015 to 2018. Figure 3.5 shows the location of Pandora catches in the study

area.
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Figure 3.5: Location of Pandora fish catches in the study area.

3.5.3 An INLA-SPDE spatial mediation model for Pandora

To analyse the effect of depth on the abundance of Pandora as mediated by tem-

perature, we propose the following mediation model:

µM(s) = β0 + β1X(s) + uM(s) (3.7)

log(µY (s)) = γ0 + γ1X(s) + γ2M(s) + uY (s), (3.8)

whereX is the depth,M is the temperature, Y is the biomass of Pandora, s is the

vector of spatial coordinates (latitude and longitude) of the catch, and uM(s) and

uY (s) are two Matérn Gaussian fields with range and standard deviation ruM
, σuM

and ruY
, σuY

, respectively. We assumed that M ∼ N (µM , σ
2
M); also, considering the

non-normal distribution of biomass, we assumed that Y ∼ Gamma with expected

value µY and variance σ2
Y and a log link function, which requires nonlinear mediation

analysis.

The models expressed in Equations (3.7) and (3.8) were estimated using the

INLA-SPDE approach. To choose the priors for the hyperparameters of the SPDE

component, we followed the same criteria as described in Section 1.5.3, assuming a

joint Normal prior for hyperparameters λ1 and λ2 with expected values µλ1 = −2.64

and µλ1 = 1.38, precision τλ1 = τλ2 = 0.1 and covariance zero.

Figure 3.6 shows the triangulation of the study region (mesh). Maximum triangle

side length is 0.08 degree for the study region and 0.4 degree for the outer region,

and minimum triangle side length is equal to 0.008 degrees.

After drawing samples from the (approximate) posterior distributions of the

latent effects and the hyperparameters, a sample of S draws from the posterior

distribution of the indirect effect can be computed, following the derivative-based
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Figure 3.6: Triangulation of the study region and catch locations (red dots)

approach, as follows:

CIEp(s′) = βp
1 ⊙ γ

p
2 ⊙ exp(γp

0 + γ
p
1x(s

′) + γp
2 ⊙mp(s′) +

m∑
j=1

A∗
js′w

p
j ), (3.9)

where s′ is a prediction location of interest, ⊙ indicates the Hadamard product,

βp
1, γ

p
0 , γ

p
1 , γ

p
2 , w

p are vectors of posterior samples of length S, x(s′), m(s′) are

measured depth and posterior predictive BST, respectively, for location s′, and A∗
js′

is a generic element of the projection matrix A∗
L×m which maps the GMRF from

the m triangulation vertices to the L prediction locations of interest (as described in

Section 1.4 of Chapter 1). The indirect effect was estimated both with and without

the spatial component at the mediator and response levels.

3.5.4 Results

Table 3.6 reports posterior statistics for parameters and hyperparameters of the

INLA-SPDE models expressed in Equations (3.7) and (3.8).

The inclusion of the spatial components lead to a decrease in DIC for both

models (from 165.06 to 110.12 for the mediator model and from 1191.45 to 1177.28

for the outcome model). The posterior means of the SDs of the spatial components

(σuM
= 0.85°C and σuY

= 0.92°C) suggest that their inclusion into the mediation

model allowed to capture some spatial heterogeneity, unexplained by covariates.

Also, considering the posterior means of the range parameters (ruM
= 1.08 and

ruY
= 0.04), the spatial correlation for BST appears to decrease more rapidly with
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distance than that for biomass, suggesting a relatively higher variability in the spatial

distribution of BST compared to biomass.

High-density intervals of the effects β1, γ1, and γ2 provide evidence of their sig-

nificance in a Bayesian context. Bottom sea temperature appears to decrease with

increasing depth, as expected, while the abundance of Pandora fish decreases with

increasing temperature (posterior means of β1 and γ2 are -0.05 and -0.41, respec-

tively). The significance of γ1 suggests that depth could affect Pandora abundance

not only indirectly through a change in temperature, but also directly.

Figure 3.7 shows the mean and standard deviation of the posterior distribution

of the CIE, computed for each point in a grid of L = 104 prediction locations of

interest P = {s1, . . . , sL} in the study region.
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Figure 3.7: Mean and SD of the posterior distribution of the indirect effect in the
study area.

Considering the 95% credibility intervals based on quantiles, computed for each

location in P , none of them contains the value 0. Conversely, the highest density

intervals tend to be more conservative (12.64% of them do not contain zero). This

difference can be attributed to the asymmetry of the posterior distributions of the

indirect effect. Moreover, the model without the spatial component results in an

87% highest density intervals that does not contain zero. Therefore, the inclusion of

the spatial components in this case tends to weaken the significance of the indirect

effect. Also, comparing with the model without the spatial component, the spatial

model yields posterior distributions of the CIE that are less dispersed and with

narrower HDIs, as shown in Figure 3.8.

The posterior mean of the indirect effect is positive for each location: this sug-

gests that with increasing depth, Pandora fish tends to be more abundant due to the
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decrease in temperature. This is in agreement with the discussed results reported

in Table 3.6.
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Figure 3.8: Comparison of the SDs and HDI interval lengths of the posterior distri-
bution of the CIE, for the spatial and the non-spatial model.

3.6 Conclusions

In this chapter, we explored combining the INLA-SPDE approach with the derivative-

based method within the Bayesian inferential framework. This was done to estimate

mediational effects in the context of nonlinear mediation analysis, particularly fo-

cusing on the inclusion of spatial correlation in the data.

To evaluate the impact of considering spatial correlation when estimating indirect

effects with point-referenced data, we compared a traditional mediation model with a

spatial mediation model. The latter model incorporates a Gaussian spatial process

at both the mediator and outcome levels. Our simulation results highlighted the

potential for biased estimates when spatial correlation is neglected, especially in

scenarios characterized by large sample sizes, high spatial variability, and a wide

spatial range.

In the context of an application on ecological data, the INLA-SPDE spatial medi-

ation model provided evidence of a positive indirect effect of depth on the abundance

of Pandora fish, mediated by bottom sea temperature. Results suggest that includ-

ing spatial components leads to less dispersed posterior distributions of the indirect

effect with narrower credibility intervals, thereby impacting its significance. Addi-

tionally, given the asymmetry of the posterior distributions of the indirect effect, the

choice of credibility intervals (quantile-based vs HDI) influences conclusions about

the significance of the CIE, with HDIs being more conservative.
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Table 3.6: Posterior statistics for parameters and hyperparameters of the mediation
model.

Mean Sd Median Mode HPD low HPD high

γ0 17.925 3.019 17.934 17.935 11.969 23.848
γ2 -0.415 0.160 -0.415 -0.415 -0.731 -0.099
γ1 -0.040 0.012 -0.040 -0.040 -0.064 -0.015
σY 0.767 0.095 0.763 0.760 0.583 0.955
σuY

0.922 0.351 0.864 0.756 0.336 1.622
ruY

0.040 0.034 0.030 0.018 0.003 0.103

β0 18.581 0.982 18.603 18.597 16.468 20.599
β1 -0.049 0.011 -0.049 -0.049 -0.071 -0.027
σM 0.559 0.064 0.554 0.545 0.439 0.686
σuM

0.854 0.243 0.816 0.743 0.439 1.345
ruM

1.083 0.659 0.908 0.664 0.227 2.380
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Conclusions

The doctoral program that gave rise to this thesis was marked by two engaging

collaborations, one with the Sicilian Epidemiological Observatory in the healthcare

sector and the other with the Department of Marine Biology at the University

of Palermo in the field of marine ecology. These partnerships offered a unique

platform to delve into two distinct statistical domains: spatial statistics in ecology

and mediation analysis in health research. They also facilitated the application of

these statistical approaches to investigate real-world problems of actual interest.

We opted to perform our statistical analysis within the Bayesian inferential

framework, renowned for its significant flexibility in handling hierarchical struc-

tures in spatial analysis. This approach is gaining momentum in mediation analysis

as well, as evidenced by an expanding body of literature, as addressed by Yuan and

MacKinnon (2009b). Presently, the computational challenges historically associated

with Bayesian analysis are being effectively addressed through modern estimation

methods like INLA. This advancements considerably enhances the range of options

available to researchers in terms of modeling versatility, as we’ve experienced first-

hand.

Specifically, we’ve applied the INLA-SPDE modelling approach investigating the

effects of environmental temperature on the MTC of demersal fish communities in

the central Mediterranean Sea. It has been a particularly gratifying aspect of this

research to delve into a topic related to climate change, given the current promi-

nence and urgency of this issue on a global scale. INLA’s computational efficiency,

as well as its modelling flexibility, were effectively exploited: by using the SPDE ap-

proximation to Gaussian fields, along with a stochastic smoother for the trend, we

were allowed to quantify the effect of environmental temperature and depth on the

MTC, as well as to describe the spatio-temporal evolution of the MTC in the study

area. To the best of our knowledge, this is the first time that this methodological

approach is applied to investigate the relation between climate change and thermal

affinity of marine communities.

Our findings suggest the need for customised strategies to protect different fish
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communities, indicating a shift away from optimal temperature conditions for marine

communities, and a spatial redistribution of species due to warming waters. Our

results also highlighted the importance of considering depth in fisheries management

and conservation. While our study employed the MTC as a synthetic index for all

collected species, future analyses in a multivariate framework could be directed

towards investigating the species that are facing the most challenges.

In the second Chapter of the thesis the focus shifts on mediation analysis, par-

ticularly on the estimation of mediational effects in a non-linear setting. First, in

the area of healtcare research, we investigated the effect of socio-economic status

on cancer mortality as mediated by out-of-region mobility, focusing on lung and

colon cancer patients in Sicily, Italy. In this context, as it is the case in many

real-world applications, the presence of not normally distributed variables implies

that it is not possible to estimate mediational effects using traditional approaches

such as the product method. We found it helpful to use a two-step approach, first

by deriving the structure of association among the variables from the data using

log-linear graphical models as an exploratory tool, and than estimating mediational

effects using a counterfactual-based approach. Our results provides evidence on the

existence of potential equity threats in the provisioning of healthcare services, due to

the economic barriers faced by lower socio-economic groups. To further investigate

this issue further, important dynamic factors over time could be addressed in future

longitudinal studies using, for example, approaches developed in Didelez (2019) and

Aalen et al. (2020).

While mediation analysis with nonlinear models has primarily been addressed

using non-parametric counterfactual-based approaches, as is the one we used in

the above study, very few solutions have been proposed to deal with the issue of

nonlinear mediation models in a path-analytic framework. An exception is given by

a generalisation of the product method based on partial derivatives, proposed in the

’80s by Stolzenberg (1980), and recently revived by Hayes and Preacher (2010) and

Geldhof et al. (2018). Although quite intuitive, this approach is not widely known

and applied by practitioners, and for this reason it is not well developed, presenting

theoretical shortcomings yet to be addressed.

For that matter, in the last part of the second Chapter we offered a compre-

hensive discussion of the derivative-based method for nonlinear mediation analysis

by deepening some aspects of the proposal of Geldhof et al. (2018). We addressed

several potential issues and proposed possible solutions. Examples are the presence

of binary mediators and the corresponding choice of predicted values for the estima-

tion of CIEs, and dealing with binary/categorical/discrete exposure variables. We
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also proposed the use of a Bayesian approach as a valuable option for the estimation

of CIEs confidence intervals. Through a simulation study, we provided evidence

that Bayesian intervals are a valid alternative compared to the Bootstrap-based and

Montecarlo ones used by Geldhof et al. (2018).

Also, we presented a real-data application which investigated the relationship

between high-school background and academic success, in which we dealt with the

presence of a discrete exposure variable. This posed a limitation for applying the

derivative-based approach, as the concept of derivative lacks meaning in the context

of discrete variables. To overcome this challenge, we employed finite differences to

estimate the conditional indirect effects. By calculating finite differences, we were

able to capture the effects of the mediator on the outcome variable while accounting

for the discreteness of the high-school background variable. The results obtained

through this approach were then interpreted accordingly, acknowledging the specific

characteristics of the variables involved.

We believe that this work can serve as a guide for researchers who need to address

a mediational setting with nonlinear models without switching to the counterfactual

framework. This work can be extended in several ways, for example by investigating

the relationship between the total and indirect effects, or by moving the research

into the venue of clustered data.

In the course of this study we eventually began to contemplate the integration

of two specific methodologies we had investigated: spatial analysis using INLA and

the derivative-based approach in mediation analysis. This consideration emerged

particularly in practical scenarios where mediation analysis needs to account for

spatial correlation. For instance, within the scope of our collaborative projects, we

encountered issues such as examining the impact of socioeconomic status on car-

diovascular disease mortality, as mediated by specific air pollutant levels. Although

it is still a work-in-progress, we identified and highlighted a potential pathway for

future research in this direction, and reported the evidences found so far.

For this matter, the last part of the thesis provides insights regarding the pos-

sibility to combine the INLA-SPDE method and the derivative-based approach to

mediation analysis, within the Bayesian inferential paradigm, for estimating non-

linear mediational effects with spatially-correlated data. Although recent explo-

rations into spatial variability in causal inference (Reich et al., 2021) indicate viable

paths, the literature on mediation analysis predominantly lacks consideration for

spatial heterogeneity. Barely mentioned in Reich et al. (2021) is the possibility of

using the INLA-SPDE approach to estimate causal effects with spatially-correlated

data, viewing that as an extension of Simultaneous Autoregressive (SAR) models to
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the continuous spatial domain.

Contributing to fill the gap, using simulations we illustrated the advantages of

considering spatial correlation in mediation analysis, quantifying how neglecting

spatial correlation in the data impacts on the estimation of the indirect effect. We

further demonstrate the practical utility of this approach by applying it to real

ecological data. We acknowledge that many aspects deserve further investigation,

for example by considering the possible correlation between spatial effects at the

mediator and at the outcome level. Overall, this work underscores the need for

continued exploration and development of methodologies for nonlinear mediation

analysis in diverse real-world scenarios.
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