
energies

Article

Experimental Study on B-Spline-Based Modulation
Schemes Applied in Multilevel Inverters for Electric
Drive Applications

Giuseppe Schettino , Guido Ala , Massimo Caruso , Vincenzo Castiglia, Filippo Pellitteri ,
Marco Trapanese , Fabio Viola * and Rosario Miceli

Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, Parco d’Orleans, 90128 Palermo, Italy;
giuseppe.schettino@unipa.it (G.S.); guido.ala@unipa.it (G.A.); massimo.caruso16@unipa.it (M.C.);
vincenzo.castiglia@unipa.it (V.C.); filippo.pellitteri@unipa.it (F.P.); marco.trapanese@unipa.it (M.T.);
rosario.miceli@unipa.it (R.M.)
* Correspondence: fabio.viola@unipa.it; Tel.: +39-091-23860253

Received: 25 October 2019; Accepted: 26 November 2019; Published: 27 November 2019 ����������
�������

Abstract: This work presents the design, simulation, and experimental validation of new B-Spline-
based modulation techniques applied to a Multilevel Power Inverter (MPI), particularly focusing the
attention on the harmonic content of the output voltages of the inverter. Simulation and experimental
results are proposed and discussed, mainly describing the potential benefits, such as the increase
of the multi-level operation of the converter, and drawbacks (low-order harmonics) related to the
adoption of B-Spline functions for multilevel inverters applied in the field of electrical drives.

Keywords: modular multilevel converters; pulse width modulation inverters; power conversion
harmonics

1. Introduction

In recent years, the electrical drives have reached a very wide range of industry applications,
due to the significant improvement in terms of performances of both innovative electric motors and
power converters. Recently, the energy consumption determined by the electrical drives corresponds
to the 46% of the global energy demand [1–4] and, therefore, new optimization techniques and control
algorithms have been conceived in order to either maximize the efficiency or reduce the harmonic
content of the entire drive [5].

As for the power converters, the multilevel inverters represent a suitable solution especially
for high-power/medium-voltage applications [6–11]. One of the advantages bought by Multilevel
Power Inverters (MPI) adopted for electrical drives with respect to traditional three-phase converters
is represented by the lower harmonic content of their output voltage waveform [12].

Moreover, it is well known that the traditional modulation schemes use triangular waveforms as
carrier signals. In different studies the pulse-width modulation (PWM) techniques are modified in
order to improve the performances of the power converter. Such improvements are mainly focused
on adding specific signals on the reference signal (e.g., Switching Frequency Optimal, SFO, or Total
Harmonic Injection, THI), optimizing the features of the duty-cycle [13,14] or increasing the switching
frequency [15–17]. In particular, the use of carrier signals with different harmonic content with respect
to the triangular waveform allows changing the harmonic content in the output voltage waveform of
the converter.

The B-Spline functions are commonly used in the approximation theory [18,19], defined piecewise
by polynomials. The first study on the modulation techniques by using B-Spline functions can be found
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in [20], which is focused on the Total Harmonic Distortion (THD%) reduction by changing the carrier
signal waveform from a traditional triangular shape to a B-Spline function, based on the interpretation of
the triangular waveform as a periodic form of the second order Cardinal B-Spline function. By increasing
the order of the carrier signal, the output harmonic content is reduced and, therefore, the fundamental
component is improved. Nevertheless, the implementation of the B-Spline-based control algorithm
is challenging, mainly due to the high execution time required for the calculation of the related
functions [21,22]. Genduso et al. [23,24] presented a novel real-time algorithm that eliminated the
problem concerning the B-Spline recursive evaluation through the adoption of specifically designed
duty cycle expressions.

A detailed analysis regarding the spectra of the output voltage for traditional three-phase converters
is reported in [25], in which it is demonstrated that the use of B-Spline-based modulation techniques
increases the low-order harmonic components. With regards to the multilevel converters, there is a lack
in terms of multicarrier modulation schemes based on B-Spline functions as carrier signals, where only
few works are reported in literature [26,27]. Therefore, it can be stated that the adoption of B-Spline
functions as carrier signals for multilevel converters has not been widely studied yet.

In this context, this work presents the design, simulation, and experimental validation of new
B-Spline-based modulation techniques applied to a Cascaded H-Bridge Multilevel Inverter (CHBMI)
for electric drive applications, particularly focusing the attention on the harmonic content of the output
voltages of the inverter, corresponding to the supply voltages for the motor. More in detail, this paper
is structured as follows: Section 2 reports a description of the B-Spline functions, whereas Section 3
presents the related modulation techniques applied for single-phase and three-phase multilevel
inverters. The simulation and the experimental results are discussed in Sections 4 and 5.

2. B-Spline Functions

The Cardinal B-Splines adopted in this work are determined from the order-fold convolution
procedure, finalized to obtain the highest order of B-Spline function. B-Spline are used in large fields of
engineering and science, from the multiresolution analysis to wavelet transform and the resolution of
Maxwell’s equations [28–30]. In detail, the Cardinal B-Spline function of the first order, namely B1(t),
by referring to a period from 0 to 1, is defined as follows:

B1(t) =

1 0 < t < 0.5

0 0.5 < t < 1
(1)

By adopting the procedure of order-fold convolution, the m-order Cardinal B-Spline function is
defined as follows:

Bm(t) = Bm−1(t) ∗ B1(t) =
∫

Bm−1(τ) · B1(t− τ)dτ (2)

This procedure allows the obtainment of the B-Spline functions shown in Figure 1a–d.
The general m-order Cardinal B-Spline function can be converted to a periodic function:

PBm(t) =
{

Bm(t) i f 0 < t < T
2

−Bm(t− T
2 ) i f T

2 < t < T
, (3)

where PBm(t) is the periodic form of the cardinal B-Spline Bm(t) and T is the period of the periodic
B-Spline function. The periodic functions referred to the first, second, third and fourth-order Cardinal
B-Splines with their related harmonic spectra are shown in Figures 2–5, respectively. From these
characteristics, it can be noticed that the PB2 function is represented by the traditional triangular
waveform commonly used in the classic modulation techniques. Moreover, the comparison between
the proposed trends reveals the different harmonic content for each of the plotted B-Spline functions,
leading, therefore, to the presence of different harmonic components in terms of output voltages.
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The progressive reduction of the order of harmonics, with the increase in the order of derivability
of the function used, has been explored in many fields of electrical engineering [30–34].

3. B-Spline Based Modulation Schemes for Single-Phase and Three-Phase Multilevel Inverters

This section describes the new B-Spline-based multicarrier modulation techniques applied both
for single-phase and three-phase multilevel converters, capable of supplying both single-phase and
three-phase electrical motors [26,27].

3.1. Single-Phase Multilevel Inverters

Generally, the multicarrier modulation schemes can be defined in dependence of both the
reference and the carrier signals. In particular, the Authors of [35–37] presented four different
techniques strictly related to the carrier signals: Phase Disposition (PD), Phase Opposition Disposition
(POD), Alternative Phase Opposition Disposition (APOD), and Phase Shifted (PS). For each technique,
the proposed modulation schemes with third order (PB3) and fourth order (PB4) B-Spline functions
with sinusoidal reference are shown in Figures 6 and 7, respectively, obtaining eight new multicarrier
modulation schemes.
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With respect to the traditional modulation schemes, the intersection between the reference and
the carrier signals is different and, therefore, different harmonic components and distinctive values of
THD% for each modulation scheme are expected.

With regards to the Sinusoidal PS, this technique is characterized by two triangular waveforms as
carrier signals with mutual phase shift equal to π/2 and with related intersection at a half of the peak
value. Thus, these intersections represent the change of operation of the converter from three levels to
five levels. Figure 8 shows the comparison between the PS carrier signals for a five-level converter
obtained with PB2 (blue curves), PB3 (red curves), and PB4 (green curves). It can be noticed that the
intersection points among the carrier signals (signed with purple circles) is different for each technique
and, particularly, it is lower for PB3 and PB4 (equal to 0.37 and 0.26, respectively). Thus, if compared
with PB2, the five-level voltage will appear for lower values of the modulation index.
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Figure 8. Comparison between the intersections of PS carrier signals for a five-level converter. In traditional
modulation scheme with triangle waveform as carrier signals (PB2) the transition from three to five
levels occurs for modulation index equal to 0.5. By using the B-spline functions as carrier signals (PB3
and PB4), this transition is achieved for lower values of the modulation index, equal to 0.37 and 0.26 for
PB3 and PB4, respectively.

3.2. Three-Phase Multilevel Inverters

The new B-Spline-based modulation techniques for three-phase inverters represent the evolution
of the schemes previously described and referred to single-phase topologies. Specifically, these
techniques adopt PS as carrier signals and different reference signals, such as reported in [27].

The first modulation schemes take into account a three-phase sinusoidal reference with SPB3

and SPB4 B-Spline functions, as plotted in Figure 9a,b, respectively. Other modulation schemes can
be obtained by combining a THI reference signal with the third and fourth order B-Spline functions,
as shown in Figure 10a,b. Finally, Figure 11 shows the modulation schemes based on the combination
of an SFO reference signal with the PB3 and PB4 functions.
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function: (a) SPB3 and (b) SPB4.
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Figure 11. Modulation schemes with Switching Frequency Optimal, (SFO) reference for each phase
(grren, yellow and purple): (a) SPB3 and (b) SPB4.

In conclusion, the B-spline based modulation schemes for single-phase and three-phase multilevel
inverters have been presented in this section. In the next section, simulation results and discussions
are reported.

4. Simulation Results and Discussion

This section provides the simulation results obtained by implementing the modulation techniques
previously reported in Section 3 for both single-phase and three-phase inverters. In particular, the
main purpose of this analysis is the determination of the harmonic content on the output voltage of
the converter for each of the proposed new modulation schemes. The comparison between these
techniques has been achieved by considering the Total Harmonic Distortion (THD%) for different
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values of the modulation index M, in order to determine the best solution in terms of harmonic content.
The THD% parameter can be defined as follows:

THD% =

√√√
V2

rms −V2
rms,1

V2
rms,1

·100. (4)

where Vrms is the root mean square (rms) value of the phase voltage and Vrms,1 is the rms value of its
fundamental harmonic. As for the three-phase topology, the THD% line voltage has been considered.
The simulations have been carried out by means of the Matlab-Simulink® environment with the
simulation parameters reported in Table 1.

Table 1. Simulation parameters.

Quantity Symbol Value

Reference frequency f 50 Hz
Switching frequency fPWM 10 kHz

Frequency modulation index mf 200
DC Voltage VDC 100 V

Voltage level l

4.1. Single-Phase Multilevel Inverters

For the simulation analysis, a single-phase, five-level, Cascaded H-Bridge Multilevel Inverter
(CHBMI) has been simulated, whose parameters are reported in Table 1.

The computed THD% values as function of M for the phase voltage are plotted in Figure 12a–d.
It can be noticed that the THD% obtained for the PD (see Figure 12a), POD (see Figure 12b) and APOD
(see Figure 12c), for different values of the reference voltage, are similar to each other and almost
independent from the considered periodic B-Spline function. Only light differences can be detected,
especially for low modulation indexes. Nevertheless, as shown in Figure 12d, significant differences in
terms of THD% can be detected between the B-Spline functions by adopting the PS as carrier signal.
In particular, for M in the range of [0.2 0.6], PB3 and PB4 present a lower value of THD% with respect
to the PB2, which represents the traditional triangular reference waveform. Therefore, this fact leads to
a relevant advantage on the adoption of B-Spline functions, especially for variable-speed electrical
drives, such as in automotive applications.

In addition, the comparison between the trends of the fundamental amplitude (peak value) of PB2,
PB3, and PB4 as function of M obtained with PD, POD, APOD, and PS are plotted in Figure 13a–d),
respectively. It can be noticed that the trends obtained with PB3 and PB4 are not linear. Furthermore,
the fundamental harmonic amplitudes obtained for PD (see Figure 13a), POD (see Figure 13b) and
APOD (see Figure 13c) present similar values between the considered periodic B-Spline functions.
Nevertheless, the adoption of the PS technique (see Figure 13d) contributes to an evident boost effect
on the fundamental amplitude with PB3 and PB4 and this effect is higher for lower values of the
modulation index.
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(c) APOD, and (d) PS.

This boost effect on the fundamental amplitude, due to the lower value of the intersection points,
explains the lower values of the THD% obtained from Equation (1). Thus, by adopting the B-Spline
functions as carrier signals, the five-level voltage waveform appears for lower values of M with respect
to the triangular carrier signal. In fact, the modulation techniques with PB3 employs five-levels in the
output phase voltage from M = 0.37, whereas the modulation techniques with PB4 as carrier signal
employ the five levels from M = 0.26.

Figures 14 and 15 show the voltage trends of PB3 with M = 0.4 and PB4 with M = 0.3. As previously
mentioned, the comparison between these two figures demonstrates the so-called “boost effect”
introduced by the B-Spline function.
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Figure 15. Voltage trend with PB4 as carrier signal and M = 0.3, the five-level voltage waveform appears
for lower values of M with respect to the triangular carrier signal.

Furthermore, Figure 16 shows the comparison between the THD% values, obtained with the
PS technique and PB2, PB3, and PB4 as carrier signals, as function of the fundamental amplitude.
Generally, it should be noted that, for an equal value of the fundamental amplitude, the lowest THD%
is detected with PB2, except for the range [120 V 140 V] of the fundamental amplitude, in which similar
values of THD% are detected.
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4.2. Three-Phase Multilevel Inverters

The comparison of both the THD% and the fundamental amplitude of the line voltages as function
of M for the SPB2, SPB3, and SPB4 modulation techniques with sinusoidal reference are plotted in
Figure 17. It can be noticed that the SPB4 allows the obtainment of lower THD% values for modulation
indexes less than 0.4 and higher fundamental amplitude values in the same range. For M in the range
between 0.6 and 1, the traditional SPWM technique presents lower values of the THD%, whereas
in the over modulation region the THD% presents similar values between all the techniques taken
into account.
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Figure 17. Comparison between the simulation results obtained with the modulation schemes SPB2,
SPB3, and SPB4 of: (a) THD% and (b) peak values of fundamental amplitude of the line voltage.

Similar results in terms of THD% values and fundamental line voltage amplitude are obtained for
the SFO and THI modulation techniques, as shown in Figures 18 and 19. More in detail, lower values
of THD% are obtained with traditional triangular carrier signal (PB2) for M between 0.6 to 1.2, whereas
the fundamental amplitude presents a boost effect for M in the ranges between the values 0.2–1 and
0.2–0.9 for PB4 and PB3, respectively. Similar values of the modulation techniques are detected in the
over modulation region.

In order to determine the benefits provided by the THI and SFO reference signals with respect to
the sinusoidal one, the THD% and fundamental amplitude trends have been compared with PB3 and
PB4 as carrier signals, as shown in Figures 20 and 21, respectively. In both cases, lower values of the
THD% are obtained with the sinusoidal reference signal, which is, therefore, the best solution in terms
of reference signal.Energies 2019, 12, 4521 14 of 25 
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Figure 18. Comparison between the simulation results obtained with the modulation schemes THIPB2,
THIPB3, and THIPB4 of: (a) THD% and (b) peak values of fundamental amplitude of the line voltage.
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Figure 20. Comparison between the THD% and fundamental amplitude of the line voltage with
sinusoidal, THI, and SFO as reference signals and with PB3 as the carrier signal: (a) behavior of THD%;
(b) amplitude of fundamental.

As well as for the single-phase case, it is interesting to compare the THD% values as a function
of the fundamental amplitude, as shown in Figure 22, highlighting the fact that, for low values of
the fundamental amplitude, the lowest THD% values are obtained with SPB2, except for values of
fundamental amplitude around 220 V, where similar values of THD% between SPB2, SPB3, and SPB4

are detected.
In order to perform a detailed comparison in terms of harmonic content, the Fast Fourier Transform

(FFT) is applied to the output voltage of the inverter with the parameters reported in Table 2 (which
summarizes the values of M and THD% corresponding to 220 V of the fundamental amplitude for PB2,
PB3, and PB4), obtaining the results shown in Figure 23, which depicts the comparison of the harmonic
spectra among the SPB2 (blue bars), SPB3 (red bars), and SPB4 (green bars).

The harmonic spectra are comparable throughout the proposed modulation techniques. More in
detail, at around four-times of the switching frequency, SPB3 and SPB4 present a pair of predominant
side-band harmonics and other components, whose overall contribution is higher with respect to SPB2.
Moreover, at eight-times of the switching frequency, a relevant reduction is detected for the SPB3

and SPB4 components if compared with the SPB2 harmonic components. Nevertheless, low-order
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harmonic components are detected in the harmonic spectra of both SPB3 and SPB4. However, the
output line voltages from the inverter, corresponding to the supply voltages of a three-phase motor
in case of electrical drive applications, are not affected by the low-order harmonics that are multiple
of three.

Figure 24 shows the comparison between the fifth (a), seventh (b), 11th, (c) and 13th (d) order
harmonics as function of M, obtained with SPB2 (blue bars), SPB3 (red bars), and SPB4 (green bars).
As previously mentioned, low-order harmonics can be observed for each values of the modulation index.
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Figure 21. Comparison between the THD% and fundamental amplitude of the line voltage with
sinusoidal, THI, and SFO as reference signals and with PB4 as carrier signal: (a) behavior of THD%;
(b) amplitude of fundamental.
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SPB2, SPB3, and SPB4.

Table 2. Simulation parameters.

Quantity SPB2 SPB3 SPB4

Modulation index, M 0.63 0.5 0.3
Fundamental Amplitude (peak value) 219 V 224 V 214 V

THD% 26.6% 27.1% 27%
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In conclusion, the simulation results have demonstrated that the highest values of THD% have
been obtained for modulation techniques with PB3 and PB4 as carrier signals, detecting low order
harmonic components in the harmonic spectra.

5. Test Bench Equipment and FPGA Algorithm Design

This Section provides a brief description of the test bench assembled in order to carry out the
experimental results reported in Section 5. Figure 25 shows a photograph of the test bench, which is
mainly composed by the following elements:
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Figure 25. Photograph of the test bench.

Figure 26 shows the block diagram of the control algorithm implemented in the QuartusII® (Intel
Corporationcity, Santa Clara, CA, USA) environment. This scheme is mainly composed by a digital
PLL (Phase Locked Loop), a carrier/reference signals generator, a modulation index block, a comparator
and a dead-time generator.

The digital PLL allows the generation of the clock signals for each sub-circuit of the system from
an external clock signal at a frequency equal to 10 MHz. The modulation index and the reference
signals blocks generate the three-phase sinusoidal reference with a fixed amplitude. The sinusoidal
reference signals have been sampled with a sample number equal to 200. Thus, these blocks need a
clock reference with a frequency equal to 10 kHz in order to obtain a fundamental frequency of 50 Hz.

The generation of PB3 and PB4 is achieved by means of the carrier signal block, whereas the
comparator circuit and the dead-time generator blocks allow generating the gate signals and the dead
time equal to 400 ns to control the converter through a comparison between the reference signal and
carrier signal with a frequency at 40 MHz.
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6. Experimental Results and Discussion

The objective of this section is to validate the simulation results described in Section 4 through
experimental tests. As mentioned in Section 4, the simulation results for the single-phase case has
determined that the most suitable modulation scheme applied to multilevel inverters is the Sinusoidal
Phase-Shifted. From this statement, a comparison between simulation and experimental results are
reported only for the three-phase case with the SPS technique adopting PB3 and PB4, due to the fact
that the single-phase cases are not considered of interest in the proposed work.

By means of the described test bench and control algorithm, the techniques proposed in Section 3
have been experimentally implemented and Figure 27a–f shows the trend of the output line voltage with
M ranging from 0.3 to 0.5 for SPB3 and SPB4. It appears evident that these experimental trends present
the same behavior of those determined by means of the simulation analysis. In particular, by adopting
SPB4 as carrier signal, a five-level voltage for low values of the M is obtained. This phenomenon is
due to the lower point of intersection between the carrier signals and it explains the boost effect on the
fundamental amplitude. In order to compare the overall harmonic components, the voltage waveforms
have been acquired for different values of the modulation index with the parameters reported in Table 3.
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Figure 27. Evolution of the line voltage trend for low modulation index values between SPB3 and SPB4.
(a) SPB3 and M = 0.3 realize a three level operation, (b) SPB3 and M = 0.4 realize a three level operation,
(c) SPB3 and M = 0.5 realize a five level operation, (d) SPB4 and M = 0.3 realize a three level operation,
(e) SPB4 and M = 0.4 realize a five level operation, (f) SPB4 and M = 0.5 realize a three level operation.
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Table 3. Acquisition parameters.

Quantity Value

Sample frequency 25 MHz
Sample number 500,000
Acquisition time 20 ms

Figure 28 shows the computed THD% values of SPB2 (blue curve), SPB3 (yellow curve), and SPB4

(green curve) of the phase voltage (Figure 28a) and line voltage (Figure 28b).
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Moreover, the comparison between the computed THD% values confirm the results discussed in
Section 4. In particular, the lowest values of the THD% are obtained with PB2 as carrier signals and
the boost effect is clearly displayed in the experimental fundamental amplitude trend, as shown in
Figure 29.
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In any case, as mentioned in Section 4, the output line voltages from the inverter, corresponding
to the supply voltages of a three-phase motor in case of electrical drive applications, are not affected by
the low-order harmonics that are multiple of three.

Finally, the comparability between the simulation and experimental results in terms of THD% can
be clearly visualized for SPB2, SPB3, and SPB4 in Figure 30, Figure 31, and Figure 32, respectively.

Figure 33 shows the screenshot of the phase voltage for different values of the modulation index
from 0.2 to 1.0 and low order harmonics spectra with PB4 as carrier signals.
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voltage and (b) line voltage.
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Figure 31. Comparison between the simulated and experimental THD% PB3 as carrier signal: (a) phase
voltage and (b) line voltage.
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Figure 33. Screenshot of the phase voltage and low order harmonics spectra with PB4 as carrier signals
for modulation index from 0.3 to 1 (10 V/div and 100 Hz/div). (a) low value of fundamental due
to the limited five level operation; (b) limited increase of fundamental; (c) appreciable increase of
the fundamental; (d) considerable increase of fundamental; (e) good operation of the fundamental;
(f) maximum value of the fundamental.

7. Conclusions

This paper has presented an experimental investigation on the adoption of innovative B-Spline-
based modulation schemes applied to multilevel Voltage Source Inverters. The Simulation results
carried out through the Matlab/Simulink environment are in accordance with the experimental tests,
highlighting the fact that the B-Spline functions for multilevel inverters applied, for example, in the
field of electrical drives, could bring benefits in terms of increasing the multilevel operation of the
converter, but also drawbacks in terms of the presence of some low-order harmonic components in the
spectra of the output voltages of the CHBMI.
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