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Background and objective: In recent years, Artificial Intelligence (AI) and in particular Deep Neural Networks 
(DNN) became a relevant research topic in biomedical image segmentation due to the availability of more and 
more data sets along with the establishment of well known competitions. Despite the popularity of DNN based 
segmentation on the research side, these techniques are almost unused in the daily clinical practice even if 
they could support effectively the physician during the diagnostic process. Apart from the issues related to the 
explainability of the predictions of a neural model, such systems are not integrated in the diagnostic workflow, 
and a standardization of their use is needed to achieve this goal.

Methods: This paper presents IODeep a new DICOM Information Object Definition (IOD) aimed at storing both 
the weights and the architecture of a DNN already trained on a particular image dataset that is labeled as regards 
the acquisition modality, the anatomical region, and the disease under investigation.

Results: The IOD architecture is presented along with a DNN selection algorithm from the PACS server based 
on the labels outlined above, and a simple PACS viewer purposely designed for demonstrating the effectiveness 
of the DICOM integration, while no modifications are required on the PACS server side. Also a service based 
architecture in support of the entire workflow has been implemented.

Conclusion: IODeep ensures full integration of a trained AI model in a DICOM infrastructure, and it is also enables 
a scenario where a trained model can be either fine-tuned with hospital data or trained in a federated learning 
scheme shared by different hospitals. In this way AI models can be tailored to the real data produced by a 
Radiology ward thus improving the physician decision making process.

Source code is freely available at https://github .com /CHILab1 /IODeep .git.
1. Introduction

As reported in the most recent scientific literature, state-of-the-art 
techniques for segmenting biomedical images make use of AI, and in 
particular Deep Learning (DL) models that provide an average accuracy 
higher than 90% on most tasks. Nevertheless, DL models are almost no 
present in the daily diagnostic practice, due to three main problems 
stated below:

• Statement 1: DL models are not integrated in the medical images 
diagnostic platforms.

• Statement 2: DL models can not be trained on huge data sets com-

ing from radiologic wards due to issues related to both the patient’s 
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data privacy and the security issues implied in building a comput-

ing infrastructure distributed across several hospitals.

• Statement 3: Physicians do not trust the predictions by a neural 
model as they do not understand the “clinical way” used by the 
model to segment regions that are relevant for the diagnosis.

Despite the problems stated above, using DL models in biomedical 
imaging platforms would bring multiple benefits:

• Improve efficiency: DL models can automate routine tasks such as 
image segmentation and analysis, freeing up radiologists’ time and 
improving workflow efficiency.
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• Cognitive and visual fatigue decreasing: The radiologists’ cognitive 
and visual fatigue entail the wrong diagnosis, whereas an AI algo-

rithm is not affected by this. As a consequence, AI is a valid support 
during the image analysis by the radiologist [1].

• Increase accuracy: DL models can help to identify very subtle pat-

terns in medical images that may be missed by the human eye, 
leading to more accurate and reliable diagnoses [2].

• Enhance the quality of care: AI can provide additional information 
to support clinical decision-making, helping healthcare providers 
to make more informed and effective treatment decisions [3].

• Facilitate research: AI based techniques can help to automate the 
analysis of large data sets, enabling researchers to identify new 
patterns and insights that may not be apparent through traditional 
methods.

• Mass screening: the ability to analyze large data sets provided by AI 
algorithms can be used to perform mass screening on the occasion 
of campaigns to raise awareness of a particular illness [4].

• Improve patient outcomes: by improving the speed and accuracy 
of diagnoses, DL models can help to improve patient outcomes and 
reduce the need for follow-up testing.

In view of the previous considerations, this work provides a com-

plete solution to the problem formulated in Statement 1, and it also 
represents an enabling technology for answering both Statement 2 and 
Statement 3. The system proposed in our work leverages the well known 
DICOM (Digital Imaging and Communications in Medicine)2 standard 
to achieve the solution, by integrating in the normal DICOM communi-

cation between a PACS server and a viewer, the storage and retrieval 
of a DNN trained purposely on a data set that is related to a particular 
acquisition modality, anatomical region, and disease. We achieve our 
stated goal through the creation of a proper Information Object Defini-

tion (IOD) that we called IODeep. IODeep contains both the architecture 
and the weights of a neural network purposely trained on a medical im-

age data set; in our approach, several DNNs are stored in the PACS 
server, each in a separate IODeep instance, and a novel algorithm is 
proposed to select the best matching DNN for the images under inves-

tigation, based on the information mentioned above that IODeep stores 
in some proper DICOM tags. Network selection is transparent for the 
physician who only asks the system to start AI based Regions of Inter-

est (ROI) proposal. The selected network is used to perform client-side 
prediction of the ROI on the slice that the physician is currently looking 
at. On the PACS viewer side, ROIs are visually proposed to the physi-

cian who can explicitly validate them as relevant for the diagnosis. The 
PACS client embeds the set of validated ROIs in an RT Structure Set 
IOD, which is stored on the server. The entire workflow is conducted in 
accordance with the DICOM protocol, preserving the security required 
by the standard, and no modification is required on the PACS server 
side. The main contributions of the paper are the following:

• The complete information architecture of IODeep along with the 
DICOM compliant workflow for both ROI prediction and storage 
on the PACS server.

• A novel algorithm based on the IODeep DICOM tags to select the 
correct DNN for the data under investigation in a transparent way 
for the physician.

• A purposely designed back-end independent JSON format to de-

scribe DNN architectures to be used as a possible DNN description 
inside IODeep.

• A purposely designed lightweight PACS viewer that implements all 
the client side communication involved in using IODeep, while no 
modification is required on the server side.
2
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• A service based implementation of the entire ROI prediction sce-

nario where both network selection and prediction run as external 
REST services that communicate with the PACS infrastructure

The rest of the paper is arranged as follows. Section 2 reports some 
theoretical background about DL models for medical image analysis. 
The motivations of our work are outlined in Section 3, while the IODeep 
architecture is described in Section 4 along with the detailed ROI pre-

diction workflow, and a comparison with the current abstract model 
devised by the DICOM community for AI integration. Final remarks and 
conclusions are reported in Section 5.

2. Theoretical background

A relevant amount of recent papers in the scientific literature 
on biomedical image processing make large use of deep-learning ap-

proaches. Such types of algorithms are applied without any regard for 
image modality, pathology and body part with the aim to either seg-

ment or simply classify both 2D and 3D data. DNNs are used mainly 
in three kinds of task: classification, semantic segmentation, and region 
proposal.

Classification tasks aim at placing a (multi-)class label to the whole 
image, as in the case of histopathology where one is interested in assess-

ing the presence of cancer tissues. Conversely, semantic segmentation 
is the task of labeling each pixel in the image as belonging to a cer-

tain class. In general, labels discriminate different tissues: a normal 
organ, a pathological one, a tumor lesion, and so on. Zhou et al. [5]

propose a nested U-Net architecture for medical image segmentation. It 
soon achieved state-of-the-art results on several data sets including lung 
and liver CT scans. Schlemper et al. [6] introduce an attention mecha-

nism to the U-Net architecture for pancreas segmentation in CT scans. 
The attention mechanism helps the model to focus on the relevant re-

gions of the image, leading to improved segmentation accuracy. The 
approach proposed by Fu et al. [7] proposes a dual attention mecha-

nism that has been adapted for medical image segmentation tasks with 
good results. The mechanism consists of a spatial attention module 
and a channel attention module, which capture spatial and channel-

wise dependencies respectively. Dou et al. [8] propose a 3D anisotropic 
hybrid network for medical image segmentation, which combines 2D 
and 3D convolutional layers to better handle anisotropic medical im-

ages. Milletari et al. [9] introduce a family of V-Net architectures for 
volumetric medical image segmentation, which achieve state-of-the-art 
results on several data sets including liver, lung, and brain CT scans. 
The V-Net architectures are based on 3D convolutional layers and in-

corporate skip connections for improved segmentation accuracy. Christ 
et al. [10] propose a cascaded fully convolutional neural network (FCN) 
approach for automatic segmentation of liver and tumor from CT and 
MRI volumes. The proposed method consists of two stages, where the 
first stage segments the liver, and the second stage segments the tu-

mor within the liver. The approach achieved state-of-the-art results on 
two liver tumor segmentation datasets. A review on the state of the 
art in deep learning-based methods for brain MRI segmentation is pre-

sented in [11]. The authors provide an overview of different types of 
deep learning models used for brain MRI segmentation, including fully 
convolutional networks, U-Nets, and deep residual networks. The paper 
also discusses current challenges and future directions for brain MRI 
segmentation. Qu et al. [12] present a deep learning-based method to 
segment pelvic bone tumors in MRI that is based on a multi-view fusion 
network to extract pseudo-3D information from two scans in different 
directions. Wang et al. [13] propose a novel deep neural architecture 
for segmenting multiple organs in abdominal CT scans, that is called 
Organ-Attention Network (OAN), and it is specifically designed to both 
classify and segment each individual organ with high accuracy. OAN 
uses a combination of convolutional and attention-based modules to 
selectively focus on each organ of interest while ignoring irrelevant re-
gions in the image. Additionally, the paper proposes a statistical fusion 
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strategy to combine the individual organ segmentations generated by 
OAN into a complete multi-organ segmentation. Yan and colleagues 
[14] propose a deep learning approach for the automatic segmenta-

tion of pancreas from computed tomography (CT) scans. The proposed 
method uses a multi-scale U-Net architecture, tested on NIH pancreas 
segmentation data set [15], which includes an attention mechanism to 
highlight important regions in the input image. A very recent attention 
based CNN is a module based on Cortical Spiking models presented 
by Zhou et al. [16], that reduces the number of trainable parameters 
compared to well-known state-of-the-art architectures, while improv-

ing performance in terms of accuracy. In very recent times, the advent 
of Transformers networks, and self-attention mechanisms originated in 
the Natural Language Processing (NLP) community [17] have pushed

also the research in Computer Vision towards the use of networks inte-

grating this kind of technology. Vision transformers (ViTs) have become 
attractive due to their ability to encode long-range dependencies and to 
learn highly effective feature representations. Right now, ViTs are the 
new state of the art, surpassing CNN-based architectures in both classi-

fication and semantic segmentation tasks [18], adding more and more 
trainable parameters but decreasing the possibility of gaining informa-

tion from eXplainable AI (XAI) techniques.

CNN-based networks are often used as a backbone for architectures 
trained to solve region proposal tasks. In fact, in contrast to semantic 
segmentation that needs pixel precision, region proposal architectures 
return predictions about ROIs, i.e. bounding boxes around the truly in-

teresting pattern. Punn and Agarwal [19] in their 2022 survey analyzed

the state-of-the-art of all U-Net variants used in region proposal tasks; 
the survey’s emphasis is on the efficiency of the various variants in 
tricky tasks such as the diagnosis of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). Zhang et al. in 2023 [20] propose the 
MDU-Net, an architecture consisting of a multi-scale dense connections 
(MDC) encoder and a U-shaped decoder for biomedical image segmen-

tation. The multi-scale dense connections, allowing shorter connections 
between layers close to the input and output, enable a much deeper 
U-net that reduces potential overfitting and further improves segmen-

tation performance. Finally, Song et al. [21] in their work propose the 
Outlined Attention U-Network, (OAU-Net) based on a bypass branching 
strategy to solve biomedical image segmentation tasks, capable of de-

tecting surface and deep features. The particularity of this architecture 
lies in the encoders that are based on residual convolution.

One of the main disadvantages of region proposal architectures 
is the high computational cost deriving from the increasing number 
of trainable parameters. In very recent years, Weakly Supervised Ob-

ject Location (WSOL) and Weakly Supervised Semantic Segmentation 
(WSSS) have gained relevance. Weakly supervised techniques do not 
need explicit pixel-wise labeling to be trained. WSOL [22] is the task 
of learning how to place a bounding box or a loose ROI around a rel-

evant object in the image, according to the label provided at image 
level. Many kinds of WSSS [23] are reported in the literature. The most 
common task in this respect is learning explicit (pixel-wise) segmen-

tation of the object starting from either an image-wise or a box-wise 
label. Some recent WSSS approaches leverage the Class Activation Maps 
(CAM) [24]. CAM is a well known XAI approach that generates a map 
for each class to describe which features were most activated for pre-

dicting the class itself. In general, CAM based WSSS use the maps as 
“seeds” for predicting a first ROI on the object to be segmented. Then 
the seed ROI is used as a weak mask to train the proper semantic seg-

mentation model [25].

ROI identification through weakly supervised techniques is the best 
option for the diagnostic purpose because the physician is not hurried in 
precise pixel level analysis; rather she or he is simply alerted that some 
interesting thing may be present in a certain zone of the image. More-

over, the model itself does not need to be extremely precise, and this is 
an advantage in the medical imaging scenario where few training data 
are at disposal. In view of the previous considerations we decided to 
3

design our AI-supported diagnostic scenario as a ROI proposal one. The 
Computer Methods and Programs in Biomedicine 248 (2024) 108113

proposed workflow is agnostic with respect to the use of either bound-

ing boxes or generic ROI contour because, in any case, the vertexes of 
the ROI can be properly stored in a DICOM RT Structure Set. More-

over, there is no difference in using IODeep to describe a network that 
learns bounding boxes or a model trained to predict ROIs. Finally, our 
workflow prescribes that each ROI/bounding box has to be validated 
manually by the physician; thus we ensure clinical explainability of the 
whole process.

3. Motivation of the work

Even if it is well known from the literature that radiologists would 
like(semi-)automated decision support systems provided that they are 
non-invasive [26], DL models have not entered the routine diagnostic 
workflow due to lack of standardization. Indeed, the clinical commu-

nity started addressing this issue from the DICOM data harmonization 
viewpoint with the aim of introducing a proper use of DICOM meta-

data for mixing established data sets and true clinical images to enable 
development, validation, and clinical translation of AI tools in a stan-

dardized way [27]. We claim that the main way to standardization is 
including DL in the DICOM standard. Such an integration would allow 
for the development of consistent and interoperable diagnostic tools 
across heterogeneous imaging platforms, making it easier for healthcare 
providers to integrate AI into their workflow. Second, a standardized 
framework for training and validating DL models is the only way to de-

sign distributed computing infrastructures where federated learning can 
be enabled. As well debated in the literature [28,29] federated learning 
is the key for implementing very effective models that are trained on 
adequate amounts of data thus providing high accuracy for a plethora 
of diseases, while scientific data sets are almost limited as regards both 
their size and the clinical goal they are designed for. In turn, very accu-

rate models can be used effectively by XAI techniques to assess the most 
relevant image features which guided the model to a certain prediction 
[30].

Recent literature reports several frameworks in the field of medi-

cal imaging that can be integrated with the DICOM standard. The work 
in [31] introduces a vendor-independent platform that offers interfaces 
aimed at managing digitized slides and medical reports. It provides dig-

ital image analysis services compatible with other current standards. 
The solution incorporates the open-source Dicoogle PACS plugin archi-

tecture for interoperability and extensibility, enabling customization of 
the proposed solution. In [32] the Visilab Viewer is presented. It is a 
web-based platform compliant with the DICOM standard web architec-

ture to solve the Whole Slide Image (WSI) format visualization from 
multi-frame DICOM images.

The literature reports also several frameworks that make use of the 
DICOM standard to achieve a sort of “loose” AI integration into the clin-

ical workflow rather than trying to include them in the standard itself. 
In recent years, a great effort has been done for DICOM standardization 
of digital pathology where particularly effective pan-and-zoom charac-

teristics are needed to visualize WSI data in a PACS system along with 
the connection to external AI applications. A fully DICOM implemen-

tation of a platform for digital pathology has been proposed in [33]

where both visualization and ML applications can connect using the DI-

COM PS3.18 RESTful web services (DICOMweb™).3 In this architecture 
external applications have to implement the DICOMweb client API that 
connects to the DICOMweb server using the HTTPS protocol. Moreover, 
the authors selected a suitable set of DICOM metadata to accomplish the 
clinical requirements needed for diagnosing microscope images. In [34]

the open decentralized platform devised by the EMPAIA Consortium is 
illustrated that enables pathologists to connect transparently using a 
web browser both to a medical and a computing infrastructure to man-

3 https://dicom .nema .org /medical /dicom /current /output /html /part18 .

html.
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age their data while running third-party AI applications on the same 
data. The platform provides an abstraction on the DICOM infrastruc-

ture, and it is intended to be agnostic with respect to both PACS and 
WSI scanner vendors.

In [35] a roadmap is proposed for integrating AI image analysis al-

gorithms into existing radiology workflows: a case study on brain MRI 
is presented. In [36] a framework called Niffler is presented, that is a 
Machine Learning (ML) framework retrieving images from the PACS 
using DICOM network listeners. Niffler extracts and processes metadata 
from the acquired images at the research clusters, then it executes both 
ML and real-time analytics pipelines on the radiological images, and 
their textual metadata. In [37] a ML model for the automatic analy-

sis of medical images in the radiological workflow is integrated into a 
PACS system by using DICOM services provided by open-source tools. 
A DL architecture is trained for classifying chest X-ray images and it 
is reported as a case study. A DICOM Imaging Router is presented in 
[38] that incorporates CNNs for categorizing unknown DICOM X-ray 
images into five anatomical groups: “abdominal”, “adult chest”, “pedi-

atric chest”, “spine”, and “others”.

The frameworks outlined above, connect themselves to a DICOM 
infrastructure to carry out their task. Therefore, their use requires many 
tricks that radiologists must learn [39]. In essence, the DICOM standard 
and the AI techniques remain two separate worlds that play their role 
in synergy when needed, without real integration.

In [40] the PyRaDiSe package has been developed, which goes in 
the direction of a tight integration. PyRaDiSe is an open-source Python 
package which is independent of DL frameworks, and addresses the is-
sue of artifacts caused by 2D reconstruction as it provides a framework 
for developing auto-segmentation solutions that can directly operate 
on DICOM data. Authors claim that PyRaDiSe helps to bridge the gap 
between data science and clinical radiotherapy by facilitating the im-

plementation of deep learning segmentation models in clinical research 
practice. Actually, PyRaDiSe has the same research objective as IODeep, 
and the authors leverage DICOM RT Structure Sets (RTSS) to allow 
data conversion from DICOM to other image formats thus enabling easy 
auto-segmentation routines. It is well known in the DICOM related lit-
erature [41] that DICOM RTSS are a suitable place to store AI related 
information like the labels for models training, and also the framework 
we devised for IODeep makes use of DICOM RTSS to store ROI con-

tours. Differently from PyRaDiSe, in IODeep there is no need to code 
the segmentation solution. IODeep provides the physician with predic-

tions about relevant ROIs in a completely transparent way.

Right now, the information architecture of the DICOM standard does 
not foresee any type of inclusion of AI, neither as a proper IOD nor in 
terms of defining a suitable Information Object Module (IOM) to be 
included in a more general structure. Currently, DICOM is moving to-

wards the integration of AI applications, and a Work Group has been 
created purposely that is the “WG-23: Artificial Intelligence/Applica-

tion Hosting”.4 The main activity of the WG-23 has been oriented in 
defining mechanisms for discovering heterogeneous AI services that can 
expose a suitable manifest for declaring the DICOM services provided 
to the imaging platform. In the present work we adopt an approach 
that relies on a direct extension of the DICOM information architecture. 
This architectural choice derives from the previous experience by some 
of the authors in developing a framework for adaptive configuration 
of the PACS viewers’ GUIs based either on the content (i.e. reason for 
study, modality and body part) of the images to be displayed or on ex-

plicit preferences issued by the radiologist. Configuration information 
is stored in a dedicated IOM which extends the DICOMDIR IOD [42]. 
We think that the design of new components of the DICOM informa-

tion architecture, as in the case of IODeep, makes the extension to the 
standard simpler than defining the interfaces to interact with an ex-

ternal software ecosystem. Moreover, the architectural solution devised 
4
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Fig. 1. E-R diagram representing the connection between IODeep and the Dicom 
Model of the Real World.

by the WG-23 could be prone to problems in a training and/or fine-

tuning scenario, when a huge amount of data would have to be moved 
across the interface to feed the DL model. We developed both a “mono-

lithic” PACS client that implements all the workflow related to the use 
of IODeep and the service architecture that makes use of IODeep ac-

cording to the indications of the WG-23. In the next section we detail 
our implementation, and we compare the two solutions.

4. IODeep architecture

In Fig. 1 we report the E-R diagram describing how IODeep is con-

nected to the DICOM Model of the Real World.5 As it can be noticed, the 
information contained in IODeep is used to instantiate a suitable DNN 
to predict ROIs on different images. In turn, references to such images 
are used to generate and store ROI data in the PACS infrastructure.

The overall IODeep structure is reported in Table 1. The operations 
related to the selection of the proper neural model for the image under 
investigation, and making the actual prediction, rely on the informa-

tion contained in four IOMs: “DNN”, “Image Pixel”, “General Study”, 
and “General Series”. The “DNN” module is a brand new one, which 
has been defined purposely to store the core info about the architec-

ture, and the weights of the network. Both the “Image Pixel” and the 
“General Series” module provide information to the network selection 
algorithm, but some tags in the “Image Pixel” module contain also in-

formation about image data formatting to give the DNN input tensor 
the correct shape. Finally, the “General Study” module is mandatory 
because the StudyInstanceUID has to be filled with a proper value to 
create the Service Object Pair (SOP) Class aimed at storing/retrieving 
IODeep instances from the PACS server.

As required by the DICOM WG-23, IODeep is a non-Patient IOD, 
and it does not contain any patient information. Nevertheless, all the 
mandatory tags belonging to the “Patient” module (not reported in Ta-

ble 1) along with the other modules composing IODeep, were included 
in its structure but they were left empty, as stated by the standard. 
The StudyInstanceUID in the “General Study” module and the SeriesIn-

stanceUID in the “General Series” module are a mandatory tag, but they 
are not useful in the proposed architecture, and we decided to set them 
to the same value as the DnnUID tag.

The “DNN” module contains the information about the network. 
Apart from the obvious meaning of the DnnUID, and DnnName tags, 
both DnnArchitecture and DnnWeights contain textual information about 
the layers and the weights of the network respectively. No particular 
formatting has been indicated in our tag specification, and that’s why 
we used the Unlimited Text (UT) Value Representation. One can imag-

ine to fill these tags with either a structured text like JSON and XML or 
a simple URI pointing to a binary file containing network information 
according to either a Tensorflow or a PyThorch file format. The second 
option is viable because in our application scenario, the DNN back-end 
is provided through a computing infrastructure in the same network 

5 https://dicom .nema .org /medical /dicom /current /output /html /part03 .

html #chapter _7.
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Table 1

The general IODeep structure reporting both the modules and the tags required for selecting and 
instancing a DNN architecture.

Name TAG VR Values

DNN module

DnnArchitecture (0017, 00XX) UT DNN architecture

DnnWeitghts (0017, 00X1) UT DNN weight

DnnName (0017, 00X2) PN e.g. “Brain Tumor segmentation Unet”

DnnUID (0017, 00X3) UI UID*

Image Pixel module

PhotometricInterpretation (0028, 0004) CS RGB, MONOCHROME1...

(DICOM standard Section C.7.6.3.1.2)

SamplesPerPixel (0028, 0002) US 3 or 1

PatientOrientation (0020, 0020) CS [“P”, “F”]; [“L”, “P”];[“L”, “F”] ...
(DICOM standard Section C.7.6.1.1.1)

PlanarConfiguration (0028, 0006) US 0 or 1

General Study module

StudyInstanceUID (0020, 000D) UI UID*

General Series module

SeriesInstanceUID (0020, 000E) UI UID*

Modality (0008, 0060) CS CT, MR, PT ...
(DICOM standard Section C.7.3.1.1.1)

BodyPartExamined (0018, 0015) CS BREAST, ABDOMEN, CHEST ...
(DICOM Part 16: Content Mapping 
Resource)

*These tags share the same Unique IDentifier that is the one defined for the DnnUID tag
where the PACS is. One can imagine either a dedicated server or bet-

ter an instance of the DNN back-end running on a medical workstation 
because it will be used only in inference mode thus the computational 
effort is very limited. In both cases, no security concerns arise because 
the DNN back-end does not need to connect to the Internet, and the 
network instanced through IODeep predicts the ROIs starting from an 
image that is already open on the PACS viewer. This ensures that no 
privacy issues arise because the radiologist is authorized to see patien-

t’s data, and the network uses only the values stored in the “Frame Of 
Reference” and “Image Pixel” modules of the slice.

In our implementation the DnnArchitecture tag contains a JSON doc-

ument whose structure has been developed purposely by some of the 
authors along with the related parser, which allows to instantiate the 
same abstract model seamlessly in TensorFlow or PyTorch. The parser 
executable code is freely available in a suitable repository6 linked by 
the project’s one. The repository contains also the command line speci-

fications to invoke the parser, the complete documentation for writing 
user-defined JSON descriptions of a network architecture, and the JSON 
code for building the example U-net [43] used in our implementation. 
The JSON code is showed also in Fig. 2 along with the U-net architec-

ture. As it can be seen, the key input_shape contains the information 
about the shape of the input tensor, which will be used to check if 
reshaping is needed for the slice to be processed. The key architec-

ture shows the type and sequential order of the layers that make up 
the neural network, while the keys convolution, kernel, and so on 
report the parameters to be set to implement the convolution properly 
for each layer. In the example a simple sequential model is reported, 
but our parser deals with all the layer types both in TensorFlow and 
PyTorch. As an example, our format supports the key skip_connec-

tion to build U-net models that are typical architectures for medical 
imaging. A detailed description of the implemented JSON keys, and the 
executable of the CLI version of the parser are available in the project 
repository.
5

6 https://github .com /CHILab1 /DNN -parser.
In the proposed implementation, we used a PyTorch back-end so the 
tag DnnWeights contains the URI pointing to a file with .pth extension 
that is the binary format used by Torch, storing the weights as a serial-

ized Python object. In Tensorfllow we adopted the tf save format to al-

low the implementation of custom layers. We choose to save separately 
the weights and the architecture to allow simple creation of the network 
by the user, who does not need to have strong coding skills. When run-

ning the parser, either a torch or a tensorflow environment is set 
according to the value passed in the -backend command line param-

eter. The environment is used just to instantiate a specific model that 
will be saved using the path specified in the -name command line pa-

rameter. In this way, a network developer has no need to instantiate a 
specific model class inherited from either torch.nn.Module or ten-
sorflow.keras.Model. The dcm file containing the IODeep used to 
instantiate our U-net example network is available in the project repos-

itory.

4.1. The ROI prediction workflow

Fig. 3 reports a simple UML sequence diagram showing the work-

flow of the ROI prediction scenario. We developed a lightweight PACS 
client to show the effectiveness of this workflow.

All the IODeep instances corresponding to networks that can be 
served by the DNN back-end are within the PACS server, and they can 
be made available to the physician who wants to perform automatic pre-

diction of the ROIs in a particular slice. To test our implementation, we 
trained a couple of example Unets on the “Brain Tumor Classification 
(MRI)” data set7 and the “UW-Madison GI Tract Image Segmentation” 
data set8 respectively.

After the study request, and the visualization of the series to be di-

agnosed, the physician can click on a suitable “AI ROI” button at the 
viewer GUI while she or he is viewing whatever slice in the series. This 

7 https://www .kaggle .com /datasets /sartajbhuvaji /brain -tumor -
classification -mri.

8 https://www .kaggle .com /competitions /uw -madison -gi -tract -image -

segmentation /overview.

https://github.com/CHILab1/DNN-parser
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/overview
https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/overview
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Fig. 2. Representation of the U-net neural network used in our example, and its JSON description.
event will start the actual ROI prediction process. We implemented a 
thick PACS client that performs both the network selection and the true 
ROI prediction by instancing the network on the DNN back-end. In this 
scenario, the client reads the tags stored in the “General Series” and 
“Image Pixel” modules inside the Image IOD of the current slice, and 
it retrieves all the IODeep instances from the server to start network 
selection.

Specifically, the network selection algorithm will use the Modality

tag (0008, 0060) which describes the type of data acquisition, the Body-

PartExamined tag (0018, 0015) which describes the anatomic region 
of the study using Code Strings (CS) that refer to the standardization 
reported in the DICOM Part 16: Content Mapping Resource, and the 
SamplePerPixel tag (0028, 0002) which describes the number of chan-

nels in the data. In case the BodyPartExamined tag is empty, the content 
of the StudyDescription tag (0008, 1030) is used. The matching algo-

rithm for selecting the neural network is shown below in Algorithm 1.

In case of successful match, the SOP UID of the IODeep is returned 
by the algorithm. If no IODeep instance satisfies requirements for net-

work prediction, a warning message will be returned blocking the work 
pipeline. The returned SOP UID will be used to query the PACS server 
for obtaining both the network architecture and the URI pointing to 
the weights file. In turn, the JSON document in the DnnArchitecture tag 
will be parsed to create and save the network instance using the DNN 
back-end, which is selected according to the value of the backend key. 
The parser itself is invoked by the PACS client using a system call. Af-

ter the input tensor shape check, actual prediction will be made. The 
entire ROI prediction workflow is reported in the Algorithm 2.

Before the actual creation of the network instance in the DNN back-

end, the shape of the current slice is checked to assess if it is compatible 
with the network input tensor. The tags SamplePerPixel (0028, 0002), 
Rows (0028, 0010), and Columns (0028, 0011) are used to check if the 
6

dimensions of the image are compatible with the neural network input 
or if reshape is required. Moreover, The tag PhotometricInterpretation

(0028, 0004), is used to verify the interpretation of the given pixels 
(e.g. MONOCHROME2, MONOCHROME1, RGB, and so on). Finally, the 
tag PixelRepresentation (0028, 0103) describes the pixel representation 
(signed or unsigned) and will be the last tag checked for the final for-

matting of the image to be tested. This process is summarized by the

check_tensor_shape() call in the trace of Algorithm 2.

Once the shape of the image has been checked w.r.t. the expected 
network input tensor, the actual model is created in the DNN back-end 
starting from the object parsed from the JSON document in the DnnAr-

chitecture tag, and the corresponding weights are loaded. The actual ROI 
prediction is a very fast process, which will output a list containing all 
the poly-lines that have been predicted.

Each ROI will be displayed by the viewer, giving the physician the 
option of either validating or rejecting the region. Fig. 4 shows how the 
ROI can be validated in our simple viewer that was implemented using 
the Python library PyQt. The viewer interfaces with the PACS server, 
and returns to the user a list of the available studies. Once a study has 
been selected, a list of that study’s series is retrieved in order to select 
the slice to be viewed. The display will show two information blocks 
in the upper section. The left block displays patient’s information: Pa-

tientName (0010, 0010), PatientID(0010, 0020), PatientBirthdate (0010, 
0030), PatienSex (0010, 0040). The second block displays clinical in-

formation: AccessionNumber(0008, 0050), InstitutionName(0008, 0080), 
ReferringPhysicianName (0008, 0090), StudyDate (0008, 0020), StudyDe-

scription (0008, 1030), StudyID (0020, 0010), StudyInstanceUID (0020, 
000D), and StudyTime (0008, 0030). The central body of the viewer will 
display the image. In this part of the layout there are the “autoplay” and 
the navigation buttons apart from the “AI ROI” button, already men-
tioned. The interaction between the viewer and the DICOM standard 
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Fig. 3. Sequence diagram of the ROI prediction scenario.
was developed using the Pydicom library, while the server was an in-

stance of the Orthanc DICOM server.9

The ROIs validated by the physician will be stored within a DICOM 
RT Structure Set, a data structure used to store all information that is 
collected through virtual instruments/workstations. In this data struc-

ture, all the patient information contained in the source IOD will be 
kept. Moreover, both the “Frame of Reference” and the “ROI Contour” 
module will be added to instance the FrameReferenceUID (0020, 0052) 
and the ROIContourSequence (3006, 0039) tag respectively, which con-

tain the slice reference and the actual ROI data. Finally, the validation 
7

9 https://www .orthanc -server .com/.
information will be stored through the “Approval” module that will con-

tain the tags:

• ApprovalStatus (300E, 0002)

• ReviewDate (300E, 0004)

• ReviewTime (300E, 0005)

• ReviewerName (300E, 0008)

The RT Structure Set will be uploaded to the PACS server to be 
reused should the physician wish to retrieve ROI information. The DI-

COM file containing the RT Structure Set generated from the ROI dis-

played in Fig. 4 is available in the project repository. As already pointed 

out in section 2, even if we used an example U-net trained at predicting 

https://www.orthanc-server.com/
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Fig. 4. The viewer interface for ROI validation. (a) Predicted ROIs are displayed and outlined in red. (b) Validated ROIs are outlined in green.
Algorithm 1 Network selection algorithm.

Require: SliceTagList: list(Modality, SamplePerPixel, 
BodyPartExamined, StudyDescription) ⊳ The list of relevant tags from

the current slice

Require: IODeepList ⊳ The list of all the IODeep instances retrieved from

the PACS server

1: if SliceTagList.BodyPartExamined == ∅ then

2: SliceTagList.remove(BodyPartExamined)
3: else

4: SliceTagList.remove(StudyDescription)
5: end if

6: for net in IODeepList do

7: IODeepTagList ← list(net.Modality, net.SamplePerPixel,
net.BodyPartExamined)

8: control ← 0
9: for slice_tag, net_tag in (SliceTagList, IODeepTagList) do

10: if slice_tag == net_tag and not SliceTagList.isLast(slice_tag) then

11: control ← control + 1
12: end if

13: if SliceTagList.isLast(slice_tag) and (slice_tag == net_tag or

slice_tag.substring(net_tag) == True) then

14: control ← control + 1 ⊳ When using StudyDescription a pattern

search is used in place of strict equality

on the last tag

15: end if

16: end for

17: if control == 3 then

18: net_sop_uid ← net.DnnUID ⊳ the SOP UID of the selected IODeep

instance

19: return net_sop_uid
20: else

21: net_sop_uid ← None
22: end if

23: end for

24: return net_sop_uid

ROIs, IODeep can be used equally to instantiate both networks that deal 
with ROIs and models trained at devising bounding boxes. In any case 
the DICOM RT Structure Set will store the vertex list used to render the 
poly-line contour in the PACS viewer.

4.2. Comparison with the DICOM WG-23 proposal

People in the DICOM community are working actively towards the 
integration of AI algorithms in the standard, and a suitable Working 
Group has been founded in this respect: the WG-23 “Artificial Intelli-
8

gence and Application Hosting”. The current proposal of the WG-23 has 
Algorithm 2 ROI prediction algorithm.

Require: IPModule ⊳ The ImagePixel module of the current slice

Require: FRModule ⊳ The FrameOfReference module of the current slice

Require: IODeep ⊳ The selected DNN

Require: Backend ⊳ The reference to the DNN back-end

1: rois ← list()

2: network ← parser(IODeep.DnnArchitecture)

3: check_tensor_shape(IPModule,network.input_shape) ⊳ tensor shape

analysis

4: model ← Backend.createNetwork(network) ⊳ instance of the network in
the DNN back-end

5: model.load(IODeep.DnnWeights) ⊳ loading method of the DNN back-end

6: preds ← model.predict(IPModule.pixelData) ⊳ prediction method of the

DNN back-end

7: for roi in preds do:

8: slice_𝑖𝑑 ← FRModule.FrameOfReferenceUID
9: rois.add(dict(“sliceID” ∶ slice_id, “polyline” ∶ roi) ⊳ These value will

populate the RT Structure Set containing the ROIs

10: end for

11: return rois

been submitted in the form of work item10 that is the standard way for 
working groups to publish their results.

The core of the WG-23 work item is to pursue AI integration us-

ing a mechanism of (micro-)service discovery according to the model 
proposed by the Open Application Model (OAM).11 In this model, AI 
applications are deployed as services running on heterogeneous com-

puting infrastructures that can be either on the same network of the 
PACS or in an external cloud. Each application owns a “Manifest” in the 
form of a YAML file, which encapsulates the definition of a workload 
and the information needed to run it. OAM defines also an “application 
operator” that is the infrastructure that actually deploys the applica-

tion, and defines more information from the operational point of view 
to allow the so called “Platform” (the PACS infrastructure using the ser-

vices, in our case) to integrate them explicitly in its workflow. In the 
vision of the WG-23, applications can either register to the Platform or 
they can be detected through a service discovery mechanism.

Our proposal moves from a monolithic implementation perspective 
where information is fully specified according to the DICOM Informa-

tion Architecture, and only a TCP/IP socket connection is needed to 
reach the DNN back-end that runs on the same network of the PACS. 
Apart from the privacy and security concerns already mentioned, we 
adopted this solution for efficiency reasons. The services ecosystem pro-

posed by the WG-23 is a scalable solution with very low implementation 

10 https://www .dicomstandard .org /workitems.

11 https://oam .dev/.

https://www.dicomstandard.org/workitems
https://oam.dev/
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Fig. 5. Component diagram representing the service implementation of the proposed framework.
effort on the PACS side, but it is tailored on an inference scenario, and it 
is not well suited to perform training or fine-tuning. In general, Radiol-

ogy wards are focused to particular diseases due to their location in the 
territory, and the presence of precise medical specializations. As a con-

sequence, fine tuning a trained network by means of the peculiar data 
generated in a particular PACS infrastructure, appears a reasonable ex-

tension of using DNNs in Medical Imaging. Making a data set available 
at the DNN back-end for training a model is a bandwidth consuming 
task. A service implementation is not well suited for training and/or 
fine tuning because, in general, a service infrastructure is intended to 
be hosted in a remote cloud with respect to the applications that require 
a service. In the model training scenario, this leads to both high latency 
and privacy issues. On the other hand, our solution requires only a data 
transfer on the internal network of the ward, and this is not so resource 
consuming. IODeep can be used explicitly also in this context: a PACS 
client devoted to back-end administration could select a data set made 
by several slice series, and start a network selection procedure, that is 
the same we described before, followed by the training in the back-end.

Nevertheless, we rearranged our implementation according to the 
indications of the WG-23 work item. The software architecture of this 
solution is reported in Fig. 5. In this scenario, Algorithm 1 has been 
redesigned to provide a service discovery REST API (Application Pro-

gramming Interface) and it is available at a known endpoint on the 
service infrastructure. Such an URI is the only thing the PACS platform 
has to know, and IODeep stores the information used to call the API 
at the service discovery endpoint. This interaction provides the plat-

form with the endpoint of the selected DNN service. The PACS platform 
calls the DNN service API at the service endpoint passing the slice, and 
the information for checking the tensor shape stored in the selected 
IODeep. Finally, the selected DNN service runs the Algorithm 2. This 
service architecture does not need to store network information in the 
IODeep architecture as we can assume that all the networks are already 
instanced in the DNN back-end. In our implementation the PACS server, 
the client, and each REST service run in separate Docker containers that 
communicate through using a virtual LAN defined through the YAML 
configuration file. The actual containers can be deployed on either a sin-

gle machine or a cluster. We choose explicitly this kind of infrastructure 
because we strongly believe that effective extension of the service ar-

chitecture to the training/fine-tuning scenario can be achieved only in 
a LAN context where the concerns related to the connection bandwidth 
9

are negligible.
5. Conclusion

In this paper, we introduced IODeep, a new DICOM Information Ob-

ject Definition aimed at integrating all the information needed to allow 
a pre-trained DNN model to be selected w.r.t. the features of the slice 
under investigation, and to be instanced in a DNN back-end running in 
the same network of the PACS server to perform inference about ROIs in 
that slice. We presented the detailed information architecture of IODeep 
along with a precise workflow for selecting the correct DNN, instanc-

ing the abstract model description in the back-end, making predictions, 
and storing the ROIs validated by the physician in a RT Structure Set for 
further reuse. Finally, we implemented a suitable PACS client to show 
the effectiveness of our proposal.

We strongly believe that the key for using Artificial Intelligence 
in the everyday diagnostic activity for medical images is related to 
standardization. Our approach provides a complete answer to the first 
statement in Section 1, and it can be reviewed as a technological start-

ing point for answering the other two statements.

DNNs are useful if they can be fine-tuned on the real data sets avail-

able at the Radiology wards, and our solution allows a simple extension 
to deal with this scenario. In fact, the same information architecture 
in IODeep can be used to select a model to be retrained provided that 
the bandwidth concerns to move data from the PACS to the DNN back-

end are easy to solve. In this respect, a solution that runs entirely in 
the same LAN is strongly preferable to a services ecosystem running in 
cloud.

We also showed that IODeep can be used effectively to implement a 
service based solution for AI integration in DICOM, as the one devised 
by the WG-23. In fact, our network selection and ROI prediction algo-

rithms can be implemented as a service discovery procedure, and DNN 
service respectively to pursue this goal.

Many DNNs for Medical Imaging work on multi-modal data: this is 
the case of registered CT-PET volumes, or the very recent generative AIs 
that integrate both textual and visual information. The current imple-

mentation of IODeep does not support multi-modal input data, but this 
is not a strong limitation for two reasons. First, the general two-stage 
approach based on both DNN selection and ROI prediction does not 
depend on the particular input data. Second, the structure of IODeep 
in Table 1 can be easily extended to utilize multi-modal and/or tex-

tual data. In this respect, one can devise a “Study IODeep” that is the 

proper IOD containing the tags related to both the architecture and the 
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weights of the DNN. Moreover, different “Series IODeep” modules will 
contain the information related to each kind of input tensor, which can 
be either a visual or a textual one. Each “Series IODeep” module will 
reference the DnnUID of the “Study IODeep” to allow proper retrieval 
of all the information needed to select the multi-modal network, and to 
check the shape of all the input tensors. We are now working actively 
on this issue.

Finally, we want to point out that IODeep is also a technological 
key for explainability of DNN models, and their acceptance in the ra-

diological community. First of all, we claim the need to support the 
diagnostic process just with a “ROI suggestion” task. A model suggest-

ing a loose ROI does not make a precise pixel level segmentation. In 
fact, validating an exact segmentation represents a huge cognitive load 
for the doctor. Moreover, precise ROI prediction can be achieved only 
with extensive training on very huge amounts of data. Such a goal can 
be pursued using Federated Learning (FL) that is a distributed learn-

ing paradigm where the model is trained while “moving” it across the 
data repositories where the data set is split, but data are always kept 
where they reside without moving them at all. The technology pro-

posed in this paper enables a distributed scenario where IODeeps are 
shared between the PACS servers of various public and private hospital 
institutions without violating any rule related to either data security or 
patients’ privacy, while allowing FL through the data stored within the 
individual PACS servers.
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