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Abstract. In this paper we prove that if A is any algebra with involution ∗
satisfying a non trivial polynomial identity, then its sequence of ∗-codimensions

is eventually non decreasing. Furthermore by making use of the ∗-exponent we
reconstruct the only two ∗-algebras, up to T ∗-equivalence, generating varieties

of almost polynomial growth. As a third result we characterize the varieties
of algebras with involution whose exponential growth is bounded by 2.

1. Introduction

Let A be an algebra with involution ∗ over a field F of characteristic zero. One
associates to A, in a natural way, a numerical sequence c∗n(A), n = 1, 2, . . ., called
the sequence of ∗-codimensions of A which is the main tool for the quantitative
investigation of the polynomial identities of the algebra A. Recall that c∗n(A),
n = 1, 2, . . . , is the dimension of the space of multilinear ∗-polynomials in n fixed
variables in the corresponding relatively free algebra with involution of countable
rank. Such sequence has been extensively studied (see [8, 15, 16, 17, 18, 19] ) but
it turns out that it can be explicitly computed only in very few cases. In case A is
a PI-algebra, i.e, it satisfies a non trivial polynomial identity, it was proved in [9]
that, as in the ordinary case, c∗n(A), n = 1, 2, . . ., is exponentially bounded.

For this reason the interest focused in the computation of such asymptotics since
they represent an invariant of the T∗-ideal of the ∗-identities satisfied by A.

Recently in [1] the authors characterized the varieties of PI-algebras with invo-
lution by proving that any such variety is generated by the Grassmann envelope of
a finite dimensional superalgebra with superinvolution. The major application of
this result was obtained in [8] where it was shown that the exponent (exp∗(A)) of
a PI-algebra with involution exists and is an integer. More precisely, for general
PI-algebras, it was proved that there exist constants C1 > 0, C2, t, s such that

(1) C1n
t exp∗(A)n ≤ c∗n(A) ≤ C2n

s exp∗(A)n

for all n ≥ 1.
Next step is to ask if the polynomial factor in (1) is uniquely determined, i.e.,

t = s, giving in this way a second invariant of a T∗-ideal, after the ∗-exponent.
Recently in [6] the authors gave a positive answer to this question for the class

of ∗-fundamental algebras.
More precisely they proved the following: let A = Ā + J be a ∗-fundamental

algebra over an algebraically closed field where Ā is a ∗-semisimple subalgebra and
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J is the Jacobson radical of A. Then

lim
n→∞

logn
c∗n(A)

exp∗(A)n
= −1

2
(dim(Ā)− − r) + s,

where Js 6= 0, Js+1 = 0, (Ā)− is the Lie algebra of skew elements of Ā and r is
the number of ∗-simple algebras appearing in the decomposition of Ā which are not
simple algebras.

Now, if V is a variety of ∗-algebras, the growth of V is the growth of the sequence
of ∗-codimensions of a generating algebra.

Inspired by the above results here we are able to obtain further results on the
growth of varieties of algebras with involution.

More precisely we shall prove that if A is any algebra with involution satisfying
a non trivial polynomial identity, then its sequence of ∗-codimensions is eventually
non decreasing.

Furthermore by making use of the ∗-exponent we shall reconstruct the only
two ∗-algebras, up to T ∗-equivalence, generating varieties of almost polynomial
growth, i.e, such that they grow exponentially but any proper subvariety grows
polynomially.

As a third result we shall characterize the varieties of algebras with involution
whose exponential growth is bounded by 2.

2. Preliminaries

Throughout this paper F will denote a field of characteristic zero and A an
associative F -algebra with involution ∗ (also called a ∗-algebra). Let us write
A = A+ ⊕ A−, where A+ = {a ∈ A| a∗ = a} and A− = {a ∈ A| a∗ = −a} denote
the sets of symmetric and skew elements of A, respectively.

Let X = {x1, x2, . . .} be a countable set and let F 〈X, ∗〉 = F 〈x1, x∗1, x2, x∗2, . . .〉
be the free associative algebra with involution on X over F. In order to simplify the
notation we shall write simply f(x1, . . . , xn) to indicate a ∗-polynomial of F 〈X, ∗〉
in which the variables x1, . . . , xn or their star appear.

Recall that f(x1, . . . , xn) ∈ F 〈X, ∗〉 is a ∗-polynomial identity (or simply a ∗-
identity) of A and we write f ≡ 0 if f(a1, . . . , an) = 0, for all a1, . . . , an ∈ A.

We denote by Id∗(A) = {f ∈ F 〈X, ∗〉 | f ≡ 0 on A} the set of ∗-polynomial
identities of A. Clearly Id∗(A) is a T∗-ideal of F 〈X, ∗〉, i.e., an ideal invariant under
all endomorphisms of the free algebra (commuting with the involution).

Recently it was proved in [1] that any PI-algebra with involution A over a field of
characteristic zero, satisfies the same ∗-identities as the Grassmann envelope G(B)
of a finite dimensional superalgebra with superinvolution B. Let us recall the basic
definitions in order to present such a result.

Let B = B0 ⊕ B1 be an associative superalgebra over F endowed with a su-
perinvolution ]. We shall call B an algebra with superinvolution. Recall that a
superinvolution on B is a graded linear map ] : B −→ B such that (a])] = a for
all a ∈ B and (ab)] = (−1)(deg a)(deg b)b]a] for any homogeneous elements a, b ∈ B.
Here deg c denotes the homogeneous degree of c ∈ B0 ∪B1.

Since charF = 0, we can write B = B+
0 ⊕ B

−
0 ⊕ B

+
1 ⊕ B

−
1 , where for i = 0, 1,

B+
i = {a ∈ Bi | a∗ = a} and B−i = {a ∈ Bi | a∗ = −a} denote the sets of symmetric

and skew elements of Bi, respectively. Notice that if B is a superalgebra with trivial
grading, i.e., B1 = 0, then the superinvolutions on B coincide with the involutions
on B.



CODIMENSIONS OF STAR-ALGEBRAS AND LOW EXPONENTIAL GROWTH 3

In a natural way one defines the free algebra with superinvolution F 〈X, ]〉, the

ideal of identities with superinvolution Id](B), etc.
Let G be the infinite dimensional Grassmann algebra over F , i.e., the algebra

generated by the elements 1, e1, e2, . . . subject to the relations eiej = −ejei, for all
i, j ≥ 1. Recall that G has a natural Z2-grading G = G0⊕G1, where G0 and G1 are
the spans of the monomials in the ei’s of even and odd length, respectively. One
defines a superinvolution ] on the Grassmann algebra G = G0 ⊕ G1 by requiring

that e]i = −ei, for i ≥ 1. Hence G+ = G0 and G− = G1.
Now if B = B0 ⊕B1 is a superalgebra endowed with a superinvolution ], it was

proved in [1] that the Grassmann envelope of B, G(B) = B0 ⊗ G0 ⊕ B1 ⊗ G1 has
an induced involution ∗ by requiring that (a ⊗ g)∗ = a] ⊗ g], on all homogeneous
elements g ∈ G and a ∈ B. Notice that, if B is endowed with the trivial grading,
the superinvolution on B is just an involution and Id∗(G(B)) = Id∗(B).

The main property of such a Grassmann envelope is the following: if A is a
PI-algebra with involution over a field of characteristic zero, then A satisfies the
same ∗-identities as the Grassmann envelope G(B) of a finite dimensional algebra
with superinvolution B, i.e.,

(2) Id∗(A) = Id∗(G(B)).

It is well known that in characteristic zero Id∗(A) is completely determined by
its multilinear polynomials and we denote by

P ∗n = spanF {wσ(1) · · ·wσ(n)| σ ∈ Sn, wi = xi or wi = x∗i , 1 ≤ i ≤ n}
the space of multilinear ∗-polynomials of degree n in x1, . . . , xn, i.e., for every
i = 1, . . . , n, either xi or x∗i appears in every monomial of P ∗n at degree 1 (but not
both).

The study of Id∗(A) is equivalent to the study of P ∗n ∩ Id∗(A) for all n ≥ 1 and
we denote by

c∗n(A) = dimF
P ∗n

P ∗n ∩ Id∗(A)
, n ≥ 1,

the n-th ∗-codimension of A.
As a consequence of (2) we have that c∗n(A) = c∗n(G(B)), for all n ≥ 1.
Such result allowed the authors in [8] to determine the exponential rate of growth

of the ∗-codimensions of G(B), and consequently of A. In order to state this result
we make the following definition.

Let F be an algebraically closed field of characteristic zero and let B be a finite
dimensional algebra with superinvolution. Then by [4] B = B̄ + J, where B̄ is a
maximal semisimple subalgebra with induced superinvolution and J = J] is the
Jacobson radical of B. Let B̄ = B1 ⊕ · · · ⊕ Bq be a direct sum of simple algebras
with superinvolution. We make the following.

Definition 2.1. A subalgebra C = C1⊕· · ·⊕Ct of B, where C1, . . . , Ct are distinct
subalgebras from the set {B1, . . . , Bq} is called admissible if C1JC2J · · · JCt 6= 0.
The subalgebra C + J with induced superinvolution will be called reduced.

The result in [8] reads as follows. If B = B1 ⊕ · · · ⊕Bq + J is defined as above,
then there exist constants C1 > 0, C2, t1, t2 such that

(3) C1n
t1dn ≤ c∗n(G(B)) ≤ C2n

t2dn,

where d is the maximal dimension of an admissible subalgebra of B.
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Since the codimensions do not change by extending the base field, by putting
together the results in (2) and (3) the following result is clear.

Theorem 2.1. [8] Let A be a PI-algebra with involution ∗ over a field of charac-
teristic zero. Then there exist constants C1 > 0, C2, t1, t2 such that

C1n
t1dn ≤ c∗n(A) ≤ C2n

t2dn.

Hence limn→∞
n
√
c∗n(A) = exp∗(A), the ∗-exponent of A, exists and is an integer.

Hence, in order to characterize the varieties of ∗-algebras of a given ∗-exponent t,
a starting point is the study of the varieties of algebras with superinvolution gener-
ated by finite dimensional reduced algebras whose semisimple part is of dimension
t.

3. Non decreasing sequences

In this section we prove that if A is an associative algebra with involution ∗ then
the sequence of ∗-codimensions c∗n(A), n = 1, 2, . . . , is eventually non-decreasing.

Theorem 3.1. Let A be a PI-algebra with involution ∗. Then the sequence of ∗-
codimensions c∗n(A), n = 1, 2, . . ., is eventually non-decreasing, that is, c∗n+1(A) ≥
c∗n(A), for n large enough.

Proof. Let B = C + J be a finite dimensional algebra with superinvolution with
J t = 0, for some t, such that Id∗(A) = Id∗(G(B)). We shall prove that if n ≥ t,
c∗n(G(B)) ≤ c∗n+1(G(B)).

If B is a nilpotent algebra, i.e., C = 0, then c∗n(G(B)) = 0 for any n ≥ t and we
are done.

Now assume that C 6= 0.
Given n ≥ t let c∗n(G(B)) = r and let f1, . . . , fr be ∗-polynomials of P ∗n in the

variables x1, x
∗
1, . . . , xn, x

∗
n that are linearly independent modulo P ∗n ∩ Id∗(G(B)).

For any 1 ≤ i ≤ r, we construct the following ∗-polynomials:

hi = hi(x1, ..., xn+1) =

n∑
j=1

fi(x1, . . . , xn+1xj + xjxn+1, . . . , xn) ∈ P ∗n+1,

where for any j = 1, . . . , n, we have substituted in fi the variable xj with xn+1xj +
xjxn+1.

We shall prove that h1, . . . , hr are linearly independent modulo P ∗n+1∩Id∗(G(B)).
Suppose by contradiction that h =

∑
i αihi ≡ 0 is a ∗-identity of G(B) with

some αi 6= 0. Since f1, . . . , fr are linearly independent modulo P ∗n ∩ Id∗(G(B), we
have that f =

∑
i αifi is not a ∗- identity of G(B).

Recall that G(B) = B0 ⊗ G0 + B1 ⊗ G1. Hence we can choose homogeneous
elements a1, . . . , an in a basis B = B0∪B1 of B, where B0 ⊆ C0∪J0 and B1 ⊆ C1∪J1
and suitable g1, . . . , gn ∈ G0 ∪G1 such that

(4) f(a1 ⊗ g1, . . . , an ⊗ gn) 6= 0

in G(B).
Notice that, for any i = 1, . . . , r, there exists a polynomial with superinvolution

pi(x1, . . . , xn, x
]
1, . . . , x

]
n) such that

fi(a1 ⊗ g1, . . . , an ⊗ gn) = pi(a1, . . . , an, a
]
1, . . . , a

]
n)⊗ g1 · · · gn.
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Hence, since the non-zero evaluation of f in (4) is equal to

r∑
i=1

αifi(a1 ⊗ g1, . . . , an ⊗ gn) = (

r∑
i=1

αipi(a1, . . . , an, a
]
1, . . . , a

]
n))⊗ g1 · · · gn,

we must have that
∑r
i=1 αipi(a1, . . . , an, a

]
1, . . . , a

]
n) 6= 0.

By using left and right multiplication by the unit element e of C we can decom-
pose the Jacobson radical J of B into the direct sum of graded C-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,

where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as
i = 1 or i = 0, respectively. Similarly, Jik is a right faithful module or a 0-right
module according as k = 1 or k = 0, respectively. Moreover, for i, k, l,m ∈ {0, 1},
JikJlm ⊆ δklJim where δkl is the Kronecker delta ([10, Lemma 2]).

Now, without loss of generality we may assume that if ai ∈ J then ai ∈ Jkl, for
some k, l ∈ {0, 1}. Take g0 ∈ G0 such that g0g1 · · · gn 6= 0; then if b ∈ C ∪ J00 ∪
J01 ∪ J10 ∪ J11, g ∈ G we have:

(e⊗ g0)(b⊗ g) + (b⊗ g)(e⊗ g0) =

 2b⊗ g0g, if b ∈ C ∪ J11
b⊗ g0g, if b ∈ J10 ∪ J01,
0, if b ∈ J00.

Hence since n ≥ t, by (4) some aj must lie in C and we have:

hi(a1 ⊗ g1, . . . , an ⊗ gn, e⊗ g0) = αpi(a1, . . . , an, a
]
1, . . . , a

]
n)⊗ g0g1 · · · gn,

where α is a positive integer.
Thus

r∑
i=1

αihi(a1⊗g1, . . . , an⊗gn, e⊗g0) = α(

r∑
i=1

αipi(a1, . . . , an, a
]
1, . . . , a

]
n))⊗g0g1 · · · gn 6= 0,

contrary to our assumption. In conclusion the ∗-polynomials h1, . . . , hr are linearly
independent modulo P ∗n+1 ∩ Id∗(G(B)) and the proof is complete. �

4. Characterizing varieties of ∗-algebras of polynomial growth

In this section we shall give a characterization of the varieties of algebras with
involution of polynomial growth. We recall that for a given variety of ∗-algebras
V the growth of V is defined as the growth of the sequence of ∗-codimensions of
any algebra A generating V, i.e., V = var∗(A). Then we say that V has polynomial
growth if c∗n(V) is polynomially bounded.

In what follows it is useful to regard F 〈X, ∗〉 as generated by symmetric and skew
variables: if for i = 1, 2, . . . , we let yi = xi + x∗i and zi = xi − x∗i , then F 〈X, ∗〉 =
F 〈y1, z1, y2, z2, . . .〉. Hence a ∗-identity ofA is a polynomial f(y1, . . . , yn, z1, . . . , zm) ∈
F 〈X, ∗〉 such that f(s1, . . . , sn, k1, . . . , km) = 0 for all s1, . . . , sn ∈ A+, k1, . . . , km ∈
A− and P ∗n = spanF

{
wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = yi or wi = zi, i =

1, . . . , n
}

is the vector space of multilinear polynomials of degree n in the vari-
ables y1, z1, . . . , yn, zn. Hence for every i = 1, . . . , n, either yi or zi appears in every
monomial of P ∗n at degree 1 (but not both).

Now let us focus on the algebra UTn = UTn(F ) of n×n upper triangular matrices
over the field F . One can define an involution ∗ on UTn in the following way: if
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a ∈ UTn, a∗ = batb−1, where t denotes the usual transpose and b is the following
permutation matrix:

b =


0 · · · 0 1
0 · · · 1 0
...

...
1 · · · 0 0

 .

Clearly a∗ is the matrix obtained from a by reflecting a along its secondary diagonal.
Hence, if a = (aij) then a∗ = (a∗ij) where a∗ij = an+1−j, n+1−i. This involution on
UTn is called the (canonical) reflection involution. Now, if A = A0 ⊕ A1 is a
subalgebra of UTn endowed with trivial grading, i.e, A1 = 0, then as we remarked
before, the reflection involution on A is also a superinvolution on A; we shall call
it the reflection superinvolution and we shall denote it by ].

Given polynomials f1, . . . , fn ∈ F 〈y1, z1, y2, z2, . . .〉 let us denote by 〈f1, . . . , fn〉T∗
the T ∗-ideal generated by f1, . . . , fn.

Next we consider the following two algebras with involution:

1) F ⊕ F, a two dimensional algebra endowed with the exchange involution
(a, b)∗ = (b, a);

2) M = F (e11 + e44) ⊕ F (e22 + e33) ⊕ Fe12 ⊕ Fe34, the subalgebra of UT4
endowed with the reflection involution. Here the eijs are the usual matrix
units.

Such algebras were extensively studied in [7] and [19]; in particular it was proved
that Id∗(F ⊕ F ) = 〈[y1, y2], [y, z], [z1, z2]〉T∗ and Id∗(M) = 〈z1z2〉T∗ .

We consider the above algebras also as algebras (with trivial grading) with su-
perinvolution and, when no confusion arises, we shall adopt the same notation for
both structures.

Next we consider a non-trivial Z2-grading on M : we denote by Msup the algebra
M with grading M0 = F (e11 + e44)⊕ F (e22 + e33) and M1 = Fe12 ⊕ Fe34. Notice
that the reflection involution on Msup is a superinvolution. Hence Msup can be
viewed as an algebra with superinvolution.

The above algebras characterize the varieties of algebras with superinvolution of
polynomial growth ([5, 14]).

Recall that given two ∗-algebras A and B, we say that A is T ∗-equivalent to B,
and we write A ∼T∗ B, if Id∗(A) = Id∗(B).

In the following proposition we prove that the Grassmann envelope of Msup is
T ∗-equivalent to M.

Proposition 4.1. The algebras with involution G(Msup) and M satisfy the same
∗-identities.

Proof. Notice that G(Msup)+ = M+
0 ⊗ G0 ⊕M−1 ⊗ G1 and G(Msup)− = M−0 ⊗

G0 ⊕M+
1 ⊗ G1 = M+

1 ⊗ G1, where M−0 = 0, M+
0 = span{e11 + e44, e22 + e33},

M+
1 = span{e12 + e34} and M−1 = span{e12 − e34}. Hence, it is immediate to see

that z1z2 ≡ 0 is a ∗-identity for G(Msup). Since Id∗(M) = 〈z1z2〉T∗ this says that
Id∗(M) ⊆ Id∗(G(Msup)).

Let f ∈ Id∗(G(Msup)) be a multilinear polynomial of degree n. By the Poincaré-
Birkhoff-Witt theorem f can be written as a linear combination of products of the
type

yj1 · · · yjrzk1 · · · zktw1 · · ·wm,
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where w1, . . . , wm are left normed commutators in the yis and zis, j1 < · · · < jr
and k1 < · · · < kt.

Because of z1z2 ([18, Remark 8]), f is a linear combination of the polynomials

(5) y1 · · · yn, yi1 · · · yit′ zlyj1 · · · yjs′ , yp1 · · · ypt [yr, ym]yq1 · · · yqs ( mod Id∗(M)),

where i1 < . . . < it′ , j1 < . . . < js′ , p1 < . . . < pt, r > m < q1 < . . . < qs.
Write

f = δy1 · · · yn+
∑
l,I,J

αl,I,Jyi1 · · · yit′ zlyj1 · · · yjs′+
∑
r,P,Q

βr,P,Qyp1 · · · ypt [yr, ym]yq1 · · · yqs ,

where for any fixed t′ and t, I = {i1, . . . , it′}, J = {j1, . . . , js′}, P = {p1, . . . , pt},
Q = {m, q1, . . . , qs} are such that I ] J ] {l} = P ] Q ] {r} = {1, . . . , n}, and
i1 < · · · < it′ , j1 < · · · < js′ , p1 < . . . < pt, r > m < q1 < . . . < qs.

First suppose that δ 6= 0, then by making the evaluation y1 = · · · = yn = 1M⊗1G
and zl = 0 for all l = 1, . . . , n, one gets δ1M ⊗1G = 0 and so δ = 0, a contradiction.

Suppose that there exists βr,P,Q 6= 0 for some t, r, P and Q; then by making
the evaluation yp1 = · · · = ypt = (e11 + e44) ⊗ 1G, yr = (e12 − e34) ⊗ e1, ym =
(e22+e33)⊗1G, yq1 = · · · = yqs = (e22+e33)⊗1G and zl = 0 for all l = 1, . . . , n, one
gets βr,P,Qe12⊗ e1 +βr,Q,P e34⊗ e1 = 0. Thus βr,P,Q = βr,Q,P = 0, a contradiction.

Let now αl,I,J 6= 0 for some t′, l, I and J . By making the evaluation zl = (e12 +
e34)⊗e1, yi1 = · · · = yit′ = (e11+e44)⊗1G and yj1 = · · · = yjs′ = (e22+e33)⊗1G one
gets αl,I,Je12 ⊗ e1 +αl,J,Ie34 ⊗ e1 = 0 and thus αl,I,J = αl,J,I = 0, a contradiction.

Therefore f ∈ Id∗(M) and, so, Id∗(G(Msup)) ⊆ Id∗(M) and the proof is com-
plete. �

In what follows B will denote a finite dimensional algebra with superinvolution.
Hence B = B̄ + J where B̄ = B1 ⊕ · · · ⊕Bq is a direct sum of simple algebras with
superinvolution.

We recall the classification of the finite dimensional simple algebras with super-
involution.

We start by considering the following simple superalgebras:

- Mk,l(F ) is the superalgebra of (k + l)× (k + l) matrices with Z2-grading:

(Mk,l(F ))0 =

{(
X 0
0 T

)
| X ∈Mk(F ), T ∈Ml(F )

}
,

(Mk,l(F ))1 =

{(
0 Y
Z 0

)
| Y ∈Mk×l(F ), Z ∈Ml×k(F )

}
;

- Q(n) = Mn(F )⊕cMn(F ) is the superalgebra with grading Q(n)0 = Mn(F ),
Q(n)1 = cMn(F ) with c2 = 1.

We have the following.

Theorem 4.1 ([2, 12, 20]). Let B be a finite dimensional simple algebra with
superinvolution over an algebraically closed field F of characteristic different from
2. Then B is isomorphic to one of the following:

(1) Mk,l(F ) with the orthosymplectic or transpose superinvolution,
(2) Mk,l(F )⊕Mk,l(F )sop with the exchange superinvolution,
(3) Q(n)⊕Q(n)sop with the exchange superinvolution.
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Recall that Mk,l(F ) has an orthosymplectic superinvolution osp, and we shall
denote it by (Mk,l(F ), osp), if and only if l = 2s and osp is defined as follows:(

X Y
Z T

)osp
=

(
Ik 0
0 Q

)−1(
X −Y
Z T

)t(
Ik 0
0 Q

)
,

where t denotes the usual transpose, Q =

(
0 Is
−Is 0

)
and Ik, Is are the identity

matrices of orders k and s, respectively.

Also Mk,l(F ) has a transpose superinvolution trp, and we shall denote it by
(Mk,l(F ), trp), if and only if k = l and trp is defined as follows:(

X Y
Z T

)trp
=

(
T t −Y t
Zt Xt

)
.

We recall that if A is a superalgebra then the superopposite algebra Asop of A
is the superalgebra which has the same graded vector space structure as A but the
product in Asop is given on homogenous elements a, b by

a ◦ b = (−1)(deg a)(deg b)ba.

The direct sum R = A ⊕ Asop is a superalgebra with R0 = A0 ⊕ Asop0 and R1 =
A1 ⊕Asop1 .

Let (M2(F ), t) and (M2(F ), s) denote the algebra of 2× 2 matrices over F with
transpose and symplectic involution, respectively, where(

a b
c d

)t
=

(
a c
b d

)
and

(
a b
c d

)s
=

(
d −b
−c a

)
.

Notice that (M2(F ), t) and (M2(F ), s) can be viewed as algebras (with trivial
grading) with superinvolution and we shall denote them with the same notation.
We remark that (M2,0(F ), osp) = (M2(F ), t) and (M0,2(F ), osp) = (M2(F ), s).

In what follows we shall denote by var∗(A) the variety of algebras with involu-
tion generated by A and by var](B) the variety of algebras with superinvolution
generated by B.

We say that an algebra B is endowed with trivial superinvolution ] if the grading
on B is trivial and a] = a for all a ∈ B.

Lemma 4.1. Let B = B1 ⊕ · · · ⊕ Bq + J be a finite dimensional algebra with
superinvolution ] over an algebraically closed field F. If there exist two simple com-
ponents Bi ∼= Bj ∼= F, i 6= j, with trivial superinvolution ] such that BiJBj 6= 0
then M ∈ var∗(G(B)).

Proof. Since BiJBj 6= 0, if u1 and u2 denote the unit elements of Bi and Bj ,
respectively, we have that u1Ju2 6= 0, with u1, u2 ∈ B+

0 and u1u2 = u2u1 = 0. Let
m ≥ 1 be the greatest integer such that u1Ju2 ⊆ Jm and consider B′ = B/Jm,
the quotient algebra of B with induced superinvolution. Notice that B′ contains
two orthogonal even symmetric idempotents u′1, u

′
2 such that u′1J

′u′2 6= 0 where
J ′ = J(B′) is the Jacobson radical of B′ and J ′u′lJ

′u′k = u′lJ
′u′kJ

′ = 0 for every
l, k ∈ {1, 2}. Now, since B′ ∈ var](B), without loss of generality, we may assume
that in B we have that

u1Ju2 6= 0 and JulJuk = ulJukJ = 0, l, k ∈ {1, 2}.
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Hence, there exists j = j0 + j1 with j0 ∈ J0, j1 ∈ J1 such that

u1ju2 = u1(j0 + j1, )u2 6= 0.

It follows that either u1j0u2 6= 0 or u1j1u2 6= 0.
Suppose first that u1j0u2 6= 0. Let D be the subalgebra of B, generated by the

elements:

u1, u2, u1j0u2, u2j
]
0u1.

Clearly D is a subalgebra of B with induced superinvolution (the Z2-grading is
trivial). We claim that D is isomorphic as an algebra with superinvolution to M.
In order to prove this it is enough to consider the isomorphism of algebras with
superinvolution

ϕ : D −→M

induced by setting ϕ(u1) = e11 + e44, ϕ(u2) = e22 + e33, ϕ(u1j0u2) = e12, and

ϕ(u2j
]
0u1) = e34.

This says that M ∼= D ∈ var](B) and, so, G(M) = M ⊗ G0 ∈ var∗(G(B)).
Hence, since G(M) ∼T∗ M we get that M ∈ var∗(G(B)).

Suppose now that u1j1u2 6= 0. We let D be the subalgebra of B generated by
the elements

u1, u2, u1j1u2, u2j
]
1u1.

Clearly D is a subalgebra of B with induced superinvolution (D0 = span{u1, u2}
and D1 = span{u1j1u2, u2j]1u1}). Moreover it is easy to check that D is isomorphic
as an algebra with superinvolution to Msup. In fact, it is enough to consider the
isomorphism of algebras with superinvolution

ϕ : D −→Msup

induced by setting ϕ(u1) = e11 + e44, ϕ(u2) = e22 + e33, ϕ(u1j1u2) = e12, and

ϕ(u2j
]
1u1) = e34.

This says that Msup ∈ var](B) and, so, G(Msup) ∈ var∗(G(B)). Since by Propo-
sition 4.1, G(Msup) ∼T∗ M we get that M ∈ var∗(G(B)) and we are done also in
this case. �

Lemma 4.2. Let B = B1 ⊕ · · · ⊕ Bq + J be a finite dimensional algebra with
superinvolution ] over an algebraically closed field F. If F ⊕ F /∈ var∗(G(B)) then
Bi ∼= F with trivial superinvolution, for i = 1, . . . , q.

Proof. Suppose first that for some i, Bi = Mk,2s with orthosymplectic superin-
volution. If s > 0, C = Fek+1,k+1 ⊕ Fek+s+1,k+s+1 is a subalgebra of Bi with
induced superinvolution and C ∼= F ⊕ F with exchange superinvolution. But then
G(C) ∼= G(F ⊕ F ) = (F ⊕ F ) ⊗ G0 ∈ var∗(G(B)) and (F ⊕ F ) ⊗ G0 ∼T∗ F ⊕ F
with exchange involution, a contradiction. Hence s = 0.

Suppose now that k ≥ 2. In this case F (e11 + e22)⊕F (e12− e21) is a subalgebra
of Bi with induced superinvolution isomorphic to F ⊕ F with exchange superin-
volution. As above we get a contradiction. Thus k = 1 and Bi = F with trivial
superinvolution.

Next suppose that Bi = Mk,k with transpose superinvolution. We consider the
subalgebra Fe11 ⊕ Fek+1,k+1

∼= F ⊕ F and as above we get a contradiction.
Finally suppose that Bi = A⊕ Asop where A = Mk,l(F ) or Q(n). In both cases

we consider the subalgebra Fe11 ⊕ Fe11 ∼= F ⊕ F and we get a contradiction also
in this case. �
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Now we are in a position to prove the following theorem characterizing the
varieties of algebras with involution of polynomial growth.

Theorem 4.2. Let A be a PI-algebra with involution ∗ over a field F of charac-
teristic zero. Then the sequence c∗n(A), n = 1, 2, . . . , is polynomially bounded if and
only if M,F ⊕ F /∈ var∗(A).

Proof. Since the algebras M and F ⊕ F generate varieties of exponential growth
(see [11, Chapter 11]), if c∗n(A) is polynomially bounded, then M,F ⊕F /∈ var∗(A).
Conversely suppose that M,F ⊕ F /∈ var∗(A). Since we are dealing with codimen-
sions that do not change by extending the base field, we may assume that the field
F is algebraically closed. Moreover, c∗n(A) = c∗n(G(B)) where B = B1⊕· · ·⊕Bq+J
is a finite dimensional algebra with superinvolution. Since the conclusion holds if
B is nilpotent, we may assume that q ≥ 1. Hence, by Lemma 4.2, since F ⊕ F /∈
var∗(G(B)) then Bi ∼= F with trivial superinvolution, for i = 1, . . . , q. Moreover,
by Lemma 4.1, since M /∈ var∗(G(B)), BiJBj = 0, for all 1 ≤ i, j ≤ q. By the
above characterization of the ∗-exponent this says that exp∗(A) ≤ 1 and, so, c∗n(A)
n = 1, 2, . . . , is polynomially bounded. �

As a consequence we have the following corollary.

Corollary 4.1. The algebras M and F ⊕ F are the only algebras, up to T ∗-
equivalence, generating varieties of almost polynomial growth.

5. Characterizing varieties of ∗-exponent > 2

In this section we shall introduce some algebras with involution that will allow us
to characterize the varieties of ∗-exponent > 2. We recall that, when dealing with
∗-identities, we may assume that a PI-algebra with involution is the Grassmann
envelope of a finite dimensional algebra with superinvolution. Hence we start by
constructing some finite dimensional algebras with superinvolution.

Recall that any g = (g1, . . . , gk) ∈ Zk2 induces an elementary Z2-grading on UTk
by setting

UT
(0)
k = span{eij | gi + gj = 0} and UT

(1)
k = span{eij | gi + gj = 1}.

Next we introduce two subalgebras of UTk with induced suitable elementary
Z2-gradings. We let

(6) A = Fe11 ⊕ F (e22 + e33)⊕ Fe44 ⊕ Fe12 ⊕ Fe34 ⊆ UT4
and
(7)
B = F (e11+e66)⊕F (e22+e55)⊕F (e33+e44)⊕Fe12⊕Fe13⊕Fe23⊕Fe45⊕Fe46⊕Fe56 ⊆ UT6.

We define different superinvolutions on A and B and we obtain the following
algebras:

1) C1 is the algebra A with trivial grading and reflection superinvolution ];

2) C2 is the algebra A with elementary grading induced by g = (0, 1, 1, 0) and
reflection superinvolution ];

3) C3 is the algebra B with trivial grading and reflection superinvolution ];

4) C4 is the algebra B with elementary grading induced by g = (0, 0, 1, 1, 0, 0)
and reflection superinvolution ];
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5) C5 is the algebra B with elementary grading induced by g = (0, 1, 0, 0, 1, 0)
and superinvolution † defined on the matrix units by

e†ij =

{
−e]ij if (i, j) ∈ {(1, 2), (5, 6)}
e]ij otherwise

.

We also define the following algebras with superinvolution:

6) C6 = (M2(F ), s);

7) C7 = (M2(F ), t);

8) C8 = (M1,1(F ), trp);

9) C9 = Q(1)⊕Q(1)sop.

In what follows often in order to simplify the notation we shall identify a simple
algebra B with superinvolution with one of the algebras given in Theorem 4.1. The
following remark is immediate.

Remark 5.1. If B is a simple algebra with superinvolution over an algebraically
closed field F and dimB > 2 then either B ⊇ Q(1)⊕Q(1)sop or B ⊇ (M2(F ), t) or
B ⊇ (M2(F ), s) or B ⊇ (M1,1(F ), trp).

Lemma 5.1. Let B = B̄ + J be a reduced algebra with superinvolution ] over an
algebraically closed field F. If dim B̄ > 2 then var](B) contains one of the algebras
C1, . . . , C9.

Proof. Let B̄ = B1 ⊕ · · · ⊕ Bq. If q = 1, by Remark 5.1, B contains one of the
algebras C6, . . . , C9.

Hence we may assume that q ≥ 2. Assume that B does not contain any of the
algebras C6, . . . , C9. Then, by Remark 5.1, dimBi ≤ 2 for all i = 1, . . . , q.

We start by analyzing the case q = 2. Then B = B1 ⊕ B2 + J and B1JB2 6= 0.
Moreover, since dim B̄ = dim(B1 ⊕B2) > 2, we must have that either B1 = F and
B2 = F ⊕ F (the case B1 = F ⊕ F, B2 = F is easily reduced to this case by taking
]), or B1 = B2 = F ⊕ F.

Suppose first that B1 = F, B2 = F ⊕ F. Let u1, u2 be the unit elements of

B1 and B2, respectively. We write u2 = u3 + u4 where u3 = (1, 0) and u4 = u]3.
Clearly u1Ju2 6= 0 and let m be the greatest integer such that u1Ju2 ⊆ Jm. By
working inside the algebra B/Jm+1 with induced superinvolution, we may assume
that Ju1Ju2 = u1Ju2J = 0. Let j ∈ J be a homogeneous element such that
u1ju2 6= 0. Then we consider the subalgebra with induced superinvolution generated
by u1, u3, u1ju2. At this point one can construct the algebras C1 and C2 (see [3]
and [13] for the details of the proof).

We remark that if B1 = B2 = F ⊕F then B contains a subalgebra with induced
superinvolution isomorphic to F ⊕ (F ⊕ F ) + J with FJ(F ⊕ F ) 6= 0 and we are
back to the previous case.

Suppose now that k ≥ 3. Then we may clearly assume that B1JB2JB3 6= 0 and
B1 = B2 = B3 = F. Let u1, u2, u3 be the unit elements of B1, B2, B3, respectively.
Clearly u1Ju2Ju3 6= 0 and let m be the greatest integer such that uaJubJuc ⊆ Jm
for all a, b, c ∈ {1, 2, 3}. By passing to the algebra B/Jm+1 with induced superinvo-
lution, we may assume that JuaJubJuc = uaJubJucJ = 0 for all a, b, c ∈ {1, 2, 3}.
Let I be the ideal of B generated by uaJubJua with a, b ∈ {1, 2, 3}, a 6= b.
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Clearly I is stable under the superinvolution and by passing to B/I we may as-
sume that u1Ju2Ju3 6= 0 and uaJubJua = 0 with a, b ∈ {1, 2, 3}, a 6= b. It fol-
lows that there exist homogeneous elements j1, j2 ∈ J such that u1j1u2j2u3 6= 0.
At this stage one considers the subalgebra D with superinvolution generated by
u1, u2, u3, u1j1u2, u2j2u3. Notice that by the above a linear basis of D is given by
the elements

u1, u2, u3, u1j1u2, u2j2u3, u1j1u2j2u3, u2j
]
1u1, u3j

]
2u2, u3j

]
2u2j

]
1u1.

Depending on the homogeneous degree of j1 and j2, one can recover the algebras
C3, C4 and C5 by proving that D is isomorphic to one of them (see [3] and [13] for
the details). �

Now we have all the ingredients to prove the main result of this section. To this
end we list nine algebras that will play a basic role in what follows.

Consider the following algebras with involution:

1) D1 ⊆ UT4 is the algebra A in (6) with reflection involution ∗;
2) D2 = G0e11 ⊕ G0(e22 + e33) ⊕ G0e44 ⊕ G1e12 ⊕ G1e34 ⊆ UT4(G) is the

algebra with involution defined on a basis by

(geij)
◦ =

{
−ge∗ij if (i, j) ∈ {(1, 2), (3, 4)}
ge∗ij otherwise

,

where ∗ denotes the reflection involution on UT4(G);

3) D3 ⊆ UT6 is the algebra B in (7) with reflection involution ∗;
4) D4 = G0(e11 + e66) ⊕ G0(e22 + e55) ⊕ G0(e33 + e44) ⊕ G0e12 ⊕ G1e13 ⊕

G1e23 ⊕ G1e45 ⊕ G1e46 ⊕ G0e56 ⊆ UT6(G) is the algebra with involution
defined on a basis by

(geij)
◦ =

{
−ge∗ij if (i, j) ∈ {(1, 3), (2, 3), (4, 5), (4, 6)}
ge∗ij otherwise

,

where ∗ denotes the reflection involution on UT6(G);

5) D5 = G0(e11 + e66) ⊕ G0(e22 + e55) ⊕ G0(e33 + e44) ⊕ G1e12 ⊕ G0e13 ⊕
G1e23 ⊕ G1e45 ⊕ G0e46 ⊕ G1e56 ⊆ UT6(G) is the algebra with involution
defined on a basis by

(geij)
◦ =

{
−ge∗ij if (i, j) ∈ {(2, 3), (4, 5)}
ge∗ij otherwise

,

where ∗ denotes the reflection involution on UT6(G);

6) D6 = (M2(F ), s);

7) D7 = (M2(F ), t);

8) D8 = M1,1(G) =

(
G0 G1

G1 G0

)
with involution:

(
g0 g1
g′1 g′o

)∗
=

(
g′o g1
−g′1 go

)
;

9) D9 = G ⊕ Gop with involution (a, b)∗ = ((−1)degbb, (−1)degaa), for a, b ∈
G0 ∪G1.

Theorem 5.1. Let A be a PI-algebra with involution ∗ over a a field F of character-
istic zero. Then exp∗(A) > 2 if and only if Di ∈ var∗(A), for some i ∈ {1, . . . , 9}.
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Proof. By the above var∗(A) = var∗(G(B)), where B is a finite dimensional algebra
with superinvolution ]. Without loss of generality we may assume (see [11, Theorem
7.6.1]) that F is algebraically closed. Also exp∗(A) is the maximal dimension of an
admissible subalgebra B̄ = B1⊕· · ·⊕Bt of B with induced superinvolution. Suppose
first that exp∗(A) > 2. Then dim B̄ > 2 and, by Lemma 5.1, Ci ∈ var](B̄+J(B)) ⊆
var](B), for some i = 1, . . . , 9. Hence G(Ci) ∈ var∗(G(B)), for some i ∈ {1, . . . , 9} .
Now, since G(Ci) ∼T∗ Di, for all i = 1, . . . , 9, we get the desired conclusion.

Conversely, suppose that Di ∈ var∗(A). Now, since var∗(Di) = var∗(G(Ci)) we
get that exp∗(Di) equals the maximal dimension of an admissible subalgebra of Ci
and, it is easy to show that exp∗(Di) = 3, for i = 1, . . . , 5 and exp∗(Di) = 4, for
i = 6, . . . , 9. Hence, it follows that exp∗(A) > 2 and this completes the proof. �

As a consequence of Theorems 4.2 and 5.1, we get the following result charac-
terizing ∗-algebras with ∗-exponent equal to two.

Corollary 5.1. Let A be a PI-algebra with involution ∗ over a field of characteristic
zero Then exp∗(A) = 2 if and only if Di 6∈ var∗(A), for all i ∈ {1, . . . , 9} and either
F ⊕ F or M ∈ var∗(A).
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