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Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the human
gastrointestinal system, the third most frequently diagnosed cancer and the second most
deadly worldwide, with almost one million deaths annually. The high mortality rate is
mainly due to the increasing events of primary or acquired resistance to conventional
chemotherapy.
Nowadays, advances in understanding the pathophysiology of CRC have increased the
variety of therapeutic options for both local and metastatic diseases, leading to targeted
personalised medicine approaches. New therapeutic options are increasingly emerging, such
as immunotherapy, non-coding RNA-based anti-tumor therapies or epigenetic therapies
based on the use of anti-cancer epigenetic compounds, such as Histone Deacetylase Inhibitors
(HDACis).
Accumulating evidence strongly indicates that non-coding RNAs (ncRNAs) are aberrantly
expressed in different cancer types and play a crucial role in numerous key biological
processes, including drug resistance.
A more precise understanding of the molecular mechanisms of action of the ncRNAs and
their specific downstream targets could be advantageous in order to improve therapeutic
strategies and overcome chemoresistance events.
This PhD project aims to investigate the role of long non-coding RNA H19 (lncH19) and its
intragenic microRNA, miR-675, on the control of tumor progression and chemoresistance
in CRC cells, with the ultimate goal of identifying new targets and therapeutic strategies
to enhance conventional therapy.
Interestingly, for the first time to our knowledge, our data reveal a dual role of the lncRNA
H19 and its miRNA, as both therapeutic targets and as putative prognostic biomarkers.
Indeed, our data demonstrated that lncH19 enforces CRC cell resistance to 5-Fluorouracil
(5-FU) especially under chronic hypoxic conditions, through its intragenic miRNA; on the
other hand, its expression seems to be functional for the anti-tumor activity of the epi-drug
as for the HDACi ITF2357.
Specifically, in the first part of this project we demonstrate that under hypoxic stimulation,
lncH19 gives rise to miR-675 which, in turn, inhibits caspase-3 expression. The inhibition
of miR-675-5p in combination with 5-FU treatment, enhances the pro-apoptotic effects of
the chemotherapeutic drug and overcomes the hypoxia-induced drug resistance. Our data
suggest the use of AntagomiR-675-5p as an adjuvant to drug treatment.
In the second part of the project, we found that lncH19 can contribute to the antitumor
activity of the HDACi ITF2357. Our data demonstrated that H19, after ITF2357 ad-
ministration promotes TP53 stabilization by acting as an endogenous competitive sponge
(ceRNA) for miRNAs targeting pro-apoptotic genes. Furthermore, we provided evidence
that ITF2357 is efficacious in colon cancer model overexpressing the lncH19, and it can
overcome the 5-FU resistance.
Overall, the data obtained from the following PhD project unveiled new mechanisms of
action by which the lncH19 affects CRC and suggested the use of lncH19 as a putative
biomarker to assess the outcome of therapy in patients with 5-FU-resistant CRC.
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CHAPTER 1
Colorectal cancer

1.1 Ethology and pathogenesis of CRC

Colon cancer (CRC) is a heterogeneous disease caused by environmental, genetic and
biochemical factors [1]. Its development is specifically related to the hyperproliferation of
epithelial cells of the colon mucosa [2].
Generally, CRC originates from the non-cancerous proliferation of healthy mucosal epithelial
cells, which are continuously renewed. Outgrowths, called “polyps”, are then formed, which
may grow progressively for 10-20 years before becoming malignant [3, 4]. The most typical
form presents as an adenoma or polyp originating from granule cells, producing mucus that
lines the large intestine [5]. Colorectal adenocarcinoma, which develops from such polyps,
accounts for 90-96% of all CRC variants [4, 6]. In addition to colorectal adenocarcinoma,
which is the most common, there are other types of colorectal cancers that can be identified
based on their histology. These include:

• Squamous cell carcinoma, a very rare type of cancer (about 1% of cases), which
develops from the flat cells lining the inner surface of the colon or rectum.

• Neuroendocrine carcinoma develops from the colorectum’s neuroendocrine cells,
which produce hormones and other substances that regulate the endocrine system.

• Stromal tumors or GISTs (Gastrointestinal Stromal Tumors), which develop from
the stromal cells of the intestine, which are responsible for the formation of connective
tissue and blood vessels.

• Lymphomas from the lymphoid tissue of the intestine.

• Melanomas from the melanocytic cells of the intestine.

Genetically, two main forms of CRC can be distinguished:

• Sporadic, occurring in individuals without a positive family history or genetic
genomic alterations due to acquired somatic genetic mutations or epigenetic alterations
induced by modifiable risk factors [7]. Sporadic cases comprise 60-65% of all CRC
cases [8] and generally affect patients older than 60 years.

• Familial, occurring mainly in individuals with a positive family history when at
least one member of the same family has been or is affected by CRC, especially
those younger than 50 years of age [9]. Approximately 35-40% of patients with CRC
show susceptibility to inherited components [10]. Approximately 7-10% of all CRCs
cases are due to inherited mutations in known genes and include Hereditary Non-
Polyposis CRC (HNPCC or Lynch Syndrome, caused by germline alterations in DNA
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mismatch repair genes, MMR), Familial Adenomatous Polyposis (FAP, an autosomal
dominant syndrome caused mainly by inherited mutations in the Adenomatous
Polyposis Coli gene, APC), Attenuated Familial Adenomatous Polyposis (AFAP),
MUTYH-Associated Polyposis (MAP), APCI 1307K, familial polyposis or Peutz-
Jehger syndrome (PJS), Hyperplastic polyposis (HPP), juvenile polyposis (JPS), and
hereditary polyposis [11, 12].

The development of CRC is a classic example of multistep pathogenesis, characterized
by the progressive accumulation of inherited or spontaneous mutations at oncogenes or
tumor-suppressor genes [13].
The acquisition of these mutations is a slow process and, as a result, the development of
invasive CRC often takes decades [14]. The mutations found in the sporadic form are the
same as those found in the familial form and appear to follow a standard sequential pattern,
allowing certain mucosal cells a selective advantage and promoting hyperproliferation and
ultimately carcinogenesis [15]. Of course, CRC progression is divided into 4 stages: i)
initiation; ii) promotion; iii) progression; and iv) metastasis [16].
The first mutagenic event, termed “gatekeeping”, usually involves the tumor-suppressor
gene encoding for the APC protein. This initial event causes a disruption of the cell
cycle, increasing cell proliferation and leading to hyperplasia. Subsequently, DNA hypo-
methylation events contribute to the formation of class 1 adenoma, which is a benign
neoformation characterized by high cell proliferation. At this early stage, an activating
mutation occurs in the Rat Sarcoma oncogene (RAS), leading to the formation of class
2 adenomas. These adenomas not only show cell hyperplasia but also signs of dysplasia.
The next mutation causes loss of function of the Deleted in Colon Cancer (DCC) gene,
resulting in a class 3 adenoma, in which cells further lose their differentiated morphology.
Finally, another mutation causes the loss of function of tumor protein 53 (p53) and is
responsible for the transition from a benign tumor to an in-situ tumor [14]. Tumors in situ
are polyps that have not yet invaded the wall of the colon or rectum and thus have not
yet extended beyond it. Following the loss of function of other tumor-suppressors and the
acquisition of function of other oncogenes, this carcinoma in situ acquires the ability to
infiltrate blood or lymphatic vessels, forming metastases, thereby invading surrounding
tissues and organs and becoming distant tumors [17, 18].
However, one study reported that mutations in all three genes were found in only 7% of
CRCs, suggesting that other genes may be involved in the tumorigenic process [19].
To date, it has been extensively documented that there are three genetic and epigenetic
aberrations implicated in colorectal carcinogenesis: i) chromosomal instability (CIN), ii)
microsatellite instability (MSI), and iii) CpG island methylator phenotype (CIMP) [10, 20].
The most common aberration, occurring in 70-85% of sporadic CRCs, is CIN (adenoma-
carcinoma sequence), a process that generates structural and numerical alterations in
chromosomes, leading to genetic instability and loss of heterozygosity (LOH), more fre-
quently on chromosomes 5q (APC), 17p (p53) and 18q (DCC/SMAD4) [15, 21–23]. Tumors
characterized by CIN usually appear as a consequence of a combination of activation of
oncogenes (e.g., KRAS, PIK3CA) and inactivation of tumor-suppressor genes (e.g., APC,
SMAD4, and TP53) by allelic loss and mutation [13].
Molecular genetic studies have identified a link between CIN and mutations or loss of
function of the tumor-suppressor APC [24]. APC negatively regulates the Wnt signaling
pathway, as it is part of a complex that promotes β-catenin protein degradation by the
proteasome [25]. Loss of function of the APC gene is a common feature of most sporadic
colorectal cancers and results in hyperactivation of the Wnt signaling pathway [26].
Disruption of the Wnt signaling pathway leads to disruption of the regulation of proliferation
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and differentiation of colonic mucosal cells, with the formation of dysplastic crypts that
evolve into adenomas with an increasing degree of dysplasia, due to the loss of other
tumor-suppressor genes [27].
In patients with FAP, germline mutation of the APC gene gives rise to a nonfunctional
protein, which leads to the accumulation of β-catenin in the cytoplasm. From the cytoplasm,
β-catenin migrates into the nucleus inducing the expression of several genes that drive
colorectal tumorigenesis [28].
More than 80% of colorectal cancers have mutations in the APC gene, while an additional
5-10% have mutations or epigenetic changes in other components of the Wnt signaling
pathway, such as β-catenin, leading to over-activation of the Wnt pathway [13].
The other less frequent gene aberration, occurring in 15% of sporadic CRCs, is attributed
to the unstable nature of MSI, characterized by frequent mutations in simple repeated
nucleotide sequences caused by loss of MutL Homolog 1 (MLH1) gene expression, resulting
in MMR deficiency leading to hypermethylation and subsequent gene silencing [29–31].
Finally, the pathogenesis of CRC may be influenced by CIMP [32]. CIMP induces genetic
instability by increasing alterations in the methylation frequency of CpG islands in the
promoter regions of tumor-suppressor genes (e.g., the MLH1 gene, implicated in MMR),
rendering their expression attenuated or silencing them completely [33, 34].

1.2 Epidemiology of CRC: incidence, mortality and survival
CRC is one of the most common malignant tumors of the human gastrointestinal system,
the third most frequently diagnosed cancer, and the second most deadly worldwide, it
produces nearly a million deaths annually [1, 10].
The epidemiology of CRC changes significantly among different regions of the world and
among different age, sex, and race groups. Several factors contribute to this variability,
including exposure to risk factors, demographic variations, as well as genetic susceptibility,
genetic mutations, and their impact on both prognosis and response to treatment [35].
Between 2015 and 2019, the average annual overall CRC incidence rate was 33% higher in
men than in women, 41.5 per 100,000 and 31.2 per 100,000, respectively. However, the
gender disparity varies by age of diagnosis and tumor location [36].
Overall, women live longer than men, and there is a distal to proximal shift in colon cancer
with advancing age. In particular, in the United States around 41% of all colorectal cancers
develop in the proximal colon, around 22% in the distal colon and 28% in the rectum
[37]. In addition, a recent study suggests that one-third of the CRC sex disparity may be
attributed to differences in the prevalence of established sex-related biological risk factors,
such as the influence of sex hormones [38].
According to the latest statistics, in 2020, CRC accounted for 10% of all cancer cases
worldwide and caused 9.4% of all cancer-related deaths globally. The number of new cases
of colorectal cancer worldwide is projected to increase to 3.2 million by 2040, due to factors
such as population growth, aging, and human development [1].
More than half of new CRC cases and deaths worldwide occur in China, Europe and North
America. While CRC incidence and mortality have decreased in some European and North
American countries, they continue to increase in China (Figure 1 ); strongly associated
with socioeconomic status (SES), changes in lifestyle and diet [39]. An increasing number of
studies show that high SES is associated with better survival in CRC; Indeed, patients with
CRC and high socioeconomic status have more favourable surgical treatment characteristics
than patients with higher socioeconomic deprivation [40–45]. This disparity in economic
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development conditions is more pronounced in Asian countries, causing obvious inequalities
in treatment capacity/resources and screening infrastructure [46]. Unless Asian countries
implement CRC screening, the incidence and mortality rates of CRC will continue to rise,
especially with rapid population growth, economic development, westernised lifestyles and
increasing ageing [47]. In fact, in China, new cases of CRC diagnosed in 2020 accounted
for 28.8% and the number of CRC-associated deaths accounted for 30.6% of all new cases
or CRC-related deaths worldwide, respectively [48].
Similar to incidence, the decline in mortality has slowed from about 4% per year in the
early 2000s to about 2% from 2012 to 2020. Since 2012, the overall decline in mortality
has exceeded that of incidence (2% versus 1.4%) [36], thanks to the understanding of CRC
pathophysiology and the improvements of treatments that have partially inhibited tumor
progression. However, trends vary widely by age, race, and ethnicity [1].
From the mid-1970s to 2012-2018, the 5-year relative survival rate for CRC increased
from 50% to 65% [36]. This remarkable increase is mainly due to i) the possibility of
early diagnosis, through routine clinical examinations and screening, ii) more accurate
diagnoses, thanks to advances in imaging, iii) improved surgical techniques chemotherapy
and radiotherapy [36].
The 5-year relative survival rate for CRC is similar across regions but varies greatly among
European countries [49].

Figure 1. Map showing estimated age-standardized incidence and mortality rates for colorectal cancer
in 2020, both sexes (Data are all from GLOBOCAN 2020, https://gco.iarc.fr/today/home) [49].
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1.2.1 Early-onset CRC

In contrast to the decrease in the incidence of CRC in the elderly, since the mid-1980s and
1990s, there has been an increase in the incidence of early-onset CRC (EOCRC, defined by
the presence of colon cancer in individuals younger than 50 years of age), correlated with
increased mortality among young adults aged 40-49 years, which has attracted increasing
interest [50]. In fact, cancer trends in young adults are the best indicator of disease
progress because they reflect the influence of contemporary exposures versus the long-term
cumulative exposures that occur in the elderly [36].
From 2011 to 2019, CRC incidence rates in people younger than 50 years of age and those
aged 50-54 years increased by 1.9% per year. The sharp increase in young and middle-aged
adults, together with the declining trend in the elderly, has rapidly shifted the incidence of
CRC to the younger population [36].
Trends in EOCRC incidence are relatively similar for both sexes but differ according to the
site (mainly distal and rectal cancer) and stage (mainly advanced disease) of the tumor
[51].
Among European and North American countries, the most significant increase in EOCRC
has been observed in the United States, with a rapid increase in Western states associated
with the Western diet, but the highest incidence is observed in Southern states and rural
areas [52].
The researchers believe that the increase in EOCRC cases is due to a more sedentary
lifestyle and suggest that it would be appropriate to lower the screening age of CRC to 45
years to detect cases early in younger adults [3].

1.3 Risk factors and prevention
Several risk factors contribute to the occurrence of CRC. Risk factors can be classified into
two main categories: modifiable and nonmodifiable. Modifiable risk factors are those that
can be changed or controlled through lifestyle modifications, whereas nonmodifiable risk
factors are those that cannot be altered, such as age, gender, and family history.
Recent studies suggest that more than half of CRC deaths cases are attributable to
modifiable risk factors [53], mainly due to high exposure to environmental risk factors from
a sedentary lifestyle and eating styles projected increasingly toward Westernization [54,
55].
Nonmodifiable CRC risk factors include:

• Sex, age and ethnicity
In 2020, men had a 44% higher incidence rate of CRC compared to women. A major
disparity is observed in rectal cancer in comparison to colon cancer. In men, 9.8 cases
of rectal cancer and 13.1 cases of colon cancer are diagnosed in 100,000 individuals,
75% and 31% higher, respectively than in women [56]. In the United States, people
over the age of 65 are more likely to be diagnosed with CRC than younger people;
this is probably related to the age at which screening is suggested. Furthermore,
it has been documented that the preferential location of CRC changes with age,
especially in black and white patients [57].

• Genetic risk factor
About 35-40% of CRC patients are susceptible to hereditary components [8, 11].
These components include family history, inherited cancer syndromes such as Lynch
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syndrome, low-penetrance genetic variations, and other unknown inherited genomic
aberrations [11, 12]. People who have a first-degree relative with CRC disease are at
a higher risk of developing the disease, with a 2-4 times greater likelihood of getting
sick; the same risk remains even beyond first-degree relatives [58].

• Diseases and therapies that predispose to increased susceptibility to CRC
Inflammatory diseases are associated with the risk of developing CRC, i.e inflammatory
bowel disease (IBD), ulcerative colitis, Crohn’s disease and cystic fibrosis [59, 60].
Moreover, those who have undergone treatment or surgery, including androgen
deprivation therapy, cholecystectomy or abdominal radiation, also have an increased
risk of developing CRC [61].

Modifiable CRC risk factors include:

• Obesity and sedentary lifestyle
Individuals who are overweight or lead a sedentary lifestyle are at increased risk
of CRC; in fact, they have a 25-50% risk of contracting cancer compared with
physically active individuals [62]. Obesity and physical inactivity are independent
and cumulative risk factors that also reduce survival expectations [63]. A different
risk of CRC has been found between overweight men and women; in fact, obese
men have a 50% risk of colon cancer and a 20% risk of rectal cancer. In contrast,
overweight women have a 20% risk of colon cancer and a 10% risk of rectal cancer.
Studies show that in women, early body mass index (BMI) has a greater impact on
CRC risk, whereas in men is the late body weight gain [64]. Physical activity may
reduce the risk of CRC by inhibiting fat accumulation, suppressing inflammation,
and improving intestinal motility and metabolic hormones [65]. Furthermore, at the
level of anatomical sites, physical activity is inversely related to the risk of proximal
and distal colon cancer, but not rectal cancer [66].

• Diet and drugs
Diet can positively or negatively influence the risk of onset or development of CRC,
regardless of obesity [67]. It can exert this function directly through food intake
or indirectly through gut microbiome or body weight gain. High consumption of
processed foods, red meat and refined carbohydrates, and a diet low in calcium
facilitate the inflammatory response and increase the risk of CRC [68, 69], as well
as gastric and intestinal cancer. The relative risk of CRC occurrence among those
who frequently consume red and processed meat is 1.22% [70]. In contrast, calcium,
insoluble fiber, vitamin D, fruits, and vegetables are protective against CRC [55]. In
addition, diet and drug use can have a significant impact on the microflora population
and intestinal inflammation [71]. For example, the gut microbiota during fermentation
of complex food residues releases butyrate, a short-chain fatty acid, which promotes
colon health by maintaining mucosal integrity and suppressing inflammation and
carcinogenesis [71]. Or the administration of antibiotics may cause dysbiosis of the
gut microbiome, which is associated with an increased risk of CRC [72, 73]. Therefore,
manipulation of the intestinal microbiome could be a new strategy for the prevention
and treatment of CRC [74].

• Alcohol
Alcohol consumption is closely associated with an increased risk of CRC [75]. Individ-
uals who drink 2-3 alcoholic drinks per day have a 20% increased risk of developing
CRC, while for those who drink more than three drinks the risk rises to 40%. The cor-
relation between alcohol consumption and its effects on the body is more pronounced
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in men, which can be attributed to hormonal changes that affect the metabolism of
alcohol [76].

• Smoking
Numerous evidence has shown that smoking predisposes to CRC. In fact, the relative
risk of developing CRC in regular smokers is 1.18% [3]. In particular, the intestinal
mucosa is damaged by the components of tobacco smoke, causing further genetic or
epigenetic alterations [66]. Furthermore, at the level of anatomical sites, smokers
appear to have an increased risk of cancer in the proximal colon and rectum, but
not in the distal colon [66, 77]. In addition to its effect on CRC onset, smoking is
associated with poor CRC survival. Therefore, giving up smoking is linked to better
health outcomes and a lower risk of CRC [78].

Variations in CRC incidence and mortality suggest that the disease has a large behavioural
component. Therefore, effective prevention measures, such as regular screening, surveillance,
and high-quality treatment, can be implemented to reduce the risk of new cases of CRC.
Prevention of colorectal cancer is possible at three different levels:
Primary prevention, involves healthy individuals and consists of reducing exposure to
known specific risk factors. This prevention often requires modification of the individual’s
dietary and physical-behavioural habits. Specifically, it involves regular physical activity, a
healthy diet, smoking cessation, and limiting alcohol consumption.
In addition, studies show that long-term intake of nonsteroidal anti-inflammatory drugs
(NSAIDs) has chemo-preventive potential against CRC [1, 79].
In particular, CRC patients who routinely use aspirin show less aggressive tumors and
longer survival because NSAIDs reduce intestinal inflammation and thus protect against
CRC and gastric and small bowel cancers [3].
However, it is still unclear how to adjust the prevention strategy, including the dose and
duration of drug intake, to avoid possible adverse effects such as gastrointestinal bleeding
or heart attacks [80].
Secondary prevention, is the set of preventive measures designed to detect the disease
early and is considered the most efficient in preventing the development of CRC.
The recent introduction of improved screening tests for early detection and new treatment
options to eliminate precancerous lesions has greatly influenced CRC incidence and mortality
rates [81–83].
Currently, the two-step screening approach generally used in clinical practice [84] involves
first performing highly sensitive and minimally invasive tests (FOBT and fecal DNA testing,
to reveal molecular markers or blood in the stool) and then, in case of atypical results,
performing more invasive validated endoscopic tests, colonoscopy and flexible sigmoidoscopy
(FS) to confirm the results [85, 86]. In addition, new screening tests such as CT colonoscopy,
capsule endoscopy, and blood or urine biomarkers are being developed [87].
According to the directives of the European Union (EU), the United States and Canada,
the best age to start CRC screening is 50 years and screening should be stopped after age
74 [88, 89].
Updated guidelines from the American Cancer Society and the United States Preventive
Service Task Force (USPSTF) recommend that in populations at average risk for CRC,
regular screening should be performed starting at age 45 years [90]. In contrast, individuals
potentially at high risk for CRC due to ulcerative colitis, previous adenomas, or family
history should undergo screening for CRC at age 40 (or 10 years before the age of onset in
the first-degree relative, in case of family history) and continue until age 74 [49].
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Tertiary prevention, based on interventions aimed at preventing recurrences and
metastatic growth. Currently, treatments for primary and metastatic colorectal can-
cer include laparoscopic surgery, radiotherapy, neoadjuvant therapy, biomarker-guided
therapy, and chemotherapy [85].
In cases of early diagnosis, the main treatment for CRC is surgery, but this is not effective
in cases of metastasis, as in 25% of diagnoses. In these cases, other treatment options
such as radiotherapy and chemotherapy are used, including targeted therapies and multi-
therapeutic [91, 92].
In conclusion, CRC is a highly preventable disease whose diagnosis can be supported by
artificial intelligence-based learning models. Indeed, deep learning models based on CNN
(convolutional neural networks) have recently been implemented to detect and characterise
the detection rate of adenomas, which help doctors both to read histopathological tissue
images and to make more accurate diagnostic and therapeutic decisions [93, 94]. Artificial
intelligence-based diagnostic systems can thus significantly improve the readability of
medical images, making artificial intelligence technologies very promising in the field of
routine CRC screening and treatment [95]. These systems could usher in a new era in CRC
prevention programmes focusing on “Leave in-situ” and “Resect and discard” strategies
[96].
In addition, machine learning and bioinformatics analysis can help to select and identify
more biomarkers of CRC to provide the basis for non-invasive screening [97]. These
technologies, along with robotic surgery and new computer-assisted drug delivery techniques,
are rapidly gaining popularity for the prevention and treatment of CRC [98].

1.4 Therapeutic strategies and treatment
Nowadays, the progress in understanding the pathophysiology of CRC has increased
the variety of therapeutic options for local and metastatic diseases, leading to targeted
personalized medicine approaches [80].
The three therapeutic strategies conventionally used for the treatment of CRC include
surgery, radiotherapy and chemotherapy [99]. In addition, new treatment options are
increasingly emerging, such as immunotherapy [100] or epigenetic therapy based on the
use of anti-cancer epigenetic compounds, such as Histone Deacetylase Inhibitors (HDACis)
[101].
Surgical therapy: surgical resection has historically been the milestone in the treatment
of CRC and still remains the most effective treatment when possible [102, 103]. Minimally
invasive laparoscopic resection can accelerate recovery of gastrointestinal function after
surgery, reduce hospital stay and does not adversely affect long-term survival [104].
Radiotherapy: uses the action of high-energy radiation (X-rays, gamma rays or charged
particles) to eliminate locally present tumor cells through direct and indirect damage (from
free radicals produced by radiation), reducing tumor mass and the risk of recurrence.
Chemotherapy: used as neoadjuvant, adjuvant, and palliative therapy. If it is used
as “neoadjuvant” treatment, it facilitates the surgeon’s task by reducing the size of the
neoplastic mass in the patient before surgery. In the case of “adjuvant” therapy, on the
other hand, this is given after the removal of the tumor mass to decrease the risk of
recurrence. In addition, chemotherapy plays an important role in palliative therapy in case
the tumor is at too advanced a stage and inoperable [99].
Among the chemotherapeutic drugs currently in use for the treatment of patients with CRC,
according to major guidelines, is 5-Fluorouracil (5-FU), a standard chemotherapy drug
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widely used in both adjuvant and palliative chemotherapy [105]. 5-FU is an antimetabolite
analogue of pyrimidine that inhibits the function of the enzyme thymidylate synthase,
disrupting the synthesis of the nucleoside thymidine and consequently DNA replication and
RNA processing [106, 107]. Randomized clinical trials have shown that its administration
can result in a significant increase in survival in patients with metastatic carcinoma
[108]. To enhance its cytotoxic effect, it is often used in combination with radiotherapy
or other anticancer agents, including Leucovorin (an active metabolite of folic acid that
can potentiate the interaction of 5-FU with its target enzyme thymidylate synthetase),
Irinotecan (administered together with Leucovorin and 5-FU as FOLFOX), and Oxaliplatin
(administered together with Leucovorin and 5-FU as FOLFIRI) [100, 109–111].
However, chemotherapy treatments and targeted therapies provide only a limited increase
in overall survival for these patients, as their efficacy is increasingly threatened by the
rapid evolution of drug resistance events [106, 112].
In fact, despite therapeutic advances, the 5-year survival of CRC patients remains too low
[113, 114].
Several studies demonstrated that patients with CRC may develop primary or acquired
resistance to 5-FU (90% of patients with metastatic cancer), associated with poor prognosis
[112, 115].
Drug resistance developed against conventional therapy is one of the main reasons for
chemotherapy failure in cancer, the underlying mechanism of which has not been fully
clarified. In fact, resistance to anticancer drugs may depend on several factors, including
tumor heterogeneity and changes at the cellular and genetic levels in cancer cells [116].
Chemoresistance can manifest itself through several strategies, including reduced drug
uptake due to alterations in enzymes involved in drug metabolism, such as increased
thymidylate synthase activity [117] and dysregulation of multidrug resistance (MDR)-
inducing drug transporters [118], enhanced DNA repair, and gene amplification [119].
In addition, cellular processes such as apoptosis, autophagy and cell cycle could be inhibited
(suppression of apoptosis) or altered in CRC cells, thus affecting the response to 5-FU
therapy [106, 120, 121].

1.4.1 ITF2357 (Histone Deacetylase Inhibitor, HDACi)

Recently, the use of histone deacetylase inhibitors (HDACis) as promising anticancer drugs,
used alone or in combination with other anticancer drugs and/or radiotherapy, has been
gaining increasing popularity [122, 123].
Numerous studies propose the therapeutic use of HDACis for the treatment of several
diseases, including metabolic, inflammatory, autoimmune, and neurodegenerative diseases,
and not least for the treatment of cancer [124, 125].
HDACis are a well-known class of epigenetic drugs with recognized antitumor activity,
targeting aberrant histone deacetylase (HDAC) activity, which is often overexpressed in
cancer cells [126, 127]. The action of HDAC inhibitors is to restore or increase the level of
histone acetylation, thereby promoting transcriptional activation of tumor suppressors and
genes involved in autophagy and apoptotic processes [128–130]. Therefore, inhibition of
HDACs represents a valid basis for new anti-tumor therapies [131].
To date, the Food and Drug Administration has approved some HDACis such as vorinostat
(SAHA), belinostat (PXD-101), panobinostat (LBH-589), and romidepsin (FK-228) for the
treatment of cancer [132]. The HDAC inhibitors SAHA, FK-228 and PXD-101 have been
approved for some T-cell lymphomas and LBH-589 for multiple myeloma. Other HDAC
inhibitors are in clinical trials for the treatment of hematologic and solid malignancies
[124].
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In addition, clinical and preclinical studies have shown that these compounds can be used
as adjuvants to traditional chemotherapeutics in several types of cancer [133–135].
The results of these studies seem to be promising, for the reversibility of epigenetic changes
during cancer development, the effectiveness of targeted epigenetic therapies seems to be
of high importance.
Continued efforts are needed to develop HDACis and HDACi-based combination therapies
new HDACis with enhanced pharmacokinetics/pharmacodynamics, increased intra-tumor
release and class/isoform specificity [136].
Among epigenetic drugs currently being tested in clinical trials and have shown promising
anti-cancer potential is ITF2357 (Givinostat). ITF2357 is a potent HDAC inhibitor
belonging to the hydroxamic acid class. This compound is currently used in the therapy for
the treatment of Duchenne muscular dystrophy, and in clinical trials for Becker muscular
dystrophy and juvenile idiopathic arthritis [137–141].
The compound has also revealed a significant anti-tumor action by inducing apoptosis in
different tumor models, including leukemia, melanoma, and glioblastoma cells [142–144].
In addition, it has been widely demonstrated that ITF2357 can also act as an adjunct to
conventional chemotherapy, increasing sensitivity to demethylating or chemotherapeutic
agents such as pemetrexed in lung cancer, doxorubicin in sarcoma cells, and temozolomide
in glioma stem cells [145–147].
ITF2357 has recently been reported to exert a targeting effect on oncogenic BRAF in
melanoma cells [142] and affect oncogenic BRAF and p53 interplay, thus representing a
promising candidate for melanoma-targeted therapy [148].
To date, the only data present in the literature on the effects of ITF2357 in colon cancer
are described in a manuscript that discusses the use of the compound for the prevention of
colitis-associated cancer in mice [149].
Although, in general, HDACs and HDACis are known to play an important role in the
molecular pathophysiology of CRC [150]; to date, there are no data in the literature to our
knowledge on the use of ITF2357 for the treatment of human CRC.
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CHAPTER 2
Non-coding RNAs and cancer

2.1 Overview of ncRNAs
Recent advances in human transcriptome analysis revealed that the functional products
encoded by the genome are not limited only to proteins but include a variety of unique
non-coding RNA sequences, called non-coding RNAs (ncRNAs) [151, 152]. Therefore,
Francis Crick’s central dogma that genetic information only travels from DNA through
RNA to protein synthesis has been overturned and the concept of “junk DNA” has been
redefined [153].
Almost seventy years ago, with a few exceptions, RNAs were mainly regarded as intermedi-
aries in the protein production process, temporary copies of genetic information (mRNA),
components of the ribosome (rRNA) or translators of the codon sequence (tRNA). For many
years, proteins have been the main functional end product of genetic information, although
the genes that code for them account for less than 1,2% of the genome [151, 153, 154].
Instead, the last decade of scientific discoveries has changed and improved our perception
of ncRNAs from “junk” transcriptional products to key regulators that mediate multiple
cellular processes, including chromatin remodeling, transcription, post-transcriptional
modifications, signal transduction, apoptosis, differentiation and cell metabolism [153].
According to the Encyclopaedia of DNA Elements (ENCODE) transcriptomics project,
around 80 per cent of the genome does not code for proteins but is actively transcribed
into ncRNAs, whose remarkable and innumerable potential is not entirely clear [154, 155].
Depending on size, shape and position, ncRNAs have been divided into several classes.
Based on length they are divided into small non-coding RNAs (<200 bp), such as microR-
NAs (miRNAs), piwi-interacting RNAs (piwiRNAs), small nuclear RNA (snRNAs), small
nucleolar RNAs (snoRNAs) and transfer-RNAs derived small RNA (tsRNAs or tRFs),
and large RNAs (>200 bp, circular or linear), including circular RNAs (circRNAs) and
long non-coding RNAs (lncRNAs) [156, 157]. In comparison, miRNAs and circRNAs,
are ultraconserved transcribed regions, while others, such as lncRNAs, are not generally
conserved across species [158, 159].
In detail, the different classes are described below each with its characteristics:

• The discovery of the first small RNAs (microRNAs or miRNAs), lineage defective 4
(lin-4) and lethal 7 (let-7) in Caenorhabditis Elegans, was more than two decades ago.
Today it’s known that some RNAs, not coding for proteins, are conserved functional
molecules necessary for the embryonic [160], physiological development of organisms
and can be expressed in pathological contexts [161, 162]. MiRNAs are a class of
small endogenous single-stranded ncRNAs with approximately 22 nucleotides (nt)
in length, synthesized from larger RNA transcripts through a complex enzymatic
pathway [163]. The miRNAs are transcribed as pri-miRNAs by RNA polymerase
II or III, or processed from non-coding RNAs or introns of protein-coding genes
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(miRtron) [164]. The pri-miRNAs are then cleaved by the microprocessor complex,
formed by the nuclear RNase III enzyme DROSHA and DGCR8, into a stem-loop
structure of 70-110 nt, known as the miRNA precursor (pre-miRNA) [165]. The
RNase III/DICER/TRBP2 enzyme will cleave the pre-miRNAs transported into the
cytoplasm to generate a mature 22-nucleotide double-stranded miRNA duplex. This
miRNA duplex includes the miR-3p/miR-5p double-stranded pair, each of which can
be selected as functional and recruited by the RNA-induced silencing complex [166,
167]. They mainly regulate gene expression at the posttranscriptional level repressing
gene expression through mRNA degradation or translational repression. They act
binding the complementary sequence of their target messenger RNAs (mRNA);
thereby integrating into the RNA-induced silencing complex (RISC) that contains
members of the Ago family of proteins that silence integrated RNAs [168–170]. In
addition, miRNAs have been found in the nucleus where they regulate gene expression
at the transcriptional level [171, 172].

• Piwi-interacting RNAs (piwiRNAs or piRNAs) are a type of small non-coding
RNAs that play a biological role by specifically binding to PIWI proteins. They were
first identified in Drosophila, play a key role in spermatogenesis and germ stem cell
maintenance, and are approx. 24-32 nt in length. PiwiRNAs are significantly involved
in repression, deadenylation and decay of transposable elements and epigenetic
regulation of chromatin, particularly DNA methylation. Recent evidence has revealed
that piwiRNAs, in addition to germ cells, are also expressed in cancer cells, where
they are involved in the regulation of proliferation, apoptosis and the cell cycle
[173–176]. However, their mechanism of action is not entirely clear [156, 177].

• Small nuclear RNAs (snRNAs) are small nuclear RNAs of about 150 nt, usually
very rich in uracil and ubiquitously expressed [178, 179]. SnRNAs, transcribed
by RNA polymerase II or RNA polymerase III, are involved in several important
processes such as splicing, regulation of transcription factors or RNA polymerase II
and telomere maintenance [180, 181]. A group of snRNAs, known as snoRNAs (small
nucleolar RNAs) are located in the nucleolus, play an essential role in RNA biogenesis
and guide the chemical modifications of ribosomal and other RNAs. In addition, they
can be found associated with specific proteins, forming complexes called snRNPs,
which together form the spliceosome [182]. The use of engineered snRNAs has been
applied as a potential therapeutic strategy to correct splicing mutations underlying a
considerable number of genetic diseases [183].

• Small non-coding RNAs derived from tRNAs (tsRNAs or tRFs) are second
in order of abundance to miRNAs [184]. They were identified by sequencing high-
throughput RNAs from cell lines and are not produced by random degradation
of tRNAs but by degradation by specific nucleases [185]. TsRNAs perform sev-
eral functions, including regulation of gene expression, anti-apoptosis, inhibition of
translation, participation in epigenetic regulation, initial virus reverse transcription,
promotion of virus replication and cell-cell communication [185, 186]. Some tsRNAs
are overexpressed in tumor tissues but underexpressed in normal tissues. Therefore,
the relationship between tsRNAs and cancer initiation and development has attracted
considerable research attention [187].

• The circular RNAs (circRNAs) family differs from other ncRNAs in function and
structure and is characterised by a circular configuration with no 5′ end caps or 3′

poly(A) tails [188, 189]. This feature, compared to the linear form more common in
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ncRNAs, makes circRNAs resistant to degradation by RNase R and thus more stable
[190]. These RNAs are expressed in tissue-specific, cell-specific, and developmental
stage-specific patterns [191]. Numerous studies show that circRNAs are involved in
both physiological and pathological, including cancer, acting as tumor suppressors
[192–194] or oncogenes [195–201]. They are involved in the regulation of RNAs or
miRNAs, acting as competitive endogenous RNAs, or they can interact with RNA-
binding proteins (RBPs), which act as scaffolds for protein-protein interaction [202].
In detail, circRNAs fall into four groups: ecircRNA, ciRNA, EIciRNA, tricRNA.
The most studied are the exon-derived circRNAs, called “ecircRNAs”; these are
mainly distributed in the cytoplasm, where they act as a sponge for miRNAs, allow
protein-protein interaction or, in some cases, can be translated via a cap-independent
mechanism [203, 204]. EIciRNAs consist of both exonic and intronic sequences of
coding genes, ciRNAs are circular intronic RNAs, enriched mainly in the nucleus
where they are involved in gene regulation [205, 206]. Finally, a special group of
circular intronic RNAs, the “tricRNAs”, are generated during pre-tRNA splicing
[207].

• Long non-coding RNAs (lncRNAs) are a group of linear RNA transcripts longer
than 200 nt [208]. lncRNAs can be transcribed from the exon, intron, intergenic region
or 5′/3′-non-translational regions and fold into complicated secondary structures,
which facilitate their interactions with DNA, RNA and proteins [209]. Based on their
genomic context, lncRNAs can be divided into five classes: (I) promoter-associated
lncRNAs, (II) enhancer-associated lncRNAs, (III) antisense natural transcripts, (IV)
gene body-associated (sense) lncRNAs, and (V) long intergenic ncRNAs [210]. With
the advancement of next-generation sequencing technologies, several recent studies
illustrate the diversity of function of lncRNAs. This diversity may be due to differ-
ences in their mechanisms of action, spatiotemporal expression, and/or abundance,
which may vary according to the particular cell or tissue type [211]. The lncRNA
genes are very similar to protein-coding genes, have marks in their promoters or
enhancers, are transcribed by RNA polymerase II, undergo splicing at canonical
splicing sites, and are often polyadenylated [212, 213]. Several studies have shown
that lncRNAs regulate gene expression at multiple levels through multiple mech-
anisms of expression, including epigenetic (i.e., X chromosome silencing, genomic
imprinting and participation in epigenetic chromatin modulation) transcriptional
(activation or inactivation of transcription modulation of transcription factors to bind
to promoters) and post-transcriptional (splicing, mRNA turnover, translation, and
RNA interference), through interaction with other biomolecules, such as proteins,
DNA regulatory regions, and miRNAs; in this way, they function as scaffolds for
the regulation of protein-protein interactions and related downstream signaling path-
ways [214–216]. In addition, the properties of each lncRNA change depending on
intracellular localization [208]. At the nuclear level, lncRNAs control gene expres-
sion in cis or trans by interacting with transcriptional coregulators and chromatin
remodeling complexes or by preventing the binding of transcription factors; also, by
interacting with RNA-binding proteins, they can control RNA splicing [214]. At
the cytoplasmic level, lncRNAs bind to various partner proteins, thereby regulating
RNA stability, degradation, and translation; in addition, they can act as sponges for
microRNAs (Competitive endogenous RNAs or ceRNAs), preventing their action
and thus targeted inhibition of target mRNAs, as demonstrated in numerous cancer
models [217–219].
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Non-coding RNAs influence each other. High-throughput deep sequencing of transcriptomes
shows that some lncRNAs encode miRNAs or snoRNAs, and some snoRNAs can encode
piwiRNAs, regulating their expression as precursors [217].
In addition to regulating mutual gene expression, ncRNAs perform multiple interconnected
functions, which is why it has become increasingly difficult to study their function in
isolation.
Like miRNAs, some ncRNAs target the mRNAs of many different other genes (and
each gene’s mRNA may be targeted by multiple miRNAs or piwiRNAs), thus creating a
complicated and intricate gene regulatory network [217, 220, 221].
To add further complexity, miRNAs also functionally interact with other ncRNA species,
such as circRNAs and lncRNAs, regulating their stability. In addition, it has been reported
that interactions between miRNAs and lncRNAs trigger the decay of target lncRNAs and
play important roles in the regulation of target genes [153]. Reciprocally, lncRNAs and
circRNAs regulate the abundance of available miRNAs by acting as ceRNAs [202, 222–224].
The highly complex nature of some ncRNA interactions supports their role as key regulators
in important cellular programs. Perturbations of these interactions have widespread
consequences that affect cell fate and are common in cancer.

2.1.1 NcRNAs in cancer

NcRNAs are known for their ability to regulate gene expression through different mech-
anisms in physiological and pathological developmental contexts. Alterations in their
expression contribute significantly to the formation and progression of human malignancies
including cancer [216, 225, 226]; in fact, they have been identified as both oncogenic factors
and tumor suppressors in several cancer types [151, 156, 227, 228]. The most studied in
tumor are lncRNAs and miRNAs, with increasing evidence of their dual function, oncogenic
or oncosuppressive, depending on the context in which they are found (Table 1 ).

ncRNAs Cancer types Function
Description of the
mechanisms of action of
cancer-related ncRNA

References

Lnc LINC00261 Lung Tumor suppressor Active DNA damage response and
block proliferation [229]

Lnc LINC00617 Breast Oncogene
Induces EMT and metastasis
through regulation of the SOX2
stemness factor

[230]

Lnc LINC00959 Colon Tumor suppressor Suppresses migration and invasion [231]

Lnc LINC01138 Liver Oncogene Promotes proliferation, invasion
and metastasis [232]

Lnc LINC01271 Breast Oncogene Promotes metastasis [233]

Lnc ANRIL
Bladder, Lung,
Liver, Cervical,
Stomach

Oncogene Interacts with PRC2 and CBX7 [234]

Lnc ARLNC1 Prostate Oncogene

Interacts with the mRNA encoding
AR, a nuclear receptor, to promote
oncogenic AR signaling, prolifera-
tion, and suraval

[235]

Lnc ARSR Renal Oncogene

Interacts with transcriptional coac-
tivator YAP and acts as a ceRNA
for miRNAs that target RTK tran-
scripts

[236, 237]

Lnc BANCER Stomach, Skin Oncogene
Promotes proliferation and metas-
tasis via regulation of NF-kB1, p21,
MAPK pathways

[238, 239]

Table 1 – Continued on next page
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ncRNAs Cancer types Function
Description of the
mechanisms of action of
cancer-related ncRNA

References

Lnc CamK-A Breast Oncogene

Interacts with and controls activity
of kinases that modulate calcium-
induced NF-KB signaling, leading
to remodeling of the tumor microen-
vironment

[240]

Lnc CCAT1 Colorectal,
Esophageal Oncogene

Interacts with transcription factors
(e. G. , SOX2, p63) to activate
expression of genes involved in in-
creasing proliferation and decreas-
ing apoptosis

[241, 242]

Lnc CCAT2
Colon, Sopha-
gus, Stomach,
Breast, Colon

Oncogene

Elevates chromosomal instability
and promote proliferation and inva-
sion. Enhances Wnt signaling path-
way via TCF7L2 interaction

[243–245]

Lnc CRNDE
Brain,
Leukemia,
Colon

Oncogene
Promotes proliferation and invasion.
Negatively regulated by insulin and
insulin-like growth factors

[246, 247]

Lnc CTBP1-AS Prostate Oncogene

Splicing factors to promoter of a
nuclear receptor corepressor to de-
crease its expression, leading to in-
creased oncogenic AR activity

[248]

Lnc DILA1 Breast Oncogene Promotes proliferation and multiple
drug resistance [249]

Lnc DILC Liver Tumor suppressor Suppresses stemness [250]

Lnc DSCAM-
AS1 Breast Oncogene

Interacts with proteins of the hn-
RNP complex involved in RNA pro-
cessing and mediates proliferation,
invasion, and metastasis

[251]

Lnc EPIC1 Breast Oncogene

Interacts with MYC transcription
factor and increases its activation
of target genes, leading to enhanced
cell cycle progression

[252]

Lnc ERINA Breast Oncogene Promotes cell-cycle progression [253]

Lnc FAL1 Ovarian, Breast Oncogene

Stabilizes components of PRC1
chromatin modifying complex to
mediate expression of genes in-
volved in proliferation and suraval

[254]

Lnc GAS5
Breast,
Prostate,
Lung

Tumor suppressor Encodes glucocorticoid response el-
ement [255]

Lnc GUARDIN Lung Oncogene Sustains genomic stability and pre-
vent apoptosis and senescence [256]

Lnc H19 Breast, Brain Oncogene Promotes stemness and angiogene-
sis [257, 258]

Lnc H19

Breast, Lung,
Pancreas,
Stomach, Blad-
der, Prostate,
Colon, Skin

Tumor suppressor Cancer metastasis tumor suppres-
sor and generates miR-675 [259]

Lnc HAS2-AS1 Brain Oncogene Promotes invasion [260]

Lnc HCP5 Stomach Oncogene
Sequesters miR-3619-5p and upreg-
ulates PPARGC1A, which Induces
stemness and drug resistance

[261]

Lnc HOTAIR

Esophagus,
Stomach,
Colon, Liver,
Lung, Breast,
Ovarian, Blad-
der, Prostate,
Glioma,
Melanoma

Oncogene

Recruits PRC2,
LSD1/CoREST/REST chro-
matin modifying complexes,
scaffolds transcription factors at
target promoters metastasis and
proliferation

[262–267]

Lnc HULC Liver, Pancreas Oncogene
Modulates abnormal lipid
metabolism through miR-9-
mediated RXRA signaling pathway

[268, 269]

Lnc HUR1 Liver Oncogene Promotes proliferation [270]
Table 1 – Continued on next page
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ncRNAs Cancer types Function
Description of the
mechanisms of action of
cancer-related ncRNA

References

Lnc LET Liver, Colorec-
tal Tumor suppressor

Interacts with and destabilizes a
dsRNA binding protein (NF90), a
key factor involved in regulation of
HIF-1a levels and cell invasion

[271]

Lnc lincRNA-
ATB

Liver, Breast,
Colon, Pan-
creas

Oncogene MiR-200 family sponge. Upregu-
lates ZEB1 and ZEB2 [272]

Lnc lincRNA-
p21 Colon Tumor suppressor Enhances p21 activity [273]

Lnc lincRNA-
ROR Breast Oncogene Competitive endogenous RNA for

miR-145 [274]

Lnc LINK-A Breast Oncogene
Interacts with kinases that control
HIF1α activity, glycolysis, enhances
degradation of tumor suppressors

[275, 276]

Lnc LINP1 Ovarian Oncogene Promotes proliferation and invasion [277]

Lnc MALAT1
Lung, Prostate,
Colon, Liver,
Breast

Oncogene

Forms molecular scaffolds for ri-
bonucleoprotein complexes in the
nucleus. Transcriptional regulator
for genes involved in cell cycle

[278–280]

Lnc MALAT1 Breast Tumor suppressor Inhibition of a pro-metastatic tran-
scription factor (TEAD) [280, 281]

Lnc MCF2L-
AS1 Colon Oncogene

Enhances cell proliferation and in-
vasion through crosstalk with miR-
874-3p/FOXM1 signaling axis

[282]

Lnc MEG3

Brain, Bladder,
Bone marrow,
Breast, Colon,
Liver, Lung,
Prostate

Tumor suppressor
Interacts with the tumor suppressor
p53 and regulates its target gene
expression

[283, 284]

Lnc MIR22HG Lung Oncogene Promotes cell survival [285]

Lnc RuPAR Colon, Stom-
ach Tumor suppressor

Inhibits tumor progression by down-
regulation of protease-activated
receptor-1(PAR-1)

[286]

Lnc NEAT1 Prostate, Skin Oncogene

Mediates oncogenic nuclear recep-
tor (ER) signaling, prevents DNA
damage and activation of p53 tu-
mor suppressor

[287]

Lnc NEAT1 Pancreatic Tumor suppressor Prevent transformation and prolif-
eration [288]

Lnc NKILA Breast Oncogene
Promotes activation-induced cell
death in CTLs, T>1 cells, leading
to immune evasion

[289]

Lnc PANDA Leukemia Tumor suppressor Inhibits cell growth [290]

Lnc PCA3 Prostate Oncogene Enhances cell proliferation through
regulation of PRUNE2 [291]

Lnc PCAT-1 Prostate Oncogene
Represses expression of BRCA2 tu-
mor suppressor to impact DNA
damage repair

[292]

Lnc PGM5-AS1 Colon Tumor suppressor Inhibits proliferation and invasion [293]

Lnc PRNCR1 Colon, Prostate Oncogene

Binds to the androgen recep-
tor and enhances ligand-dependent
and ligand-independent androgen-
receptor-mediated gene activation

[294, 295]

Lnc PTENP1 Liver Tumor suppressor Suppresses proliferation and inva-
sion [296]

Lnc PURPL Colon Oncogene Promotes cell growth [297]

Lnc PVT1

Breast, Blad-
der, Colon,
Kidney, Pan-
creas

Oncogene

Activates oncogenic signaling
(MYC, STAT3) and represses
expression of tumor suppressors
(p15, p16)

[298–301]

Lnc PVT1 Breast, Ovarian Tumor suppressor Inhibits cell growth [302]
Lnc ROR Breast Oncogene Elevates multiple drug resistance [303]
Lnc ROR Brain Tumor suppressor Inhibits proliferation [304]
Lnc RP11-
598D14.1 Liver Tumor suppressor Inhibits cell growth, cell survival

and transformation [305]

Table 1 – Continued on next page
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ncRNAs Cancer types Function
Description of the
mechanisms of action of
cancer-related ncRNA

References

Lnc SAMM-
SON Melanoma Oncogene

Interacts with and controls subcel-
lular localization of proteins that
regulate mitochondrial homeostasis
and metabolism

[306]

Lnc SChLAP1 Prostate Oncogene

Interacts with and antagonizes ac-
tivity of the SWI/SNF chromatin
modifying complex to promote in-
vasion and metastasis

[307]

Lnc SCIRT Breast Tumor suppressor Restrains transcriptional program
of tumor-initiating cells [308]

Lnc TCAM1P-
004 Liver Tumor suppressor Inhibits cell growth, cell survival

and transformation [305]

Lnc THOR Lung,
Melanoma Oncogene

Binds IGF2BP1 to stabilize inter-
actions with oncogenic target mR-
NAs, in turn stabilizing those tran-
scripts and promoting proliferation

[309]

Lnc TRG-AS1 Liver Oncogene Promotes proliferation and invasion [310]
Lnc TRINGS Lung Oncogene Protects cancer cells from necrosis [231]
Lnc TROJAN Breast Oncogene Promotes proliferation and invasion [311]

Lnc TSLNC8 Liver Tumor suppressor Inhibits cell growth, cell prolifera-
tion and transformation [296, 305]

Lnc TUG1 Bladder, Esoph-
agus Tumor suppressor

Regulates miR-145. Suppresses
epithelial-to-mesenchymal transi-
tion and radio-resistance

[312, 313]

Lnc UCA1

Colon, Bladder,
Breast, Esoph-
agus, Stomach,
Liver, Skin

Oncogene Regulates CREB [312]

Lnc URHC Colon Oncogene Promotes proliferation and invasion [314]

Lnc XIST Breast, Brain Oncogene Promotes proliferation, invasion
and inhibit apoptosis [315, 316]

miR-10b Breast,
Glioblastoma Oncogene

Targets several transcripts that en-
code regulators of cell cycle pro-
gression, migration, invasion, and
metastasis

[317–319]

miR-122 Liver Tumor suppressor
Targets expression of several genes
involved in lipid metabolism, pro-
liferation, and inflammation

[320, 321]

miR-1225-5p Liver Tumor suppressor Inhibits proliferation and invasion [322]
miR-126 Ovarian Tumor suppressor Inhibits proliferation [323]

miR-1274a Colorectal Oncogene Promotes proliferation and metas-
tasis [324]

miR-128 Brain Tumor suppressor Inhibits proliferation and differenti-
ation [325]

miR-134-3p Ovarian Tumor suppressor Reduces multiple drug resistance [326]
miR-136 Brain Tumor suppressor Promotes apoptosis [327]
miR-137 Brain Oncogene Promotes proliferation [328]
miR-137-3p Colorectal Tumor suppressor Inhibits migration [329]
miR-140 Breast Tumor suppressor Inhibits proliferation [330]

miR-141 Breast,
Prostate Oncogene Promotes proliferation and metas-

tasis [331, 332]

miR-142-5p Pancreatic Tumor suppressor Inhibits proliferation [333]
miR-143 Breast Tumor suppressor Inhibits proliferation [334]
miR-145 Prostate Tumor suppressor Inhibits proliferation and invasion [335]
miR-146a Leukemia Tumor suppressor Alleviates myeloma proliferation [336]
miR-15/16 Leukemia Oncogene Sustains stemness [337]

miR-155 Lymphoma Oncogene
Targets SHIP1 transcript, a nega-
tive regulator of AKT, to increase
proliferation and survival

[338–340]

miR-15a/16 Prostate,
Leukemia Tumor suppressor

Targets several transcripts that
encode cyclins, CDKs, and anti-
apoptotic proteins, thereby increas-
ing apoptosis and inhibiting prolif-
eration

[341, 342]

Table 1 – Continued on next page
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Table 1 – Continued from previous page

ncRNAs Cancer types Function
Description of the
mechanisms of action of
cancer-related ncRNA

References

miR-185 Leukemia Tumor suppressor Impairs survival of drug-resistant
cells [343]

miR-190b Lung Tumor suppressor Suppresses cell growth [344]
miR-200a Lung Tumor suppressor Represses EMT [345]
miR-200b-3p Pancreatic Oncogene Sustaining self-renewing [346]

miR-21 Lung, Lym-
phoma Oncogene

Targets transcripts that encode neg-
ative regulators of RAS signaling,
leading to increased proliferation
and decreased apoptosis

[347, 348]

miR-22 Colorectal Tumor suppressor Represses invasion [349]

miR-221 Liver Oncogene

Targets transcripts of tumor sup-
pressors and cell cycle inhibitors (e.
G. , p27, PTEN) to increase prolif-
eration and decrease apoptosis

[350, 351]

miR-26a Glioma,
Leukemia Oncogene

Targets both tumor suppressor
(PTEN) and cyclin (CCND2/E2)
transcripts to either increase

[352, 353]

miR-26a Liver, Colorec-
tal Tumor suppressor Suppresses tumorigenesis and de-

crease proliferation [354, 355]

miR-29 Leukemia Oncogene Promotes proliferation in B cells [356]
miR-29 Glioblastoma Tumor suppressor Suppresses cell growth [357]
miR-30 Breast Tumor suppressor Promotes apoptosis [358]

miR-31 Lung, Breast Oncogene

Targets transcripts that encode reg-
ulators of RAS, WNT, and TGFβ
signaling to increase proliferation,
stem cell renewal, and metastasis

[359, 360]

miR-34 Prostate Tumor suppressor Reduces stemness [361]
miR-342-3p Liver Tumor suppressor Inhibits proliferation [362]

miR-34a Lung, Prostate,
Breast Tumor suppressor

Targets several oncogenic tran-
scripts encoding cyclins, CDKs, cell
adhesion molecules, RTKs, and
other non-RTKs

[363–366]

miR-506 Ovanan Tumor suppressor
Targets SNAI2 transcript to de-
crease its expression and inhibit mi-
gration, invasion, and EMT

[367]

miR-518b Lung Oncogene Promotes proliferation and metas-
tasis [368]

miR-589 Liver Tumor suppressor Suppresses stemness [369]

miR-592 Colorectal Oncogene Promotes proliferation and clono-
genicity [370]

miR-600 Breast Tumor suppressor Inhibits stemness [371]

miR-629 Lung Oncogene Promotes proliferation and metas-
tasis [372]

miR-635 Stomach Tumor suppressor Inhibits proliferation and invasion [373]

miR-675
Colorectal,
Bladder, Gas-
tric

Oncogene Regulates tumor suppressor RB,
p53 and RUNX1 [374–376]

miR-675 Prostate, Lung Tumor suppressor
Represses tumor progression and
metastasis by targeting TGFBI or
GPR55

[377, 378]

miR-7 Breast Tumor suppressor Inhibits cell growth [379]

miR-766 Breast Oncogene Promotes proliferation, chemoresis-
tance, migration and invasion [380]

miR-876-5p Stomach Tumor suppressor Inhibits proliferation and invasion [381]
miR-93-5p Liver, Stomach Oncogene Suppresses senescence [382]
miR-99 Leukemia Tumor suppressor Suppresses stemness [383]

let-7 Breast, Ovarian Oncogene Sustains self-renewing or multiple
drug resistance [384, 385]

let-7 Lung Tumor suppressor

Targets several transcripts that en-
code oncogenes, including RAS,
leading to decreased cell cycle pro-
gression and proliferation

[364, 386,
387]

Table 1. The most well-known lncRNAs and miRNAs that, based on experimental evidence,
exhibit oncogenic functions, tumor suppression functions or both depending on the context.
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A deeper understanding of the complex networks of interactions coordinated by ncRNAs
would provide a unique opportunity to design better-personalized therapies.
Moreover, many ncRNAs can be released from tumor cells in free-circulating form, bound
to lipoproteins or carried by extracellular vesicles into biologic fluids [388, 389]. This has
directed the scientific community toward their study as biomarkers for tumor diagnosis, or
for prediction of survival, metastasis, or response to therapy [390].
Also, in this case the most studied concern lncRNAs and miRNAs, listed in Table 2 .

ncRNAs Cancer types Biomarkers types Source
materials References

Lnc ARSR Renal
Prognostic for overall survival,
recurrence-free survival and prog-
nostic for progression-free survival

Tissue, blood [236, 237]

Lnc CCAT1 Colorectal
Prognostic for overall survival,
cancer-specific survival, and
recurrence-free survival

Tissue [391, 392]

Lnc CCAT2 Colorectal Prognostic for overall survival and
recurrence-free survival Tissue [392]

Lnc CamK-A Breast Prognostic for overall survival and
recurrence-free survival Tissue [240]

Lnc EPIC1 Breast Prognostic for overall survival Tissue [252]
Lnc FAL1 Ovarian Prognostic for overall survival Tissue [254]

Lnc H19 Gastric, Gallblad-
der For diagnosis and poor prognosis Tissue, blood [393, 394]

Lnc HOTAIR
Pancreatic,
Esophageal, Ovar-
ian, Breast, CRC

For diagnosis, prognostic for over-
all survival and metastasis-free sur-
vival

Tissue, blood [263, 395–
399]

Lnc HOTTIP Liver Prognostic for overall survival Tissue [400]
Lnc HULC Liver For diagnosis Tissue, blood [401, 402]

Lnc LINK-A Breast Prognostic for progression-free sur-
vival Tissue [275]

Lnc LUCAT1 Breast, Liver Prognostic for overall survival Tissue [403]
Lnc
MALAT1 Lung, Prostate For diagnosis and prognostic for

overall survival
Tissue, blood,
urine [404, 405]

Lnc NEAT1 Prostate
For diagnosis, prognostic for
metastasis-free survival and
cancer-specific survival

Tissue [287]

Lnc PCA3 Prostate For diagnosis Urine [406]
Lnc PCAT-1 Prostate For diagnosis Tissue [407]

Lnc PCAT-
14 Prostate

For diagnosis, prognostic for overall
survival, metastasis-free survival,
and cancer-specific survival

Tissue [408, 409]

Lnc
SChLAP1 Prostate Prognostic for metastasis-free sur-

vival and cancer-specific survival Tissue [410, 411]

Lnc UCA1

Bladder, Cholangio-
carcinoma, Colorec-
tal, Endometrial,
Pancreatic.

For diagnosis, prognostic for over-
all survival and metastasis-free sur-
vival

Urine, tissue [412, 413]

miR-1 Esophageal For poor prognosis Tissues [414]
miR-103a-3p Colorectal For diagnosis Plasma [415]

miR-10b Pancreatic
For diagnosis, prognostic for
metastasis-free survival and overall
survival

Tissue [416]

miR-124-3p Glioma For diagnosis Serum exosomes [417]
miR-127-3p Colorectal For diagnosis Plasma [415]
miR-128-3p Lung For diagnosis Tissue, blood [418]

miR-1290 Colorectal, Oral,
Prostate

For diagnosis, prognostic for over-
all survival and progression-free sur-
vival

Tissue, blood [419–421]

miR-135a-3p Ovarian For poor prognosis Serum [422]

miR-143-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-146a-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

Table 2 – Continued on next page

PhD Student Chiara Zichittella 20



Table 2 – Continued from previous page

ncRNAs Cancer types Biomarkers types Source
materials References

miR-148a-3p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-150-5p Oral, Colorectal For diagnosis and poor prognostic Plasma, fresh
frozen biopsies [423, 424]

miR-151a-5p Colorectal For diagnosis Plasma [415]

miR-155 Gastric, Leukemia For diagnosis and prognostic for
overall survival Tissues, blood [425–427]

miR-16 Lung Prognostic for overall survival Blood [428]
miR-17-5p Colorectal For diagnosis Plasma [415]

miR-181a-5p Colorectal For diagnosis and poor prognostic Plasma, fresh
frozen biopsies [415, 423]

miR-18a-5p Colorectal For diagnosis Plasma [415]
miR-18b-5p Colorectal For diagnosis Plasma [415]

miR-196a-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-19b Lymphoma For diagnosis Cerebrospinal
fluid [429]

miR-21
Colorectal,
Prostate, Lung,
Leukemia, Breast

For diagnosis, prognostic for over-
all survival, cancer-specific survival
and progression-free survival

Tissue, blood [430–435]

miR-210
Pheochromocytomas,
Paragangliomas,
Colorectal

For diagnosis and poor prognostic Serum, fresh
frozen biopsies [423, 436]

miR-214 Prostate For diagnosis Cell lines [437]

miR-221 Hepatocellular,
Prostate For diagnosis Cell lines, tissues,

blood [431, 438]

miR-222 Glioma, Oral, Col-
orectal For diagnosis and poor prognostic

Serum exosomes,
plasma, fresh
frozen biopsies

[417, 423,
424]

miR-223-3p Colorectal, Breast For diagnosis and poor prognostic
Fresh frozen biop-
sies, plasma exo-
somes

[423, 439]

miR-23a-3p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-25-3p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-27a-3p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-296-5p Pancreatic For poor prognosis Tissues, cell lines [440]

miR-30b-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-30c-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-30d-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-31-5p Colorectal For poor prognosis Fresh frozen biop-
sies [423]

miR-33a-5p Lung For diagnosis Tissue, blood [418]

miR-34a Lung Prognostic for progression-free sur-
vival Tissue [441]

miR-371a-3p Germ cell tumors For diagnosis Serum [442]
miR-375 Intestinal, Prostate Prognostic for overall survival Biopsies, bloof [420, 443]
miR-423-5p Oral For diagnosis Plasma [424]
miR-424-3p Prostate For poor prognosis Tissues [444]
miR-451a Pancreatic For poor prognosis Plasma exosomes [445]
miR-491-5p Gastric For diagnosis Tissue, serum [446]

miR-506 Pancreatic, Ovar-
ian, Gastric

Prognostic for overall survival and
progression-free survival Tissue [367, 447,

448]

miR-92a Lymphoma For diagnosis Cerebrospinal
fluid [429]

miR-92b-3p Synovial sarcoma For diagnosis Serum, cell lines [449]
miR-944 Cervical For poor prognosis Tissues [450]

Table 2. The most well-known ncRNAs described as biomarkers for different cancer types.
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2.2 LncH19 and its miRNAs

Among the first discovered lncRNAs, is lncH19 [451]. It is located on human chromosome
11p15.5 and has a total length of 2.3 kb (containing 5 exons and 4 introns) [452]. Interest-
ingly, exon 1 of lncRNA H19 encodes for the miRNAs miR-675-3p and miR-675-5p, which
in turn plays several key roles in different physiological or pathological contexts [453]. H19
is highly expressed maternally in the developing mouse embryo [451, 454, 455]. After birth
it is abundant in skeletal muscle [451] and is developmentally regulated and activated very
early during muscle cell differentiation [456].
LncH19 has a highly conserved secondary structure, and its function is structure dependent.
[457, 458]. The molecular mechanisms by which H19 acts depend largely on the partners
with which H19 interacts (Figure 2 ) [459].
Numerous studies have described that lncH19 is generally and primarily found in the
cytoplasm, where it regulates protein translation and activity, mediates mRNA degradation
and acts as ceRNA by antagonizing miRNAs [217, 460–462]. However, recent studies
indicate its expression also at the nuclear level, where it controls chromatin modification
proteins to regulate chromatin remodelling, epigenetic markers and gene expression in cis-
or trans- or behaves as a splicing regulator [459, 463, 464]. For example, a very recent
study showed that lncH19 acts at the nuclear level by promoting DNA damage repair and
PARP inhibition resistance by interacting directly with ILF2 [465].
Also at the nuclear level, lncH19 is implicated in gene methylation; the study by Zhou et
al, supports the role of H19 as a regulator of SAHH (S-adenosylmocysteine hydrolase),
resulting in altered DNA methylation [466].
In adult tissues, lncH19 expression can be restored during the process of regeneration
and tumorigenesis, indicating that H19 is probably related to tumor development and
progression [467, 468]. Originally, it was assumed that lncH19 was a tumor suppressor
because the H19 transcription competes for transcription factor binding to a neighboring
oncogene, IGF2 [469–471]. However, subsequent evidence suggested that, although it
acts as a tumor suppressor through transcriptional downregulation of IGF2, lncRNA H19
mainly promotes oncogenesis. H19 is believed to act canonically as an oncogene, as it is
upregulated in several tumors and is associated with tumor transformation and malignancy
[257, 472–476].
Furthermore, poor patient prognosis correlates with H19 overexpression [477–479]. Several
recent research have recognized abnormal expression of lncH19 in a variety of human
cancers, such as colorectal [473, 480, 481], liver [482, 483], stomach [484], pancreas [485],
oesophageal [486], breast [487, 488], lung [489], glioma [490], ovarian [491] and bladder
[492].
LncH19 is also a precursor of antisense RNAs, such as the antisense transcript lncRNA
91H, which is overexpressed in breast cancer [493] or HOTS, the tumor suppressor opposite
to H19 [494].
Further studies show that H19 plays a function largely dependent on tumor type, stage of
tumor growth and level of molecular signalling pathway [476, 495].
Today, H19 is one of the most extensively studied and documented long non-coding RNAs,
functioning alone and as a precursor to the intragenic miRNA miR-675, which also shows
pro-tumor activity [496, 497].
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Figure 2. Functions of lncH19 in tumorigenesis [459].

MiR-675 is a highly conserved miRNA, which is synthesized from transcription of exon 1
of its precursor gene H19 by a typical process mediated by DROSHA ribonuclease 3 and
DICER [453, 457]; this hosts a miRNA containing a hairpin structure, the loop of which is
the most evolutionarily conserved region, and which in its entirety serves as a template for
two distinct miRNAs, miR-675-5p and miR-675-3p [458, 498]. The production of miR-675
from its precursor H19 represents a specific gene regulatory mechanism that functions
independently of the role of lncH19 [499]. Sometimes miR-675 are the main architects of
lncH19 function [458, 467]; they are induced during skeletal muscle differentiation after
injury in H19-deficient mice and promote skeletal muscle differentiation and regeneration
by targeting Smad anti-differentiation transcription factors [500]. In a very similar way,
miR-675 takes the place of lncH19 in metastatic CRC subjected to hypoxic stimulation
[480, 496].
Although miR-675 is processed at the expense of H19, there is a positive correlation between
the expression of H19 and miR-675. In fact, both are found to be upregulated in many
types of cancer, including gastric cancer [376, 501, 502] and colorectal cancer [374, 503];
for this very reason, their relationship remains controversial [504].
The functional roles of miR-675 in tumorigenesis depend on the target gene. Some of
the multiple direct or indirect targets of miR-675 are: Retinoblastoma protein (Rb) in
colorectal cancer [374], p53 in bladder and colorectal cancer [375], Transforming Growth
Factor β (TGFβ1) in prostate cancer [377], Calneuron 1 (CALN1) and Runt Domain
Transcription Factor 1 (RUNX1) in gastric carcinoma [376, 501], Cadherin-13 in glioma
[505], G Protein-coupled Receptor 55 (GPR55) in non-small cell lung cancer [378], Twist 1
in hepatocellular cancer [506] and Early Growth Response protein 1 (EGR1) in liver cancer
[507].
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CHAPTER 3
Chemoresistance

3.1 Chemoresistance in cancer
Today, despite numerous advances in cancer research, the most promising strategy for
malignancies treatments is chemotherapy [119, 508]. Chemotherapeutic agents can be
classified into antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase
inhibitors, and other categories based on their mechanism of action [508]. Unfortunately,
although the design of new chemotherapeutic agents is growing rapidly, no chemotherapeutic
agents have been discovered effective against the advanced stage of cancer, invasion and
metastasis. Currently 90% of chemotherapy failures occur during tumor invasion and
metastasis due to drug resistance [119, 509].
The acquisition of chemotherapy resistance is a complex process whose underlying mech-
anism has not been fully elucidated. Cancer drug resistance, in fact, can occur through
different strategies, including anticancer drugs inactivation, MDR, cell death inhibition
(apoptosis suppression), alteration in drugs’ metabolism, epigenetic and drug targets,
enhanced DNA repair and gene amplification (Figure 3 ) [119].
In detail:

• Cancer cells are able to inactivate anticancer drugs through specific proteins that allow
detoxification of drugs, including enzymes of the glutathione S-transferase (GST)
family. Their increased expression in cancer cells, results in reduced drug-induced
damage and lethality, as well as apoptosis and increased drug resistance [510, 511].

• The efficacy of anticancer drugs and their activity depend on the absorption and
subsequent retention or efflux of the drug in the extracellular environment. Based
on this concept, cancer cells are able to survive a wide range of anticancer drugs
(MDR) by reducing the uptake or increasing the efflux of the drug to the outside of
the cell [512]. For example, overexpression of drug efflux transporters such as the
ATP-binding cassette (ABC) offer protection to cancer cells against the negative
effects of chemotherapy [513, 514].

• Involved in drug resistance are alterations in the expression and/or activity of multiple
apoptosis-related genes and molecules, leading to dysregulation and decreased rates of
cell death. In situations of apoptosis, the most commonly reported alterations involve
TP53 and its targets, the Bcl-2 family, effector or inducer caspases and mitochondrial
caspase (SMAC) [119]. In addition, tumor cells following drug treatment can inhibit
their cell death programmes by increasing their autophagy flux and thus selectively
removing damaged cytoplasmic components [515, 516]. Recent evidence underlines
the close interaction between apoptosis and autophagy in different types of tumors,
including CRC. Qian et al. evaluated the interplay between these two processes
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in CRC, concluding that autophagy and apoptosis can be induced simultaneously
and regulate cell death independently, can mutually induce each other, or that
autophagy antagonises apoptosis by preventing the accumulation of damaged DNA
and endoplasmatic reticulum stress products [517–519].

• Enzymes play a very important role in the metabolism of chemotherapeutics. Depend-
ing on their presence and quantity inside cells, they can modulate the intracellular
concentration of the drug, reducing or increasing its activation. The same principle
applies to the genes or target proteins of chemotherapeutic agents; mutations or
changes in the expression levels of these can vary the effect of the drug on cells [119].

• Epigenetics also plays a key role in the development of chemoresistance. For instance,
oncosuppressor genes are often silenced by methylation; conversely, hypermethylation
of oncogenes induces their expression. Demethylation of the multidrug resistance
gene (MDR1), in tumor cell lines, leads to the acquisition of a multidrug-resistant
phenotype and reduces the accumulation of the anticancer drug in tumor cells [520].
Crea et al. collected strong evidence that epigenetic mechanisms trigger resistance to
three agents commonly used in CRC (5-FU, Irinotecan and Oxaliplatin) [521].

• It has been described that inhibition of DNA repair systems by chemotherapeutic
agents makes cancer cells more sensitive to treatment and increases the efficacy of
chemotherapy [119].

• The cell can also resist drug treatment through genetic amplification, increasing the
copy number of oncogenes resulting in increased production of related oncoproteins
and resistance to chemotherapeutics [522].

Figure 3. Overview of the mechanisms of drug resistance in cancer cells [119].

Another mechanism that can induce chemoresistance is the low oxygen tension (hypoxia)
established in growing tumor mass; it has been associated with a poor prognosis for many
cancers including breast [523], hepatocellular carcinoma (HCC) [523] and CRC [524].
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3.2 Hypoxia-induced ncRNAs and chemoresistance
Oxygen deficiency is one of the peculiar characteristics of solid tumors, often associated
with poor prognosis; tumor cells can develop a hypoxic condition due to inadequate oxygen
supply (chronic hypoxia) or transient fluctuations in blood flow (acute hypoxia) [525, 526].
Furthermore, tumor cell metabolism is reprogrammed by this deficiency, readjusting to
enable survival, proliferation and ensure tumor progression [527, 528].
Clinically, hypoxia is correlated with metastasis, resistance to chemotherapy and ra-
diotherapy, and worse survival [529–532]. Hypoxia-inducible factor 1α (HIF-1α) and
hypoxia-inducible factor 2α (HIF-2α), migrate into the nucleus, heterodimerize with hypoxia-
inducible factor 1β (HIF-1β) and transcriptionally activate many genes involved in tumor
growth promoting angiogenesis, metabolic switch, autophagy, invasion, and metastasis [528,
533–537]. Despite sharing similar structures, HIF-1α and HIF-2α had highly divergent and
even opposing roles in solid tumors under hypoxic conditions. Accumulating evidence in
recent years has shown that HIF-1α is associated with chemotherapy failure in many differ-
ent human cancers, on the other hand, suggests that HIF-2α, at least partly, contributes
to chemo/radioresistance through different mechanisms [538]. Therefore, stabilization of
HIF-1α induces molecular and phenotypic changes by promoting cell survival, plasticity,
motility, and resistance to several anticancer drugs, including 5-FU.
Considering the crucial role of hypoxia and HIF in the context of solid tumors, these have
been proposed as possible therapeutic targets in cancer. In recent years, several strategies
and drugs have been tested and proposed as therapeutic tools to impair the activity of
HIF and related pathways, but only a few of them are in clinical trials presumably due to
tolerance limitations, lack of hypoxic selectivity or specificity on the pleiotropism of this
transcription factor [539, 540]. In addition to intra-tumor hypoxia, several mechanisms
have been reported to contribute to the signalling and regulation of HIF-1/2α, including
low molecular weight signal molecules such as reactive oxygen species (ROS), cytokines and
growth factors, loss of function of tumor suppressors and increased function of oncogenes.
This complexity of regulatory pathways makes the conception and design of HIF-1/2α
inhibitors even more complex. Indeed, although some selective HIF-1/2α inhibitors have
been proposed, none have been clinically approved. Moreover, other drugs have been shown
to indirectly influence the HIF-1/2α pathway, which reflects the connectivity between
HIF-1/2α signalling and additional cellular pathways. Consequently, intervention in these
ways in cancer leads to an indirect inhibition of HIF activity [541].
To date, further studies are needed to clarify the great complexity of HIF regulation and
to identify specific anticancer treatments. The use of HIF-1/2 inhibitors in combination
with chemotherapeutics has proven beneficial in several preclinical studies [542]. Hence,
there is a need to understand the drug combinations to which the addition of a HIF-1/2
inhibitor will have additive or synergistic effects [541] and the possible molecular mediators
through which HIF determines the more aggressive chemoresistant phenotype, in order to
identify new and effective therapeutic targets [543].
Over the past few decades, many studies indicated the relevance of non-coding RNAs
(ncRNAs) in hypoxia-driven cancer progression and correlated their overexpression with
poor prognosis (Figure 4 ) [188, 544, 545].
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Figure 4. Hypoxia-inducible factor (HIF) complex transcriptionally activates non-coding RNAs (ncRNAs)
in response to hypoxia. Under normoxia (black arrows), HIF-1/2α subunits are subjected to hydroxylation
by prolyl hydroxylase domain enzymes (PHDs) and other prolyl hydroxylases. Hydroxylated HIF-1/2α
subunits are recognized by VHL proteins and targeted for subsequent ubiquitination and proteasomal
degradation. Under hypoxia (red arrows), low pO2 results in HIF-1/2α accumulation, nuclear translocation
and dimerization with HIF-β, finally, after recruitment of CBP/p300, the transcription initiation complex
binds the promoter of target genes inducing their expression. Among the hypoxia-induced RNAs, the
ncRNAs (miRNAs or lncRNAs) will be involved in different pathways, regulating cell proliferation, cell
cycle and cell death. Moreover, some of these can regulate HIF itself [188].

Profiling techniques and bioinformatics analysis allowed us to unveil more and more hypoxia-
regulated non-coding RNA by the presence of the hypoxia response elements (HREs) in
their promoter regions [546]. Moreover, several studies have described hypoxic induction of
non-coding RNAs lacking HREs indicating an indirect regulation often involving epigenetic
mechanisms; HIF may control non-coding RNAs expression through histone deacetylase
activation or affecting miRNA maturation machinery [544, 547].
In addition, recent data demonstrated that HIF-1α can directly regulate circRNAs at the
transcriptional level [548–550] and that HIF-induced circRNAs may promote cancer growth
as demonstrated in bladder [551]; however, unlike miRNAs and lncRNAs, the mechanisms
of HIF-mediated circRNAs expression have been less investigated.
Considering the different mechanisms through which ncRNAs might control tumor growth,
these have been divided here into two different groups: (1) the hypoxia-induced ncRNAs
that work as HIF effector in promoting cell growth or inhibiting cell death, and (2) the
hypoxia induced ncRNAs such as aHIF-1α, linc-ROR, and lincRNA-p21 which directly or
indirectly regulate the HIFs proteins (Figure 5 ) [188].
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Figure 5. Direct or indirect feedback loops between HIF-1α and hypoxia-regulated ncRNAs [188]. The
hypoxia-regulated ncRNAs, HIF-1α, and other co-operators intertwine to form reciprocal feedback loops in
both positive and negative manners, represented in the figure respectively with red arrows and blue lines.
A: Reciprocal feedback loops between HIF-1α and hypoxia-regulated lncRNAs.
B: Reciprocal feedback loops between HIF-1α and hypoxia-regulated miRNAs.

3.2.1 HypoxamiRs and chemoresistance

Several studies show that hypoxia induces overexpression or downregulation of various
miRNAs, collectively called “hypoxamiRs”, which play a key role as emerging mediators
involved in the response of tumor cells to the hypoxic microenvironment in a variety of
human cancers (Table 3 ) [552–555].
It is important to consider that human tissues may exhibit a different spectrum of responses
to hypoxia, including changes in HIF expression that could result from the expression
of tissue-specific miRNAs [556]. Indeed, many miRNAs are expressed in tissue- and age-
specific models [557]. Since miRNAs act by regulating gene expression and thus downstream
protein synthesis, they are ideal candidates for regulating HIF expression during hypoxic
situations. Consequently, during the early stages of hypoxia, specific temporal changes in
miRNA levels may contribute to the accumulation of HIF-1, while simultaneously keeping
HIF-2 and HIF-3 levels stable. On the other hand, in prolonged hypoxia, a change in
miRNA expression is observed in order to sustain low HIF-1 activity and maintain high
levels of HIF-2 and HIF-3 [556].
Furthermore, it is interesting to note that studies on tumor cells have documented that
hypoxia leads to a reduction in the expression of genes involved in miRNA biogenesis,
including DICER [558] and DROSHA [559]. At the same time, however, they increased
the expression of genes responsible for miRNA function, such as EIF2C4, which encodes a
crucial component of the Argonaute 4 RISC complex (AGO4) [558].
A study suggests that hypoxic levels of the great majority of HIF-1α-dependent miRNAs
(including miR-210) are also HIF-2α-dependent and that HIF-2α alone regulates the
expression of 11 specific miRNAs [560]. Among the main hypoxamiR are miR-210 [561],
miR-146a [562], miR-145 [563], miR-382 [564], miR-191 [565], miR-363 [566], miR-224 [567],
miR-16 [568], miR-17/20a [569], miR-21/103/107 [553], miR-181b [570] and miR-421 [571]
in cancer cells.
Recently, many studies have shown that miRNAs play a key role in the development of
MDR) [572–574], such as miR-106a [575], miR-508-5p [576], miRNA-19a/b [577], miR-27a,
miR-181a and miR-20b [578].
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Besides miRNAs in general, hypoxamiRs may have an impact on several pathways associ-
ated with sensitivity or resistance to chemotherapeutic drugs in various cancer types. In
particular, among the hypoxamiRs that play an important role in chemoresistance is the
hypoxia-induced miR-210-3p, whose upregulation promotes EMT and chemoresistance to
Temozolomide (TMZ) in U87-MG glioma cells [579]. Against the same chemotherapeutic
agent, overexpression of hypoxia-induced miR-137 inhibited cell invasion and enhanced
chemosensitivity of glioblastoma multiforme cells by directly targeting low-density lipopro-
tein receptor-related protein 6 (LRP6) [580].
Again, HIF-1α-induced miR-421 promotes metastasis, inhibits apoptosis and induces
cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer [571]. Similarly,
Zhang et al. found that hypoxia-induced miR-424 decreases the sensitivity of CRC
and melanoma cancer cells (HCT-116 and A375 respectively) to doxorubicin (Dox) and
etoposide by inhibiting apoptosis [581]. Furthermore, recently Feng. et al. found that
hypoxia-induced up-regulation of miR-27a promotes paclitaxel resistance in ovarian cancer
[582].
In contrast, the study by Xu et al. showed that miR-338-5p has a negative correlation with
HIF-1α; in a xenograft model, overexpression of miR-338-5p in CRC cells and the HIF-1α
inhibitor (PX-478) were able to increase the sensitivity of CRC to oxaliplatin (OXA) [583].
Finally, some miRNAs are able to enhance the sensitivity [584, 585] or resistance [586] of
the tumor to the action of chemotherapeutic agents by directly regulating HIF-1α.
Clinically, assessment of the status of these miRNAs may contribute to a detailed under-
standing of hypoxia-induced resistance mechanisms and/or to the development of future
hypoxia-modifying therapies. However, hypoxia-induced miRNAs that may modulate
chemotherapy sensitivity by regulating genes involved in hypoxia signalling pathways have
not yet been studied in depth [578].
In fact, few data have demonstrated a direct correlation between hypoxia-induced miRNAs
and chemoresistance and, in particular, the role of miR-675-5p in hypoxia-induced drug
resistance has not yet been studied.

HypoxamiRs Cancer types Regulation
Hypoxia-mediated Functions References

miR-100 Bladder Downregulation Promotes cell proliferation [587]
miR-101 Renal Upregulation Promotes glycolysis [588]

miR-103 Colorectal Upregulation Promotes hyperproliferation and
decreases apoptosis [589]

miR-107 Colorectal Upregulation Promotes hyperproliferation and
decreases apoptosis [589]

miR-137 Glioblastoma Downregulation Inhibits cell viability and pro-
motes apoptosis [580]

miR-145 Bladder Upregulation Induces apoptosis [563]
miR-146a Leukaemia Upregulation Associated with chemoresistance [562]
miR-16 Lymphomas Downregulation Regulates angiogenesis [568]
miR-17 Leukaemia Downregulation Regulates cell cycle [569]
miR-181a Gastric Downregulation Associated with chemoresistance [578]
miR-181b Retinoblastoma Upregulation Promotes cell proliferation [570]

miR-191 Lung, Breast Upregulation Promotes cell proliferation and
migrations [565, 590]

miR-199a Liver Downregulation Associated with a worse survival [591]
miR-204 Liver Downregulation Induces tumor cell proliferation [592]
miR-20a Leukaemia Downregulation Regulates cell cycle [569]
miR-20b Gastric Downregulation Associated with chemoresistance [578]

miR-21 Cervical, Gas-
tric, Pancreatic Upregulation Promotes cell growth, prolifera-

tion and inhibits apoptosis [593, 594]

Table 3 – Continued on next page
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Table 3 – Continued from previous page

HypoxamiRs Cancer types Regulation
Hypoxia-mediated Functions References

miR-210

Glioma, Liver,
Ovarian,
Schwannoma,
Neuroblastoma

Upregulation Promotes/inhibits cell prolifera-
tion and apoptosis [595–599]

miR-224 Gastric Upregulation Promotes cell growth [567]

miR-27a Gastric, Ovar-
ian Upregulation Promotes cell proliferation and

chemoresistance [582, 600]

miR-27a Gastric Downregulation Associated with chemoresistance [578]
miR-338 Colorectal Downregulation Associated with chemoresistance [583]

miR-33a Liver Downregulation Upregulates tumor cell prolifera-
tion [601]

miR-363 Leukaemia Upregulation Regulates hematopoiesis [566]
miR-382 Gastric Upregulation Promotes cell proliferation [564]

miR-421 Gastric Upregulation Inhibits apoptosis and induces
chemoresistance [571]

miR-424 Breast Upregulation Inhibits apoptosis [581]
miR-548an Pancreatic Downregulation Inhibits cell proliferation [602]

miR-675 Colorectal,
Lung, Gastric Upregulation

Regulates cell cycle, promotes cell
proliferation and inhibits apopto-
sis

[480, 496,
505, 603,
604]

Table 3. Main hypoxamiRs that, based on experimental evidence, play different roles in
several cancer types.

3.2.2 Hypoxia-induced lncRNAs and chemoresistance

Accumulating evidence shows that HIF promotes rapid and effective phenotypic changes
through the induction of hypoxia-responsive lncRNAs [605]. In fact, hypoxia-induced
lncRNAs regulate several biological processes related to tumorigenesis, including tumor
growth/proliferation, tumor metabolism, angiogenesis, tumor migration/invasion, apoptosis
and chemoresistance [606–609].
At the same time, recent evidence has shown that lncRNAs can regulate the expression or
activity of HIF-1α and consequently modulate downstream targets and cellular processes
mediated by HIF-1α [610, 611].
Thus, lncRNAs can reciprocally regulate hypoxia signalling by stabilising HIF-1α through
several mechanisms, including epigenetics, RNA stability and translation, protein stability
and regulation of HIF-1α transcriptional activity (Figure 6 ) [610].
Among the emerging lncRNA regulators of HIF1a is the lncRNA CASC9, which can be
induced by HIF-1α and reciprocally promote the stability of HIF-1α [612]; together HIF-1α
and CASC9 may form a reciprocal positive feedback loop to facilitate cell proliferation and
metastasis in lung cancer [613]. Recently, Cheng-Ning Ma et al. identified hypoxia-induced
lncRNA HABON as a regulator of HIF-1α; specifically, the lncRNA HABON interacts
with HIF-1α to promote its protein degradation, thereby influencing the transcription of
HIF-1α’s target genes to exert its effects on hepatocarcinoma cells [614].
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Figure 6. LncRNAs: emerging HIF-1α regulators [610].

The majority of hypoxia-induced lncRNAs have an oncogenic function. However, some
hypoxia-induced lncRNAs play an opposing role in tumor proliferation and migration
(Table 4 ). As shown by Wang et al., they demonstrated that suppression of HIF2PUT,
a HIF-2 α-induced lncRNA, accelerates proliferation of the human osteosarcoma cell line
MG63 [615]. Hypoxia-induced lncRNAs that play an oncogenic role include lncRNA
HOTAIR, lncRNA-BX111, lncRNA GAPLINC and lncRNA RP11-390F4.3 which, in
non-small cell lung cancer, pancreatic carcinoma, gastric carcinoma and breast cancer,
respectively, promote metastasis and tumor progression [616–619].
Hypoxia-induced overexpression of lncRNAs MALAT and NEAT also promotes tumor
progression by acting as ceRNAs. For example, the lncRNA MALAT competitively bind
miR-3064-5p, thereby promoting breast cancer cell proliferation and migration [620].
Similarly, lncRNA NEAT, overexpression of which is induced by HIF-2α, competitively
binds miR-101-3p, participating in the progression of non-small cell lung cancer via the
miR-101-3p/SOX9/Wnt/β-catenin axis [621].
Using microarray analysis on hypoxia-induced gastric cancer cell lines, Wang et al. identified
several hypoxia-responsive lncRNAs in gastric cancer. In particular, they found that an
intronic antisense lncRNA named lncRNA-AK058003 was among the most induced lncRNAs
upon hypoxia treatment in all examined gastric cancer cell lines [622], data confirmed also
in breast cancer [623].
Recent studies have indicated that hypoxia-induced lncRNAs play an important role in
chemotherapy resistance, these include lncRNA LUCAT1, lncRNA EMS, lncRNA NORAD
and lncH19. Hypoxia-induced ncRNA LUCAT1 confers chemoresistance to CRC cells both
in vitro and in vivo. LUCAT1 physically interacts with PTBP1 (Polypyrimidine Tract
Binding Protein 1) to modulate the alternative splicing of a set of DNA damage-related
genes [624].
Zhu et al. demonstrated that targeted knockout of hypoxia-induced lncRNA EMS and
WTAP decreased chemoresistance to cisplatin treatment in a xenograft mouse experimental
model. Evidencing the involvement of the EMS/miR-758-3p/WTAP axis in the regulation
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of hypoxia-mediated cisplatin resistance in oesophageal cancer [625].
Furthermore, Zhang et al. demonstrated that hypoxia-induced lncRNA NORAD promotes
vasculogenic mimicry and resistance to 5-FU by acting as ceRNA of miR-495-3p in hypoxic
CRC [626].
Finally, our work demonstrated that lncH19 indirectly, through its intragenic miRNA,
miR-675-5p, promotes chemoresistance to 5-FU in CRC under hypoxic conditions [627].
Till now, the specific mechanisms of most hypoxia-induced lncRNAs to regulate cell
proliferation and chemoresistance are still unknown and need to be further elucidated in
the future.

Hypoxia-
induced
lncRNAs

Cancer
Types

Regulation
Hypoxia-
mediated

Regulatory
mechanism Functions References

Lnc
AC020978 Lung Upregulated

HIF-1α direct
Transcriptional reg-
ulation

Promotes cell prolifera-
tion and glycolysis [628]

Lnc
AK058003 Gastric Upregulated

HIF-1α

Interaction chro-
matin/epigenetic
regulators

Promotes migration
and tumor progression [622]

Lnc
BC005927 Gastric Upregulated

HIF-1α direct

Interaction chro-
matin/epigenetic
regulators

Promotes tumor pro-
gression [629]

Lnc BX111 Pancreatic Upregulated
HIF-1α direct

Transcriptional reg-
ulation

Promotes cell prolifera-
tion [617]

Lnc CASC9
Naso-
pharyngeal,
Lung

Upregulated
HIF-1α direct

Transcriptional reg-
ulation and interac-
tion protein or pro-
tein complex

Promotes glycolysis, tu-
mor progression and
metastasis

[612, 613]

Lnc CRPAT4 Renal Upregulated
HIF-1α direct

Transcriptional reg-
ulation

Promotes cell migra-
tion [630]

Lnc DARS-
AS1 Myeloma Upregulated

HIF-1α direct
Post-translational
modification

Promotes tumorigene-
sis [631]

Lnc EFNA3 Breast Upregulated
HIF-1α direct

Protein accumula-
tion

Promotes metastatic
dissemination [632]

Lnc EIF3J-
AS1 Liver Upregulated

HIF-1α direct
Sequestration of
miRNAs

Promotes cell prolifera-
tion and migration [633]

Lnc EMS Esophageal Upregulated
HIF-1α direct

Sequestration of
miRNAs

Promotes chemoresis-
tance [625]

Lnc
GAPLINC Gastric Upregulated

HIF-1α direct
Transcriptional reg-
ulation

Promotes cell prolifera-
tion and migration [618]

Lnc H19

Multiple
Myeloma,
Glioblas-
toma, Lung,
Prostate

Upregulated
HIF-1α direct
and indirect

Transcriptional reg-
ulation and interac-
tion protein or pro-
tein complex

Promotes migration, in-
vasion, tumor progres-
sion and cell dissemina-
tion

[472, 604,
634, 635]

Lnc HABON Liver Upregulated
HIF-1α direct

Transcriptional reg-
ulation

Promotes migration
cell growth and prolif-
eration

[614]

Lnc HAS2-
AS1 Oral Upregulated

HIF-1α direct
Transcriptional ac-
tivation Promotes cell invasion [636]

Lnc HIF1A-
AS2 Glioblastoma Upregulated

HIF-1α direct
Transcriptional reg-
ulation

Involved in stem cell
growth, cell renewal
and survival

[637]

Lnc
HIF2PUT Osteosarcoma

Upregulated
HIF-2α depen-
dent

Interaction protein
or protein complex

Decreases cell prolifera-
tion and migration [615]

Lnc
HINCUT-
1

Colorectal Upregulated
HIF-1α

Transcriptional reg-
ulation

Promotes cell prolifera-
tion [638]

Lnc HOTAIR Lung, Liver Upregulated
HIF-1α direct

Sequestration of
miRNAs

Promotes cell prolifera-
tion, migration and gly-
colysis

[616, 639]

Lnc HOTTIP Glioma,
Lung

Upregulated
HIF-1α direct

Sequestration of
miRNAs

Promotes migration, in-
vasion and glycolysis [640, 641]

Table 4 – Continued on next page

PhD Student Chiara Zichittella 32



Table 4 – Continued from previous page

Hypoxia-
induced
lncRNAs

Cancer
Types

Regulation
Hypoxia-
mediated

Regulatory
mechanism Functions References

Lnc LET
Gallbladder,
Colorectal,
Lung, Liver

Downregulated
HIF-1α direct
or indirect/
epigenetic
(HDAC3)

Transcriptional reg-
ulation

Induces cell viability,
proliferation and metas-
tasis

[271, 642]

Lnc Linc-
01436 Lung Upregulated

HIF-1α direct
Sequestration of
miRNAs

Promotes cell migra-
tion and invasion [643]

Lnc Linc-p21 Cervical,
Breast

Upregulated
HIF-1α direct

Interaction protein
or protein complex Promotes glycolysis [644]

Lnc Linc-
ROR Liver Upregulated

HIF-1α direct

Sequestration
of miRNAs or
present within
the extracellular
vesicles

Promotes cell survival [645]

Lnc LUCAT1 Colorectal Upregulated
HIF-1α direct

Interaction protein
or protein complex
scaffold and tran-
scriptional activa-
tion

Induces chemoresis-
tance [624]

Lnc
MALAT1 Lung, Liver

Upregulated
HIF-1α direct
or HIF-2α
direct

Transcriptional reg-
ulation and seques-
tration of miRNAs

Promotes cell prolifera-
tion, migration and gly-
colysis

[646–649]

Lnc
MTA2TR Pancreatic Upregulated

HIF-1α direct
Transcriptional reg-
ulation

Promotes tumorigene-
sis [650]

Lnc NDRG-
OT1 Breast Upregulated

HIF-1α
Post-Translational
modification

Promotes protein
degradation [651]

Lnc NEAT1 Breast,
Lung

Upregulated
HIF-2α depen-
dent

Transcriptional reg-
ulation and seques-
tration of miRNAs

Promotes cell prolifera-
tion, tumorigenesis and
paraspeckle formation

[621, 652]

Lnc NICI Renal Upregulated
HIF-1α direct

Transcriptional reg-
ulation

Involved in glycolysis
and cell proliferation [653]

Lnc NORAD Pancreatic,
Colorectal

Upregulated
HIF-1α direct

Transcriptional reg-
ulation and seques-
tration of miRNAs

Promotes migration, tu-
mor progression and
chemoresistance

[626, 654]

Lnc
NUTF2P3 Pancreatic Upregulated

HIF-1α direct

Transcriptional ac-
tivation and seques-
tration of miRNAs

Promotes cell prolifera-
tion and tumor progres-
sion

[655]

Lnc
PCGEM1 Gastric

Upregulated
HIF-1α depen-
dent

Transcriptional reg-
ulation

Promotes cell prolifera-
tion and invasion [656]

Lnc RAB11B-
AS1 Breast Upregulated

HIF-2α direct
Transcriptional reg-
ulation

Promotes angiogenesis
and metastasis [657]

Lnc RP11-
390F43

Breast,
Hypo-
pharyngeal

Upregulated
HIF-1α direct

Transcriptional reg-
ulation

Promotes migration
and tumor progression [619]

Lnc RUNX1-
IT1 Liver

Downregulated
HIF-1α indi-
rect/ epigenetic
(HDAC3)

Sequestration of
miRNAs

Decreases cell prolifera-
tion [658]

Lnc SARCC Renal Downregulated
HIF-2α direct

Post-Translational
regulation

Promotes/Inhibits cell
proliferation [659]

Lnc UCA1 Gastric,
Bladder

Upregulated
HIF-1α direct

Sequestration of
miRNAs

Promotes cell prolifera-
tion, tumor progression
and drug resistance

[660, 661]

Lnc WT1 Leukemia

Upregulated
HIF-1α indi-
rect/ epigenetic
(DNA demethy-
lation)

Interaction chro-
matin/epigenetic
regulators

Involved in stem cell
function [662]

Table 4. Main hypoxia-induced lncRNAs that, based on experimental evidence, play different roles several
cancer types.
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CHAPTER 4
Objectives

To date, it is known that 98% of the human transcriptome encodes for several classes
of non-coding RNAs (ncRNAs), whose biological relevance is gradually being recognized,
especially in different types of cancer. Several published data strongly indicate that ncRNAs
are aberrantly expressed in cancer and are involved in multiple biological processes such as
proliferation, differentiation, tumor progression, apoptosis and drug resistance.
Currently, numerous studies suggest that an increasing number of patients with colorectal
cancer (CRC) show primary or acquired resistance to 5-Fluorouracil (5-FU), the standard
chemotherapy generally used in both adjuvant and palliative chemotherapy.
This resistance is associated with poor prognosis; therefore, it is critical to better understand
the molecular mechanism underlying drug resistance by studying the possible involvement
of ncRNAs or new drugs, with antitumor activity.
During my PhD I investigated the role of the lncH19 and its intragenic miR-675 in regulating
drug responses in CRC, with the ultimate goal of identifying new targets and effective
therapeutic strategies to enforce conventional therapy.
To pursue this goal I directed my studies towards two main objectives:

• the first aims to investigate the role of the hypoxia-induced ncRNA miR-675-5p in
5-FU chemoresistance on CRC cells, to identify new and more effective molecular
targets for the treatment of colorectal cancer. The data obtained to pursue this goal
are described in Chapter 5 and published in the scientific journal BMC Cancer
with the title: “Mir-675-5p supports hypoxia-induced drug resistance in
colorectal cancer cells” [627].

• the second aims to investigate the use of an HDACi (ITF2357) in CRC cells investi-
gating its effects on lncH19 expression and activity. The data obtained to pursue
this goal are described in Chapter 6 and published in the scientific journal Fron-
tiers in Pharmacology with the title: “Long non-coding RNA H19 enhances
the pro-apoptotic activity of ITF2357 (Histone Deacetylase Inhibitor) in
colorectal cancer cells” [663].
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CHAPTER 5
“MiR-675-5p supports hypoxia-induced

drug resistance in CRC cell”

5.1 Materials and Methods

5.1.1 Cell culture

HCT-116 and SW480 cells (ATCC-LGC Standards S.r.L., Italy) were cultured respectively
in McCOY’S 5A medium and RPMI 1640 (Euroclone, UK) supplemented with 10%
Fetal Bovine Serum, 1% Penicillin/Streptomycin (10,000 U/mL Penicillin and 10 mg/mL
Streptomycin) and 200 mML-Glutamine (all from Euroclone, UK).
Cells were maintained in a humidified atmosphere of 5% CO2 at 37°C and used at early
passages (under 10 passages) for all experiments. The culture medium was changed every
2-3 days, and cells were split at 70–80% of confluence.

5.1.2 Hypoxia assay

To perform hypoxia experiments, cells were seeded on cell culture plates (Sarstedt),
maintained for 24 hours in a humidified atmosphere of 5% CO2 at 37°C, and finally moved
into a hypoxic chamber (Stemcell™ Technologies, Voden Medical Instruments spa, Italy)
containing 1% O2 gas mixture for 72 hours, the suitable time to achieve hypoxia-induced
drug resistance [664].

5.1.3 MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bro-
mide) assay

Cell viability was determined by MTT assay following the manufacturer’s instructions
(Cat. n° M6494, Thermo Fisher®, USA) and the absorbance at 540nm was measured by
the Microplate Reader (BioTek Instruments, USA). HCT-116 and SW480 were seeded in
quadruplicate respectively at 3 × 104 or 2.5 × 104 cells/cm2. After 24 hours, the cells were
treated with 5 or 10µM of 5-FU (5-Fluorouracil, cat. n° F6627, Sigma-Aldrich, St. Louis,
MO, USA) and placed for 72 hours in hypoxic (hypoxic chamber containing 1% O2 gas
mixture) or normoxic conditions.

5.1.4 Transfection

HCT-116 and SW480 cells were seeded respectively at 3 × 104 or 2.5 × 104 per cm2. The
day after, cells were transfected with 3.7 pMoles/cm2 of miRCURY LNA miRNA Inhibitor
hsa-miR-675-5p (Cat. n°339203 YCI0202815-FZA, Qiagen, Germany), or miRCURY LNA
miRNA Inhibitor Negative Control (Cat. n°339,203 YCI0202036-FZA, Qiagen, Germany).
For cell transfection, HiPerFect Transfection Reagent (Cat. n° 301704, Qiagen, Germany)
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was used following the manufacturer’s standard instructions. Six hours after transfection,
the cells were treated with 10µM of 5-FU in a fresh medium and placed for 72 hours in
hypoxic or normoxic conditions. After this time cells were used for MTT assay or protein
and RNA extraction.

5.1.5 RNA extraction and Real-Time PCR (qRT-PCR)

Total RNA was extracted using the commercially available TRIzol® RNA Isolation Reagents
(Cat. n° 15596026, Thermo Fisher® Products & Kits, USA) according to the manufacturer’s
instructions. The total RNA concentration was detected with Nanodrop spectrophotometer
(Thermo Fisher®, USA). Reverse transcription and qRT-PCR were performed following the
manufacturer’s instruction by the use of TaqMan™ MicroRNA Reverse Transcription Kit
(Cat. n° 4366596, Applied Biosystem™, USA) and TaqMan™ Fast Universal PCR Master
Mix. (Cat. n° 4352042, Applied Biosystems™, USA). For probes and oligonucleotides were
used Has-miR-675-5p cod. TM002005 and U6 snRNA cod. TM001973 (all from Applied
Biosystems™, USA). Hsa-miR-675-5p expression levels were normalized to U6 snRNA and
data are presented as 2-ΔΔCt.

5.1.6 MirWalk target prediction

The miR-675-5p targets prediction among apoptosis pathway was performed using the tool
Target Mining of mirWalk 2.0 database search engine [665].

5.1.7 Wester blotting

HCT-116 and SW480 cells were lysed for 1,30 hours in Lysis Buffer (15 mM Tris/HCl
pH 7.5, 120 mM NaCl, 25 mM KCl, 1 mM EDTA, 0.5% Triton X100) addicted with
Phosphatase Inhibitor cocktail (Cat. n° 37492, Active Motif, USA). Cell debris was
removed by centrifugation at 17.000 g for 15′ at 4 °C and the supernatant, containing
protein lysate, was quantified by the Bradford microassay method (Pierce™ Coomassie Plus
Assay Kit, Cat. n° 23236, Thermo Fisher Scientific, USA) using Bovine Serum Albumin
(BSA, Cat. n° A2153, Sigma-Aldrich, USA) as a standard. A total of 15 µg of protein
from each sample was separated using Bolt Bis-Tris gel 4 – 12% (Cat. n° NP0326BOX,
ThermoFisher Scientific, USA) and transferred on nitrocellulose membranes with pore size
0.45 µm (Cat. n° GEH10600002, GE Healthcare, USA). The membranes were coloured
with 0.1% Rosso Ponceau in 5% acetic acid to evaluate the correct loading and migration
of all samples. The membranes were incubated for 1 hour in blocking solution (5% BSA,
20 mM Tris, 140 mM NaCl, 0.1% Tween-20) and overnight with the primary antibodies:
anti-Carbonic Anhydrase/CA9 (1:1000, Cat. n° 5648S, Cell Signaling Technology, USA),
anti-PARP-1 (1:500, Cat. n° sc-8007, Santa Cruz Biotechnology USA), anti-Cleaved
aspase-3 (1:400, Cat. n° 9664S, Cell Signaling Technology, USA), anti-caspase-3 (1:500,
Cat. n° sc-7272, Santa Cruz Biotechnology, USA), anti-caspase-9 (1:750, Cat. n° 9502,
Cell Signaling Technology, USA), and anti-β-Actin (1:1500, Cat. n° sc-81178, Santa Cruz
Biotechnology, USA). After five washes in TBST buffer (20 mM Tris, 140 mM NaCl, 0.1%
Tween-20) the membranes were incubated with appropriate secondary antibody HRP,
Goat anti-Rabbit IgG (1:10.000, Cat. n° 31460, Invitrogen, Thermo Fisher® Scientific,
USA) and anti-mouse IgG (1:10.000, Cat. n° 7076, Cell Signaling Technology, USA). The
chemiluminescent signal was detected by the Chemidoc acquisition instrument (Bio-Rad,
USA). The obtained images were analyzed with the Image Lab software (Bio-Rad, USA).
If required, depending on protein molecular weight, the membranes were subjected to
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stripping protocol, before proceeding with further staining. Briefly, 15′ incubation with
stripping solution (Restore™ PLUS Western Blot Stripping Buffer, Cat. n° 46430, Thermo
Fisher® Scientific, USA) at 37 °C.

5.1.8 Firefly luciferase assay

For validation of pro-caspase-3 as a target of miR-675-5p, HCT-116 cells were seeded at 7 ×
104 cells/cm2 and 24 hours after seeding, transfected with Attractene Transfection Reagent
(Cat. n° 301005, Qiagen, Germany) for 24 hours with 100 ng (3.7 pMoles/cm2) of mirVana™
hsa-miR-675-5p mimic (Mimic miR-675-5p, Assay ID MC12067, Thermo Fisher®, USA) or
mirVana™ Scrambled Negative Control (Scr) and with 50 ng of Reporter plasmid DNA
(caspase-3 Human 3′ UTR Clone/RFP, Cat. n° SC215501, OriGene Technologies, Inc) used
following the manufacturer’s standard application guide. Then 24 hours after transfection,
luciferase tests were performed using the Firefly Luciferase Assay Kit (Cat. # PR300001,
OriGene Technologies, Inc) following the manufacturer’s standard instructions. Lumines-
cence and fluorescence were detected by GloMax®-Multi Microplate Reader (Promega,
USA). The luminescence was normalized for the Red Fluorescent Protein (RFP) values
and the relative Luciferase activity following the overexpression of the hsa-miR-675-5p
mimic (Luc/RFP + Mimic miR-675-5p) is expressed in fold change with respect to the
Negative Control (Luc/RFP + Scr).

5.1.9 Statistical analysis

Data are reported as mean ± standard deviation (SD) of at least three biological replicates.
Statistical analyses: Student’s t-test or Ordinary one-way ANOVA with Bonferroni’s
multiple comparison test were performed by using GraphPad Prism software (GraphPad
Software, USA). P-values were indicated in the graphs as follow: * = p < 0.05; ** = p <
0.01; *** = p < 0.001; **** = p < 0.0001.
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5.2 Results

5.2.1 Prolonged hypoxia induced chemoresistance to the 5-FU treatment
and enhanced miR-675-5p expression

Long-time exposure to hypoxic conditions, beyond 48 hours, is known to activate molecular
pathways leading cancer cells to promote survival strategies including chemoresistance
[666–668]. To reproduce this condition in vitro, CRC cell lines (HCT-116 and SW480)
were treated with different concentrations of 5-FU and maintained in a hypoxic chamber
containing 1% O2 gas mixture for 72 hours. The activation of hypoxic response in our
model was confirmed by the increase of the carbonic anhydrase 9 (CA9), a primary HIF’s
target (Figures 7A-B) [668, 669].

Figure 7. Carbonic Anhydrase 9 expression confirms the hypoxic condition.
A-B: Representative images and densitometric analysis of Western blots for Carbonic Anhydrase (CA9)
obtained from protein lysates of HCT-116 and SW480 in normoxic conditions or subjected to hypoxic
conditions. The graphs ordinate shows the OD (Optical Density) of the indicated proteins normalized for
the housekeeping’s OD (β-actin).
Data are expressed as the mean ± SD of three independent experiments and statistical significance was
analyzed using a Student’s t-test (* = p < 0.05; ** = p < 0.01).

To investigate the effects of hypoxia on cell survival, MTT assays have been done. As
expected, the cell viability assay showed that 5-FU treatments induced cell death in CRC
cell lines in normoxic conditions while it did not occur in hypoxic conditions (Figures
8A-B). These data supported the use of our model as a tool to investigate the molecular
mechanisms controlling hypoxia-induced chemoresistance. Further experiments have been
performed by using the higher dose of 5-FU.
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Figure 8. Colon cancer cell lines behaviour under chronic hypoxic stimulation (72 h).
A-B: Cell viability assay (MTT Assay) in HCT-116 and SW480 treated for 72 h with two different
concentrations of 5-FU (5 µM and 10 µM) in normoxic (N) conditions or subjected to hypoxic (H)
conditions. Data are expressed as the percentage of cell viability versus untreated cells both in normoxia
and chronic hypoxia (Ctr).
C: Analysis of the expression level (qRT-PCR) of miR-675-5p in HCT-116 and SW480 under normoxic
conditions and after 72 hours of hypoxic stimulation. The miR-675-5p levels were normalized for RNU6
(U6 Small Nuclear 1), and the ΔΔCt was calculated with respect to the expression levels under normoxic
conditions.
All data are the mean ± SD of three biological replicates. Statistical analyses: Ordinary one-way ANOVA
with Bonferroni’s multiple comparison test were used in Figs. A and B, Student’s t-test was used for Fig.
C (* = p < 0.05; ** = p < 0.01; **** = p < 0.0001).
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Our previous manuscripts identified the miR-675-5p as hypoxia-induced miRNA with a
role in mediating acute hypoxic responses. However, the expression of miR-675-5p after
prolonged hypoxic stimulation has not been yet investigated [480, 603]. The RT-PCR in
Figure 8C revealed that CRC lines after prolonged hypoxia (72 hours) express higher
levels of miR-675-5p compared to cells in normoxic conditions. These data prompted us to
investigate its role in drug resistance.

5.2.2 The use of miR-675-5p antagonist counteracted the hypoxia-induced
drug resistance

Firstly, through miRNA inhibition, we explored the role of hypoxia-induced miR-675-5p
in cell viability. MTT assay revealed that in both cell lines, treatment with miRNA
AntagomiR-675-5p reduced cell viability of hypoxic cells (Figure 9A). In the light of this,
we investigated whether treatment with AntagomiR-675-5p could enhance the effect of
5-FU thus overcoming the hypoxia-induced chemoresistance.

Figure 9. Effects of AntagomiR-675-5p treatment in cell viability in chronic hypoxic conditions.
A: Cell viability assay (MTT Assay) in HCT-116 and SW480 transfected with AntagomiR-675-5p or
Scrambled Negative Control (Scr) and grown in the hypoxic chamber for 72 h. Data are expressed as cell
viability percentage compared to cells transfected with Scr.
B: Cell viability assay (MTT Assay) in HCT-116 and SW480 transfected with AntagomiR-675-5p or
Scramble Negative Control (Scr) and treated or not for 72 h of hypoxia with 5-FU (10 µM).
Data are expressed as the mean ± SD of three biological replicates. Statistical analyses: Student’s t-test
was used for Fig. A, and Ordinary one-way ANOVA with Bonferroni’s multiple comparison test was used
in Fig. B (* = p < 0.05; ** = p < 0.01; **** = p < 0.0001).
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The cell viability assay confirmed our hypothesis indicating that, in hypoxic conditions,
cells treated with both 5-FU and AntagomiR-675-5p showed a higher reduction of cell
viability, compared to cells treated with the drug alone (Figure 9B).
It is known that 5-FU treatment in CRC promotes apoptosis through caspase-9 activation
[670], here we investigated if the addition of the AntagomiR-675-5p promotes cell death by
enforcing cell entrance into apoptosis. To this aim, western blot analyses for apoptotic
markers were done in hypoxic cells (1% O2 gas mixture) transfected with AntagomiR-675-5p
or Scrambled Negative Control (Scr) and treated or not with 5-FU (10 µM). As shown in
Figures 10A-B the treatment with 5-FU induced PARP-1 cleavage and increased the
levels of cleaved caspase-3, interestingly these effects were further improved by the addition
of AntagomiR-675-5p to the drug. Overall, these data indicated a role for the miR-675-5p
in inhibiting apoptosis.

Figure 10. Effects of AntagomiR-675-5p treatment on apoptosis markers.
A-B: Representative images and densitometric analysis of Western blots for cleaved PARP-1/PARP-1 and
cleaved caspase-3 obtained from protein lysates of HCT-116 and SW480 in chronic hypoxia, transfected
with AntagomiR-675-5p or Scrambled Negative Control (Scr) and treated or not with 5-FU (10 µM). The
graphs ordinate shows the OD (Optical Density) of the indicated proteins normalized for the housekeeping’s
OD (β-actin).
Data are expressed as the mean ± SD of three independent experiments and statistical significance was
analyzed by using Ordinary one-way ANOVA with Bonferroni’s multiple comparison test (* = p < 0.05; **
= p < 0.01; *** = p < 0.001).

5.2.3 MiR-675-5p directly targeted caspase-3 3’UTR

By querying the miRWalk database [665], we obtained the list of the putative miR-675-
5p targets involved in apoptosis (Figure 11A) (KEGG Pathway hsa04210#Apoptosis).
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Considering the effects shown by the AntagomiR-675-5p in hypoxic conditions we decided to
investigate firstly the caspases of the intrinsic apoptosis pathway: caspase-9 and caspase-3.
Targets’ validation has been performed only in HCT-116. We transfected HCT-116 cells
with miRNA-675-5p mimic (Figure 11B) and investigated protein levels of both putative
targets. Transfection was performed on cells in normoxia as they express lower levels of
miR-675-5p.

Figure 11. Identification of miR-675-5p targets involved in apoptosis.
A: The network diagram obtained using the mirWalk database [665] illustrates the presumed 3’UTR targets
of miR-675-5p involved in apoptosis (KEGG Pathway hsa04210#Apoptosis).
B: Expression level analysis (qRT-PCR) of miR-675-5p in HCT-116 after overexpression of miR-675-5p
under normoxic conditions. The miR-675-5p levels were normalized for RNU6 (U6 Small Nuclear 1), and
the ΔΔCt was calculated with respect to the Scrambled Negative Control (Scr).
C-D: Representative images and densitometric analysis of Western blots respectively for pro-caspase-9 and
pro-caspase-3 on proteins lysates from HCT-116 transfected with miR-675-5p mimic or Scrambled Negative
Control (Scr) for 24 h in normoxia. The graphs ordinate shows the OD (Optical Density) of the indicated
proteins normalized for the housekeeping’s OD (β-actin).
E: The Firefly Luciferase assay validates pro-caspase-3 as the target of miR-675-5p. Luminescence was
normalized for RFP values end presented in the graph as relative Luciferase activity in cells treated with
mimic-miR-675-5p (Luc/RFP + Mimic miR-675-5p) with respect to cells treated with the Negative Control
(Luc/RFP + Scr).
All Data are expressed as mean ± SD of three independent experiments and statistical significance was
analyzed using Student’s t-test (* = p < 0.05; ** = p < 0.01).
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The western blot in Figure 11D indicated that miRNA overexpression in normoxic cells
induced a reduction in pro-caspase-3 while no effects have been revealed in pro-caspase-9
(Figure 11C). The direct targeting of caspase-3 3’UTR, has been further confirmed by
Luciferase assay (Figure 11E).
Overall, the data demonstrated that, in HCT-116 CRC cells grown in normoxic conditions,
AntagomiR-675-5p enforces the pro-apoptotic effects of 5-FU treatment by protecting
caspase-3 from miRNA-675-5p mediated inhibition.
Finally, we wondered if AntagomiR-675-5p could reinforce the effect of 5-FU even when
miR-675-5p concentrations are not as high as in some cases of primary tumor or in cells
under normoxic conditions [603]. Figures 12A-B indicated that, although with less
intensity than in hypoxic conditions, in HCT-116 cells the use of AntagomiR-675-5p
enhanced the apoptotic process induced by the 5-FU whereas AntagomiR-67-5p alone did
not affect cell viability, unlike what occurred in hypoxia.

Figure 12. Effects of AntagomiR-675-5p on HCT-116 cell line in normoxic conditions.
A-B: Representative images and densitometric analyses of Western blots for cleaved PARP-1/PARP-1 and
cleaved caspase-3 in HCT-116 in normoxic conditions, transfected with AntagomiR-675-5p or Scrambled
Negative Control (Scr) and treated or not with 5-FU (10 µM). The graphs ordinate shows the OD (Optical
Density) of the indicated proteins normalized for the housekeeping’s OD (β-actin).
Data are expressed as the mean ± SD of three independent experiments and statistical significance was
analysed by using Ordinary one-way ANOVA with Bonferroni’s multiple comparison test (* = p < 0.05; **
= p < 0.01; **** = p < 0.0001).
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5.3 Discussion

CRC still maintain a leading position among the causes of cancer deaths [3, 80]. Al-
though extensive advances in CRC treatments have been reached, chemoresistance to drug
treatment remains the major cause of recurrence and metastasis.
Nowadays it is important to dissect the molecular mechanisms underlying chemoresistance
processes, to identify new therapeutic targets and to enhance the action of conventional
therapy [113, 115, 119].
Increasing data obtained from experimental and clinical studies have shown that intratu-
moral hypoxia is a common feature of human cancers contributing to the development
of resistance to radiation and chemotherapy [537, 671]. The response of CRC cells to
treatment under low oxigen conditions aligned with previous research on the role of HIF-1
in triggering resistance to 5-FU treatment in the HCT-116 colon cancer line. These findings
further validate the use of our model to investigate the molecular mechanisms that regulate
hypoxia-induced resistance to chemotherapy [666, 672].
Meanwhile, several studies confirmed the role of hypoxia-induced non-coding RNAs as
pivotal players mediating hypoxic responses, including drug resistance [188, 582, 583, 624,
673, 674].
Among them, we and others attributed to the lncRNA H19 and its intragenic miR675-5p
an important role in promoting cancer onset and progression [258, 472, 496, 604, 675–678].
In CRC it has been demonstrated that lncH19 mediates 5-FU resistance enforcing SIRT1
mediated autophagy [679], while its expression by cancer-associated fibroblasts, promotes
stemness and chemoresistance of CRC [680]. Moreover, is through the expression of its
intragenic miR-675-5p that lncH19 promotes drug resistance to 1,25-dihydroxyvitamin D3
treatment; since miR-675-5p inhibits the expression of Vitamin D Receptor [676].
Thus, we assessed the levels of miR-675-5p under chronic hypoxia conditions, which as
expected, given that the miRNA in question is a hypoxia-induced microRNA, was found
to be significantly up-regulated compared to the normoxic condition; we therefore hypoth-
esised its direct involvement in hypoxia-induced 5-FU chemoresistance and the possible
pathways in which it might be involved. In order to understand the mechanisms underlying
chemoresistance, we used loss-of-function experiments in our in vitro experimental model,
aimed at specifically inhibiting the overexpressed miR-675-5p and preventing its interaction
with the mRNA of the target gene, via AntagomiR-675-5p [681, 682].
Here we demonstrated, for the first time to our knowledge that the miR-675-5p, which
expression is markedly increased by the hypoxic microenvironment, enforces drug resistance
by affecting 5-FU induced apoptosis through the inhibition of caspase-3 (Figure 13 ).
Resistance to chemotherapy treatment is often caused by processes that inhibit the apoptosis
induced by the drug, to overcome this limit several miRNAs have been identified as possible
drug co-operators. MiR-206, miR-148a, miR-125a-5p and miR-129 can target BCL2,
reducing its anti-apoptotic role and the overexpression of these miRNAs increased the
sensitivity of CRC cells to 5-FU [683–686]. MiR-143 increased the sensitivity of colorectal
cancer cells to 5-FU stimulated apoptosis by down-regulating BCL-2 and activating caspases
3, 8 and 9 [687]. Also, miR-182 by inducing caspase-3/PARP-1, and miR-34a by targeting
SIRT1, significantly increase apoptosis in CRC. On the other hand, the reduction of miRNA
such as miR-135b, miR-21 and miR-587, involved in apoptosis, can be considered a solution
to enhance the apoptosis of CRC cells [688–690].
To verify the possible correlation between miR-675-5p and apoptosis pathways we used the
miRWalk database, to obtain a network of the 3’UTR putative targets of this miRNA. We
found that miR-675-5p may target many mRNAs involved in apoptosis, such as caspase-3
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and caspase-9. Here we have confirmed the binding of miR-675-5p to caspase-3 however
other putative markers remain to be investigated.
Moreover, our data indicated that, in prolonged hypoxia, the miR-675-5p may promote
cell viability in multiple ways. MTT assay revealed that miR-675-5p inhibition reduced
cell viability in hypoxic cells however, treatment with the AntagomiR-675-5p alone showed
no cleavage in either caspase-3 or PARP-1. Our previous manuscript demonstrated that
miR-675-5p inhibition impedes beta-catenin nuclear localization in hypoxic CRC cells
inducing inhibition in Cyclin D expression. It is reasonable to assume that this inhibitory
effect may be reflected in a slowing of the cell cycle. However, further data must be
produced to support this hypothesis.

Figure 13. Schematic representation of the proposed model.
On the left in red is represented the CRC cell treated with the chemotherapeutic drug 5-Fluorouracil (5-FU)
which in normoxic conditions activates the apoptotic process. In blue at the top right is represented the
CRC cell treated with 5-FU in conditions of prolonged hypoxia, in which the overexpression of miR-675-5p
inhibits the activation of the apoptotic process by targeting the pro-caspase-3. Finally, below on the right
in blue is represented the CRC cell treated with 5-FU in conditions of prolonged hypoxia, in which the
presence of AntagomiR-675-5p activates the apoptotic process, increasing the protein levels of the cleaved
caspase-3 and the cleaved PARP-1.
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CHAPTER 6
“LncH19 enhances the pro-apoptotic

activity of ITF2357 in CRC cells”

6.1 Materials and Methods

6.1.1 Cell culture

HCT-116 cells (ATCC-LGC Standards S.r.L., Italy) were cultured in McCoy’s 5A medium
(Euroclone, UK) supplemented with 10% Fetal Bovine Serum, 1% Penicillin/Streptomycin
(10,000 U/mL Penicillin and 10 mg/mL Streptomycin) and 200 mM L-Glutamine (all from
Euroclone, UK).
5-Fluorouracil (5-FU) resistant HCT-116 cells (HCT-116-5-FU-R) were cultured in DMEM
(Euroclone, UK) supplemented with 10% Fetal Bovine Serum, 1% Penicillin/Streptomycin
(10,000 U/mL Penicillin and 10 mg/mL Streptomycin) and 200 mM L-Glutamine (all from
Euroclone, UK) and additionally, the culture medium contained 5-Fluorouracil (5-FU, cat.
n°F6627, Sigma-Aldrich, St. Louis, MO, USA) at concentrations up to 70 µM.
Cells were maintained in a humidified atmosphere of 5% CO2 at 37 °C and used at early
passages for all experiments. The culture medium was changed every 2-3 days, and cells
were split at 70–80% confluence.

6.1.2 Infection with lentiviral vectors to stably silence lncH19

HCT-116 cells were stably silenced for lncH19 by lentiviral infection with H19 Human
shRNA Lentiviral Particles (Cat. n° TL318197V, OriGene Technologies, Inc., Rockville,
MD, USA) while relative control cells were infected with Control shRNA Lentiviral Particles
(Cat. n° TR30021V, OriGene Technologies, Inc., Rockville, MD, USA). Subsequently,
infected cells were selected by cell sorting (BD FACSAria™ III Sorter, ATeN Center)
and maintained in culture under selective pressure with 1mg/mL of puromycin (Gibco™
Puromycin Dihydrochloride, cat. n°A1113802, Thermo Fisher® Scientific, USA). Silencing
efficiency was regularly tested by qRT-PCR and fluorescence microscopy.

6.1.3 Selection of HCT-116-5-FU resistant cells

5-FU resistant HCT-116 cell line (HCT-116-5-FU-R) was established after sequential treat-
ments with 5-FU during an 8-months period starting from 1 µM to 70 µM concentrations.
Control parental cells were split in parallel. Viable cells treated with 70 µM 5-FU were
considered stably resistant when the morphology resembled that of parental HCT-116.
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6.1.4 Chemicals and reagents

ITF2357 (Givinostat) was synthesized and supplied by the pharmaceutical company
Italfarmaco S.P.A (Cinisello Balsamo, MI, Italy). For in vitro experiments, ITF2357 was
dissolved in DMSO (20 mM stock solution) and stored at -20 °C. Before use, the stock
solution was thawed and diluted in McCOY’S 5A or DMEM culture media, not exceeding
0.01% (v/v) DMSO to realize the proper final concentrations.
The autophagy inhibitor Bafilomycin A1 (Cat. n° B1793-2UG, Sigma-Aldrich, USA) was
solubilized in DMSO according to the data sheet instructions and used for the experiments
at 20 and 50 nM final concentrations.

6.1.5 MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5 Diphenyl Tetrazolium Bro-
mide) assay

Cell viability was determined by MTT assay following the manufacturer’s instructions (Cat.
n° M6494, Thermo Fisher®, USA), and the absorbance was measured by biophotometer at
540 nm (BioTek Elisa ELX800 Absorbance Microplate Reader, BioTek Instruments, USA).
HCT-116 cells (wild type, silenced for lncH19 or 5-FU resistant) were seeded in at least
three technical replicates at 5 × 104 cells/cm2; 24 hours post-seeding, cells were treated
with different concentrations of ITF2357 (0.25 - 0.5 - 1 - 2 or 4 µM) and maintained in
a humidified atmosphere of 5% CO2 at 37 °C. MTT assay was done after different time
points as indicated in the results.
For the experiments with the autophagy inhibitor Bafilomycin A1, HCT-116 cells were
pretreated for 1 hour with Bafilomycin A1 (20 and 50 nM concentrations) and then ITF2357
was added at different concentrations (0.25 - 0.5 or 1 µM) for 48 hours.

6.1.6 Colony formation assay

LncH19 silenced HCT-116 cells and control cells were seeded at 40 cells/cm2 in six-well
plates. After 48 hours, cells were treated with different concentrations of ITF2357 (0.05
- 0.1 - 0.25 and 0.5 µM) and maintained in culture for 8 days to allow clone formation.
Clones were then washed once with phosphate buffer solution (PBS), fixed and stained
with methylene blue 1% in PBS/ethanol 50% for 1 minute at room temperature. Following
air-drying, clones were observed under a light microscope (LeicaDMR, Microsystems S.r.l,
Wetzlar, Germany). Only clones containing more than 50 cells were considered and were
counted. For counting, each well was divided into four quadrants and the media of the
number of clones in each quadrant was estimated. The total number of clones per well was
then obtained.

6.1.7 Annexin V/PI apoptosis detection assay

Annexin V/PI apoptosis detection assay (APC Annexin V Apoptosis Detection Kit with PI,
cat. n° 640932, BioLegend®) was used to identify early and late apoptotic cells. LncH19
silenced HCT-116 cells and respective control cells were seeded at 1.87 × 104 per cm2,
allowed to adhere overnight and then treated with 1 µM ITF2357 for 48 hours.
Briefly, following the manufacturer’s instructions, cells were harvested, and, after centrifu-
gation, cell pellets were washed twice with cold BioLegend cell staining buffer (Cat. n°
420201), resuspended in annexin V binding buffer, and labelled with APC Annexin V and
Propidium Iodide.
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Approximately 50000 events were acquired for each sample on a FACSCanto cytometer
(Becton Dickinson, Franklin Lakes, NJ, USA). Flow cytometry data were analyzed using
FlowJo software (v10; TreeStar, Ashland, OR, USA).

6.1.8 Western blotting

H19 silenced HCT-116 cells and control HCT-116 cells were lysed using Lysis Buffer (15
mM Tris/HCl pH 7.5, 120 mM NaCl, 25 mM KCl, 1 mM EDTA, 0.5% Triton X100)
supplemented with Phosphatase Inhibitor cocktail (Cat. N° 37492, Active Motif, USA) for
1.30h on ice. Cell debris was removed by centrifugation at 17,000 × g for 15 minutes at 4 °C
and the supernatant, containing protein lysate, was quantified by Bradford assay method
(Pierce™ Coomassie Plus Assay Kit, cat. N° 23236, Thermo Fisher Scientific, USA) using
Bovine Serum Albumin (BSA, cat. n° A2153, Sigma-Aldrich, USA) as a standard. A
total of 15 µg protein from each sample was separated using Bolt Bis-Tris gel 4% - 12%
(Cat. n° NP0326BOX, Thermo Fisher Scientific, USA) and transferred on nitrocellulose
blotting membrane (Amersham Protran Premium 0.45µm NC by GE HealthCare Life
Science, UK). The membranes were stained with 0.1% Red Ponceau in 5% acetic acid
to evaluate the correct loading of all samples. The membranes were incubated for 1h in
blocking solution (5% milk or 5% BSA in 20 mM Tris, 140 mM NaCl, 0.1% Tween-20) and
at 4 °C overnight with primary antibodies: anti-SQSTM1/p62 (1:500, cat. n° 39749S, Cell
Signaling Technology, USA), anti-LC3B (1:500, cat. n° 2775S, Cell Signaling Technology,
USA), anti-Poly ADP-Ribose Polymerase-1 (Anti-PARP-1, 1:500, cat. n° sc-8007, Santa
Cruz Biotechnology USA), anti-cleaved caspase-3 (1:400, cat. n° 9664S, Cell Signaling
Technology, USA), anti-p53 (DO-1, 1:200, cat. n° sc-126, Santa Cruz Biotechnology USA).
After washing with Tris-buffered saline-Tween 20 (TBS-T, 20 mM Tris, 140 mM NaCl,
0.1% Tween-20) three times, the membrane was incubated with appropriate secondary
antibody HRP, Goat anti-Rabbit IgG (1:10.000, cat. n° 31460, Invitrogen™, Thermo
Fisher® Scientific, USA) and anti-mouse IgG (1:10.000, cat. n° 7076, Cell Signaling
Technology, USA) at room temperature for 1h. The chemiluminescent signal was visualized
by chemiluminescence solution (ECL™ Prime Western Blotting System Cytiva RPN2232)
and was detected by using the Chemidoc acquisition instrument (Bio-Rad, USA). The
images were analyzed using the Image Lab software (Bio-Rad, USA).
Depending on the molecular weight of the protein, if required, the membranes were subjected
to stripping protocol, before proceeding with further incubation with other antibodies
Briefly, 10-15 minutes incubation with stripping solution (Restore™ PLUS Western Blot
Stripping Buffer, Cat. n° 46430, Thermo Fisher® Scientific, USA) at 37 °C, followed by
subsequent washes in TBS-T.

6.1.9 LC3-B assay

HCT-116 cells were seeded at 5 × 104 cells/cm2 in cell culture chamber slides (Cat. n°
94.6190.802, Sarstedt, Germany) and LC3B assay (Cat. n°L10382, LC3B Antibody Kit for
Autophagy, Invitrogen™ by Thermo Fisher® Scientific, USA) was performed following the
manufacturer’s instructions.
Briefly, 24 hours after seeding, HCT-116 cells were treated for 24 hours with 50 µM chloro-
quine diphosphate (CQ, provided by the LC3B Antibody Kit for Autophagy) alone or co-
treated with 50 µM chloroquine and 1 µM of ITF2357. Chloroquine blocks autophagosome-
lysosome fusion, thus allowing autophagosome visualization. After treatments, cells were
fixed with 4% paraformaldehyde for 15 minutes, permeabilized with 0.1% Triton X-100
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for 15 minutes and incubated with diluted LC3B rabbit polyclonal primary antibody (0.5
µg/ml according to the manufacturer’s instructions) for 1 hour.
DyLight™ 594 was used as secondary antibody (Goat anti-Rabbit IgG Secondary Antibody,
DyLight™ 594, 1:300, cat n°35560, Invitrogen™ by Thermo Fisher Scientific, USA).
Finally, cells have been counterstained with Hoechst (Hoechst 33342, Trihydrochloride,
Trihydrate, 1:1000, cat n°H3570, Molecular Probes, Life Technologies by Thermo Fisher
Scientific, USA) and ActinGreen (ActinGreen™ 488 ReadyProbes™ Reagent, 1:125, cat
n°R37110, Invitrogen™ by Thermo Fisher Scientific, USA). All steps have been done at
room temperature. The samples were analyzed by Nikon A1 confocal microscope.

6.1.10 RNA extraction and Real-Time PCR (qRT-PCR)

Total RNA was extracted using the commercially available Macherey-Nagel™ NucleoSpin™
miRNA Kit (Cat. n°740971.250, Macherey-Nagel, Germany) according to manufacturer’s in-
structions. The total RNA concentration was detected with the Nanodrop spectrophotome-
ter (Thermo Fisher®, USA) and was reverse transcribed to cDNA using the High-Capacity
cDNA Reverse Transcription kit (Cat. n° 4368814, Applied Biosystem™, USA).
Quantitative Real-Time polymerase chain reactions (qRT-PCR) were done by using SYBR™
Green PCR Master Mix (Cat. n° 4309155, Applied Biosystems™, USA) following the
manufacturer’s instructions in a Step One™ Real-time PCR System Thermal Cycling
Block (Applied Biosystems, Waltham, MA, USA).
The primers’ sequences used for expression analysis of the genes of interest are reported
in Table 5 . Gene expression levels were normalized using β-actin as endogenous control.
Finally, data are presented as 2-ΔΔCt compared with the untreated control.

Forward Reverse
H19 TCGTGCAGACAGGGCGACATC CCAGCTGCCACGTCCTGTAACC
SQSTM1/p62 TGTGTAGCGTCTGCGAGGGAAA AGTGTCCGTGTTTCACCTTCCG
MAP1LC3A GCTACAAGGGTGAGAAGCAGCT CTGGTTCACCAGCAGGAAGAAG
ATG16L CTACGGAAGAGAACCAGGAGCT CTGGTAGAGGTTCCTTTGCTGC
LAMP1 CGTGTCACGAAGGCGTTTTCAG CTGTTCTCGTCCAGCAGACACT
LAMP2 GGCAATGATACTTGTCTGCTGGC GTAGAGCAGTGTGAGAACGGCA
TP53 CCTGGATTGGCCAGACTGC TTTTCAGGAAGTAGTTTCCATAGGT
NOXA AGCTGGAAGTCGAGTGTGCT ACGTGCACCTCCTGAGAAAA
PUMA GGAGCAGCACCTGGAGTC TACTGTGCGTTGAGGTCGTC
β-ACTIN TCCCTTGCCATCCTAAAAGCCACCC CTGGGCCATTCTCCTTAGAGAGAAG

Table 5. Primers’ sequences of the genes analyzed.

6.1.11 Bioinformatic analysis

For the prediction of interactions between ncRNAs and their targets, bioinformatic analyses
were performed using DIANA tools [691]. Specifically, lncH19-miRNA interactions were
identified using DIANA-LncBase v.3, while miRNA-TP53 interactions were identified using
DIANA-TarBase v.8.
In homo sapiens we identified 159 validated miRNAs that lncH19 directly binds and 42
validated miRNAs that directly bind the TP53 gene.
By overlaying the two datasets from DIANA-LncBase v.3 (lncH19-miRNAs interactions)
and DIANA-TarBase v.8 (miRNAs-TP53 interactions) we found that lncH19 can bind 26
miRNAs that directly target the pro-apoptotic TP53 gene (Table 6 ).
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miRNAs
hsa-let-7a-5p hsa-miR-17-5p hsa-miR-107
hsa-let-7b-5p hsa-miR-19a-3p hsa-miR-125b-5p
hsa-let-7c-5p hsa-miR-19b-3p hsa-miR-181a-5p
hsa-let-7d-5p hsa-miR-22-3p hsa-miR-218-5p
hsa-let-7e-5p hsa-miR-24-3p hsa-miR-522-5p
hsa-let-7f-5p hsa-miR-30a-5p hsa-miR-940
hsa-let-7g-5p hsa-miR-34a-5p
hsa-let-7i-5p hsa-miR-93-5p
hsa-miR-10b-5p hsa-miR-98-5p
hsa-miR-15a-5p hsa-miR-103a-3p

Table 6. 26 miRNAs sponged from lncH19 that directly targeting the pro-apoptotic TP53
gene.

6.1.12 Statistical analysis

Data reported in all graphs are the mean ± standard deviation (SD) of at least three
independent biological replicates. The following tests have been performed: Student’s
t-test to compare two groups, One-Way ANOVA for comparisons among three or more
groups, and Two-Way ANOVA for comparison of multiple variables among two groups.
Analyses were performed by GraphPad Prism software (GraphPad Software, USA).
P-values were indicated in the graphs as follow: * = p < 0.05; ** = p < 0.01; *** = p <
0.001; **** = p < 0.0001. A p-value ≤ 0.05 was considered significant.

PhD Student Chiara Zichittella 50



6.2 Results

6.2.1 ITF2357 reduces CRC cell viability and increases the expression
levels of lncH19

Initially, to evaluate the sensitivity of the HCT-116 CRC cell line to ITF2357, cells were
treated with different concentrations of ITF2357 for 16, 24, 48 and 72 hours. Evaluation
of cell morphology indicated that the drug exerted a cytotoxic effect, which appeared
after 24 hours in cells treated with 1 µM ITF2357 and was clearly evident after 48 hours
either with 1 or 2 µM (Figure 14A). Morphological data were confirmed by MTT assay
(Figure 14B). As expected, ITF2357 treatment reduced the viability of HCT-116 cells in
a dose and time-dependent manner. About 50% reduction in viability was observed after
48 hours of treatment with 1 µM ITF2357.
LncH19 is known to display oncogenic activity in CRC, promoting cell proliferation [692],
epithelial to mesenchymal transition [481], and 5-FU drug resistance [679].
To elucidate whether the HDACi modifies the expression levels of lncH19, we performed
qRT-PCR analyses. Interestingly, the results revealed that ITF2357 promoted lncH19
expression in HCT-116, determining a twofold increase in the level of the lncRNA after 24
hours of treatment and almost threefold increase at 48 hours (Figure 14C).
Therefore, we hypothesized that lncH19 induction could be somehow functional to ITF2357
to exert its cytotoxic effect.
To verify this hypothesis, HCT-116 cells were stably silenced for lncH19, and the silencing
efficiency was confirmed by gene expression analysis (Figure 15A). Cell viability assay
in H19-silenced cells revealed that ITF2357 displayed much less efficacy under lncH19
knockdown. Indeed, the effect of ITF2357 was reduced by about 15% suggesting that
lncH19 plays a role in ITF2357-induced cytotoxicity in CRC cells (Figures 15B-C).
Moreover, colony formation assay further confirmed a direct role of lncH19 to sustain the
efficacy of the HDACi in CRC cells. Specifically, as shown in Figure 15D, treatment with
ITF2357 affected the clonogenicity of HCT-116 control cells in a dose-dependent manner,
while this effect was significantly weaker in H19-silenced cells, as also revealed by the
quantification of the number of clones in the two cell types (Figure 15E).

PhD Student Chiara Zichittella 51



Figure 14. Effects of ITF2357 on HCT-116 cell viability and lncH19 expression.
A: Phase contrast images of HCT-116 cells treated with different concentrations of ITF2357 (0.5 - 1 and 2
µM) for 16, 24 and 48 hours. The cells were visualized under a light microscope at 20× magnification, and
the pictures were acquired by NISA1 Leica Software.
B: Cell viability assay (MTT Assay) in HCT-116 cells treated with different concentrations of ITF2357 (0.25
- 0.5 - 1 - 2 and 4 µM) for 16, 24, 48 and 72 hours. Data are expressed as cell viability percentages compared
to untreated cells (Ctr). The results reported in the graph are the mean ± SD of three independent
biological replicates. Statistical analyses were performed using Ordinary two-way ANOVA with Bonferroni’s
multiple comparison test (** p < 0.01, **** p < 0.0001).
C: Analysis of the expression level (qRT-PCR) of lncH19 in HCT-116 cells treated with 1 µM ITF2357 for
24 and 48 hours. LncH19 expression level are reported as 2-ΔΔCt compared to untreated cells (Ctr) and
threshold cycle (Ct) were normalized against β-actin. The results reported in the graph are the mean ± SD
of three independent biological replicates. Statistical analyses were performed using Student’s t-test (** p
< 0.01, *** p < 0.001).
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Figure 15. Effects of silencing of lncH19 in HCT-116 treated with ITF2357.
A: Analysis of the expression level (qRT-PCR) of lncH19 in HCT-116 silenced cells respect to control cells
(Ctr). LncH19 expression level are reported as 2-ΔΔCt compared to control cells (Ctr), Ct were normalized
against β-actin. Data are expressed as the mean ± SD of three independent biological replicates. Statistical
analyses were performed using Student’s t-test (**** p < 0.0001).
B-C: Cell viability assay (MTT Assay) in HCT-116 cells silenced or not for lncH19 and treated with two
different concentrations of ITF2357 (0.5 and 1 µM) for 24 hours (left graph) and 48 hours (right graph).
Data are expressed as cell viability percentage compared to untreated cells. Data are expressed as the
mean ± SD of three independent biological replicates. Statistical analyses were performed using Ordinary
one-way ANOVA with Bonferroni’s multiple comparison test (** p < 0.01, **** p < 0.0001).
D-E: Clonogenic assay in HCT-116 cells silenced or not for lncH19, untreated or treated with indicated
concentrations of ITF2357 and maintained in culture for 8 days to allow clone formation. In the histogram
data are expressed as percentage of the number of clones compared to relative untreated cells. Data are
expressed as the mean ± SD. Statistical analyses were performed using Ordinary two-way ANOVA with
Bonferroni’s multiple comparison test (* p < 0.05, ** p < 0.01, **** p < 0.0001).

6.2.2 ITF2357 induces pro-survival autophagy in CRC cells

It is well known that both HDACis and lncH19 induce autophagy in different tumor cells
[693–695]. Therefore, we hypothesized that ITF2357, enforced by H19 expression, induces
autophagy-dependent cell death. To verify this hypothesis, the transcriptional levels of
some autophagy markers (ATG16L, SQSTM1/p62, MAP1LC3B/LC3, and LAMP1/2)
were analyzed. As shown in Figure 16A, ITF2357 upregulated all the autophagy genes
analyzed, an effect that was already evident after 24 hours. This effect was maintained
after 48 hours of treatment (data not shown).
The activation of autophagy was confirmed by an increase in LC3B signal in autophagosomes,
as revealed by immunofluorescence (Figure 16B). These data were confirmed by Western
Blot analysis showing a much higher level of LC3II cleaved form in ITF2357-treated
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cells. Moreover, a further confirmation of the autophagic process induced by ITF2357
was sustained by the significant decrease in the levels of p62 protein (Figures 16C-D).
This marker is usually considered to monitor the autophagic flux and it is associated with
completed autophagy when decreasing, since it is degraded by the autophagosome [696].
To investigate whether the activation of autophagy in HCT-116 cells could promote cell
death, cell viability was evaluated in cells treated with ITF2357 in the presence of the
autophagy inhibitor Bafilomycin A1.
As shown in Figure 16E, the cytotoxic effect exerted by three different doses of ITF2357
resulted enhanced either with 20 or 50 nM Bafilomycin A1. These data suggest that
autophagy induced by the HDAC inhibitor represents a pro-survival adaptive response to
the effects of the compound. Moreover, we provided evidence that H19 silencing did not
affect ITF2357-induced autophagy (Figures 17A-E).

PhD Student Chiara Zichittella 54



Figure 16. HDAC inhibitor ITF2357 induces survival autophagy in CRC cells.
A: Analysis of the expression level (qRT-PCR) of autophagic genes in HCT-116 cells treated with 1 µM
concentration of ITF2357 for 24 hours. The expression levels of genes are reported as 2-ΔΔCt compared to
untreated cells (Ctr) and Ct were normalized against β-actin. Data are expressed as the mean ± SD of
three independent biological replicates. Statistical analyses were performed using Student’s t-test (* p <
0.05, ** p < 0.01).
B: Immunofluorescence for LC3B on HCT-116 cells, untreated or treated with 50 µM chloroquine diphosphate
(CQ) alone or in combination with 1 µM of ITF2357 for 24 hours. LC3B in red, counterstained with Hoechst
and ActinGreen, for nuclei in blue and cytoskeleton in green, respectively. Nuclear focal plane, the scale
bar is 10 µm.
C: Representative images and densitometric analysis of Western Blots for LC3II/LC3I in HCT-116 cells
treated or not with ITF2357 1 µM for 24 hours. The graph shows the ratio of the normalized OD (optical
density). Housekeeping β-actin was used as loading control. Data are expressed as the mean ± SD of three
independent biological replicates. Statistical analyses were performed using Student’s t-test (** p < 0.01).
D: Representative images and densitometric analysis of Western Blots for p62 in cells treated or not
with ITF2357 1 µM concentration for 24 hours. The graph shows the normalized OD (Optical Density).
Housekeeping β-actin was used as loading control. Data are expressed as the mean ± SD of three independent
biological replicates. Statistical analyses were performed using Student’s t-test (* p < 0.05).
E: Cell viability assay (MTT Assay) in HCT-116 cells co-treated with different concentrations of ITF2357
(0.25 – 0.5 and 1 µM) and two different concentrations of Bafilomycin A1 (20 and 50 nM) for 48 hours.
Data are expressed as cell viability percentages compared to untreated cells (Ctr). Data are expressed as
the mean ± SD.
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Figure 17. LncH19 silencing did not affect ITF2357-induced autophagy.
A-E: Analysis of the expression level (qRT-PCR) of autophagic genes in HCT-116 silenced for lncH19 or
control cells (Ctr) untreated or treated with 1 µM concentration of ITF2357 for 24 hours. The expression
levels of genes are reported as 2-ΔΔCt compared to control cells (Ctr), threshold cycle were normalized
against β-actin. Data are expressed as the mean ± SD.

6.2.3 ITF2357 induces apoptosis in HCT-116 cells and lncH19 is func-
tional to this effect

To further characterize cell death activated in response to ITF2357 and to elucidate the
role of lncH19, apoptosis was investigated in H19 silenced cells in comparison with the
respective control cells. Specifically, Annexin V/PI apoptotic assay was performed at early
(16 hours) and late (48 hours) treatment times points to properly detect the process along
time. The results shown in (Figures 18A-B) indicate that ITF2357 stimulated early
and late apoptosis with a different extent in control and H19-silenced cells. Indeed, the
total percentage of annexin V positive cells after treatment with ITF2357 was about 33%
in control cells compared to 22.6% in H19-silenced cells at 16 hours. Such a difference
was maintained at 48 hours (68.6% in control cells vs 52.8% in H19-silenced cells), thus
confirming that lncH19 knockdown reduces the apoptotic efficacy of ITF2357.
Morphological analysis of ITF2357-treated cells clearly showed the differential effect of the
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HDACi in the two cell types (Figure 18C).
These data were confirmed by Western Blot analysis of apoptotic markers including cleaved
caspase-3 and cleaved PARP-1, an analysis that was performed at late time points to
evidence apoptosis execution. As shown in Figures 18D-E, while caspase-3 cleavage
and PARP-1 degradation were evident in ITF2357-treated control cells, these effects were
much less evident in H19-silenced cells. These data suggest that H19 expression somehow
reinforces the pro-apoptotic action of ITF2357.

Figure 18 - Continued on next page
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Figure 18 - Continued from previous page

Figure 18. The effects of lncH19 silencing on apoptosis markers.
A-B: Annexin V/PI apoptosis detection assay on HCT-116 cells silenced for lncH19 or unsilenced control
cells (Ctr) treated with 1 µM concentration of ITF2357 for 16 and 48 hours. Data are expressed as apoptotic
cell percentage compared to untreated cells (silenced or unsilenced for lncH19).
C: Phase contrast images of HCT-116 cells silenced for lncH19 or unsilenced control cells (Ctr) untreated
or treated with 1 µM of ITF2357 for 48 hours. Cells were visualized under a light microscope at 20×
magnification and the pictures were acquired by IM50 Leica Software (Leica DMR Microsystems, Wetzlar,
Germany).
D-E: Representative images and densitometric analysis of Western Blots for cleaved caspase-3 (D) and
cleaved PARP-1/PARP-1 (E) obtained from protein lysates of HCT-116 silenced for lncH19 or control cells
(Ctr) were treated with 1 µM ITF2357 for 24 or 48 hours. The graphs show the OD (Optical Density) of
the indicated proteins normalized for the housekeeping’s OD (β-actin). Data are expressed as the mean ±
SD of three independent biological replicates. Statistical analyses were performed using Student’s t-test (*
p < 0.05, ** p < 0.01).

To investigate the molecular mechanism by which lncH19 promotes ITF2357-induced
apoptosis we focused on identifying putative miRNAs with a pro-apoptotic role that could
be targeted by lncH19. In fact, as other lncRNAs, H19 can also behave as an endogenous
competitive sponge for miRNAs [462]. By using DIANA tools [691] we identified 159
validated human miRNAs sponged by lncH19 and, among these, 26 validate human
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miRNAs directly targeting the pro-apoptotic TP53 gene (Figure 19A). Real-time PCR
in Figure 19B confirmed a positive correlation between the expression of lncH19 and
TP53. The transcriptional analyses revealed that cells silenced for lncH19 express lower
levels of TP53 and its targets PUMA and NOXA (Figures 19B-D). The reduction of p53
in shH19-cells was further confirmed at the protein level (Figure 19E). Overall, these
data indicate that ITF2357 induces TP53 mediated apoptosis in colorectal cancer cells,
and the expression of lncH19 plays a functional role in regulating p53 expression.

Figure 19. Identification of lncH19 miRNAs that target TP53.
A: Venn diagram obtained by bioinformatic analysis using DIANA-tools illustrating the intersection (in
yellow) between the dataset of validated direct miRNAs that lncH19 binds (DIANA-LncBase v.3, in blue)
and the dataset of validated miRNAs that directly bind TP53 (DIANA-TarBase v.8, in green).
The intersection shows 26 miRNAs (listed in the panel) sponged from lncH19 that directly target the
pro-apoptotic TP53 gene.
B-D: Analysis of the expression level (qRT-PCR) of TP53 (B), NOXA (C) and PUMA (D) in HCT-116
respect to control cells (Ctr). Gene expression levels are reported as 2-ΔΔCt compared to control cells (Ctr),
Ct were normalized against β-actin. Data are expressed as the mean ± SD of three independent biological
replicates. Statistical analyses were performed using Student’s t-test (* p < 0.05, ** p < 0.01, *** p <
0.001).
E: Representative images and densitometric analysis of Western Blots for p53 in HCT-116 respect to
control cells (Ctr). The graph shows the OD of the indicated proteins normalized for the housekeeping’s
OD (β-actin). Data are expressed as the mean ± SD of three independent biological replicates. Statistical
analyses were performed using Student’s t-test (** p < 0.01).
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Finally, to assess whether ITF2357 is able to overcome the resistance to 5-FU chemothera-
peutic, we used HCT-116-5-FU-R, a 5-FU resistant HCT-116 cell line properly selected in
our laboratory. Interestingly, HCT-116-5-FU-R cells express high levels of lncH19 compared
to parental HCT-116 cells (Figure 20A). It is noteworthy that these cells nicely respond
to ITF2357 as indicated by cell viability evaluation reported in Figure 20B that revealed
a dose-dependent effect of the compound.

Figure 20. HCT-116 cells resistant to 5-Fluorouracil (5-FU) express high levels of lncH19 and
respond to treatment with ITF2357.
A: Analysis of the expression level (qRT-PCR) of lncH19 in HCT-116-5-FU-R cells compared to untreated
cells (HCT-116 Ctr). LncH19 expression level are reported as 2-ΔΔCt compared to HCT-116 Ctr cells
and were Ct normalized against β-actin. The results reported in the graph are the mean ± SD of three
independent biological replicates. Statistical analyses were performed using Student’s t-test (** p < 0.01).
B: Cell viability assay (MTT Assay) in HCT-116-5-FU-R cells treated with different concentrations of
ITF2357 (0.25 - 0.5 - 1 - 2 and 4 µM) for 48 hours. Data are expressed as cell viability percentages compared
to untreated cells (Ctr). The results reported in the graph are the mean ± SD of three independent
biological replicates. Statistical analyses were performed using Ordinary one-way ANOVA with Bonferroni’s
multiple comparison test (** p < 0.01, **** p < 0.0001).
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6.3 Discussion
The presented data show, for the first time, that lncH19 supports apoptosis induced by
HDACi ITF2357 in colon cancer cells. Although some papers sustain the potential of
HDACis in colon cancer treatment [150, 697], to date, no evidence has been provided about
the efficacy of this pan-HDACi in colon cancer cells. Our data indicate that ITF2357 is
active in colon cancer cells at micromolar concentrations, in line with the findings of other
authors in different tumor cell lines [142, 145, 148, 698]. We also provided evidence that
ITF2357 upregulates lncH19 in colon cancer cells. Similarly, Di Fazio et al. found increased
lncH19 levels in adrenocortical carcinoma, following treatment with pan-HDACis such as
panobinostat, trichostatin A (TSA), and SAHA, correlated with autophagy induction [699].
To understand the role of lncH19 in ITF2357-induced cytotoxicity in colon cancer cells,
both autophagy and apoptosis induction were examined in H19 stably silenced HCT-116
cells in comparison with control HCT-116 cells. It is well known that HDACis can promote
autophagy in different tumor types [700–702]. However, it is well known that autophagy
can exert a dual role in tumor cells. Indeed, the process can be activated as a pro-survival
response, which is frequently associated with tumor progression and chemoresistance, or
it can serve a death-inducing function, thereby representing an alternative form of cell
death to target tumor cells that have developed apoptosis resistance [129]. This work
shows that ITF2357 promoted the expression of autophagy markers, including ATG16L,
SQSTM1/p62, MAP1LC3B/LC3, and LAMP1/2. HDACi also induced the conversion
of LC3I into active LC3II and a reduction in the levels of p62. Our data support the
hypothesis that ITF2357-induced autophagy is correlated with a pro-survival cell response
since the autophagy inhibitor bafilomycin A1 markedly potentiated the cytotoxic effect of
the compound and the p62 protein marker decreased, indicating autophagy completion
[696]. Our findings are in accordance with the observation of Angeletti et al., who found
that inhibition of autophagy potentiates the effect of ITF2357 in glioblastoma cells [698].
However, our data Figures 17A-E indicates that lncH19 silencing does not significantly
modify the levels of autophagy markers.
Therefore, we concluded that the cytotoxic effect of ITF2357 does not depend on autophagy-
induced cell death, and subsequently, caspase-dependent apoptosis was considered.
Evaluation of apoptosis by annexin V/PI double staining and analysis of apoptotic markers
revealed that lncH19 plays a role in this event. Indeed, ITF2357-induced apoptosis was
reduced in H19-silenced cells compared to the respective control cells. We consider these
results relevant since they imply that lncH19 can be exploited to favor apoptosis induction
and that HDACi may promote a H19-dependent targeted effect in colon cancer cells. In
accordance with our results, other authors have previously found a correlation between
lncH19 and apoptosis.
In particular, Hou et al. have shown that overexpressed lncH19 alleviates induced lung
injury in mice, as well as lipopolysaccharide (LPS)-induced apoptosis, oxidative stress,
and inflammation [703]. Similarly, Yang provided evidence that H19 silencing alleviates
LPS-induced apoptosis and inflammation by regulating the miR-140-5p/TLR4 axis in cell
models of pneumonia [704]. In a more specific tumoral context, lncH19 has been shown
to participate in triptolide/TNF-α-induced apoptosis via binding miR-204-5p in gastric
cancer models [705]. In addition, Liu et al. demonstrated that lncH19 inhibits proliferation
and enhances apoptosis of nephroblastoma cells by regulating the miR-675/TGFBI axis
[706]. Accordingly, lncH19 has also been implicated in sensitization to X-ray and carbon
ion irradiation of non-small cell lung cancer [707], and positively modulates the sensitivity
of glioma cells to radiation-favoring apoptosis [708]. However, some controversial data

PhD Student Chiara Zichittella 61



are present in the literature regarding the pro-apoptotic role of lncH19. For instance,
the knockdown of H19 in resveratrol-treated cancer cells has been shown to enhance the
effects of resveratrol on apoptosis [709]. Other evidence of an antiapoptotic role of lncH19
was provided by Wang et al., who showed that it promotes proliferation, migration, and
invasion, and inhibits apoptosis of breast cancer cells by targeting the miR-491-5p/ZNF703
axis [710]. It is clear that lncRNA H19 and many other cellular factors may exert a dual
role in regulating cell fate [711].
Our data strongly suggest a pro-apoptotic role of lncH19 in CRC cells treated with HDACi
ITF2357 since lncH19 silencing profoundly reduced the effects of the compound on cell
viability and apoptosis. To explain the pro-apoptotic role of lncH19 in HDACi-treated
cells, we hypothesized that it may act as an endogenous competitive sponge for miRNAs
[459], antagonizing miRNAs targeting pro-apoptotic genes. Bioinformatic analysis revealed
that lncH19 sponged 26 validated human miRNAs directly targeting the pro-apoptotic
gene TP53 (Figure 21 ).
Our data provide evidence that lncH19 knockdown reduces the expression of TP53 and
its pro-apoptotic targets, PUMA and NOXA. The relationship between lncH19 and TP53
is controversial in the literature since some papers sustain a negative control of TP53 by
H19 [487, 712, 713], while others support that lncH19 may activate the tumor suppressor.
Specifically, in accordance with our findings, we have shown that overexpression of lncH19
enhanced TP53 expression, whereas H19 silencing exerted the opposite effect [714]. In
addition, Du et al. have found that lncH19 promotes p53 phosphorylation by a direct inter-
action, an effect that results in increased NOTCH-mediated angiogenesis in mesenchymal
stem cells [715].
Interestingly, our data also provided evidence that lncH19 is overexpressed in HCT-116-5-
FU-R cells, and we consider it relevant that the HDACi ITF2357 was capable of overcoming
5-FU resistance in these cells. Other authors have associated 5-FU resistance with lncH19
expression [679, 716, 717]; here, we suggest that this condition may be exploited to promote
TP53-dependent apoptosis using HDACi. To date, several lines of evidence indicate that
HDACi can sensitize different tumor types to the effects of diverse chemotherapeutic agents
[718–722].
Overall, our data suggest that lncH19 levels may be a useful parameter to promote
epigenetic targeting of colon cancer and propose ITF2357 as a promising epi-drug in colon
cancer treatment.

Figure 21. Schematic representation of the proposed model.
The levels of lncH19 increase in CRC cells treated with HDACi ITF2357. This increases the sponge effect
by lncH19 on miRNAs targeting pro-apoptotic genes, including TP53. Overall, treatment with ITF2357
increases lncH19 levels and promotes activation of apoptosis, thus leading to increased expression of TP53.
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CHAPTER 7
Conclusions

Recent evidence suggests that non-coding RNAs (ncRNAs) play a significant functional
role in cancer progression and drug resistance. This highlights the possible use of ncRNAs
for clinical and translational applications in cancer treatment. [723–725].
This doctoral project aimed to investigate the role of lncH19 and its intragenic miRNA,
miR-675, in controlling tumor progression and chemoresistance in CRC cells, with the
ultimate goal of identifying novel targets and therapeutic strategies to enhance conventional
therapy.
The literature shows that both of these ncRNAs are up-regulated in CRC and regulate
multiple key aspects of tumorigenesis, including cell proliferation, apoptosis, metastasis
formation and drug resistance mechanisms [188, 499, 603, 679].
For the first time to our knowledge, our data revealed a dual role of the lncRNA H19 and
its miRNA, as both therapeutic targets and as putative prognostic biomarkers. Indeed,
our data demonstrated that lncH19 enforces CRC cell resistance to 5-FU, especially under
chronic hypoxic conditions, through its intragenic miRNA; on the other hand, its expression
seems to be functional for the anti-tumor activity of the epi-drug as for the HDACi ITF2357.

The first part of the project was dedicated to study the response of colorectal cancer
cells to 5-FU treatment under chronic hypoxic conditions and to verify the expression and
possible role of the ncRNAs of our interest in this experimental model.
Loss-of-function experiments, bioinformatic analyses and luciferase assays have allowed us
to demonstrate that miR-675-5p functions as an “onco-miR”, promoting the establishment
of drug resistance processes by inhibiting the apoptotic process by down-regulating caspase-
3 (Figure 13 ). The results obtained identified miR-675-5p as a possible therapeutic target
for CRC patients, further revealing the positive use of AntagomiR-675-5p as an adjunct
to drug treatment; in fact, this could lead to a reduction in therapeutic drug doses, thus
reducing dose-dependent related effects.
Indeed, its downregulation enhances 5-FU activity under both hypoxic and normal condi-
tions, thus revealing a possible strategy to overcome, at least in part, drug resistance in
the hypoxic tumor microenvironment.

A further effort in overcome 5-FU drug resistance is done by the use of histone deacetylase
inhibitors (HDACis). Recently, clinical trials have shown that these compounds act by
sensitizing tumors resistant to conventional chemotherapy [726]. Therefore, the second part
of the project focused on studying the use of a specific HDACi, ITF2357, for the treatment
of lncH19 expression-positive CRC.
Specifically, we found that ITF2357 induces cell death in HCT-116 colon cancer cells
upregulating H19 expression.
Although many data in the literature describe H19 as a lncRNA with canonically oncogenic,
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pro-apoptotic and chemoresistance-promoting functions [679, 727, 728], our data showed a
different aspect of it.
Our experiments demonstrated that lncH19, is functional to the pro-apoptotic activity of
the ITF2357, in fact, under HDACi treatment, the lncRNA acts as a ceRNA for miRNAs,
by stabilizing TP53 (Figure 21 ).
In addition, we provided evidence for the first time that HDACi ITF2357 is valuable as
chemotherapy in a colon cancer model, by upregulating lncH19 and overcoming 5-FU
resistance in highly H19-expressing CRC cells.

In conclusion, it is necessary to consider that the results obtained with the present
PhD project refer to CRC cell lines, with all the limitations of in vitro studies.
Although in vivo studies are needed to confirm our data, our studies reinforce the evidence
that ncRNAs can be used as therapeutic adjuvants to enhance the response to drug
treatments.
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CHAPTER 8
Scientific Products

8.1 List of publications or other scientific products produced
within the project and relevant to the topic

8.1.1 Scientific publications in journals

Scientific Review: Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability
in Cancer.
Authors: Maria Magdalena Barreca1, Chiara Zichittella1, Riccardo Alessandro1,2, Alice
Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
2 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
International Journal of Molecular Sciences 2021 Febrary 12; 22(4):1857.
DOI: 10.3390/ijms22041857. PMID: 33673376.

Scientific Article: Mir-675-5p supports hypoxia-induced drug resistance in colorectal cancer
cells*.
Authors: Chiara Zichittella1, Maria Magdalena Barreca1,2, Aurora Cordaro1, Chiara
Corrado1, Riccardo Alessandro1,3, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, 90128, Palermo, Italy.
3 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
BMC Cancer. 2022 May 20; 22(1):567.
DOI: 10.1186/s12885-022-09666-2. PMID: 35596172.
**Winner of Best Paper Award 2023 - FIRST PLACE (preclinical area), Di.Chir.On.S.,
University of Palermo, 2023 December 11, Palermo (Italy).

Scientific Article: Long non-coding RNA H19 enhances the pro-apoptotic activity
of ITF2357 (Histone Deacetylase Inhibitor) in colorectal cancer cells.
Authors: Chiara Zichittella1, Marco Loria1, Adriana Celesia2, Diana Di Liberto2, Chiara
Corrado1, Riccardo Alessandro1,3, Sonia Emanuele2, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
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2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, 90128, Palermo, Italy.
3 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
Frontiers in Pharmacology. 2023 September 28; 14:1275833.
DOI: 10.3389/fphar.2023.1275833. PMID: 37841928.

8.1.2 Abstracts and posters presented at scientific congresses

Scientific Videoposter: Hypoxia induced miR-675-5p controls cell survival by
modulating apoptosis and autophagy.
Authors: Chiara Zichittella1*, Maria Magdalena Barreca1, Chiara Corrado1, Aurora
Cordaro1, Riccardo Alessandro1, Sonia Emanuele1, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
Scientific videoposter presented by Chiara Zichittella at the 93th SIBS-1925 (Italian Society
of Experimental Biology) Congress.
**Winner of the Best Videoposter Award presented at the 93th SIBS-1925 Congress, Stress
Session, 2021 April 22-25, Palermo (Italy).

Scientific Videoposter: Long non-coding RNA H19 enhances the pro-apoptotic
activity of histone deacetylase inhibitor ITF2357 in colorectal cancer cells.
Authors: Chiara Zichittella1*, Marco Loria1, Adriana Celesia1, Chiara Corrado1, Ric-
cardo Alessandro1,2, Sonia Emanuele1, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
2 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
Scientific videoposter presented by Chiara Zichittella at the 95th SIBS-1925 (Italian Society
of Experimental Biology) Congress.
**Winner of the Best Videoposter Award presented at the 95th SIBS-1925 Congress, Ex-
perimental Oncology Session, 2023 April 12-15, Trieste (Italy) and published in Journal of
Biological Research 2023.

Scientific Oral Communication: Long non-coding RNA H19 enhances the pro-
apoptotic activity of histone deacetylase inhibitor ITF2357 in colorectal cancer
cells.
Authors: Chiara Zichittella1, Marco Loria1, Chiara Corrado1, Riccardo Alessandro1,2,
Sonia Emanuele1, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
2 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
Flash oral communication presented by Chiara Zichittella at the 7th Cancer World Congress
on 2023 May 29-31, Palermo, Italy.

PhD Student Chiara Zichittella 66



8.2 List of publications or products (carried out by the
PhDst in collaboration within the time frame of the
project) not related to the project

8.2.1 Scientific publications in journals

Scientific Review: Molecular Mediators of RNA Loading into Extracellular Vesi-
cles.
Authors: Chiara Corrado1, Maria Magdalena Barreca1,2, Chiara Zichittella1, Riccardo
Alessandro1,3, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133 Palermo, Italy.
2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, 90128 Palermo, Italy.
3 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
Cells. 2021 November 30; 10(12):3355.
DOI: 10.3390/cells10123355. PMID: 34943863.

8.2.2 Abstracts and posters presented at scientific congresses

Scientific Poster: Effect of the Colorectal cancer cell-derived exosomal lncRNA
H19 on Human umbilical vein endothelial cells: new hypothesis, on the promo-
tion of endothelial to mesenchymal transition.
Authors: Chiara Zichittella1, Marco Loria1, Maria Magdalena Barreca1,2, Aurora Cordaro1,
Simona Fontana1, Riccardo Alessandro1,3, Alice Conigliaro1.
1 Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, Italy.
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(STEBICEF), University of Palermo, 90128 Palermo, Italy.
3 Institute for Biomedical Research and Innovation (IRIB), National Research Council
(CNR), 90146 Palermo, Italy.
Scientific poster presented by Chiara Zichittella in the “Venice Winter School” - Extracel-
lular Vesicles: from biophysical to translational challenges, on 2023 February 06-10, Venice
(Italy).

Scientific Abstract: The long non-coding RNA regulates RBFOX2-mediated al-
ternative splicing in colorectal cancer.
Authors: Maria Magdalena Barreca1, Aurora Cordaro1, Marco Loria1, Chiara Zichittella1,
Claudia Moltalto2, Marco Tripodi2, Simona Fontana1, Riccardo Alessandro1, Alice Conigliaro1.
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2 I.R.C.C.S.Lazzaro Spallanzani, Italy.
Oral communication presented by Maria Magdalena Barreca in International Conference
on Cancer and Oncology Research (online), 2023 June 19-20, Roma (Italy).

Scientific Poster: Horizontal transfer of long non-coding RNA H19 transports
splicing factors in recipient cells.

PhD Student Chiara Zichittella 67
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Simona Fontana1, Riccardo Alessandro1, Alice Conigliaro1.
1 Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section
of Biology and Genetics, University of Palermo, 90133, Palermo, Italy.
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persone straordinarie come tutti voi.

Per ultimi ma non per importanza, desidero ringraziare la mia famiglia e le mie amiche. Vorrei
dedicare un pensiero speciale a Caterina e Marika, grazie per esserci sempre, supportandomi e

soprattutto sopportandomi.
Un immenso GRAZIE va al mio ragazzo, Francesco, per credere in me più di quanto non lo faccia
io stessa. Grazie per essere sempre pronto a sostenere le mie scelte, anche se spesso comportano

sacrifici e riducono il tempo insieme.
Ringrazio con grande affetto mia sorella e mio cognato, che mi hanno costantemente incoraggiata

ad andare avanti nonostante le difficoltà, anche quando le mie insicurezze prendevano il
sopravvento.

Infine, ringrazio di cuore mia madre per avermi permesso di arrivare fin qui, che mi ha insegnato
sempre ad affrontare con determinazione e perseveranza le sfide della vita. Grazie per non avermi
mai fatto mancare il tuo supporto e affetto, nonostante la lontananza. Questo traguardo la dedico a

te papà, mia principale fonte di forza e resilienza, spero che tu e la mamma possiate essere
orgogliosi di me.
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