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Abstract. In this paper, we investigate the network of ownership relationships
among European firms and its embedding in the geographical space. We carry out
a detailed analysis of geographical distances between pairs of nodes, connected
by edges or by shortest paths of varying length. In particular, we study the
relation between geographical distance and network distance in comparison
with a random spatial network model. While the distribution of geographical
distance can be fairly well reproduced, important deviations appear in the
network distance and in the size of the largest strongly connected component.
Our results show that geographical factors allow us to capture several features
of the network, while the deviations quantify the effect of additional economic
factors at work in shaping the topology. The analysis is relevant to other types of
geographically embedded networks and sheds light on the link formation process
in the presence of spatial constraints.
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1. Introduction

A large body of work has shown how the theory of complex networks can be fruitfully applied to
a wide range of domains [1–3]. The case when complex networks are embedded in a geometric
space (e.g. geographical) has been attracting growing attention (for a recent extensive review,
see [4]). Indeed, when the spatial location of the nodes plays a role in the formation of links, the
geometric space contributes to shaping the topology of the network [5–7] and, as a consequence,
affects the dynamics that may take place on the network.

Most of the works on spatially embedded complex networks have focused on the
geographical distance between first neighbours. However, in all networks in which information
or matter flows along links, it is of interest to understand how the geographical distance of
nodes that are higher-order neighbours relates to the length of their shortest path. In this paper,
we investigate the relation between geographical distance and network distance. In particular,
we study how the geographical distance between higher-order neighbours is predicted by the
distance between first neighbours and how this affects the small world (SW) properties of the
network. We address these issues in an empirical dataset of a directed and weighted network
using high-resolution geographical locations.

Empirical works have investigated several contexts in which geographical space is
relevant, including transportation services (e.g. airport network), mobility (e.g. commuting),
infrastructures (e.g. power grids, roads and the Internet) and social networks (e.g. friendship
and phone calls). For instance, the worldwide airport network has been thoroughly investigated
[8, 9], as well as various public transportation services at the national [10] or metropolitan
level [11]. In all the above-mentioned contexts, the effect of space is that links are associated
with a cost growing with geographical distance. As a result, the probability that two given nodes
are connected decreases exponentially with distance. A related fact that emerges in a number
of contexts is the so-called ‘gravity law’, originally introduced in the geography literature
during the 1960s. According to this law, the intensity of the connection between two nodes
is proportional to the attractivity of the nodes and is inversely proportional to the square (or
variant exponents) of the distance.
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From a theoretical point of view, models of spatial networks can be grouped into several
classes [4]. Typically, nodes are assigned a given location either according to a convenient
geometry (e.g. a lattice) or a distribution (e.g. uniformly scattered) or according to some
empirical pattern (e.g. the airport location). On the other hand, links are usually assigned
stochastically according to a probability that depends on the distance between two nodes.
Some models assume that the network grows with a preferential attachment so that the linking
probability depends also on the current degree of the nodes. In general, as is done in fitness
models, the linking probability depends on a state variable associated with the nodes. In turn,
this can be quenched or is dynamically evolving with the topology. Overall, many models have
focused on reproducing the scale-free nature of the degree distribution together with the spatial
distribution of the nodes [6, 12]. In addition, others offer some insights into how spatial location
may constrain the network topology [13].

Among the domains in which geographically embedded networks have been investigated,
the case of economic networks has so far received very little attention. Yet, geographical space
plays an important role in economic activities, as witnessed by a rich stream of works on
economic geography [14]. In particular, in this field there is an open debate on whether a
firm’s spatial location (e.g. proximity between firms) is more important than the firm’s non-
spatial relationships (e.g. R&D collaborations, ownership and venture capital, board interlock)
for its competitiveness [15]. For instance, it has been shown that certain corporate practices
(i.e. the ‘poison pill’ versus the ‘golden parachute’) spread among firms via interlock links,
whereas others do so via proximity (i.e. firms simply adopt the practice of nearby firms) [16].
Moreover, a related issue is the extent to which network relations enable economic actors to
access knowledge beyond their organizational and geographical boundaries [14, 17, 18]. Finally,
economic networks have been recognized to be one of the main research challenges in the field
of complex networks [19].

In this paper, we analyse the ownership network of European firms in relation to their
geographical location. An ownership relation refers to the fact that a firm owns fully or in
part another firm. Ownership plays a role not only in the control that shareholders can exert
over a firm [20], but also in the spread of information and business practices in the corporate
community. Several properties of these networks have been investigated so far. First, small
world (SW) properties have been observed in national samples [21, 22]. Moreover, the scale-free
nature of degree and scaling laws, relating degree and portfolio volumes, have been observed in
various stock markets [20, 23], as well as in foreign direct investments [24]. To some extent, the
geographical information has been considered in [24], where ownership links are aggregated
within regions at the NUTS3 level (i.e. roughly corresponding to provinces). Similarly, in [25]
the aggregation is at the level of countries, and the links are used to simulate the propagation
of financial crises worldwide. However, to our knowledge no previous study has used the
geographical location of firms at the postal code level in a large sample.

In our analysis, we find an exponential decay of the linking probability with the distance,
similar to what was found in transportation and infrastructure networks. We observe, instead,
deviations from the gravity law in the weights of the links. However, the main contribution of
the paper is to go beyond the level of first neighbours and to analyse the relationship between
network distance and geographical distance. So far, a study of this kind has been carried out
only for the metropolitan transportation network of Berlin [11], in which distances are on a
much smaller scale. We compare our empirical results with those obtained with a random spatial
model (RSM) that belongs to the class of geometric graph models [4]. We keep the empirical
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location of nodes and we apply a link reshuffling procedure that preserves the degree sequence
and is also subject to a tunable spatial constraint. We then analyse how SW properties are
affected by geographical distance (i.e. we look at the shortest path of nodes located at different
geographical distances). We find that the empirical network is a ‘smaller world’ than it would
be without spatial constraints.

In addition, we analyse how the distribution of geographical distance, which is exponential
among first neighbours, is affected when we look at pairs of nodes at higher network distance.
Such a distribution turns out to be fairly well reproduced by the RSM. Overall, our results show
that geographical space allows the capture of a number of features of ownership networks.
Nevertheless, the important discrepancies observed between the data and the model point to
the role played by economic factors. In particular, the organization of economic control in the
empirical data is significantly more hierachical than would emerge solely from geographical
factors.

2. Data

The dataset covers about 200 000 firms located in 14 EU countries (see table 2), their
geographical location at postal code level and about 188 000 ownership relationships among
them. Ownership data are obtained from the Orbis database of the Bureau Van Dijk’s, 2007
release, by selecting those firms that have at least one ownership relationship with another firm
in Europe (i.e. firms owning shares or having a shareholder firm in the same country or in
another EU country). The geographical coordinates of the postal codes of the firms are obtained
from the database TeleAtlas GIS4. Our dataset allows us to construct the European ownership
network, in which the nodes correspond to firms and the links correspond to ownership
relationships. The adjacency matrix of the network is defined as Ai j , where Ai j = 1 if there
is an edge (or link) i → j . The network is directed (i.e. A is not symmetric) and the direction
is taken with the following convention: Ai j implies that i has a share of j . The network is also
weighted and thus it is associated with the matrix W , with Wi j ∈ (0 , 1] corresponding to the
ownership share, i.e. the fraction of the value of j owned by i . There is a constraint on the
weights of the incoming links

∑
i Wi j = 1, but not on the outgoing links, because a single firm

can have large shares in many other firms.
A peculiar aspect of these data concerns the paths in the network. We recall that a path from

two nodes i and j not directly connected is a sequence of adjacent nodes from i to j . In many
networks, it is not possible to assign a precise meaning to paths. For instance, in the airport
network, while a connection between airports A and B reflects the number of connecting non-
stop flights per day from A to B, one cannot derive much information on indirect connections,
i.e. on the number of passengers who travel from airports A to B and then to airport C in the
same journey. In contrast to ownership relationships, if firm A owns WAB shares of B and B owns
WBC shares of C, this implies an indirect relationship in which A owns indirectly WABWBC shares
of C [20].

4 In the Orbis database, on average the postal code is missing for 15% of the firms selected based on their
ownership relations. This occurs at comparable frequency across countries, with the exception of the Scandinavian
countries where it occurs more frequently. Typically smaller firms are affected. We thus assume the sample remains
representative.
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3. Link reshuffling and spatial constraints

Throughout the paper, we aim at assessing the extent to which the empirical properties of the
European ownership network are consistent with those of a network obtained from a random
link formation process. In this section, we introduce an algorithm to reshuffle the links in the
network, taking into account some structural and geographical constraints.

Let us denote the network by the graph G = (V, E), where V is the set of vertexes and
E = {s, t} the set of edges connecting the vertexes, with s being the origin (or source) vertexes
and t the target vertexes of the link (s, t). Let Ws,t be the share of firm t held by firm s. There are
no loops in the network, i.e. s 6= t in the link (s, t). We want to construct a randomized network
that preserves the following properties:

1. Degree sequence, i.e. the number of outgoing and incoming links of each node.

2. Ownership share. As mentioned in section 2, the total weight of incoming links has to sum
up to one.

3. Geographical location. If geography matters, then constraining the origin and the
destination of a link should allow us to recover some structural properties of the network.

As in the Maslov–Sneppen algorithm [26–28], the basic idea is to choose random pairs of links
and swap the sources of the two links. This automatically satisfies constraints 1–2, provided that
each new link of the pair is accepted if and only if: (i) it is not a loop—the no-loop condition;
and (ii) it does not already exist—the no-multiple-links condition. A possible implementation
consists in randomly choosing pairs of links and rejecting those swaps that violate the no-loop
and no-multiple-links conditions. A more instructive way is to determine the pairs of links that
need to be excluded a priori from the set of those eligible to be swapped. Consider the two links
(s1, t1) and (s2, t2); the patterns to be excluded are listed below:

• coinciding sources: s1 = s2 (case 1);

• coinciding targets: t1 = t2 (case 2);

• chains: t1 = s2 or s1 = t2 (case 3);

• Z-pattern: the edge (s2, t1) exists in the original network (case 4);

• Z-mirror pattern: the edge s1 = t2 exists in the original network (case 5).

An example of each pattern is provided in table 1, where it is straightforward to see that
swapping the source nodes s1 and s2 would create loops or multiple links or both. One can
also verify that these are all the possible patterns to be excluded. After excluding the patterns
above, we are sure that each link either will be swapped or cannot be swapped in the current
configuration of the network. Compared with the Maslov–Sneppen algorithm, this method
makes more apparent the topological limits to the reshuffling procedure. Incidentally, it is
enough to loop once along the list of links to ensure that all the eligible links have been
effectively swapped.

The randomization procedure described above, which we call the random direct model
(RDM), does not consider the geographical location. In each swap, the source s2 is chosen
randomly among all the existing sources in the list of eligible links. Clearly, sources with large
out-degree have higher probability of being selected, because they occur in several links. But
their location does not matter. We thus introduce the RSM, in which the choice of the source
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Table 1. Particular cases of edges to be excluded for correct swapping.

Case 1 Case 2 Case 3 Case 4 Case 5

The source, s 1 1 4 5 7 8 9 10 10 13 14 13
The target, t 2 3 6 6 8 7 11 12 11 15 16 16

s2 is stochastically dependent on its geographical proximity to source s1, according to an
exponentially decaying probability,

5s2 ∝ e(−d(s1,s2))/dc) (1)

where d(s1, s2) denotes the distance between the two sources to be swapped and dc is a
characteristic distance. The value of dc modulates the role of geographical distance. For dc → 0,
the source s2 tends be the firm closest to s1 among all the eligible sources. For dc → ∞, the
source s2 tends be chosen randomly and in this limit RSM coincides with RDM.

Finally, it should be noted that the procedure of the RSM described above shares some
basic principles with the class of geometric graph models, as classified in [4]. In particular,
in [6], nodes are located in a d-dimensional lattice and are assigned the degree from a given
distribution. Then, links are formed by connecting each node to nodes within a given radius
until the degree is reached. In contrast, in [12] the probability of forming a link is a power
law of the distance with exponent δ, which plays the role of control parameter. Geometric graph
models have also been combined with the fitness model [29]. In [30] links are formed depending
both on the distance and on the fitness values associated with the two nodes of each pair.

In the present work, the location of nodes is taken from the empirical data of the firm’s
location. Thus, the concentration of nodes in space is quite heterogeneous (e.g. high density
in metropolitan areas and low density in rural areas). The degree is also taken from the
empirical data and follows approximately a power law. The probability of forming a link decays
exponentially with the distance. Our aim is not to reproduce the distribution of degree nor the
distribution of the distance between first neighbours. Instead, we use both degree and distance
as input to determine the properties they induce in terms of: (1) geographical distance between
higher-order neighbours, (2) small world and (3) connected components.

4. Basic network statistics

As a preliminary step, we perform a coarse grain analysis of the location of sources and
destinations of links. For each country r , we compute an integration index, defined as
the ratio of intra-country links over the total number of links departing from that country,∑

i∈cr , j∈cr
Ai j/

∑
i∈cr , j Ai j , where cr is the set of firms located in country r . This is a common

indicator of economic integration in the economic geography literature [31]. We extend
this index to a weighted integration index by taking into account the weights of the links,∑

i∈cr , j∈cr
Wi j/

∑
i∈cr , j Wi j . In both cases, we find that about 80% of the ownership relations

(both in number and in weight) are intra-country (i.e. the owner and the owned are in the same
country); see table 2. This first result implies that, already at the level of countries, a preference
for links to be formed at short distance is apparent. Notable exceptions are Switzerland and
Luxembourg. A plausible explanation is that many companies set their headquarters in these
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Table 2. The number of firms and the integration level for each country analysed.

Countries Number of firms Integration index Weighted integration index

AT 5 418 0.844 0.839
BE 7 823 0.680 0.759
CH 1 071 0.228 0.286
DE 62 798 0.902 0.950
DK 11 013 0.847 0.821
FI 573 0.699 0.671
FR 21 514 0.753 0.842
GB 54 205 0.923 0.959
IT 6 688 0.869 0.813
LU 863 0.309 0.328
NL 36 237 0.672 0.824
NO 5 401 0.856 0.894
PT 1 953 0.928 0.945
SE 6 290 0.771 0.791

two countries for fiscal reasons, but operate in foreign countries via other firms connected via
ownership links.

Moving to the basic measures of network connectivity, since this is a directed network, we
have to distinguish between the in-degree of a node, denoted by kin (i.e. the number of incoming
links), and the out-degree, denoted by kout (i.e. the number of outgoing links). As shown in
figure 1 (left), in our dataset the out-degree has a very broad distribution. Note that the tail of
the distribution deviates from the straight line that fits the bulk of the data. This means that
the frequency of firms with out-degree in the upper end of the range exceeds what could be
expected even based on a power-law behaviour. In the context of ownership, the out-degree
corresponds to the number of firms in which a given shareholder owns shares. This number is
related to the level of portfolio diversification of a shareholder [20], and it is known to correlate
with the volume of the portfolio of the shareholder. Thus, the result is essentially in line with
what was previously observed in other ownership datasets [20, 23, 24]. On the other hand, in-
degree corresponds to the number of shareholders of a firm and, consequently, to the level of
ownership concentration, although here weights have to be taken carefully into account [20].
In our dataset, as in previously studied ones, the in-degree distribution is bounded because
of the reporting system: only important shareholders are recorded in the database. Thus, the
distribution of in-degree displays a clear cut-off.

We then analyse the weight of the ownership relations. Interestingly, the empirical
observations suggest a tri-modal distribution of weights. As shown in figure 1 (right), the
majority of the relations imply full ownership (e.g. 100% of the shares) or a very small share,
while there are a minor, but considerable, number of links with weight just above 50%. This
evidence can be interpreted as follows. The first pattern corresponds to a relationship between
a holding company and a subsidiary. The second one corresponds to an investment without the
aim of controlling the target firm. The third one corresponds to an obvious intention to control
the target firm without owning all the shares, since 50% + ε is the minimum share that allows
full control.
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Figure 1. Left: distribution of the nodes’ in- and out-degree. Right: distribution
of ownership weights.

In terms of components, the largest weakly connected component (LWCC) in the network
comprises 32.6% (70 070) of all firms. Since all the other components are significantly smaller
(the second largest one contains only 134 nodes), from now onwards we focus only on the
LWCC.

5. Geographical distance and network distance

5.1. Geographical distance along links

We first analyse the geographical distance between all pairs of nodes connected by a link. As
shown in figure 2 (left), we find that the frequency distribution of links decreases exponentially
with the distance: Pi j ∝ exp(−di j/d∗

c ), with d∗

c = 1/0.0027 = 370.37 km (R2
= 0.949). This

result is consistent with previous empirical works on geographically embedded networks. The
airport [7] and the Internet router network [32, 33] also display exponential decay in the
distance probability. This finding should not be confused with the so-called ‘gravity law’ from
the geography literature [34, 35], which predicts that the strength of a relationship between
two entities positioned in the geographical space decreases as a power law of their distance:
Wi j ∝ (mi m j)/dα

i j , where mi and m j represent the attractivity of the entities and α is a
parameter. In our context, the role of attractivity could be played by some proxy of the size
of the firms, which unfortunately was not available in our dataset. For the sake of completeness,
we analysed how the link weight depends on the distance, assuming that mi = m j = 1. Figure 2
(right) shows the frequencies of edges between two firms at a given distance and with a given
weight value. For a given geographical distance interval, the colour code indicates how the
edge weights are distributed. We can see that for small distances (i.e. roughly <d∗

c ≈ 370 km),
most ownership relationships are associated with shares close to 100%. This would suggest that
many holding companies have subsidiary firms located nearby, e.g. in the same city. In many
cases, a subsidiary is located in the same postal code as the owner company; consequently,
the two companies share the same headquarter location. In contrast, at larger distance, most
relationships involve small shares (<5%). This finding may be due to the fact that at short
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Figure 2. Left: distribution of the geographical distance between a pair of
companies tied by a direct ownership link. Right: relative frequency of ownership
shares as a function of distances. The range of distance values is divided into
bins of 100 km and the range of ownership shares into bins of width 5%. The
colour code represents the count of links falling in each two-dimensional (2D)
bin. Counts are normalized: each column represents the probability distribution
of weight for a given distance.

distances, companies have better possibilities to monitor the management of the companies
they own and to influence their decisions. The investment is perceived to be safer and thus a
higher share is invested. In contrast, longer distances may imply differences in culture and legal
settings other than supervision difficulties, making the investment more risky. Consequently,
shareholders are willing to hold smaller shares. However, it is important to observe that about
30% of the relationships are still associated with shares of more than 95%. There is also a
smaller but not negligible proportion of shares of around 50% that, similarly, remains constant
with distance. Even by averaging weight values in each distance bin, we do not obtain a
monotonic decay of the weight with the distance. Thus, our results seem to deviate from the
prediction of the gravity law.

6. Geographical distance across longer paths

6.1. A small geographical world?

SW properties have been found in most empirical complex networks, including networks of
corporate board membership [36] and ownership [21, 22]. We first verify that the European
Ownership Network is also a SW; we then investigate how this property interacts with
geographical distance.

6.1.1. Directed small world (SW). A weaker definition of SW is that the average network
distance (i.e. the average path length) of the graph is comparable to that of a random graph
of the same size. A stronger definition of SW implies that, in addition, the network has a high
clustering coefficient when compared with a random graph [37]. We recall that the clustering
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Table 3. SW statistics for our European ownership data, the Erdös–Rény model
(ERM) and the RDM.

Data ERM RDM

Clustering coefficient (C) 0.0885 0.0001 0.0041
Characteristic path length (L) 7.65 8.59 7.68

coefficient is the average ratio of the number of existing links among the neighbours of a node
i to the number of all their possible links (see [38]):

C =
1

N

N∑
i

∑
j

∑
h(Ai j + A j i)(Aih + Ahi)(A jh + Ahj)

2[k tot
i (k tot

i − 1) − 2k↔

i ]
, (2)

where k tot
i is the total degree of i and k↔

i is the number of bilateral edges between i and its
neighbours5. On the other hand, the average path length is the average number of edges along
all the shortest paths connecting all pairs of nodes,

¯̀ =
1

N (N − 1)

∑
i 6= j

`i j , (3)

with `i j being the shortest path connecting i and j [3].
As benchmarks to compare the values of C and ¯̀, we consider two synthetic networks. The

first one is an undirected Erdös–Rény random graph (Erdös–Rény model (ERM)) [2] with the
same number of nodes and edges as that in the empirical network. The second one is generated
with the reshuffling method described in section 3 and is referred to as RDM6. In the case of
ERM, analytical expected values of clustering C and average path length ¯̀ are known. For the
former, it is simply C = k/n, where k is the average degree and n the number of nodes. For the
latter, ¯̀ = ln(n)/ln(k) [3]. In the case of the reshuffled network, we can measure the quantities
only empirically. As shown in table 3, we find that ¯̀actual

' ¯̀random and Cactual
� C random for

both synthetic benchmarks. ¯̀ takes similar values in the three networks. In contrast, C in the
empirical networks is almost 103 times larger than that in the ERG and about 20 times larger
than that in the reshuffled network RDM. The difference in C between ERM and RDM reflects
the impact of imposing the constraint on the degree sequence. Our result is in line with those
of [21, 22, 39].

6.1.2. SW properties at varying geographical distance. The fact that the European ownership
network is an SW (in the stronger sense) suggests that the geographical location of companies
does not matter much for the exchange of business practices and information, and for exerting
corporate control. Indeed, the existence of shortcuts shrinks the network distance, allowing
firms to reach other firms located far away in the network. An important question that, to our
knowledge, has not been addressed so far is to what extent these shortcuts also reduce the
geographical distance. In particular, when a network is embedded in geographical space, we

5 The computation was carried out with the code by David Gleich implementing the algorithm in [38].
6 Due to the size of the network, we did not generate a set of reshuffled networks. We simply observed that results
were very robust after changing the seed of the random number generator three times.
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Figure 3. Distribution of network distance for different levels of geographical
distance.

can ask how the typical network distance depends on the geographical distance. Since most of
the links are between nodes at short distance, one could expect that the further two nodes are
geographically apart, the larger is the shortest path that connects them.

Figure 3 (top left) shows the distribution of network distance for several values of
geographical distance. We select all pairs of nodes located within a given interval of
geographical distance d and we plot the distribution of their shortest path length `. The empirical
distribution of ` shifts slightly towards the right for increasing values of geographical distance.
Moreover, we observe that at large geographical distance, some probability mass builds up on
values of ` around [15–25]. This means that, proportionally, among pairs that are far away
geographically, longer paths are more probable. However, the distribution is essentially stable,
which means that the SW property (in the weak sense) is robust with respect to geography. As
a comparison, in the random benchmark RDM all distributions coincide. This is not surprising
as, by construction, links are assigned without dependence on the geographical distance. On the
other hand, the RSM reproduces qualitatively the shifts to the right in the distribution, but does
not reproduce the distribution itself. As expected, with increasing characteristic distance dc, the
distribution becomes closer to that obtained with RDM. However, even at very small dc, the
distributions are broader and are centred at higher values of `.

Figure 4 compares directly the empirical distribution with those obtained with the various
models. Interestingly, in the empirical network, the network distance tends to be smaller than
in its randomized versions, especially when nodes are geographically close. Note that this
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Figure 4. Distribution of network distance for fixed levels of geographical
distance and different models.

holds even if the randomization takes geographical distance into account. Indeed, in figure 4
(left), the distribution of the RSM model is to the right of the empirical one at both small and
large geographical distance (recall that RDM coincides with RSM at infinite dc). The values
of mean network distance (with their respective error of the mean) are: 7.647 36 ± 0.000 69 for
the empirical network and 9.832 33 ± 0.000 20 for RSM (1 km). These findings suggest that (i)
there is a strong SW property, especially at short geographical distance, and that (ii) SW are
quite stable across geographical distance.

An analysis similar to that described above has been carried out only in a few previous
works, e.g. in the case of metropolitan public transportation networks. There, the distance
between initial and final stations of passengers’ journeys scales as a power law of the path
length (i.e. the number of stations along the journey) [11]. This behaviour reflects the fact
that journeys are typically planned with the purpose of travelling the longest possible distance
along the shortest number of stations. In contrast, in our network, the path length is only slowly
growing with the geographical distance. This finding means that when firms acquire shares of
other firms, they build ownership chains that tend to depart from the origin, but typically are not
intended to travel long distances in the shortest number of steps.

From a theoretical point of view, it is interesting to mention here the model of [12] in
which, depending on the control parameter δ and the dimension d of the space in which the
network is embedded, three different qualitative topological regimes are observed, i.e. random
graph for δ < d , lattice-like for δ > 2d and scale-free in the interval d < δ < 2d. In our case,
d = 2 and the distribution of distances is exponential, i.e. the closest case is δ > 3. This would
imply that our network is located at the border between the scale-free regime and the lattice
regime. Indeed in our network a majority of the links are at short distance as in a lattice, but
the degree is definitely scale-free. There are, however, important differences between the two
models in the way the network is constructed, so an understanding of the relations between their
results is deferred to future investigations.

6.2. Geographical distance at varying network distance

Finally, we investigate how geographical distance between two nodes i and j connected by a
path varies with their network distance `i j . We already studied in section 5.1 the case ` = 1,
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Figure 5. Distribution of geographical distance for different levels of network
distance.

i.e. when the two nodes are directly connected, and we found an exponential decay with the
geographical distance. We now ask how the geographical distance is distributed when nodes are
located at different network distances. One may expect that, for nodes located at large network
distance, geography does not matter any more. Then, their geographical distance should be
distributed as a random variable subject only to the constraint imposed by the distribution of
locations.

Thus, two further questions arise. Firstly, given that for ` = 1 it is an exponential, how
does the empirical distribution evolve to the random case? Secondly and more important, is the
distribution of distance induced by the RSM consistent with the empirical one? In other words,
is the RSM able to reproduce the distribution of geographical distance between nodes that are
connected not directly by a link, but via a longer path?

Figure 5 shows that the empirical distribution evolves from the exponential one to a
bimodal one. The location of firms in the space reflects the specific geographical characteristics
of the countries included in the dataset. For instance, the concentration of firms in urban areas
that are disjoint may result in links associated with values of distance that are either small
(i.e. two firms in the same urban area) or larger than a minimal distance (i.e. two firms in two
different areas). In other words, the bimodality of the distribution may be explained by the
fact that firms seek to have relations in the next closest large city, which typically is not closer
than 200 km. Hence the gap and the hump in the distribution. The presence of geographical
constraints such as mountains, seas, rivers, etc may also contribute to shaping the distribution in
a similar way. Moreover, as seen in section 4, firms tend to prefer links within their respective
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Figure 6. Distribution of geographical distance for different levels of network
distance and different models.

national boundaries because of legal settings and cultural similarities. This could create a sort
of finite-size effect that could be absent or smaller in a larger country such as the US. However,
even a large country is divided by administrative boundaries that may have a similar effect. In
any case, we are not able to quantify this effect with our data. From ` ≈ 8 onwards, the empirical
distribution starts looking like the random one. As shown in figure 5, at large network distance,
the distribution in the empirical network and in RSM tends to coincide with that of RDM.

Moreover, as shown in figure 6, the distribution obtained with RSM follows quite closely
the empirical one when dc < 100 km. At ` = 1, this is expected because, in the limit of dc → 0,
RSM replaces the source of a link with the closest eligible source and therefore the new value
of distance for a given pair is close to the original value if the area is densely populated. In
contrast, the match observed at ` > 1 is not a trivial finding, implying that the network distance
induced by the RSM is roughly correct.

As we have seen, RSM is able to fairly reproduce the empirical distribution of geographical
distance, for different levels of network distance. In contrast, there are significant deviations in
the distribution of network distance. These deviations are also reflected in other topological
properties, as reported in table 4. In the randomization process, the size of the largest weakly
connected component is preserved within a few per cent. However, the number of strongly
connected components (SCCs) and the size of the largest one (LSCC) are radically modified.
The empirical network contains 1544 SCC (most with less than 10 nodes) with a LSCC
consisting of 502 nodes. In contrast, RSM yields an LSCC that is at least seven times larger. For
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Table 4. Network and geographical statistics.

Avg net. dist. Avg geo. dist. CC Size largest CC SCC Size largest SCC

Data 7.65 9.56 1 70 070 1544 502
RDM 8.03 8.95 667 68 602 2 13 836
RUM 5.31 8.75 667 68 602 667 68 602
GRM dc = 0.1 10.59 9.15 871 67 699 570 3620
GRM dc = 1 9.83 8.87 802 67 989 371 5763
GRM dc = 10 9.05 8.77 767 68 348 39 9337
GRM dc = 100 8.13 8.74 746 68 364 2 12 980
GRM dc = 1000 8.15 8.92 674 68 554 1 14 091
GRM dc = 10000 8.11 8.91 669 68 588 1 13 791
GRM dc = 100000 8.04 8.93 676 68 596 1 13 900

increasing values of dc, the LSCC further increases (with some fluctuations) up to a size about
28 times larger (14 000 nodes) than the empirical LSCC. Notice that in the undirected case, the
LSCC coincides of course with the LCC.

Such topological discrepancy implies that in the empirical network the LSCC is smaller
than what would be obtained with a randomization of the links. The LSCC and the set of nodes
upstream of it are those where most of the economic control flows [20]. Thus, a smaller LSCC is
associated with a more hierarchical organization of economic control. By taking into account the
geographical distance, the RSM captures part of this organization. The remaining discrepancy
can be explained by the fact that in addition to geographical proximity, economic factors are
also at work. Simply put, the likelihood that a firm acquires a share in another firm must depend
also on the size of its balance sheet and not only on its geographical proximity to the target,
as instead is assumed by RSM. In particular, RSM allows for a shareholder with shares in big
firms to become a shareholder with the same degree, but with shares in small firms. Therefore,
the economic power of nodes can be modified by the reshuffling. Note that this can destroy the
correlation between the degree and the volume of the portfolio [23]. The result is a network
with a much larger SCC, which implies many more paths along which control and exchange of
business practices can flow.

7. Conclusion

In this paper, we have investigated the network of ownership relationships between European
firms and its embedding in the geographical space. Our results, beyond the area of economic
networks, are relevant to the field of spatial networks [4], an area of recent development that
deserves greater attention. Specific to our dataset is that geographical information is at the postal
code level and that even indirect connections have a well-defined meaning.

In terms of basic properties, as already found for other ownership networks, this network
displays a broad degree distribution (with quite a fat tail), is a small world and has a trimodal
distribution of weights. In terms of geography, we first focused on nodes directly linked, i.e.
first neighbours in the network. In this case, the distribution of geographical distance decays
exponentially, with a characteristic distance of about dc ≈ 370 km. This finding, which is
reported here for the first time for ownership networks, is in line with the finding for other
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types of networks embedded in geography. In contrast, the dependence of link weights on the
geographical distance is not monotonic and seems to be at odds with the gravity law, which is
commonly assumed in the geography literature.

An important contribution of this paper is to look also at geographical distance between
nodes that are not first neighbours, but are connected via paths of length ` > 1. As ` increases,
the distribution evolves from an exponential decay to a bimodal distribution that reflects
the specific geographical location of firms in the EU. On the one hand, the distribution of
geographical distance is qualitatively reproduced, even at ` > 1, by an RSM that reshuffles
the links in the network with a likelihood that depends on the geographical distance between
the nodes to be swapped. On the other hand, the empirical distribution of the network distance,
for a given geographical distance, is not well reproduced by such a model. Empirical distances
tend to be shorter than in the model, implying a world ‘smaller’ than it would be by chance,
especially at short geographical distance. This is reflected also by deviations in other topological
quantities. In particular, the empirical network is characterized by a largest SCC much smaller
than would be obtained in the benchmark models. Such a deviation quantifies the extent to
which, in addition to geographical ones, economic mechanisms are at work. Their effect seems
to lead to a more hierarchical organization of the network.

The relevance of our results for the economic geography literature lies in the investigation
of the extent to which the geographical factor is able to explain the organization of links
among firms. In particular, we find that the structure of the European ownership network is
only partially explained by the geographical location of firms. Although geography matters a
great deal, firms establish ownership relations also on the basis of socio-economic factors. For
example, additional variables to be taken into account are the size and the sector of the firms
or the presence of special structures such as ‘pyramids’ and ‘cross-shareholdings’, which firms
build up in order to access corporate control and fiscal advantages [40].

The analysis presented in this paper can be applied to other kinds of geographically
embedded complex networks. A comparison of the results across domains could contribute
to a better understanding of the mechanisms underlying the formation of spatially embedded
networks.
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