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Abstract: We implement a simple and powerful approach to characterize the domain
distribution in the bulk of quadratic ferroelectric crystals via far-field second-harmonic
spectroscopy. The approach is demonstrated in a lithium tantalate sample with periodic
electric field poling and random mark-to-space ratio.

Index Terms: Second-harmonic generation, random quasi phase matching, image analysis.

1. Introduction
Wave propagation in nonhomogeneous and disordered media has been intensively studied in a
number of optical systems for both single and multiple scattering dynamics. Following the recent
progress in the poling technology of ferroelectric crystals, a number of studies have dealt with
nonlinear frequency conversion in nonhomogeneous quadratic dielectrics, ranging from nonlinear
lattices [1]–[5] to disordered media [6]–[12]. Such investigations have been triggered not only by the
fundamental interest in understanding the interplay between wave interaction and the spatial
distribution associated to nonlinearity but also by their potential impact on applications aiming at
broadband frequency generation or conversion by three-wave mixing (TWM) [6]–[9], [12]. Among
other effects, since momentum conservation in quadratic TWM enhances the interaction,
multidimensional nonlinear lattices have been proven to yield signal generation along various
directions of propagation [13], both in free wave [1], [2] and self-guided [4], [14] regimes.

In this paper, we address second-harmonic generation (SHG) in quadratic crystals with a
nonhomogeneous distribution of the ferroelectric domain orientations, i.e., of the sign of the
nonlinearity. As pointed out in some pioneering papers [15], [16] and in more recent work [2], [13],
[17], [18], the generated second harmonic (SH) inherently possesses the spectral properties of the
nonhomogeneous quadratic nonlinearity: phase matching maps the momenta of the spatial
degenerate-TWM nonlinearity into SH wave vectors.

Hereby, we exploit the formal equivalence of the SH far field with the Fourier transform of the
spatial distribution of the quadratic nonlinearity [16] in order to study a random distribution of
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ferroelectric domains in quadratic crystals. Specifically, we use this fully optical approach to
reconstruct the Fourier spectrum of an arbitrary distribution of ferroelectric domains in a 1-cm-long
periodically electric-field-poled LiTaO3 sample designed for SHG via Quasi Phase Matching (QPM),
by carrying out a set of SHG experiments and analyzing both role and properties of the random
component of the mark-to-space ratio of its QPM grating. The reconstructed distribution of the
quadratic coefficient inside the crystal is then used to numerically reproduce the data, obtaining quite
a good agreement with the experimental results.

2. Theory
The Fourier transformation linking the SH far field with the ferroelectric domain distribution in an
e�ee degenerate-TWM interaction can be illustrated with reference to standard type-I SHG in the
undepleted pump regime. [19] The SH electric field Eð2!ÞðtÞ ¼ RefE ð2!Þe�i2!tg generated by a
fundamental-frequency (FF) field Eð!ÞðtÞ ¼ RefE ð!Þe�i!tg is ruled by

r2E ð2!ÞðrÞþk ð2!ÞE ð2!ÞðrÞ¼� k ð2!Þ0

� �2
Cð2ÞðrÞ E ð!ÞðrÞ

h i2
(1)

where k ð2!Þ0 and k ð2!Þ are the wavenumbers in vacuum and in the medium, respectively. The
nonlinear susceptibility Cð2Þ is nonhomogeneous in space.

Considering a slowly varying envelope FF beam E ð!ÞðrÞ ¼ E ð!Þ0 ðrÞeikð!Þ�r and using the Green
function [19]

Gðr; r0Þ ¼ eik ð2!Þjr�r0 j

jr� r0j (2)

we get

E ð2!ÞðrÞ /
Z

Gðr; r0ÞCð2ÞðrÞ E ð!Þ0 ðrÞ
h i2

ei2k!�r0dr0: (3)

For the sake of simplicity we ignore the refractive index discontinuities between the crystal and the
surrounding environment. In the far field (for maxðjr0 � r̂j2=2�ð2!ÞÞ � r with r̂ unit vector of r) a
Fourier transformation links the spatial distribution of the nonlinear polarizability / Cð2ÞðrÞ½E ð!ÞðrÞ�2
with the generated SH field ðE ð2!ÞÞ

E ð2!ÞðrÞ / eik ð2!Þr

2r
F Cð2ÞðrÞ E ð!Þ0 ðrÞ

h i2� �
ð#k Þ (4)

where FfuðxÞgðyÞ¼
R
uðxÞeixydx is the Fourier transform and #k ¼ 2kð!Þ � kð2!Þ the phase mis-

match. The latter can be expressed as #k ¼ 2kð!Þ� k ð2!Þðcosð�Þsinð�Þx̂þ sinð�Þsinð�Þŷþ cosð�ÞẑÞ
with � and � polar angles and z the polar axis in spherical coordinates. The Appendix contains a
complete derivation accounting for both extraordinary- and ordinary-wave propagation in a uniaxial
crystal; the Fourier relation is generally valid in the undepleted pump regime.

Eq. (4) connects the SH far field to the Fourier transform of the nonlinear coefficient �ð2Þ in the
space of phase mismatch #k , with no hypotheses on its transverse spectrum, [15], [16] not even
the slowly varying envelope approximation [2], [13], [17]. Therefore, it is valid also in highly
disordered media where the SH can strongly diffract due to momentum conservation [3], [10], [20].

The Fourier relation in Eq. (4) entails the noninvasive study of ferroelectrics with a nonhomoge-
neous distribution of the nonlinearity. For the complete characterization of the Fourier spectrum, three
independent parameters must be taken into account: Two of them are the coordinates in the far-field
plane, the third must relate to the mismatch#k . The latter depends on easily controlled experimental
quantities such as the FF angle of incidence, wavelength and sample temperature [8], [19]. Imaging of
the generated SH far field at various FF wavelengths can therefore provide information on the
dominant components of the nonlinear coefficient in reciprocal space, while standard inspection
techniques such as piezo-atomic force microscopy or charge-selective etching can only give
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information on ferroelectric domains near the sample surface. The extension of this concept to the
general cases of sum and difference frequency generation by undepleted pumps is straightforward.

To gain more physical insight, we focus our attention on a uniaxial crystal with randomly
distributed nonlinear domains in the principal plane xy where the extraordinarily polarized FF pump
propagates: TWM takes place with an extraordinarily polarized SH through the nonzero quadratic
tensor element d33. [21]. The relation in Eq. (4) for this interaction can be simplified as

E ð2!ÞðY Þ /F E ð!Þo ðx ; yÞ
h i2

d33ðx ; yÞ
� �

ð�kx ;�ky Þ

�kx ¼ 2k ð!Þ � k ð2!Þcosð�Þ
�ky ¼ �k ð2!Þsinð�Þ (5)

where Y is the transverse coordinate on the far-field screen (see Fig. 1).

Fig. 1. Geometry. z-polarized FF pump beam propagates along x in a crystal with a 2-D random
distribution of domains with alternate signs. The z-polarized SH is generated with a distribution related
to the spatial spectrum of the nonlinear domains. � is the angle of a generic SH plane-wave component
in xy . The inset shows the Fourier spectrum of the nonlinear distribution, with phase mismatch versus �.

Fig. 2. Phase mismatch in the Fourier space of LiTaO3 for a pump propagating along x versus the angle
�. Gray and white areas refer to regions for forward and backward SH propagation, respectively. The
wavelength is tuned from (blue circle) 700 nm to (red circle) 2 �m. Inset: zoom-in around the origin.
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The range of spatial frequencies that can be measured is defined by the phase mismatch and can
be evaluated with the aid of the Sellmeier equations for the specific crystal. For example, frequencies
between 2� 103 cm�1 and 5� 105 cm�1, corresponding to spatial periodicity from 110 nm to 30 �m,
respectively, can be addressed by tuning the FF wavelength from 700 nm to 2000 nm in LiTaO3 (see
Fig. 2) and collecting the forward-propagating SH. The asymmetry of the accessible range with
respect to the origin can be partially overcome by considering that the ferroelectric domain distribution
is a real function; hence, its Fourier transform possesses complex conjugate symmetry with respect to
the origin. If the FF angle of propagation can be continuously tuned in a solid angle, all frequencies in
the previous domain are in principle accessible.

As an example, we consider the reciprocal spectrum of a LiTaO3 ferroelectric crystal with
randomly distributed domain signs in the range 2.5 �m–20 �m. Taking a Gaussian distribution
centered around 6 �m and a square sample of size 0:5� 0:5 mm2, we solved for type-I SHG using
a standard (nonlinear) beam propagator and a plane-wave FF input; then, we calculated the far-field
SH after exiting the crystal and subsequently propagating in air. The final result is a map of the far-
field SH in the �� � space, where � is the internal angle of propagation obtained by Snell’s law, as
shown on the left side of Fig. 3. These maps represent a portion of the Fourier spectrum of the
nonlinear coefficient in �� �. Using Eq. (5), it is possible to convert the map in the Fourier space.

The whole spectrum is recovered by rotating the sample by 90� and assuming complex conjugate
symmetry. The comparison between the original pattern of the Fourier transform modulus and the
obtained SH is visible in Fig. 4. A correlation as high as 0.97 is obtained between the two diagrams.

Fig. 3. Random domain mapping; numerical example for a ferroelectric crystal such as LiTaO3.
(a) Distribution of SH intensity versus FF wavelength and internal angle of propagation �. (b) SH intensity
in Fourier space.

Fig. 4. Random domain mapping; numerical example. (a) Fourier transform of the nonlinear random
pattern. Dashed yellow circle: Fourier components corresponding to 6-�m domain sizes. White lines:
Constant wavelength loci at (solid line) 700 nm and (dashed line) 1800 nm, respectively. (b) Recovered
spectrum via SHG.
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If the SH phase were known (e.g., by interferometric measurements), then the map could be
transformed back in direct space, as shown in Fig. 5. The domain borders in the recovered pattern
are smoothed out due to cutoff at high frequencies.

3. Experiments in Lithium Tantalate
In theexperimentsweemployedasurfaceperiodically poledLiTaO3 crystal.Surfaceperiodic poling (SPP)
is a planar technique for preparing quasi-phase-matched ferroelectrics with short periodicities [22].

The poling field is applied along the z-axis and inverts all the ferroelectric domains with the
exclusion of those under the masked region, giving rise to uninverted domains at the surface of
the sample. We used a mask with a 1-D grating of 2-�m period. As visible in Fig. 6(a), owing to
the nucleation dynamics, the mark-to-space ratio after poling was nonuniform in the ðx ; yÞ plane,
with a random component superimposed to the QPM grating. In order to perform the nonlinear
characterization of the sample, we focused a Ti:Sapphire laser beam (FF wavelength tunable
from 900 to 980 nm and a �40-GHz linewidth) to a 25-�m waist, propagating it along the x -axis
for 1 cm, using a linear z-polarization to achieve type-I e�ee SHG using d33ðx ; yÞ. We collected
SH images at a distance d ¼ 2 cm from the output facet using a CCD camera; the maximum
value of half-waist of the FF beam inside the sample HW � 15 �m allowed us to adopt the

Fig. 5. Random domain mapping, numerical example. (a) Random pattern of inverted nonlinear
domains. (b) Recovered pattern using far-field SHG and Fourier transform.

Fig. 6. Random mark-to-space ratio and SHG far-field spectroscopy. (a) Micrograph of the SPP-LT
sample after chemical etching: a nonuniform mark-to-space ratio is visible in the poled area with 2-�m
period. (b) Far-field profiles for the FF beam ð� ¼ 930 nmÞ and for the SH. Due to the random QPM
generation, the SH spreads out in the output plane.
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Fraunhofer approximation, i.e., maxðjr0 � r̂j2Þ=ð2�ð2!ÞÞ ¼ HW 2=ð2�ð2!ÞÞ � 240 �m, which is much
smaller than the propagation distance. Fig. 6(b) shows the images of the far-field patterns for the
FF and the SH. The SH pattern is essentially 1-D, confirming the homogeneity along the z-axis in
the illuminated zone; its profile across Y is plotted on the bottom of Fig. 6(b).

The Fourier transform approach can be applied to extract information on the statistic distribution
of the random nucleation of domains. Let us consider the domain distribution as an aleatory
process, i.e., d33 as an aleatory variable in the (x ; y ) plane. We can use the energy spectral density,
defined as the mean of the square modulus of the Fourier transform Dðkx ; ky Þ (i.e., hDðkx ; ky Þj2i) to
characterize the random process.

We evaluated this parameter by averaging the far-field SH image over several positions of the FF
beam in the sample, assembling an interpolating function of the energy spectral density in the
ðkx ; ky Þ space for the explored interval, as shown in Fig. 7(a). The center top of Fig. 7 plots the
average of the SH far field for an FF wavelength of 930 nm. The profile is interpolated by two
symmetrical Gaussians. Data collected at 900, 930 and 960 nm yield to comparable transverse
profiles. The average conversion efficiency versus fundamental wavelength is the integral along the
� ¼ const locus of the energy spectral density. Fig. 7(c) shows the measured conversion efficiency,
which increases with the FF wavelength.

The information on transverse profile and efficiency allowed for the interpolation the energy
spectral density [see Fig. 7(a)] in the explored wavelength range at the FF. The profile in Fig. 7(b)
indicates that noise was symmetrically distributed along y . Our scanning range was too narrow to
appreciate variations in the parameters of the two interpolating Gaussian. Nevertheless, the
reconstructed fitting function in Fig. 7(a) suggests that the distribution does not possess a radial
symmetry, as it would be the case of a noise isotropically distributed in the plane. This indicates an
influence of the mask for periodic poling imposed along x on the (spontaneous) nucleation of
random domains. In our range of observations we measured domain features comprised between 3
and 6 �m, with the largest occurrence of domains of 5.3 �m.

It is possible to mimic the random trend in the used range of wavelengths by generating the d33
distribution as a random Gaussian process, filtered by the interpolating function in the Fourier

Fig. 7. Measurement of the spectral energy density. (a) Pseudo-color map for the extracted profile of the
spectral density of the random sample. The dark blue region was unexplored in our experimental
campaign. The 2-�m period QPM is indicated by a white dot (overscaled). Center column: Experimental
data. (b) Far-field SH profile averaged over 50 measurements with FF at 930 nm (black). (c) (Black)
Conversion efficiency measurements; the red lines are fits corresponding to the spectral density on the
left. Right: Numerical results; the interpolated profile on the left was used to implement a Gaussian
realization of the randomness in d33ðx ; yÞ. (d) Simulation of SH far field over 20 realization. (e) Calculated
conversion efficiency.
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space. We superimposed this distribution to a sinusoidal one along x for the 2-�m period QPM,
then we extracted the sign of d33. In the range 900–1000 nm the statistic behavior was well
reproduced, as shown in Fig. 7(a). The SH at the QPM resonance (�730 nm) was efficiently
generated with a bell-shape output (as experimentally verified [22]).

By focusing our attention on a specific region of the sample, it is possible to analyze specific
details of the Fourier spectrum. The narrow laser linewidth enabled us to fine-tune the phase
mismatch �k and collect several images which were rearranged in the maps in Fig. 8(a), with a
fundamental wavelength span of 6 nm around 900, 930, and 960 nm, respectively.

The loci �kx ¼ const are clearly visible in the map, as paths varying along Y with concavity
toward shorter wavelength. Eoðx ; yÞ has a strong asymmetry in x ; y , since it is limited in y to tens of
micrometers while in x it covers the whole sample length of 1 cm. In Fourier space, the convolution

Fig. 8. Fourier spectrum measurements. (a) SH profiles versus fundamental wavelength around 900,
930, and 960 nm (left to right), respectively. The loci �kx ¼ constant are clearly visible. (b) Numerically
evaluated SH profiles versus fundamental wavelength around 900, 930, and 960 nm (left to right).
(c) Fourier transform obtained from Fig. 8(a) using Eq. (5). The SH profiles are shown in the Fourier
coordinates �kx , �ky .
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between the Fourier transform of the fundamental profile ½Eoðx ; yÞ�2 and the distribution d33 results
in the blurring of the d33 transform in �ky . Even with this limitation, the regions of higher intensity
point out the dominant spatial frequency contributions to the nonlinear coefficient. To numerically
mimic this behavior we adjusted the Fourier transform of d33ðx ; yÞ to exhibit the same peak of the
reconstructed space in Fig. 8(c). The resulting Fig. 8(b) shows a good agreement with the data of
Fig. 8(a) in terms of SH energy distribution.

4. Conclusion
In conclusion, we introduced an accessible, noninvasive approach to characterize ferroelectric
domain distribution in noncentrosymmetric crystals; the approach, based on SHG far-field
spectroscopy, demonstrates that it is possible to extract information on the Fourier spectrum by
scanning a convenient set of FF wavelengths. We experimentally tested this procedure using a
surface periodically poled LiTaO3 sample with nonuniform mark-to-space ratio and managed to
extract global statistical parameters such as the energy spectral density of the random domain
distribution. From the obtained information we could numerically reproduce the experimental
results. These findings demonstrate the potential in terms of diagnostics and morphological
analysis afforded in ferroelectrics by a TWM when matched to Fourier optics, paving the way to
applications of random domain poling toward the engineering of versatile and broadband
wavelength converters.

Appendix
1Derivation in the Presence of Anisotropy

The scalar approximation can be reductive when dealing with propagation in anisotropic media
such as nonlinear crystals. We derive hereby a relation accounting for both ordinary- and
extraordinary-wave propagation in uniaxial media with optic axis along z and refractive indices no
and ne, respectively. We start with the Maxwell’s equations for the SH, considering an external
source PNLðrÞ ¼ Cð2ÞðrÞ : Eð!ÞEð!Þ, where the nonlinear susceptibility Cð2Þ is a third-order tensor. We
omit the superscript ð2!Þ in the following:

r� E ¼ i!�0H

r� H ¼ �i!�0ð:Eþ PNLÞ (6)

or, equivalently

r2E�rr � Eþ k2
0 :E ¼ �k2

0PNL

r � ð:EÞ ¼ n2
or? � E? þ n2

e@zEz ¼ �r � PNL (7)

where the dielectric constant � is a second-order tensor, diagonal in the reference system with
principal diagonal fn2

o; n
2
o; n

2
eg. The two equations above can be cast in the form

LðEÞ ¼ �k2
0PNL � 1

n2
on2

e
:rr � PNL (8)

with

L ¼

n2
o

n2
e
@xx þ @yy þ @zz þ n2

ok
2
0 � n2

e�n2
oð Þ

n2
e

@xy 0

� n2
e�n2

oð Þ
n2
e

@xy @xx þ n2
o

n2
e
@yy þ @zz þ n2

ok
2
0 0

0 0 @xx þ @yy þ n2
e

n2
o
@zz þ n2

ek
2
0

0
BBB@

1
CCCA: (9)
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Defining the vector potential A

E ¼ �k2
oA� 1

n2
on2

e
:rr � A (10)

the system reduces to

LA ¼ PNL: (11)

We can define the linear scalar operators LoðLeÞ ruling ordinary-wave (extraordinary-wave)
propagation and possessing the Green functions Go ðGeÞ as [23]

Lo ¼r2 þ k2
0n

2
o; GoðrÞð	Þ ¼

e	ik0no jrj

4�jrj (12)

Le ¼ @xx þ @yy þ
n2
e

n2
o
@zz þ k2

0n
2
e; GeðrÞð	Þ ¼

noe	ik0nð�Þjrj

4�nð�Þjrj (13)

where nð�Þ2 ¼ n2
ocos

2ð�Þ þ n2
esin

2ð�Þ is the extraordinary-wave refractive index, depending on the
polar angle � on the polar axis z. [23] System (11) can be expressed as a function of the two
previous operators as

Loðr � A? � ẑÞ ¼r � PNL
? � ẑ

Leðr? � A?Þ ¼r? � PNL
?

LeðAzÞ ¼PNL
z : (14)

We split the contribution of the nonlinear polarization (i.e., the source generating the SH) in two
components PNL

z and PNL
? parallel and orthogonal to the optic axis z, respectively. The former

always generates extraordinary waves, while the second can generate both ordinary and
extraordinary waves. Note that the Helmoltz theorem allows decomposing the field PNL

? (and
then A?) in the sum of a solenoidal (divergence-free PNL

?df ) and an irrotational(curl-free PNL
?cf ) vector

fields in the plane xy . The solutions can be obtained using the Green functions defined in (13):

LoðA?df Þ¼PNL
df ; A?df ¼

Z
Goðr� r0ÞðþÞPNL

?df ðr0Þdr0 (15)

LeðA?cf Þ¼PNL
?cf ; A?cf ¼

Z
Geðr� r0ÞðþÞPNL

?cf ðr0Þdr0 (16)

LeðAzÞ¼PNL
z ; Az¼

Z
Geðr� r0ÞðþÞPNL

z ðr0Þdr0: (17)

Employing transformation (10) we retrieve the electric fields

Eo ¼ �k2
0

Z
Goðr� r0ÞðþÞPNL

?df ðr0Þdr0

Ee ¼ � k2
0 þ

1
n2
on2

e
:rr�

� �Z
Geðr� r0ÞðþÞ PNL

?cf ðr0Þ þ PNL
z ẑ

� �
dr0: (18)
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The extraordinary and ordinary components in the far field (neglecting refractive index
discontinuities) can be expressed in terms of the Fourier transform of the nonlinear polarization
PNLðrÞ ¼ PNL

0 ðrÞe2ik ð!Þ ¼ Cð2ÞðrÞ : Eð!ÞEð!Þ.

Eð2!Þo ¼ �k2
0
eik ð2!Þ0 nð2!Þo r

2r
F PNL

0 ðrÞ?df
n o

2kð!Þ � k
ð2!Þ
0 nð2!Þo

� �

Eð2!Þe ¼ � k2
0 þ

1
n2
on2

e
:rr�

� �
nð2!Þo eik ð2!Þ0 nð�Þð2!Þr

2nð�Þð2!Þr
�F PNL

0 ðrÞ?cf þ PNL
0 ðrÞz ẑ

n o
2kð!Þ � kð2!Þe

� �
(19)

with

ke ¼ k0ðn2
esin�ðcos�x̂ þ sin�ŷÞ þ n2

ocos�ẑÞ
nð�Þ:
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