UPPER BOUNDS FOR THE TIGHTNESS OF THE G_{δ} -TOPOLOGY

ANGELO BELLA AND SANTI SPADARO

ABSTRACT. We prove that if X is a regular space with no uncountable free sequences, then the tightness of its G_{δ} topology is at most continuum and if X is in addition Lindelöf then its G_{δ} topology contains no free sequences of length larger then the continuum. We also show that the higher cardinal generalization of our theorem does not hold, by constructing a regular space with no free sequences of length larger than ω_1 , but whose G_{δ} topology can have arbitrarily large tightness.

1. INTRODUCTION

Given a space X, the G_{δ} -modification of X (or G_{δ} -topology on X), X_{δ} is defined as the topology on X which is generated by the G_{δ} -subsets of X. The problem of bounding the cardinal invariants of X_{δ} in terms of those of X is a well-studied one in set-theoretic topology. For example if c, s, L, t denote respectively the cellularity, the spread, the Lindelöf degree and the tightness of X, then $c(X_{\delta}) \leq 2^{c(X)}$ for every compact space X (see [7]), $s(X_{\delta}) \leq 2^{s(X)}$ for every Hausdorff space X (see [1]) and $L(X_{\delta}) \leq 2^{L(X) \cdot t(X)}$ for every Hausdorff space X (see [10]). This is nothing but a small sample of bounds for the G_{δ} topology that have been proved in the past; for more results and applications of the G_{δ} topology to homogeneous compacta we refer the reader to our paper [1] and its bibliography.

Note that we have not mentioned a bound for the tightness of the G_{δ} topology yet, and indeed finding such a bound seems to be particularly tricky. Answering a question posed in [1], Dow, Juhász, Soukup, Szentmiklóssy and Weiss [5] proved that the inequality $t(X_{\delta}) \leq 2^{t(X)}$ holds within the realm of regular Lindelöf spaces. The Lindelöf property is essential in their argument, and in fact the authors were able to construct a consistent example of a regular countably tight space X such that $t(X_{\delta})$ can be as big as desired. They left open whether a countably

²⁰¹⁰ Mathematics Subject Classification. 54A25, 54D20, 54D55.

Key words and phrases. Free sequence, tightness, Lindelöf, G_{δ} -topology.

tight space X such that $t(X_{\delta}) > 2^{\aleph_0}$ can be found in ZFC. This question was later solved in the positive by Usuba [12], who also found a bound on the tightness of the G_{δ} -modification of every countably tight space, modulo the consistency of a certain very large cardinal. More precisely, Usuba proved that if κ is an ω_1 -strongly compact cardinal then $t(X_{\delta}) \leq \kappa$, for every countably tight space X. Chen and Szeptycki [3] managed to prove a very tight consistent bound for the special class of Fréchet α_1 -spaces, namely $t(X_{\delta}) \leq \aleph_1$ if the Proper Forcing Axiom holds.

Exploiting the notion of a free sequence, we will give another bound on the tightness of the G_{δ} topology.

A free sequences is a special kind of discrete set that was introduced by Arhangel'skii and is one of the essential tools in his celebrated solution of the Alexandroff-Urysohn problem on the cardinality of first-countable compacta. Recall that the set $\{x_{\alpha} : \alpha < \kappa\} \subseteq X$ is a free sequence provided that $\{x_{\beta} : \beta < \alpha\} \cap \{x_{\beta} : \alpha \leq \beta < \kappa\} = \emptyset$ for each $\alpha < \kappa$. We define F(X) to be the supremum of cardinalities of free-sequences in X. The cardinal functions F(X) and t(X)are intimately related. Indeed, $F(X) \leq L(X)t(X)$ for every space X and t(X) = F(X), for every compact Hausdorff space X. However, the gap between F(X) and t(X) can be arbitrarily large even for a Lindelöf space X, as observed by Okunev [9].

We will prove a result about the tightness of the G_{δ} modification which has the Dow, Juhász, Soukup, Szentmiklóssy and Weiss bound as a consequence and also implies the following new bound: if X is a regular space such that $F(X) = \omega$, then $t(X_{\delta}) \leq 2^{\aleph_0}$. The higher cardinal generalization of this is not true, as we will construct, for every cardinal κ , a regular space X such that $F(X) = \omega_1 < \kappa = t(X_{\delta})$. As a byproduct of our bound we will obtain that if X is a Lindelöf regular space such that $F(X) = \omega$ then $F(X_{\delta}) \leq 2^{\aleph_0}$.

Given a set S, we denote by $\mathcal{P}(S)$ the powerset of S and by $[S]^{\leq \kappa}$ the set of all subsets of S which have cardinality at most κ . For undefined notions see [6], but our notation regarding cardinal functions follows [8].

2. The tightness of the G_{δ} -modification

Let X be a space, let W be a subset of X and let κ be an infinite cardinal. We say that a collection \mathcal{U} of subsets of X is a Cl_{κ} -cover of W provided that for any $C \in [W]^{\leq \kappa}$ there is $U_C \in \mathcal{U}$ such that $\overline{C} \subseteq U_C$.

We say that a space X is Cl_{κ} -Lindelöf if whenever W is a subset of X and \mathcal{U} is an open Cl_{κ} -cover of W, then W is covered by countably many elements of \mathcal{U} .

Lemma 1. Every Lindelöf space X is $Cl_{t(X)}$ -Lindelöf.

Proof. It suffices to observe that every open $Cl_{t(X)}$ -cover of a set $W \subseteq X$ is actually a cover of \overline{W} .

Lemma 2. Every space X satisfying $F(X) = \omega$ is Cl_{ω} -Lindelöf.

Proof. Let W be a subset of X and \mathcal{U} be an open Cl_{ω} -cover of W. Assume by contradiction that no countable subfamily of \mathcal{U} covers W. We will then construct a free sequence of cardinality ω_1 inside W.

Suppose that, for some $\beta < \omega_1$, we have chosen points $\{x_\tau : \tau < \beta\} \subset W$ and elements $U_\tau \in \mathcal{U}$ for every $\tau < \beta$ with the property that $\overline{\{x_\gamma : \gamma < \tau\}} \subseteq U_\tau$. Choose $U_\beta \in \mathcal{U}$ in such a way that $\overline{\{x_\alpha : \alpha < \beta\}} \subseteq U_\beta$. By our assumption, the family $\{U_\tau : \tau \leq \beta\}$ does not cover W, and therefore we can fix a point $x_\beta \in W \setminus \bigcup \{U_\tau : \tau \leq \beta\}$.

Eventually, $\{x_{\tau} : \tau < \omega_1\}$ is a free sequence of cardinality ω_1 in X, which is a contradiction.

Theorem 3. Let X be a regular space and let κ be an infinite cardinal. If X is Cl_{κ} -Lindelöf, then $t(X_{\delta}) \leq 2^{\kappa}$.

Proof. Let A be any subset of X and fix a point p in the G_{δ} -closure of A.

Let $\mathcal{N}_{\kappa}(X) = \{C \in [X]^{\leq \kappa} : p \notin \overline{C}\}$. By the regularity of X, for every $C \in \mathcal{N}_{\kappa}(X)$, we can find disjoint open sets U_C and V_C such that $\overline{C} \subset U_C$ and $p \in V_C$.

Let ϕ be a choice function on $\mathcal{P}(X)$. We will build by induction an increasing family $\{W_{\alpha} : \alpha < \kappa^+\} \subset [A]^{2^{\kappa}}$.

Let W_0 be any subset of A of cardinality $\leq 2^{\kappa}$ and assume we have already defined $\{W_{\beta} : \beta < \alpha\}$. If α is a limit ordinal then put $W_{\alpha} = \bigcup \{W_{\beta} : \beta < \alpha\}$. If $\alpha = \gamma + 1$ then let:

$$W_{\alpha} = W_{\gamma} \cup \{ \phi(A \cap \bigcap \{ V_C : C \in \mathcal{C} \}) : \mathcal{C} \in [\mathcal{N}_{\kappa}(W_{\gamma})]^{\leq \omega} \}$$

Note that $|W_{\alpha}| \leq 2^{\kappa}$.

Finally, let $W = \bigcup \{ W_{\alpha} : \alpha < \kappa^+ \}$. Since $|W| \leq 2^{\kappa}$, it suffices to show that p is in the G_{δ} -closure of W.

Indeed, let $\{O_n : n < \omega\}$ be a family of open neighbourhoods of p.

Claim. There is a countable family $C_n \subset \mathcal{N}_{\kappa}(W \setminus O_n)$ such that $W \setminus O_n \subset \bigcup \{U_C : C \in C_n\}.$

Proof of Claim. Since O_n is an open neighbourhood of p, we have that $\mathcal{N}_{\kappa}(W \setminus O_n) = [W \setminus O_n]^{\leq \kappa}$ and therefore U_C is defined for every $C \in [W \setminus O_n]^{\leq \kappa}$ and $\overline{C} \subset U_C$. In particular, $\mathcal{U} = \{U_C : C \in \mathcal{N}_{\kappa}(W \setminus O_n)\}$ is a Cl_{κ} -open cover of $W \setminus O_n$. Now, the statement of the claim follows from the fact that X is a Cl_{κ} -Lindelöf space. \bigtriangleup

For every $n < \omega$, fix a family C_n satisfying the Claim and let $S = \bigcup \{C_n : n < \omega\}$ and $S = \bigcup S$.

Since the set S has cardinality at most κ , there is an ordinal $\delta < \kappa^+$ such that $S \subset W_{\delta}$. It follows then that the point $q = \phi(\bigcap_{C \in S} V_C \cap A)$ belongs to $W_{\delta+1} \subset W$.

Note that, for every $n < \omega$, $q \in \bigcap \{V_C : C \in \mathcal{C}_n\} \cap W \subset W \setminus \bigcup \{U_C : C \in \mathcal{C}_n\} \subset O_n \cap W$. Therefore $q \in \bigcap \{O_n : n < \omega\} \cap W$ and we are done.

Corollary 4. (Dow, Juhász, Soukup, Szentmiklóssy and Weiss [5]) If X is a Lindelöf regular space, then $t(X_{\delta}) \leq 2^{t(X)}$.

Corollary 5. If X is a regular space and $F(X) = \omega$, then $t(X_{\delta}) \leq 2^{\omega}$.

It's natural to ask whether the higher cardinal version of Corollary 5 holds true. The following theorem shows that this is not the case.

Let θ be a regular uncountable cardinal. Recall that an elementary submodel M of $H(\theta)$ is said to be ω -covering if for every countable subset A of M there is a countable set $B \in M$ such that $A \subset B$. The union of any elementary chain of elementary submodels of length ω_1 is an ω -covering elementary submodel, so ω -covering submodels of cardinality ω_1 exist in ZFC (see [4]).

Theorem 6. For every uncountable cardinal κ , there is a space Y such that $F(Y) = \omega_1 < \kappa = t(Y_{\delta})$.

Proof. Let $X = \Sigma(2^{\kappa}) = \{x \in 2^{\kappa} : |x^{-1}(1)| \leq \aleph_0\}$ and let $p \in 2^{\kappa}$ be the point defined by $p(\alpha) = 1$, for every $\alpha < \kappa$. We will prove that $Y = X \cup \{p\}$ with the topology inherited from 2^{κ} is the required example.

The following Claim was proved by the second author in [11] for the case $\kappa = \omega_2$, but the argument works for any uncountable cardinal κ without any modifications. We include it for the reader's convenience.

Claim. $L(X) = \aleph_1$.

Proof of Claim. Let \mathcal{U} be an open cover of X. Without loss of generality we can assume that for every $U \in \mathcal{U}$, there is a finite partial function $\sigma : \kappa \to 2$ such that $U = \{x \in 2^{\kappa} : \sigma \subset x\}$. The domain of σ will then be called the *support of* U and we will write $supp(U) = dom(\sigma)$. Let θ be a large enough regular cardinal and M be an ω -covering elementary submodel of $H(\theta)$ such that $X, \mathcal{U}, \kappa \in M$ and $|M| = \aleph_1$.

We claim that $\mathcal{U} \cap M$ covers X. Indeed, let $x \in X$ be any point and let $A \in M$ be a countable set such that $x^{-1}(1) \cap M \subset A$.

Let $Z = \{y \in X : (\forall \alpha \in \kappa \setminus A)(y(\alpha) = 0)\}$. Then $Z \in M$ and Z is a compact subspace of X. So there is a finite subfamily $\mathcal{V} \in M$ of \mathcal{U} such that $Z \subset \bigcup \mathcal{V}$. Since \mathcal{V} is finite, we have $\mathcal{V} \subset M$. It then follows that $\mathcal{U} \cap M$ covers Z.

Let a be the point such that $a(\alpha) = x(\alpha)$ for all $\alpha \in M \cap \kappa$ and $a(\alpha) = 0$ for all $\alpha \in \kappa \setminus M$. The fact that $x^{-1}(1) \cap M \subset A$ implies that $a \in Z$ and hence there is $U \in \mathcal{U} \cap M$ such that $a \in U$. Note that supp(U) is a finite element of M and hence $supp(U) \subset M$. But since x and a coincide on M we then have that $x \in U$ as well, as we wanted.

This proves $L(X) \leq \aleph_1$, but we can't have $L(X) = \aleph_0$ because X is countably compact non-compact. Hence $L(X) = \aleph_1$.

$$\triangle$$

It is well known that X is Fréchet-Urysohn and hence X has countable tightness. Since $F(X) \leq L(X) \cdot t(X)$ we have $F(X) \leq \omega_1$, but then also $F(Y) \leq \omega_1$. It's easy to see that $t(p, Y_{\delta}) = \kappa$.

In [2] Carlson, Porter and Ridderbos proved the following improvement of the Pytkeev inequality $L(X_{\delta}) \leq 2^{L(X) \cdot t(X)}$ mentioned in the introduction.

Theorem 7. [2] (Theorem 2.7) If X is a Hausdorff space, then $L(X_{\delta}) \leq 2^{L(X)F(X)}$.

Putting together Corollary 5 and the above theorem we obtain:

Corollary 8. Let X be a regular Lindelöf space such that $F(X) = \omega$. Then $F(X_{\delta}) \leq 2^{\aleph_0}$.

We don't know whether the Lindelöf property can be removed from the above corollary.

Question 9. Let X be a regular space satisfying $F(X) = \omega$. Is it true that $F(X_{\delta}) \leq 2^{\omega}$?

It's reasonable to conjecture that the higher cardinal version of Corollary 8 holds, at least for Lindelöf spaces.

Question 10. Let X be a regular (Lindelöf) space. Is it true that $F(X_{\delta}) \leq 2^{F(X)}$?

Note that neither the consistent example from [5] of a regular countably tight space X such that $t(X_{\delta})$ can be arbitrarily large nor the example from Theorem 6 work for the above question since F(X) = |X|for the former and $F(X_{\delta}) \leq 2^{\aleph_0}$ for the latter.

We finish with two easy bounds for the tightness of the G_{δ} topology, by making using of the weight and the spread.

Proposition 11. Let X be a regular space. Then:

(1) $t(X_{\delta}) \leq 2^{d(X)}$. (2) $t(X_{\delta}) < 2^{s(X)}$.

Proof. To prove (1) recall that $w(X) \leq 2^{d(X)}$ for every regular space X (see [8]). Now $t(X_{\delta}) \leq w(X_{\delta}) \leq w(X)^{\omega} \leq 2^{d(X) \cdot \omega} = 2^{d(X)}$.

To prove (2) recall that $nw(X) \leq 2^{s(X)}$ for every regular space X (see [8]) and proceed as before.

Proposition 11, (1) is not true for Hausdorff spaces, as the following example shows.

Example 12. There is a separable Hausdorff space X such that $t(X_{\delta}) > 2^{\aleph_0}$.

Proof. Let Y be the Katětov extension of the integer. That is, if \mathcal{U} is the set of all non-principal ultrafilters on ω then $Y = \omega \cup \mathcal{U}$, every point of ω is isolated and a basic neighbourhood of $p \in \mathcal{U}$ is a set of the form $\{p\} \cup A \setminus F$, where $A \in p$ and F is finite.

Let $X = Y \cup \{\infty\}$, where $\infty \notin Y$ and declare $V \subset X$ to be a neighbourhood of ∞ if and only if $|X \setminus V| \leq 2^{\aleph_0}$. It is easy to see that X is a separable Hausdorff space and $t(X_{\delta}) > 2^{\aleph_0}$.

3. Acknowledgements

The authors are grateful to INdAM-GNSAGA for partial financial support and to Lajos Soukup for pointing out an error in a previous version of the paper.

References

- [1] A. Bella and S. Spadaro, Cardinal invariants for the G_{δ} -topology, Colloquium Math., **156** (2019), 123–133.
- [2] N. A. Carlson, J. R. Porter and G. J. Ridderbos, On cardinality bounds for homogeneous spaces and the G_κ-modification of a space, Topology Appl. 159 (2012), 2932–2941.
- [3] W. Chen-Mertens and P. Szeptycki, The effect of forcing axioms on the tightness of the G_{δ} -modification, preprint.
- [4] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72.

6

- [5] A. Dow, I. Juhász, L. Soukup, Z. Szentmiklóssy and W. Weiss, On the tightness of G_{δ} -modifications, Acta Mathematica Hungarica **158** (2019), 294–301.
- [6] R. Engelking, General Topology, PWN, Warsaw, 1977.
- [7] I. Juhász, On two problems of A.V. Archangel'skii, General Topology and its Applications 2 (1972) 151-156.
- [8] I. Juhász, Cardinal Functions in Topology Ten Years Later, Math. Centre Tracts 123, Amsterdam, 1980.
- [9] O. Okunev, A σ -compact space without uncountable free sequences can have arbitrary tightness, Questions Answers Gen. Topology **23** (2005), 107–108.
- [10] E.G. Pytkeev, About the G_{λ} -topology and the power of some families of subsets on compacta, Colloq. Math. Soc. Janos Bolyai, 41. Topology and Applications, Eger (Hungary), 1983, pp.517-522.
- [11] S. Spadaro, Countably compact weakly Whyburn spaces, Acta Math. Hungar. 149 (2016), 254–262.
- [12] T. Usuba, A note on the tightness of G_{δ} -modifications, Topology Appl. 265 (2019), 106820.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CATANIA, VIALE A. DORIA 6, 95125 CATANIA, ITALY *E-mail address*: bella@dmi.unict.it

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CATANIA, VIALE A. DORIA 6, 95125 CATANIA, ITALY *E-mail address*: santidspadaro@gmail.com