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We propose two measurement-based schemes to cool a nonlinear mechanical resonator down to energies close
to that of its ground state. The protocols rely on projective measurements of a spin degree of freedom, which
interacts with the resonator through a Jaynes-Cummings interaction. We show the performance of these cooling
schemes, that can be either concatenated – i.e. built by repeating a sequence of dynamical evolutions followed
by projective measurements – or single-shot. We characterize the performance of both cooling schemes with
numerical simulations, and pinpoint the effects of decoherence and noise mechanisms. Due to the ubiquity and
experimental relevance of the Jaynes-Cummings model, we argue that our results can be applied in a variety of
experimental setups.

I. INTRODUCTION

Cooling quantum systems in a finite time down to their
ground state is an essential task for the majority of quantum-
based technologies [1–7]. Although it is possible to isolate
and control a quantum systems, the temperature of its sur-
roundings may still be too large to prepare its quantum ground
state with the desired fidelity. This thus demands the develop-
ment of cooling protocols to enable the preparation of quan-
tum ground states with unit fidelity, and in a short time to over-
come the impact of environmental disturbances. Such cooling
schemes typically require a hybrid system comprising of two,
or more, interacting systems of both discrete (e.g. atomic)
and continuous (e.g. vibrational mode) degrees of freedom.
Among different methods, it is worth mentioning Doppler [8]
and resolved-sideband cooling, which can be performed de-
pending on the lifetime of the bosonic mode system and lead-
ing to distinct final temperatures (cf. Refs. [8–11] for the de-
velopment of these techniques in trapped-ions).

Over the last decades, different means of achieving mo-
tional ground state cooling of nano- and micro-mechanical
oscillators have been studied, both theoretically and experi-
mentally (cf. Ref. [12, 13] and references therein). As in
trapped-ions, sideband cooling has been demonstrated in these
setups [14–19]. However, other techniques may offer advan-
tages with respect to the standard sideband cooling. Among
them, we can mention bang-bang cooling [20], control state-
swapping cooling [21] and measurement-based cooling [22–
27], which is also known as stochastic cooling due to the prob-
abilistic nature of quantum measurements [28].

In this context, the cooling of mechanical systems is of
paramount relevance. Mechanical resonators are important
components in many electronic systems, while being widely
employed in sensors for mass, force, and fields. Recent ad-
vancements in fabrication techniques have made possible the
realization of micro- and nano-mechanical resonators with
high sensitivity and response frequency [29] (cf. Ref. [12] for
a review). Interestingly, such push to miniaturization has led
to the appearance of nonlinear effects in the dynamic response
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of such devices, often characterized by multi-stability and
hysteresis [30–32]. Such nonlinear regime can be accessed
or explored in different physical platforms, from trapped
ions [33] to circuit quantum electrodynamics [34], from
graphene- and carbon nanotube-based resonators [35, 36] to
optically trapped nanoparticle [37]. Recently, they have been
observed in a system comprising a nanosphere levitated in a
hybrid electro-optical trap [38].

Mechanical nonlinearities can be utilized to enhance en-
ergy harvesting via piezoelectric (vibration-to-electricity con-
version) [39], which have a good application potential for
solving the challenging issue of energy supply for embedded
wireless sensors and portable electromechanical devices [40].
In addition, they offer high sensitivity that can be harnessed
for signal amplification [41], mass and force sensing [42] or
charge detection [43]. At the fundamental level, the quantum-
to-classical transition, i.e. the exploration of the appearance
of quantum effects at a macroscopic scale has been studied in
these nonlinear systems [44–46], where the nonlinearity has
been identified as a resource in the generation of nonclas-
sical quantum states [47–49]. Interesting nonlinearities can
be engineered by coupling the mechanical mode to an ancil-
lary finite-dimensional system [50], an architecture that can
be used to study quantum foundations [51, 52]. For exam-
ple, a setup that consists of a vibrating nanomechanical res-
onator flux coupled to a superconducting qubit has been pro-
posed as a testbed for quantum interferometry with massive
objects [26].

In this work we present two protocols to cool a mechanical
resonator with a Duffing-type nonlinearity down to its ground
state aided by projective measurements performed onto a spin
degree of freedom coupled to the resonator via a Jaynes-
Cummings interaction term [53]. Our proposals can be carried
out with or without radiative decay or polarizing noise acting
on the spin, whose effect is crucial in resolved-sideband cool-
ing. Hence, these cooling schemes could be carried out us-
ing long-lived spin states, and thus also used for other quan-
tum information processing tasks. In particular, we propose a
scheme based on the concatenation of joint time evolution of
the bosonic and spin degrees of freedom and projective mea-
surements onto the ground state of the spin. We will refer to
this method as concatenated scheme (CS). This method not
only improves previous results in ultrafast cooling of a me-
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chanical resonator [23], but also shows that the non-Gaussian
quantum ground state of nonlinear mechanical resonators can
be achieved in a finite-time with a very good fidelity. In ad-
dition, we show how to attain ground state cooling upon a
single-shot (SS) measurement of the spin. This scheme, al-
though allowing for faster cooling and requiring a smaller
number of measurements than its concatenated counterpart,
demands a tunable and time-dependent spin frequency. The
temporal dependence of the spin frequency can be determined
using optimal control techniques, such as chopped-random
basis optimization (CRAB) [54–57]. We illustrate the high-
quality performance of these two schemes, which are able to
bring the thermal occupation number of an initial state of a
bosonic mode to values very close to zero even under the pres-
ence of distinct decoherence and noise sources. Moreover, as
our results rely on the ubiquitous Jaynes-Cummings interact-
ing model between a bosonic and a spin degree of freedom,
our results may be applied to different platforms to achieve
ground state cooling.

The remainder of this article is organized as follows. In
Sec. II, we begin by introducing the setup of a nonlinear me-
chanical resonator coupled to a spin degree of freedom and
providing relevant experimental parameters. In Sec. III we
present the theoretical scheme to cool the resonator down to
its ground state by performing projective measurements onto
the spin, either in a repeated/concatenated fashion (Sec. III A)
or upon a single-shot (Sec. III B). We further quantify the
non-Gaussianity of the resulting state from the concatenated
scheme, Sec. III A. We provide numerical results support-
ing the good performance of both methods, Sec. III A and
Sec. III B. We briefly outline the influence of environment for
these two proposed schemes in Sec. IV. Finally, we present
the main conclusions and outlook in Sec. V.

II. NONLINEAR MECHANICAL RESONATOR MODEL

Let us consider a bosonic mode of frequency ω, charac-
terized by annihilation and creation operators a and a†, re-
spectively, such that [a, a†] = 1. Such bosonic mode or har-
monic oscillator comprises a stiffening Duffing-like deforma-
tion with strength ε > 0, such that ε � ω, as found in different
experimental platforms. In addition, the bosonic mode is cou-
pled to a (spin-like) two-level system via a Jaynes-Cummings
interaction [cf. Fig. 1(a)] [53]. The Hamiltonian of the system
reads (we take units such that ~=1 throughout the manuscript)

Hs =
ωA

2
σz + ωa†a + λ(aσ+ + a†σ−) +

ε

16
(a + a†)4, (1)

where ωA and λ denote the Bohr frequency and coupling
strength of the two-level system, respectively. We have in-
troduced the spin Pauli matrices, σx,y,z such that [σi, σ j] =

2iδi jkσk and σz = |e〉 〈e| − |g〉 〈g| with |e〉 (|g〉) the excited
(ground) state of the two-level system. Finally, σ+ = (σ−)† =

|e〉 〈g| is the spin raising operator.
The standard Jaynes-Cummings model is recovered by

setting ε = 0, and thus the ground state of the resonator
Hr = ωa†a + ε

16 (a + a†)4 reads as |ψgs〉 = |0〉 (vacuum)

for ε = 0 such that a†a |n〉 = n |n〉, while for ε/ω �

1, its ground state can be well approximated by |ψgs〉 ≈

N
(
|0〉 − 3ε/(8

√
2ω) |2〉 −

√
3ε/(16

√
2ω) |4〉

)
, which contains

non-zero excitations and is of a non-Gaussian nature [58].
Here, N is a normalization constant whose explicit expres-
sion is given in Appendix A. Hence, as such nonlinear effects
are relevant in distinct experimental platforms, the analysis of
ground-state cooling based on the occupation number requires
a fair comparison with the actual and deformed ground state
of the nonlinear resonator. As a result of ε , 0, the num-
ber of excitations Ne = a†a + σ+σ− is no longer a conserved
quantity. However, as we consider a small Duffing pertur-
bation g, ω � ε, the dynamics are mainly governed by the
Jaynes-Cummings interaction, i.e. a state |g, n + 1〉 is trans-
formed into |e, n〉 at the resonant condition ωA = ω in a time
Tn =π/(2λ

√
n + 1) with n ≥ 0.

Our goal is to cool an initial thermal state of the resonator
down to its ground state by performing measurements on the
spin degree of freedom (cf. Sec. III). That is, the goal con-
sists in performing ρth

r → |ψgs〉〈ψgs| ≈ |0〉 〈0|, with ρth
r =∑

k=0 pk |k〉 〈k| and pk = nk
th/(1+nth)k+1 where nth = Tr[a†aρth

r ]
is the number of bosonic excitations in the thermal state ρth

r .

The model in Eq. (1) can be realized in a number of differ-
ent platforms. Among them, levitated nanoparticles [38, 59],
trapped ions [33], circuit quantum electrodynamics [34], op-
tomechanical systems [60–62], and cantilever systems [46].
Double-clamped carbon nanotubes can display significant
nonlinearities [62]: a µm long carbon nanotube resonator vi-
brating at ω/2π≈ 5 MHz at an environmental temperature of
Tenv = 20 mK and with a typical quality factor Q≈ 5 × 105 is
endowed with a nonlinear strength ε/2π ≈ 200 KHz (ε/ω ∼
4× 10−2) [61]. Within the optomechanical experimental setup
reachable values, a two-level system defect of frequency ωA ∈

[0.5, 1.5]ω coupled to a mechanical resonator, ω ≈ 200 MHz,
and Q ≈ 106, can achieve spin-boson coupling λ ≈ 0.05ω
and spin damping rates γd/ω ∈ [5 × 10−8, 5 × 10−4] [63].
The amplitude of the resulting Duffing nonlinearity amounts
to ε/ω ∈ [10−4, 10−5] [50]. For our analysis and without loss
of generality, we will choose ωA ≈ ω, λ . 0.1ω and scan the
values of the ratio ε/ω. The presence of the so-called counter-
rotating terms, λ(a†σ+ + aσ−) which have been neglected in
Eq. (1), can have a significant impact in the properties of the
system [64–71], and thus we will discuss its effect on the pro-
posed cooling schemes.

III. MEASUREMENT-BASED COOLING FRAMEWORK

We now address the cooling schemes at the core of our pro-
posals We study the cooling of a mechanical resonator – ini-
tially prepared in the thermal state ρth

r – achieved by combin-
ing time-evolution under the total Hamiltonian Hs in Eq. (1),
and projective measurements onto the spin. We consider both
the CS and SS approaches, which are described in Sec. III A
and III B, respectively.
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FIG. 1. (a) Sketch of the non-linear resonator coupled to a spin de-
gree of freedom: The bosonic mode and spin, with frequencies ω
and ωA, respectively, are coupled via a Jaynes-Cummings interaction
with strength λ. (b) Evolution of the initial state, ρ(0) = |g〉 〈g| ⊗ ρth

b
with ρth

b =
∑

k=0 pk |k〉 〈k| (full circles) and the one sought after the evo-
lution, which brings the populations over the Fock states |n〉 with n >
0 towards |e〉 〈e| (open circles) while the population of |g〉 〈g| ⊗ |0〉 〈0|
remains locked, i.e. ρ(τ)= |e〉 〈e|⊗

∑
k=0 pk+1 |k〉 〈k|+ |g〉 〈g|⊗ p0 |0〉 〈0|.

(c) A projective measurement of the spin onto the eigenbasis of σz.
The outcome of applying the projector Mg = |g〉 〈g| ⊗1r onto the state
ρ(τ) leaves the bosonic mode in its vacuum state. (d) Cooling scheme
by concatenating evolutions plus measurements.

A. Concatenated-measurements scheme

Let us now consider the concatenation of Nrep time evolu-
tions under the Hamiltonian Hs followed by a projective mea-
surement onto the ground state of the spin, described by the
projector Mg where Mx = |x〉 〈x| ⊗ 1r is the projector onto the
spin state |x〉 and x ∈ {e, g} and 1r is the identity operator act-
ing on the Hilbert space of the resonator. The initial state of
the joint system reads

ρs(t0 = 0) = |g〉 〈g| ⊗ ρth
r . (2)

This cooling scheme consists in bringing populations from
|g, n + 1〉 to |e, n〉 states with n ≥ 0 by sweeping each of the
subspaces at a time. This is achieved by evolving ρs(0) during
a time Tn = π/(2λ

√
n + 1), i.e., ρs(Tn) = U(Tn)ρs(0)U†(Tn)

with U(t) = e−itHs the evolution operator. In this manner,
we remove excitations and thus cool down the resonator state
by performing a projective measurement Mg on the spin de-
gree of freedom. The state upon the measurement becomes
ρs(Tn) → Mgρs(Tn)Mg/Tr[Mgρ(Tn)Mg]. Thus, the state after
the first block of evolution and spin measurement is given by

ρs(T0) =
MgU(T0)ρs(0)U†(T0)Mg

Tr[MgU(T0)ρs(0)U†(T0)Mg]
, (3)

where we have chosen T0 = π/(2λ) as the duration of the
first time evolution. This procedure is repeated Nrep times,
where each repetition comprises a time evolution of duration
Tn = π/[2λ(n + 1)1/2] – with increasing n – such that the
population is transferred from |g, n + 1〉 to |e, n〉. The total
time taken by the cooling process is thus T f =

∑Nrep−1
n=0 Tn =

π/(2λ)
∑Nrep−1

n=0 (n + 1)−1/2, so that T f ∝ λ−1, and where we
have assumed a zero detection time. The probability of a suc-
cessful detection of the spin in its ground state |g〉 upon the

evolution U(Tn) is given by pg;n = Tr[Mgρ(Tn)Mg], which is
lower bounded by the probability p0 = (1 + nth)−1 to find the
oscillator in its ground state when prepared in the initial ther-
mal state ρth

r =
∑

k=0 pk |k〉 〈k| with pk = nk
th/(1 + nth)k+1 and

nth = Tr[a†aρth
r ]. Upon Nrep repetitions, a successful detection

probability is given by psdp = Π
Nrep−1
n=0 pg;n and psdp ≈ p0 for

Nrep � 1. Hence, one can already notice that this method can
be favourable to cool down states of a resonator containing
few excitations. In particular, if nth . 10, we have p0 & 1/10
with pk . 10−3 for k & 50, so that Nrep . 50 would be suffi-
cient to achieve a significant reduction on the occupation num-
ber. Recall however that as a consequence of the third law of
thermodynamics and the unattainability principle [72], it is
not possible to exactly prepare the ground state of a quantum
system in a finite time. Nevertheless, depending on the pa-
rameters, the resulting state will be close to the actual ground
state. It is worth mentioning that our scheme is similar to the
one proposed in Ref. [23], although here we do not require
random detection times. Indeed, by fixing the evolution times
by Tn, we boost the cooling performance of the scheme. Be-
fore illustrating the performance of this cooling method with
numerical simulations, it is worth commenting that depending
on the initial thermal occupation nth, degree of nonlinearity ε
and number of repetitions Nrep, the final state ρs(T f ) will ex-
hibit a large purity and high fidelity with respect to the ground
state of the deformed oscillator.

In Fig. 2(a) we show how the occupation probability of the
nth Fock state P(n) = 〈n|ρr |n〉 changes by performing this pro-
tocol. Here, we start with an evolution of duration T0 which
brings all the population from |g, 1〉 to |e, 0〉 so that upon the
projective measurement onto |g〉 〈g|, the population over the
Fock state |1〉 vanishes, i.e. P(n = 1)=0. By repeating the pro-
cess, the vacuum state is achieved with high probability. The
average occupation number 〈n〉 gets largely reduced upon few
repetitions, as exemplified in Fig. 2(b) for an initial state with
nth =10. The ground state of the nonlinear resonator is not |0〉
for ε , 0. Our method leads to similar ground-state occupa-
tion number, although resonators with large values of ε require
longer times to saturate the occupation number. This is due to
the nonlinear term in Eq. (1) (cf. Fig. 2(b) for ε/ω = 10−2

and λ = 0.02ω), which couples different states in the Jaynes-
Cummings ladder. The fidelity F of the state ρr with respect
to the actual ground state of the nonlinear resonator |ψgs〉 ap-
proaches one, F = 〈ψgs|ρr |ψgs〉 ≈ 1, upon sufficiently many
repetitions (cf. Fig. 2(c)). The fidelity never reaches one in a
finite time, which can be thought of as a consequence of the
unattainability principle and the third law of thermodynam-
ics [72]. Nevertheless, the resulting state becomes so close to
the actual ground state to display all its features: not only the
mean number of excitations in the achieved state is very close
to that of the ground state, 〈n〉 ≈ 21ε2/128ω2 [cf. Fig. 2(b)
and Appendix A for the derivation of the ground-state occu-
pation number], but also other features are accurately repro-
duced. Here we focus on the degree of non-Gaussianity of
the state that we obtain through our protocol. In fact, the
nonlinear nature of of the oscillator and the measurement-
dependent interaction with the spin result in a pronouncedly
non-Gaussian effective dynamics of the mechanical resonator.
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FIG. 2. (a) Occupation probability of the nth Fock state, P(n) for an initial thermal state with nth = 10 (top panel), and the resulting distribution
after Nrep = 1 (middle panel) and 2 (bottom panel) iterations of the CS for ε = 10−4ω and λ = 0.02ω. The growth of the ground-state population
P(n = 0) achieved with more repetitions of the CS is well visible. In (b) we show the average occupation number 〈n〉 against the dimensionless
time λt for ωA = ω, an initial state with nth = 10, and ε/ω = 0 (solid circles), 10−4 (open circles), 10−3 (open triangles), and 10−2 (open
squares). The solid lines denote the occupation number of the actual ground state of the nonlinear resonator. Panels (c) shows the temporal
behavior of the state infidelity 1−F(t) with F(t) = 〈ψgs|ρr(t)|ψgs〉, which quantifies the distance between the reduced state of the resonator ρr(t)
at time t and the ground state |ψgs〉 of the corresponding nonlinear model. (d) Measure of non-Gaussianity δG[ρr(t)] of the resonator state for
the same cases as in panel (b). The inset displays the same the plot as in the main panel but in a log-scale for a better illustration, where the
solid lines correspond to the degree of non-Gaussianity of |ψgs〉.

We thus quantify the degree of non-Gaussianity of the state
achieved by this cooling scheme using the measure [73]

δG[ρr(t)]=S [ρr(t)||ρG], (4)

which is based on the quantum relative entropy of the reduced
state ρr(t) of the resonator at the generic instant of time t and a
reference Gaussian state ρG having the same first and second
moments of the oscillator’s position and momentum operator
as ρ(t) (cf. Appendix B).

In Fig. 2(d) we plot the behavior of δG[ρr] against the di-
mensionless time λt and for various choices of the ratio ε/ω.
As the initial state of the system is thermal, by definition we
have δG[ρr(0)] = 0. However, as mentioned above, due to the
dynamics the system soon starts developing a non-zero degree
of non-Gaussianity,which converges to the value of the ground
state |ψgs〉 [cf. inset in Fig. 2(d)]. In between, the dynamics
induces a strong non-Gaussian character of ρr(t), producing a
peak whose location and amplitude depends on the choice of
ε/ω. This suggests that, should the goal be that of achieving
a state with a large degree of Gaussianity, the protocol can be
tailored so as to achieve δG[ρr(t)] � δG[|ψgs〉〈ψgs|], at the cost
of a larger occupation number.

As commented previously, CS is effective in cooling down
thermal states containing nth . 10: larger initial occupation
numbers imply a decreasing successful detection probability
psdp and an exceedingly large number of iterations to signif-
icantly cool down the state of a nonlinear resonator. This is
illustrated in Fig. 3(a), where the average occupation number
〈n〉 after Nrep repetitions is plotted as a function of the initial
thermal occupation nth, and for ε = 0 (chosen as a benchmark
case). Indeed, while high temperature states are not so effi-
ciently cooled down with this scheme, states with nth . 10
are brought down to 〈n〉 < 10−4 after Nrep . 20. The same
applies to nonlinear resonators. In Fig. 3(b) we plot the value
of 〈n〉 achieved after Nrep = 5, 10 and 20 as a function of ε/ω
and for nth = 1, revealing again that the actual ground state
of the nonlinear resonator |ψgs〉 can be reached to a very good

approximation.

The inclusion of counter-rotating terms in Eq. (1), and thus
of transitions between |g, n〉 ↔ |e, n + 1〉, may affect the cool-
ing performance depending on the value of λ/ω and the non-
linear contribution ε/ω. For example, for ε = 10−2ω and
λ=0.02ω, as considered in Fig. 2, we observe a similar cool-
ing performance. The effect of the counter-rotating terms be-
comes more evident for ε/ω → 0 since 〈n〉 → 0, and thus
small but non-vanishing transition rates for |g, n〉 ↔ |e, n + 1〉
will limit this cooling scheme. Indeed, including counter-
rotating terms for ε=10−3ω and λ=0.02ω leads to 〈n〉 ≈ 10−4

for λt ≈ 30 (cf. Fig. 2(b)). We note that the impact of decoher-
ence and dissipation processes, which is discussed in Sec. IV,
will set a tighter constraint on the cooling performance.

B. Single-shot measurement scheme

CS relies on a population transfer from |g, n + 1〉 to |e, n〉
achieved by sequentially addressing different subspaces with
growing n. In order to overcome the limitation intrinsic to that
scheme, we propose an optimal protocol to perform the popu-
lation transfer |g, n + 1〉 → |e, n〉 for different n simultaneously
and in a short time, τ � T f ∝ N1/2

rep λ
−1. A single projective

measurement Mg at the end of such optimal dynamic proto-
col will bring the system to its ground state with a very good
accuracy.

In order for the protocol to be effective, though, and to im-
plement the optimal control strategy, one must allow for a
time-dependent parameter to be tuned externally. In the fol-
lowing we assume that the spin frequency can be controlled in
a time-dependent fashion, although similar results can be ob-
tained straightforwardly by selecting another parameter. The
initial state ρs(0) now evolves under the following time depen-
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FIG. 3. (a) Average occupation number 〈n〉 different Nrep repetitions
(5, 10 and 20), as a function of the initial thermal occupation nth for
ε = 0. The solid black line corresponds to 〈n〉= nth (no cooling). The
panel (b) shows the attained 〈n〉 upon Nrep repetitions (again 5, 10 and
20) as a function of the nonlinearity ε/ω of the resonator, with nth =1.
The solid black line denotes the occupation number of the nonlinear
ground state, and very close to 〈n〉 ≈ 21ε2/128ω2 (cf. Appendix A).

dent Hamiltonian

Hs(t) =
ωA(t)

2
σz + ωa†a + λ(aσ+ + a†σ−) +

ε

16
(a + a†)4.

(5)

The shape of the protocol ωA(t) is then optimized to achieve
the desired final state. As an example, consider ε = 0 so
that we aim to transform ρs(0), as given in Eq. (2), into
ρs(τ)= |g〉 〈g|⊗p0 |0〉 〈0|+ |e〉 〈e|

∑
k=0 pk+1 |k〉 〈k|, where ρs(τ)=

Ut(τ)ρs(0)U†t (τ) and Ut(τ)=T e−i
∫ τ

0 dtHs(t) is the time-evolution
operator. A single-shot measurement Mg would lead to ρs(τ)=

|g〉 〈g| ⊗ |0〉 〈0|, i.e., to the ground state of the resonator for
ε = 0. As in the CS, the success probability of detecting the
spin in the state |g〉 upon a single shot is lower bounded as
psdp ≥ p0 = 1/(1 + nth).

The optimization is carried out using the technique
chopped-random basis approximation (CRAB) [54–56] and a
Nelder-Mead search algorithm [74]. Other techniques could
be employed equally effectively [75–79]. For convenience,
and as ε/ω � 1, we perform the optimization for ε = 0,
i.e. in a Jaynes-Cummings model, which decouples in a set
of Landau-Zener models at different energy spacings (cf. Ap-
pendix C). We fix ωA(0)=ωA(τ) = ω, so that the optimization
corresponds to finding the coefficients an and bn in

ωA(t)/ω = 1 + t (τ − t)
Nω∑
n=1

[an cos(ωnt) + bn sin(ωnt)] (6)

where ωn = 2πn/τ and with a total protocol time τ longer than
the value set by the quantum speed limit [80]. In this case, the
minimum time needed to perform such transformation reads
as τQSL ≡ T0 = π/(2λ) [56]. Here we choose τ = 3τQSL
although we remark that, provided that τ ≥ τQSL, an opti-
mal protocol can always be found. As the achievement of
exact ground-state cooling requires the optimization over the
infinitely many subspaces of Hs(t), our numerical simulation
would lead to the ground state only approximately.

In Fig. 4(a) we show a possible optimal form of ωA(t) ob-
tained by CRAB optimization considering the first Nc = 10

-1
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 0  0.5  1  1.5  2  2.5  3

(a) (b)

t/τQSL

ω
A

(t)
/ω

1-
F

ε/ω 
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10-3
10-2
10-1
100

10-5 10-4 10-3 10-2 10-1

 

〈n〉th=100

〈n〉th=10-1

FIG. 4. (a) An optimized time-dependent spin frequency ωA(t) found
for Nc = Nω = 10 and total time τ = 3τQSL = 3π/(2λ). (b) Infidelity
of the resulting state upon the time evolution and a projective mea-
surement onto |g〉 〈g| (single-shot) with respect to the ground state of
the non-linear resonator, as a function of the parameter ε and for two
different initial states, 〈n〉th = 1 and 0.1. See main text for further
details.

subspaces of the Jaynes-Cummings model, taking Nω = 10
frequencies in Eq. (6) and λ = ω/10. By evolving the initial
state Eq. (2) using such optimal choice, we are able to cool
down the non-linear resonator, and get close to its ground
state. For 〈n〉th = 1, we find 〈n〉 � 10−2 for ε/ω < 10−3

with fidelity F > 0.999 [cf. Fig. 4(b)]. Finally, it is worth
mentioning that the inclusion of the counter-rotating terms in
Eq. (5) can be still carried out via an optimization, although
numerically more demanding as it requires the use of the full
Hamiltonian Hs(t).

IV. ROBUSTNESS OF COOLING SCHEME — DYNAMICS
IN THE PRESENCE OF ENVIRONMENTAL EFFECTS

Cooling the resonator down close to its ground state de-
mands an evolution time such that dissipation effects may be
significant. We must thus determine the impact of the interac-
tion with an environment on the performance of the protocol.
Here, we consider the dynamics of the system dictated by the
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〈
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m
in

 

CS ε/ω=10-3

CS ε=0
SS ε/ω=10-3
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FIG. 5. (a) Evolution of the average occupation number for the CS
for different dissipation rates γd, from top to bottom, γd/ω = 10−2,
10−4 and 10−6, and ε = 0 (open points) and ε/ω = 10−3 (full points),
which lie on top of each other. In panel (b) we show the minimum
value 〈n〉min for the CS (circles) as well as the resulting 〈n〉 upon a SS
measurement using the optimized protocol (triangles).
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master equation [81, 82]

ρ̇r(t) = −i[Hs, ρr(t)] +Da[ρr(t)] +Da† [ρr(t)], (7)

where the dissipators have the standard Lindblad form

DA[•] =
ΓA

2

(
2A • A† − {A†A, •}

)
(8)

with jump operator A and noise rate ΓA. In particular, for a and
a†, the noise rates are Γa = γd(nth + 1) and Γa† = γdnth [81].
Note that for the SS measurement scheme, the dynamics fol-
lows from Eq. (7) but with a time-dependent Hamiltonian Hs.
As discussed in Sec. II, we consider the experimentally rele-
vant regime γd/ω ∈ [10−6, 10−2].

In the CS, the average occupation number 〈n〉 now results a
competition between the decreasing behavior due to the cool-
ing scheme and an additional contribution 〈n〉 ∝ nth(1 − e−γd t)
in the long time limit, due to the dissipation in Eq. (7) [81].
It is worth stressing that, due to the time-evolution followed
by projective measurements, there is a non-trivial interplay
between cooling and heating processes. As a result, 〈n〉 be-
comes minimal upon a number of repetitions. This is plotted
in Fig. 5(a), where we show the evolution of 〈n〉 for different
parameters ε and γd, with nth = 1 and λ = ω/10. The data
points for ε = 0 and ε/ω = 10−3 lie on top each other since
the impact of dissipation is stronger that nonlinear effects. The
fidelity with respect to the ground state of the nonlinear res-
onator behaves in a similar manner.

For the SS scheme, one might consider that the system-
environment interaction is less relevant as the protocol is per-
formed in a shorter time than in CS. However, in the CS the
time between consecutive projective measurements is given
by Tn, while in the SS the time evolution τ is such that τ ≥ Tn,
where the equality holds for evolutions performed at the quan-
tum speed limit. The shorter the evolution time, the smaller
the impact of the dissipation on the performance of the proto-
col, and better cooling performance can be achieved. Yet, for
τ = τQSL, the numerical optimization becomes very demand-
ing. We have analyzed the performance of SS with τ > τQSL,
finding that dissipation has a larger effect than in CS. In par-
ticular, we find that the minimum number of excitations in
the resonator during the application of CS, 〈n〉min, depends
linearly on the rate of dissipation γd. This is illustrated in
Fig. 5(b). While such behavior is common to the performance
of the SS scheme, the resulting number of excitations is above
the CS counterpart.

V. CONCLUSIONS

We have presented a method to cool down a nonlinear me-
chanical resonator via projective measurements performed on
a spin coupled to the oscillator via a Jaynes-Cummings in-
teraction term. We have illustrated a repeated-measurement
scheme and a single-shot one. While the former requires the
application of concatenated time evolutions and spin projec-
tive measurements, the single-shot scheme relies on a time-
dependent tuning of the spin frequency. The time-dependent

profile is designed in such a way that, after the optimized time
evolution, a single projective measurement onto the ground
state of the spin significantly reduces the excitations of the
resonator state. The single-shot measurement scheme re-
quires just a projective measurement and can be performed
in a shorter time than its iterative counterpart, although it de-
mands further control and tunability. We determine the shape
of the spin frequency relying on the well-established chopped-
random basis optimization method. The good performance of
both methods is supported with numerical simulations, which
allow us to attain the ground state of the nonlinear mechani-
cal resonator to a very good approximation, even in the pres-
ence of distinct decoherence and noise sources. Thanks to the
generality of the Jaynes-Cummings model in a variety of sit-
uations, our results can be applied to different experimental
platforms.
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Appendix A: Approximate ground state of the deformed
harmonic oscillator

The ground state of a non-linear deformed harmonic oscil-
lator with a x4 perturbation can be calculated using a first-
order perturbation on ε as

|ψ(1)
gs 〉 = |ψ(0)

gs 〉 +
∑
k≥1

〈k|H1 |0〉

E(0)
0 − E(0)

k

|k〉 (A1)

where H1 = ε(a+a†)4/16 and |ψ(0)
gs 〉 = |0〉 is the ground state of

H0 = ωa†a, and E(0)
k = kω the eigenenergies. In this manner,

|ψ(1)
gs 〉 =

1√
1 + 39ε2/(512ω2)

×

×

|0〉 − 3ε

8
√

2ω
|2〉 −

√
3ε

16
√

2ω
|4〉

 . (A2)

The actual ground state |ψgs〉 of H = H0 + H1 can be approx-
imated as |ψgs〉 ≈ |ψ

(1)
gs 〉 to first-order perturbation on ε. For

ε/ω . 0.1, we find infidelity I = 1 − |〈ψgs|ψ
(1)
gs 〉|

2 . 10−5.
From the previous expression it is easy to find the approxi-
mate mean number of excitations in the ground state, which
reads as

〈ψ(1)
gs |a

†a|ψ(1)
gs 〉 =

21ε2

128ω2
(
1 + 39ε2

512ω2

) ≈ 21ε2

128ω2 + O(ε4/ω4)

(A3)
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Appendix B: Non-Gaussianity measure

We quantify the non-Gaussianity of a state ρ by δG[ρ] fol-
lowing [73]. For that, we construct a reference Gaussian state
ρG such that the first and second moments are equal to those
of ρ. The non-Gaussianity of the state ρ is then quantified as
the quantum relative entropy between ρG and ρ, which for a
single mode reads as

δG[ρ] = S [ρ||ρG] = Tr[ρ log ρ] − Tr[ρ log ρG] (B1)

= S (ρG) − S (ρ) = h
( √

det[s]
)
− S (ρ) (B2)

where s is the covariance matrix, with elements s jk =

1/2〈{r j, rk}〉−〈r j〉〈rk〉, with r = (q, p) and q = (a+a†)/
√

2 and
p = i(a† − a)/

√
2, and the function h(x) = (x + 1/2) log(x +

1/2)− (x− 1/2) log(x− 1/2). Note that S (ρ) = −ρ log ρ is the
von Neumann entropy.

Appendix C: Optimal protocol for single-shot measurement
cooling

In this article we find an optimal protocol of the spin fre-
quency ωA(t) through CRAB optimization [54–56] for lin-
ear nano-mechanical resonator (ε = 0). In this manner, the
time-dependent Jaynes-Cummings model decouples in a set
of Landau-Zener problems, as HJC = −ωA(t)/2 |g, 0〉 〈g, 0| +

⊕∞n=0Hn(t), where Hn(t) is the effective Jaynes-Cummings
Hamiltonian in the subspace containing n excitations which
reads as

Hn(t)=
ωA(t) − ω

2
σ̃z + λ

√
n + 1σ̃x (C1)

where σ̃z = |e, n〉 〈e, n| − |g, n + 1〉 〈g, n + 1| and σ̃+ =

|e, n〉 〈g, n + 1|, so that σ̃x = σ̃+ + σ̃−. The protocol ωA(t)
must be determined such that after a time τ, the initial state
|φn(0)〉 = |g, n + 1〉 is brought to |e, n〉. Hence, the optimiza-
tion is then carried out by minimizing the cost function

C = 1 −
1

Nc

Nc−1∑
n=0

|〈e, n|φn(τ)〉|2 (C2)

where Nc − 1 is the last subspace considered in the optimiza-
tion, and with respect to the 2Nω variables, {Am, Bm} with
m = 1, . . . ,Nω. These variables {am, bm} define the protocol
δ(t) = ωA(t) − ω as

δ(t) = ωt(τ − t)

 Nω∑
n=1

(an cos(ωnt) + bn sin(ωnt))

 . (C3)

Here we consider fixed frequencies as ωn = 2πn/τ, and there-
fore they are not randomized as required by CRAB. We mini-
mize C using the standard Nelder-Mead algorithm [74].
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