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UPPER BOUNDS FOR THE TIGHTNESS OF THE
Gs-TOPOLOGY

ANGELO BELLA AND SANTI SPADARO

ABSTRACT. We prove that if X is a regular space with no un-
countable free sequences, then the tightness of its Gs topology is
at most continuum and if X is in addition Lindelof then its Gy
topology contains no free sequences of length larger then the con-
tinuum. We also show that the higher cardinal generalization of
our theorem does not hold, by constructing a regular space with
no free sequences of length larger than w;, but whose Gs topology
can have arbitrarily large tightness.

1. INTRODUCTION

Given a space X, the Gs-modification of X (or Gs-topology on X),
X is defined as the topology on X which is generated by the Gs-subsets
of X. The problem of bounding the cardinal invariants of X in terms of
those of X is a well-studied one in set-theoretic topology. For example
if ¢, s, L, t denote respectively the cellularity, the spread, the Lindelof
degree and the tightness of X, then ¢(Xs) < 2¢X) for every compact
space X (see [7]), s(Xs) < 2°%) for every Hausdorff space X (see [1])
and L(X;) < 2M3X) for every Hausdorff space X (see [10]). This is
nothing but a small sample of bounds for the G5 topology that have
been proved in the past; for more results and applications of the Gj
topology to homogeneous compacta we refer the reader to our paper
[1] and its bibliography.

Note that we have not mentioned a bound for the tightness of the G
topology yet, and indeed finding such a bound seems to be particularly
tricky. Answering a question posed in [1], Dow, Juhész, Soukup, Szent-
mikléssy and Weiss [5] proved that the inequality #(X;) < 2!X) holds
within the realm of regular Lindelof spaces. The Lindelof property is
essential in their argument, and in fact the authors were able to con-
struct a consistent example of a regular countably tight space X such
that t(Xs) can be as big as desired. They left open whether a countably
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tight space X such that ¢(Xs) > 2% can be found in ZFC. This ques-
tion was later solved in the positive by Usuba [12], who also found a
bound on the tightness of the Gs-modification of every countably tight
space, modulo the consistency of a certain very large cardinal. More
precisely, Usuba proved that if x is an w-strongly compact cardinal
then ¢(Xs) < k, for every countably tight space X. Chen and Szepty-
cki [3] managed to prove a very tight consistent bound for the special
class of Fréchet aj-spaces, namely ¢(X;s) < N; if the Proper Forcing
Axiom holds.

Exploiting the notion of a free sequence, we will give another bound
on the tightness of the G topology.

A free sequences is a special kind of discrete set that was intro-
duced by Arhangel’skii and is one of the essential tools in his cele-
brated solution of the Alexandroff-Urysohn problem on the cardinality
of first-countable compacta. Recall that the set {z, : @ < Kk} C X
is a free sequence provided that {z5: 8 <a}N{zg:a < B <k} =10
for each a < k. We define F(X) to be the supremum of cardinali-
ties of free-sequences in X. The cardinal functions F(X) and t(X)
are intimately related. Indeed, F'(X) < L(X)t(X) for every space X
and t(X) = F(X), for every compact Hausdorff space X. However,
the gap between F(X) and ¢(X) can be arbitrarily large even for a
Lindelof space X, as observed by Okunev [9].

We will prove a result about the tightness of the Gs modification
which has the Dow, Juhdsz, Soukup, Szentmiklossy and Weiss bound
as a consequence and also implies the following new bound: if X is
a regular space such that F(X) = w, then t(Xs) < 2%. The higher
cardinal generalization of this is not true, as we will construct, for every
cardinal k, a regular space X such that F/(X) = w; < k = t(X;). As a
byproduct of our bound we will obtain that if X is a Lindelof regular
space such that FI(X) = w then F(X;) < 2%,

Given a set S, we denote by P(S) the powerset of S and by [S]=" the
set of all subsets of S which have cardinality at most x. For undefined
notions see [6], but our notation regarding cardinal functions follows

.

2. THE TIGHTNESS OF THE (5-MODIFICATION

Let X be a space, let W be a subset of X and let x be an infinite
cardinal. We say that a collection U of subsets of X is a C'l,-cover of W
provided that for any C' € [W]=F there is Us € U such that C C Ug.
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We say that a space X is Cl.-Lindelof if whenever W is a subset of
X and U is an open Cl,-cover of W, then W is covered by countably
many elements of U.

Lemma 1. Every Lindelof space X is Clyx)-Lindelof.

Proof. It suffices to observe that every open Cl;(x)-cover of a set W C
X is actually a cover of W. U

Lemma 2. Every space X satisfying F(X) = w is Cl,-Lindeldf.

Proof. Let Whe a subset of X and U be an open Cl,-cover of W.
Assume by contradiction that no countable subfamily of U covers W.
We will then construct a free sequence of cardinality w; inside W.

Suppose that, for some 5 < wy, we have chosen points {z, : 7 <
p} € W and elements U, € U for every 7 < [ with the property that
{z, v <71} CU.. Choose Ug € U in such a way that {z,:a <} C
Us. By our assumption, the family {U, : 7 < 8} does not cover W,
and therefore we can fix a point 23 € W\ | J{U, : 7 < 5}.

Eventually, {x, : 7 < w1} is a free sequence of cardinality w; in X,
which is a contradiction. U

Theorem 3. Let X be a reqular space and let k be an infinite cardinal.
If X is Cl.-Lindeldf, then t(Xs) < 2.

Proof. Let A be any subset of X and fix a point p in the G-closure of
A

Let N.(X) = {C € [X]=" : p ¢ C}. By the regularity of X, for
every C' € N (X), we can find disjoint open sets Us and Vi such that
C CUqand p € V.

Let ¢ be a choice function on P(X). We will build by induction an
increasing family {W, : a < ™} C [A]*".

Let Wy be any subset of A of cardinality < 2" and assume we have
already defined {Wj3 : f < a}. If o is a limit ordinal then put W, =
U{Ws: 5 < a}. If a =~+1 then let:

Wa =W, U{s(AN[ [{Vc:C eC}):C e [N(W,)]*}

Note that |W,| < 2~.

Finally, let W = [J{W, : @ < k"}. Since |W| < 27, it suffices to
show that p is in the Gs-closure of WW.

Indeed, let {O,, : n < w} be a family of open neighbourhoods of p.

Claim. There is a countable family C, C N.(W \ O,) such that
W\O, CcJ{Uc:CeC,}.
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Proof of Claim. Since O,, is an open neighbourhood of p, we have that
N.(W\ O,) = [W\ O,]5" and therefore U¢ is defined for every C' €
W\ O,]5F and C C Ug. In particular, Y = {Ug : C € N.(W\ O,)} is
a Clg-open cover of W\ O,. Now, the statement of the claim follows
from the fact that X is a Cl,-Lindel6f space. A

For every n < w, fix a family C, satisfying the Claim and let S =
U{C, :n <w}and S=JS.

Since the set S has cardinality at most &, there is an ordinal 0 < k™
such that S C W;. It follows then that the point ¢ = ¢((oeg Ve N A)
belongs to Wi, C W.

Note that, for every n < w, g€ ({Ve: CeC,}nW C W\ | U{Uc :
C e} € O,NW. Therefore ¢ € ({0, : n < w} N W and we are
done. U

Corollary 4. (Dow, Juhdsz, Soukup, Szentmikléssy and Weiss [5]) If
X is a Lindeléf reqular space, then t(Xs) < 20X

Corollary 5. If X is a reqular space and F(X) = w, then t(X5) < 2¥.

It’s natural to ask whether the higher cardinal version of Corollary
holds true. The following theorem shows that this is not the case.

Let 6 be a regular uncountable cardinal. Recall that an elementary
submodel M of H() is said to be w-covering if for every countable
subset A of M there is a countable set B € M such that A C B.
The union of any elementary chain of elementary submodels of length
wy is an w-covering elementary submodel, so w-covering submodels of
cardinality w; exist in ZFC (see [4]).

Theorem 6. For every uncountable cardinal k, there is a space Y such
that F(Y) = w < k= t(Y5).

Proof. Let X = 3(2F) = {x € 2 : |z7'(1)] < Ng} and let p € 2°
be the point defined by p(a) = 1, for every a < k. We will prove
that Y = X U {p} with the topology inherited from 2" is the required
example.

The following Claim was proved by the second author in [I1] for the
case k = wq, but the argument works for any uncountable cardinal s
without any modifications. We include it for the reader’s convenience.

Claim. L(X) = X,.

Proof of Claim. Let U be an open cover of X. Without loss of general-
ity we can assume that for every U € U, there is a finite partial function
o : Kk — 2such that U = {x € 2" : ¢ C x}. The domain of o will then
be called the support of U and we will write supp(U) = dom(0o).
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Let 6 be a large enough regular cardinal and M be an w-covering
elementary submodel of H(#) such that X,U,x € M and |M| = X;.

We claim that & N M covers X. Indeed, let x € X be any point and
let A € M be a countable set such that z7*(1) N M C A.

Let Z={ye X: Vaer\A)(yla) =0)}. Then Z € M and Z is
a compact subspace of X. So there is a finite subfamily V € M of U
such that Z C JV. Since V is finite, we have V C M. It then follows
that U N M covers Z.

Let a be the point such that a(a) = z(«) for all @« € M Nk and
a(a) = 0 for all & € k' \ M. The fact that z7*(1) N M C A implies
that a € Z and hence there is U € &Y N M such that a € U. Note that
supp(U) is a finite element of M and hence supp(U) C M. But since
x and a coincide on M we then have that x € U as well, as we wanted.

This proves L(X) < ¥y, but we can’t have L(X) = X, because X is
countably compact non-compact. Hence L(X) = ;.

A

It is well known that X is Fréchet-Urysohn and hence X has count-
able tightness. Since F(X) < L(X) - t(X) we have F(X) < wy, but
then also F(Y) < w;. It’s easy to see that t(p, Y5) = k. O

In [2] Carlson, Porter and Ridderbos proved the following improve-
ment of the Pytkeev inequality L(X;) < 2X)*X) mentioned in the
introduction.

Theorem 7. [2] (Theorem 2.7) If X is a Hausdorff space, then L(X5) <
9L(X)F(X)

Putting together Corollary [l and the above theorem we obtain:

Corollary 8. Let X be a regular Lindeldf space such that F(X) = w.
Then F(X;) < 2%.

We don’t know whether the Lindelof property can be removed from
the above corollary.

Question 9. Let X be a regular space satisfying F(X) = w. Is it true
that F(Xs) < 297

It’s reasonable to conjecture that the higher cardinal version of Corol-
lary [§ holds, at least for Lindelof spaces.

Question 10. Let X be a regular (Lindeldf) space. Is it true that
F(X5) < 2FX) 2
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Note that neither the consistent example from [5] of a regular count-
ably tight space X such that t(X;s) can be arbitrarily large nor the ex-
ample from Theorem [6] work for the above question since F'(X) = | X|
for the former and F(X;) < 2% for the latter.

We finish with two easy bounds for the tightness of the G5 topology,
by making using of the weight and the spread.

Proposition 11. Let X be a regular space. Then:
(1) t(X5) < 245,
(2) t(X5) <255,

Proof. To prove () recall that w(X) < 2%%) for every regular space X
(see [8]). Now t(X;) < w(X;) < w(X)» < 24X w = 2d(X),

To prove (2)) recall that nw(X) < 2°*) for every regular space X
(see [8]) and proceed as before. O

Proposition [l () is not true for Hausdorff spaces, as the following
example shows.

Example 12. There is a separable Hausdorff space X such that t(Xs) >
2N,

Proof. Let Y be the Katétov extension of the integer. That is, if U is
the set of all non-priincipal ultrafilters on w then Y = w UU, every
point of w is isolated and a basic neighbourhood of p € U is a set of
the form {p} U A\ F, where A € p and F is finite.

Let X = Y U{oo}, where co ¢ Y and declare V' C X to be a
neighbourhood of oo if and only if | X \ V| < 2%, It is easy to see that
X is a separable Hausdorff space and #(Xj;) > 2%, O
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