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ABSTRACT 

Composting residues from wine and dairy chains would contribute to increase the environmental 

sustainability of the production. The aim of this study was to evaluate the effects of deproteinized 

whey combined with bioactivators on the composting process. Bacillus velezensis and Kocuria 

rhizophila, bacteria with cellulolytic activity, were isolated from raw materials and inoculated in the 

organic mass to be composted. Piles moistened with deproteinized whey showed the highest 

reduction of total and dissolved organic carbon due to the stimulation of bacterial activity by 

nitrogen compounds held within deproteinized whey. Such findings were also confirmed by the 

speed up of the microbial carbon mineralization. Bioactivators and deproteinized whey speeded up 

the composting process and returned compost characterized by high stability and quality. The 

addition of available N is crucial to improve the composting process and can act even better if 

combined with cellulolytic bacteria. 

 
Keywords: grape marc, pruning residue, bioactivators, Bacillus velezensis, Kocuria rhizophila 
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1. Introduction 

The wine and dairy supply chains constitute two leading sectors of the agri-food system in Italy. 

The wine industry covers 8.2% of agricultural production in Italy, which puts onto the market 

17.7% of world wine, followed by France (15.9%) and Spain (13.0%) (OIV, 2019). Thus, these 

three countries alone account for more than 84.8% of total European Union production (DG AGRI, 

Brussels, 2019).. Such chains produce high quantity of processing wastes, mainly represented by 

grape marc and pruning residues, with regard to the wine production chain, and deproteinized whey, 

with regard to the dairy supply chain. The disposal of these wastes, although may be given away for 

free to farmers for land application, has both economic and environmental negative relapses (Cortés 

et al., 2020). 

The most common use of grape marc and pruning residues is their distribution on agricultural land 

to increase soil organic matter (Novara et al., 2020). However, having grape marc and pruning 

residues high C/N ratio (between 25-40) and high content of tannins (Paradelo et al., 2013), they 

lead to N deficiency and stress for soil microbial community. On the other hand, they hold 

inorganic nutrients, such as Mg2+ and K+, that can be released into the soil following their 

mineralization (Viel et al., 2017). Furthermore, the burial of pruning residues could also lead to an 

increase of fungal and bacterial pathogens propagules, so rising the incidence of plant diseases 

(Sharma et al., 1997). Deproteinized whey is the liquid fraction resulting from the processing of 

ricotta. Ricotta is a cheese produced by re-cooking residual whey from cheese processing. The 

whey is re-cooked at high temperatures (80-90 °C) for approximately 20-30 minutes, thus 

promoting protein flocculation (Settanni et al., 2020). Microbiological analysis conducted on 

different samples showed the absence of microorganisms due the high temperature processing 

(Settanni et al., 2020). Deproteinized whey is highly pollutant (Rocha-Mendoza et al., 2020) and, 

therefore, generally destined for waste disposal (Hausjell et al., 2019). In some typical Sicilian 



62 
63 
64 
65 

4 
 

153 
2 
3 

454 
5 
655 
7 
856 
9 

10 
1157 
12 
1358 
14 
15 
1659 
17 
1860 
19 
20 
2161 
22 
2362 
24 
2563 
26 
27 
2864 
29 
3065 
31 
32 
3366 
34 
3567 
36 
37 
3868 
39 
4069 
41 
42 

4370 
44 
4571 
46 
4772 
48 
49 
5073 
51 
5274 
53 
54 
5575 
56 
5776 
58 
59 
60 
61 

cheeses (PDO Pecorino Siciliano), deproteinized whey is used for cooking after the moulding 

process (Gaglio et al., 2021). Furthermore, based on current legislation, the deproteinized whey is 

considered a special waste due to its high organic content (Italian Legislative Decree n. 152/06). 

Considering the chemical features of grape marc, pruning residues and deproteinized whey, it is 

reasonable to combine all these by-products to produce compost to be used in organic farming 

(Laudicina et al., 2011) according to the Council Regulation (EC) (n. 834/2007 and n. 889/2008). 

Indeed, the high C/N ratio of grape marc and pruning residues, that may slow down the composting 

process (Palaniveloo et al., 2020), can be decreased by the N organic compounds within 

deproteinized whey (Daniel et al., 1999). 

Obtaining compost from the combination of grape marc and deproteinized whey could contribute to 

increasing the environmental sustainability of wine and dairy production chains, also reducing the 

disposal costs of the respective by-products. 

Composting is an intense biological process consisting of a rapid succession of specialized 

microbial populations secreting various enzymes which drives the organic wastes transformation 

into humus-rich complex mixtures (Zang et al., 2017). Microorganisms selected and inoculated into 

the materials to be composted allow for more effective management of waste materials. In fact, they 

show superior degradative capacities compared to indigenous microorganisms naturally present in 

the raw materials (Wan et al., 2020). For this reason, to speed up the composting process microbial 

inoculation is recommended (Ma et al., 2019). Naturally occurring microorganisms in the 

composting system would be the best candidates for the compost inoculations, in order to 

accelerate the process. Inoculants generally consist of microbial strains that possess versatile 

enzymatic capabilities (Jurado et al., 2015). Several species of bacteria (Bacillus spp.) and 

filamentous fungi (Aspergillus spp. and Trichoderma spp.) are able to facilitate the composting 

process (Wan et al., 2020). Wei et al. (2007) underline the usefulness of inoculating a blend of 
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microorganisms into the masses to be composted (Bacillus casei, Lactobacillus buchneri, Candida 

rugopelluculosa, and Trichoderma spp.). In addition, actonimycetes (Mycobacterium sp., 

Micromonospora sp. and Saccharomonospora sp.) with high degradative activity towards 

lignocellulose have been successfully used for composting the straw from several cereals (Wei et 

al., 2019). However, whether the inoculation composting system has an ideal performance is 

sometimes uncertain because of the competition between the exogenous inoculants and native 

indigenous microbes, inoculation timing and the quantity and type of microbial inocula (Zhao et al., 

2017). 

In Italy, recent studies have shown that compost made from industrial wastes can be an ideal source 

to isolate cellulolytic bacteria (Amore et al., 2013). Moreover, studies dealing with thermotolerant 

and thermophilic microorganisms during composting phases have highlighted their importance in 

improving the process (Di Piazza et al., 2020). Generally, these studies try to develop commercial 

products with selected microorganisms to be used in both domestic and industrial composting, in 

order to improve the composting process and decrease its costs. 

Similarly, the aim of our work was to produce high-quality compost by combining the residues 

from the cultivation of the grapevine and the by-products of wine chain with deproteinized whey, 

but contemporarily inoculating the organic mass to be composted with strains of bioactivators at 

high cellulolytic activity, isolated from the raw materials, in order to speed up the composting 

process. 

 
 

2. Material and methods 

2.1. Composting site 
 

The composting process was carried out at Cantine Europa (Petrosino, Trapani, Italy; 37°43′1″ N; 

12°31′51″E). This site, located at 50 m a.s.l., shows a semiarid Mediterranean climate. The hottest 
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months are July and August, with an average month temperature of 26 °C, while the coldest are 

January and February with an average temperature of 10-12 °C. The average annual rainfall is 450 

mm, and the wettest months are from November to February. In the year of the study (2018), the 

average annual temperature was 18°C, with the highest temperatures reached in summer (37 °C); in 

winter, temperature did not fall below 3 °C. 

 
 

2.2. Isolation of bioactivators 
 

Presumptive bioactivators were obtained from the raw materials (grape marc, green herbaceous 

crop residues, pruning residues) used for the composting process. The culture media used for the 

isolation of presumptive cellulose-degrading bacteria was BC medium, prepared according to the 

protocol described by Viel et al. (2017). Bacterial colonies were purified by streaking in the same 

medium. The purified colonies were preserved at -18 °C for further identification and screening for 

cellulase production. 

 
2.3. Selection of bioactivators 

 
For screening of cellulolytic activity, bacterial isolates were individually transferred in CMC agar 

plates for 48 h of incubation at 30°C (Yin et al., 2010). After growth of bacteria, the CMC agar 

plates were flooded with 1% Congo Red and allowed to stand for 15 min at room temperature. The 

Petri dishes were subsequently treated with a 1 M solution of NaCl in order to highlight the 

presence of halos. The presence of clear halos at the edges of growing colonies indicated the ability 

of isolates to hydrolyse cellulose (Irfan et al., 2012). Bacteria producing the largest halo of cellulose 

hydrolysis were selected as the primary criterion of selection and the growth dynamics was 

evaluated at different pH and temperatures. The quantitative expression of cellulolytic activity was 

expressed as the radius of the halo (mm) formed in a Petri dish around the colony was measured. 
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2.4. Phenotypic and genotypic characterization of bioactivators 
 

Presumptive bioactivators were phenotypically characterized by cell morphology (cocci and rods), 

Gram reaction (KOH method) and catalase activity (determined by transferring fresh colonies from 

a Petri dish to a glass slide and adding H2O2 5 %, v/v). Molecular identification of cellulolytic 

bacteria was carried out by the method as described by Weisburg et al. (1991) using the primers rD1 

(5′-AAGGAGGTGATCCAGCC-3′) and fD1 (5′-AGAGTTTGATCCTGGCTCAG-3′). The PCR 

mixture (30 μL total volume) included 62.5 ng of target DNA, 1 × Taq DNA polymerase buffer 

with 2 mM MgCl2 (ThermoFisher Scientific, Monza, Italy), 0.25 mM of each dNTP, 0.2 μM of each 

primer and 1.5 U of Taq DNA polymerase (ThermoFisher Scientific, Monza, Italy). PCR conditions 

were as follows: initial denaturing step at 95°C for 3 min; 30 cycles (1 min at 94°C, 45 s at 54°C, 2 

min at 72°C); and an additional final chain elongation step at 72°C for 7 min. The amplicons 

corresponding approximately to 1400 bp were purified using the Illustra GFX PCR DNA and Gel 

Band Purification Kit (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA). Sequences were 

manually corrected and assembled using Chromas 2.6.2. (Technelysium Pty Ltd, Australia). The 

PCR products were visualized by UV transillumination on a 2% (w/v) agarose gel (Safe Imager™ 

Transilluminator, Invitrogen, Italy), stained with SYBR® Safe DNA gel stain (Molecular Probes, 

Eugene, OR, USA). The GeneRuler 100 bp Plus DNA Ladder (M-Medical S.r.l., Milan, Italy) was 

used as a molecular weight marker. The resulting DNA was sequenced using the same primers 

employed for the PCR amplifications. The identities of the sequences were determined by BlastN 

search against the NCBI non-redundant sequence database located at NCBI web site and those of 

the sole type strains within the database EzTaxon, located at the EzTaxon web site. All isolates 

were processed by RAPD analysis with three primers (M13, AB111, and AB106) used singly by 

means of Thermal cycler (Swift™ MaxPro, Esco Technologies, Inc., USA). The amplified products 
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were separated by electrophoresis, visualized, and acquired by KODAK Gel Logic 100 System 

(Kodak, Rochester, USA). The analysis of the RAPD patterns was performed with the Gelcompar II 

software, version 6.5 (Applied-Maths, Sint-Martens-Latem, Belgium). 

 
 

2.5. Inoculum development 
 

The cultures of the selected strains were streaked in CMC-agar and subsequently inoculated for 24 

h at 30°C in a culture broth prepared as described by Irfan et al. (2012). The medium was 

inoculated with 1 mL of selected bacterial isolates and incubated for fermentation in a shaker (IKA- 

Werke HS-501 Digital S1, Staufen, Germany) at 35˚C for 24 h, with agitation speed of 140 rpm. At 

the end of the fermentation period, the broth was centrifuged at 12000 rpm for 10 min at 4˚C and 

the pellet was used as an inoculum of compost piles. 

 
 

2.6. Composting plan and sampling 

On June 2018, twelve static piles (3 piles per treatment), each with a volume of 3 m3, hereafter 

referred to as A, B, Ca and Cb, were set up mixing grape marc coming from crushing of Grillo 

grapes with green herbaceous crop residues. Each pile consisted of three layers of grape marc mixed 

with green herbaceous crop residues interspersed with two layers of pruning residues from the past 

winter pruning. Each pile was therefore composed of: (i) 50% (v/v) of grape marc (C/N 34, pH 4.2), 

(ii) 30% (v/v) of green herbaceous crop residues, (iii) 20% (v/v) of pruning residues. The B and Cb 

piles were inoculated with a mixture of the selected bioactivators. A solution (18 L) containing the 

bioactivators with a ratio of 1:1 of the two selected bacteria species were added to reach a 

concentration of 6-7 Log CFU g-1 composting material. Furthermore, in the A and B piles, the 

moisture content was maintained by spraying the deproteinized whey (pH 6.2; electrical 

conductivity 17 dS m-1; total N 1.15 g L-1), while in the Ca and Cb piles the moisture content was 
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Sandrigo, Italy) with draining and hydrophobic properties. The piles were turned after 33, 76 and 95 

days since their set up to maintain the temperature below 70-75°C, supply oxygen to 

microorganisms, homogenize the composting mass and guarantee the redistribution of 

microorganisms. 

For each pile, eight sub-samples of equal volume were taken after identifying three equidistant 

sections along the basal perimeter. In correspondence of each section, two samples were taken at 

two different heights (one sample at 1/3 and one sample at 2/3 of the pile height). Moreover, two 

samples were taken in depth towards the pile heart. On-site, the eights samples were mixed and 

transported to the laboratory in sterile disposable bags at 4 °C. 

 
2.7. Measurement of temperature and moisture content of piles 

 
The temperature of the piles was monitored using Escort iMini data loggers (Cryopak, USA) 

located in the heart of each pile. The temperature and moisture content values throughout the 

composting process were determined hourly during the composting process. Data were elaborated 

using a ConsolePlus software (ver. 1.16.59, Saak Dertadian, USA). 

 
 

2.8. Microbiological analysis 
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The evaluation of the dynamics of microbial populations during the composting process was carried 

out following the procedure described by Viel et al. (2017). The monitoring of pathogenic 

microorganisms (Salmonella spp., Shigella spp. and Enterobacteriaceae) was performed according 

to the official methodology reported in ANPA (2003). 

 
 

2.9. Chemical characterization of compost 
 

Total carbon, nitrogen, and hydrogen were determined, during the composting process, on samples 

collected at days 7, 15, 45, 75, 105, by using a Perkin-Elmer 2400 CHNS/O elemental analyser. 

Dissolved organic matter (DOM) was extracted at the same days by shaking 10 g of compost with 

100 mL of distilled water for 2 hours. Then, the suspension was filtered by using Whatman 42 filter 

paper. The specific ultraviolet absorbance at 254 and 280 nm (SUVA254 and SUVA280, 

respectively) of DOM were obtained by an UV-Vis spectrophotometer. The SUVA corresponded to 

the UV absorbance measured at 254 and 280 nm (UVmini-1240, Shimadzu, Japan) and normalized 

by dividing by concentration of DOC solution (Jouraiphy et al., 2008). The amount of carbon held 

by DOM (dissolved organic C, DOC) was determined by the hot digestion–oxidation (sulphuric 

acid-dichromate mixture) method. 

To monitor the emission of CO2 as a measure of the microbial respiration, at days 1, 7, 15, 30, 45, 75 

and 105 of composting process, twenty grams of each compost sample were weighed in 200 mL glass 

jars and sealed with rubber stoppers holding silicon septa. The CO2 accumulated in the headspace of 

the glass jars, after three days of incubation at 25 °C, was determined by a gas chromatograph 

(Thermo ScientificTM TRACE GC, Milano, Italy), equipped with a thermal conductivity detector, 

and a Poropak Q column (helium was the carrier). The C mineralization rate, calculated dividing by 

3 the CO2 accumulated in the headspace and expressed as mg CO2–C kg-1 dry soil day-1, was fitted 

to the following double exponential decay function (Robertson et al., 1999): Mineralized C = CL e-k1t
 



62 
63 
64 
65 

11 
 

2121 
2 
3 
2422 
5 

2623 
7 
8 
2924 
10 
12125 
12 
13 

12426 
15 
12627 
17 
12828 
19 
20 
22129 
22 
22330 
24 
25 
22631 
27 
22832 
29 
30 
32133 
32 
32334 
34 
32535 
36 
37 
32836 
39 
42037 
41 
42 
42338 
44 
42539 
46 
47 
42840 
49 
52041 
51 
52 

52342 
54 
52543 
56 
52744 
58 
59 
60 
61 

+ CS e-k2t, where CL is the labile C at time zero (i.e. the intercept value), k1 is the decay rate constant 

of CL, CS is the stable C at time zero (i.e. the intercept value), k2 is the decay rate constant of CS, and 

t is the incubation day. 

 
2.10. Statistical analysis 

 
Compost samples were analysed in duplicate. Reported data are means ± standard deviations of 

three true replicates (n=3). All data were subjected to two-way ANOVA repeated measures. How 

the moisture was maintained (by only water or even deproteinized whey) and the presence or not of 

bioactivators, as well as their interaction, were the tested factors. 

Discriminant analysis (DA) was performed to differentiate treatments and to identify the major 

sources of difference between groups. DA effectively projects data into the space of linear 

combinations of the variables that account for the greatest proportion of between-groups variance 

relative to within-groups variance. DA was carried out on standardized data simultaneously entering 

all independent variables. The procedure generated a discriminant function (DF) based on linear 

combinations of the predictor variables providing the best discrimination between groups. The four 

treatments were used to divide the dataset into pre-defined groups. The magnitudes of the 

Standardized Canonical Discriminant Function Coefficients (SCDFCs) were used to indicate how 

strongly the discriminating variables affect the score. Statistical analyses were performed using 

SPSS 13.0 for Windows (SPSS Inc. 1996). 

 
 

3. Results and Discussion 

3.1. Moisture content and temperature of piles 
 

The moisture content of the compost piles (50% on average) remained constant during the first two 

months of the composting process with no differences among treatments (Fig. 1a). Then, moisture 
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content decreased by 5% and remained constant until the end of the process. During the 

composting, three thermic phases were individuated: mesophilic during the first 20 days, 

thermophilic from 20 to 45 days, cooling phases after 45 days (Fig. 1b). At the beginning, the 

temperature linearly increased from 30°C to 78°C probably due to the microbial decomposition of 

easily degradable organic substances (Wei et al., 2014). From day 33 to 45, the temperature linearly 

decreased from 78°C to 50°C, on average, probably due to mixing which stopped the thermophilic 

phase; thereafter, up to day 90, the temperature remained fairly constant at 50°C, while slowly 

decreased towards the end of composting. As for moisture content, there was no treatment effect on 

compost temperature. 

 
 

3.2. Isolation, characterization and selection of bioactivators 
 

Eighty-eight bacterial pure cultures were isolated and purified from BC medium plates, specifically 

57 isolates were obtained from grape marc, while 31 isolates from herbaceous crop residues. Sixty- 

three isolates were able to grow at 60 °C (thermophilic), while 25 isolates were classified as 

mesophilic (30 °C). All isolates were Gram+ and catalase positive. Observations carried out under 

an optical microscope allowed the isolates to be subdivided into 22 cocci and 66 rod-shaped. Only 8 

isolates showed an evident cellulolytic activity, with the presence along the margin of the colony of 

a halo indicating the activity of the hydrolysis of cellulose (Hendricks et al., 1995) The halo radius 

values of the 8 strains of bacteria were found to be in the range of 7.3 - 8.8 mm. The cellulolytic 

bacteria were represented by two species: Bacillus velezensis and Kocuria rhizophila (Table 1). 

Specifically, the CMP3, CMP9, CMP12, CMP52, CMP72 isolates of B. velezensis had the same 

polymorphic profile with the exception of the CMP9 strain, which differed from the other isolates 

also for the source of isolation. While the isolates CMP36 and CMP92 of K. rhizophila were 

different strains. Bacillus velezensis is known for its keratinolytic, proteolytic and cellulolytic 
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activities (Ye et al., 2018). In addition, some strains are known as plant growth promoters and 

producers of metabolites with antifungal activity (Torres et al., 2020). Kocuria rhizophila is a 

bacterium resistant to up to 10% NaCl and in some crops leads to a significant increase in growth, 

biomass production, seed germination and photosynthetic capacity (Li et al., 2020). A mixture 

consisting of one strain of each species (B. velenzensis CMP52 and K. rhizophila CMP36) that 

showed the highest cellulolytic activity, was inoculated into B and Cb piles. 

 
3.3. Microbiological properties of compost during the composting process 

 
3.3.1. Total Bacterial count 

 
Counts of total bacterial during the mesophilic and thermophilic composting phases (Fig. 2a, b) 

were always higher, about 1-2 logarithmic cycles, in piles wetted with deproteinized whey (A and 

B) compared to those with water (Ca and Cb) and progressively decreased as the composting 

proceeded. The bacterial counts were similar to those reported by Viel et al. (2017). 

 
3.3.2. Cellulolytic bacteria 

 
Counts of mesophilic cellulolytic bacteria (Fig. 2c) did not show a univocal pattern. In piles 

moistened with deproteinized whey, they were one logarithmic cycle higher than piles moistened 

with water at day 7 and 30 of the composting process. From day 45 till the end of the composting 

process, mesophilic cellulolytic bacteria did not show differences among the treatments. 

Counts of thermophilic cellulolytic bacteria (Fig. 2d) compared to mesophilic ones, were lower than 

about 1 logarithmic unit on average. Piles moistened with deproteinized whey showed the highest 

counts of thermophilic cellulolytic bacteria from day 7 to day 30. After day 45, they decreased, and 

no differences occurred among treatments. Such results indicated that deproteinized whey was the 

most important factor in affecting total and cellulolytic bacteria at the first stages of composting, 
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probably because of the N compounds it holds which allowed a higher concurrent bacterial C 

immobilization, i.e, exponential growth, with a consequent faster composting process (Bohacz, 

2018, Harindintwali et al., 2020). 

 
 

3.3.3. Actinobacteria 
 

Mesophilic actinobacteria slowly decreased during the composting process and did not show 

differences among treatments (Fig. 3a). On the other hand, thermophilic actinobacteria increased 

from day 0 to day 15, then decreased up to day 75 and finally remained constant up to the end of the 

composting process (Fig. 3b). Notably, piles moistened with deproteinized whey showed the 

highest counts of thermophilic actinobacteria from day 7 to day 45. The presence of actinobacteria 

is extremely important during composting process as they take part in numerous processes ranging 

from the decomposition of organic substances (cellulose and lignin) to potential biocontrol 

(Abdulla, 2007). 

 
3.3.4. Filamentous and cellulolityc fungi 

 
Mesophilic and thermophilic filamentous fungi are well-known as important agents of cellulose and 

lignin degradation (Hatakka and Hammel, 2011). During the composting process, both fungi types 

gradually decreased and did not show significant differences among treatments (Fig. 3c, d). Counts 

of both mesophilic and thermophilic cellulolytic fungi (Fig. 3e, f), after 30 days of composting, 

were higher than filamentous fungi. Such differences were the highest towards the end of the 

composting process when counts were, on average, 2-3 logarithmic cycles higher for mesophilic 

(Fig. 3e) and thermophilic (Fig. 3f) cellulolytic fungi than filamentous ones. The presence of 

mesophilic and thermophilic cellulolytic fungi is fundamental for the humification process, which 

characterizes the quality of the compost (López et al., 2006). The synergistic action of the 
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consortium by bacterial and fungal species is crucial for the quality of compost expressed in terms 

of humification (van Heerden et al., 2002). 

 
 

3.3.5. Pathogenic bacteria 
 

In the early stages of composting, counts of E. coli, Salmonella spp. and Shigella spp. were greater 

than normative levels. Self-sterilization induced by high temperatures during the thermophilic phase 

of the composting process (> 60 °C) led to the disappearance of Salmonella and E. coli and the 

values recorded dropped below to the normative levels (Fig. 2e) (Pinter et al., 2019). Counts of 

Enterobacteriaceae decreased after the end of the thermophilic phase for all piles. Pathogenic 

bacteria were not affected by any experimental factors and their counts were similar to those 

reported by Bustamante et al. (2008) and Hassen et al. (2001). 

 
 

3.4. Chemical properties of compost during the composting process 

3.4.1. pH 
 

The pH of compost ranged from 6.8 to 7.8 (data not shown), being higher in compost wetted with 

deproteinized whey. Wang et al. (2015) observed during the first 5-10 days of composting different 

materials (dairy cattle manure, chicken manure, tomato stem waste, green waste, cabbage waste, 

kitchen waste, and municipal solid waste), firstly an increasing and then a decreasing trend of 

compost reaction from 8.6 to 8.0. They ascribed such trend primarily to the alkalinization by 

evolved ammonia, then to the production of low molecular organic acids and nitrification. The final 

pH of compost is widely used to evaluate the quality of compost because it influences both soil pH 

and the bioavailability of nutrients to plants. The optimal pH of a given composting mixture of 

residues is 6.9–8.3 (Prasad and Chualain, 2003). All compost piles attained the standard for pH, 

indicating that they were suitable to be applied to soil. 
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3.4.2. Carbon and nitrogen, and C/N ratio 
 

Organic carbon (C), as the fundamental carbon and energy source for microorganisms, undergoes 

several complex biological transformations and its content is a reliable index to reflect the maturity 

and quality of the compost. The amount of C at the beginning of the composting process was on 

average 52% (w/w, Fig. 4a). During the composting, C content declined by 15% in A, 16% in B, 

9% in Ca and 11% in Cb, i.e., piles added with bioactivators and moistened even with deproteinized 

whey showed the highest C decrease. However, the four treatments did not significantly differ 

among them. This result may suggest that both bioactivators and deproteinized whey may trigger 

off the biodegradation of organic matter, probably due to the higher microbial biomass and the 

supply of nitrogen that stimulate bacteria activity. 

At the beginning of composting, deproteinized whey increased nitrogen, on average, by 0.2 g kg-1 

(data not shown). Then, during the composting, total nitrogen % content increased in all the 

treatments, likely as a consequence of the C content decrease, although a concomitant N2 fixation 

cannot be excluded. At the end of the composting process, nitrogen was by 0.3 % higher in soils 

inoculated with the bioactivators than in those not inoculated. The initial C/N ratio of the 

composting biomass was 28 (Fig. 4c). During composting, the C/N ratio continuously declined thus 

reaching values, at day 105, of 14.3, 11.8, 17.7 and 15.3 in compost A, B, Ca and Cb, respectively. 

The C/N ratio is the most significant parameter to define the performance of the composting 

process; indeed, it has been extensively used as criterion to evaluate the compost maturity, stability, 

and safety (Cui et al., 2017; Wang et al., 2015). If there is shortage of nitrogen availability, the 

decomposition rate of the materials will proceed more slowly as a consequence of the slowdown of 

microbial activity. By contrast, with an excess of nitrogenous substances, a volatilization of N as 

ammonia occurs. Generally, a C/N ratio equal to 12 is the threshold to be reached for compost 
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maturity (Wang et al., 2017). Only compost B, i.e. compost inoculated with bioactivators and 

moistened with deproteinized whey, showed at day 105 a C/N slightly less than 12 suggesting a 

satisfactory compost maturation (Fig. 4c). Such behaviour may be due to the highest abundance of 

mesophilic and thermophilic bacteria. It is also noteworthy that the largest decreases of the C/N 

ratio occurred in compost inoculated with bioactivators, probably as a result of the highest 

decomposition rate of total organic matter as a consequence of the highest abundance of total 

bacteria, actinobacteria and thermophilic cellulolytic bacteria. The C/N decrease during composting 

may be also ascribed to the enhanced assimilation of organic materials even triggered by the 

bioactivators (Paradelo et al., 2013). 

 
 

3.4.3. Evolution of DOC and DOM during the composting process 
 

At day 7, DOC was higher in compost piles moistened with deproteinized whey compared to those 

with only water (Fig. 4d). During the first 45 days, DOC declined rapidly in all compost piles but 

more sharply in those moistened with deproteinized whey. Such behaviour may be ascribed to a 

greater immobilization and/or mineralization of available and easily biodegradable organic 

substrates such as amino acids, peptides, carbohydrates, and organic acids by the proliferating 

bacteria, even increased by the N compounds held within the deproteinized whey (Hsu and Lo, 

1999). During the whole composting period, DOC decrease was significantly higher in compost B, 

thus suggesting that the addition of deproteinized whey and bioactivators promote the 

biodegradation of easily available organic compounds. DOM is a vital type of organic matter to 

promote the cycling of carbon and microbial activity during the composting process (Wei et al., 

2014). Moreover, DOM may hold a heterogeneous mixture of both humic substances and enzymes, 

thus working as energy source and catalysts microorganisms to improve the compost humification 

(Laudicina et al., 2013; He et al., 2014). During composting, SUVA254 and SUVA280 of DOM 
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increased (Fig. 4e and 4f). The highest substantial increases of SUVA254 in composts B and Cb 

indicated the increase of aliphatic compounds and unsaturation degree of humic substances, likely 

as a result of the rapid transformation of non-aromatic compounds (He et al., 2014) due to the 

inoculation with the bioactivators. 

SUVA280, an index for detecting aromatic compounds in DOM, markedly increased in compost B 

and Cb throughout composting process. These results revealed that the water-soluble aromatic 

compounds accumulated, and the stability of DOM increased (Zhao et al., 2018) following the 

inoculation with bioactivators. 

 
3.4.4. CO2 emission rates 

The long-term release of CO2 from compost under optimal conditions can be used through 

mathematical models to monitor the functional pools of organic matter, commonly referred to as 

active or labile and passive or stable fractions of organic matter. Emission rates of CO2 decreased 

during the composting process following a two-orders exponential decay pattern. The CO2 emission 

rate during the first 15 days was highest in composts A and B, followed by compost Cb, thus 

suggesting that bioactivators and deproteinized whey stimulated microbial activity, as previously 

reported for observed DOC patterns. After day 30, CO2 emission rate continued to decrease in all 

treatments but more slowly in compost B and Cb, suggesting that the amount of biologically 

available C ran out before in compost inoculated with bioactivators (Fig. 4b). 

The labile C pool (CL) was the highest in compost A and B, with no differences between them, 

followed by Cb and finally by Ca, and this trend may be explained in terms of the whey addition. 

Notably, from the decay rate constants of both labile and stable C pools (k1 and k2, respectively), we 

may infer that, in the presence of whey, bioactivators increased the C mineralized from both pools 
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while, without whey, bioactivators decreased the C mineralized from both pools (Fig. 4b), likely 

because since the first stages of composting they met N deficiency. 

 
 

3.5 Discriminant analysis 
 

Discriminant analysis generated three discriminant functions (DFs) and found 14 variables, which 

discriminated among treatments (Fig. 5). Carbon content and SUVA254 had the highest values of 

SCDFCs on DF1 which explained 64% of between-group mean differences and separated piles 

moistened with deproteinized whey (A and B) from those moistened with water (Ca and Cb). Also, 

N content and MTB, however, had high SCDFCs on DF1. 

Carbon and N contents, C/N ratio and SUVA254 had SCDFCs higher than 10 on DF2 which 

explained 29% of variance and separated treated piles, regardless of experimental factors (whey and 

bioactivators), from not treated one (only water). Notably, based on DF2, treatment A was more 

similar to Cb than B, thus suggesting that whey and bioactivators may have a significant synergistic 

effect. DF3 explained less than 10% of variance. Overall results from DA suggested that 

deproteinized whey is the most important factor in discriminating the piles and hence affecting the 

composting process by lowering the C/N ratio and increasing the humification degree (high 

SUVA254) of compost. Mesophilic total and cellulolytic bacteria also play an important role in 

discriminating the treatments. 

 
4. Conclusions 

The compost piles were obtained with an innovative protocol based on the reuse of deproteinized 

whey and on the inoculation of the composting mass with bioactivators selected from the raw 

material subjected to the composting process. Deproteinized whey was the most important factor in 

speeding up the composting process due to the addition of organic nitrogen. Piles moistened with 
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deproteinized whey and inoculated with bioactivators showed the lowest C/N ratio and the highest 

SUVA254 and SUVA280 indexes, thus suggesting a compost of great stability. Further studies will be 

aimed at evaluating the antagonistic activity of bioactivators and their influence on the composition 

of the microbiota in the different composts. The composting of these waste products can play a role 

within a vision of circular bioeconomy, as it allows to find an alternative way of disposal to the 

current processes, which are expensive and polluting. 
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Figure captions 
 

 
Fig . 1. Moisture content (%) and temperature (°C) measured at the center of the compost piles 

during the composting process. Results are mean±standard deviation of three measurements. 

 
 

Fig. 2. Counts (Log CFU g-1) of (a), mesophilic total bacteria (MTB); (b), thermophilic total 

bacteria (TTB); (c), mesophilic cellulolytic bacteria (MCB); (d), thermophilic cellulolytic bacteria 

(TCB); (e), Salmonella spp., Shigella spp., Escherichia coli and Enterococcus faecalis (SSEE); (f), 

Enterobacteriaceae (ENT) during the composting process. Results are mean±standard deviation of 

three measurements. 

 
 

Fig. 3. Counts (Log CFU g-1) of (a), mesophilic actinobacteria (MA); (b), thermophilic 

actinobacteria (TA); (c), mesophilic filamentous fungi (MF); (d), thermophilic filamentous fungi 

(TF); (e), mesophilic cellulolytic filamentous fungi (MCF); (f), thermophilic cellulolytic 

filamentous fungi (TCF) during the composting process. Results are mean±standard deviation of 

three measurements. 

 
Fig. 4. Patterns of chemical parameters determined during the composting process: (a) total carbon; 

(b) carbon mineralization; (c) total carbon to nitrogen ratio (C/N ratio); (d) dissolved organic carbon 

(DOC); (e) specific ultraviolet absorbance at 254 nm (SUVA254); (f) specific ultraviolet absorbance 

at 280 nm (SUVA254). Results are mean±standard deviation of three measurements. 

 
 

Fig. 5. Discriminant plot of the four treatments based on the chemical and microbiological 

parameters determined on composting mass during the composting process. 
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Table 1. Molecular identification by PCR amplified products of 16S rDNA of compost raw material bacteria isolates. 
 
 

 
Isolation source Code Species % similarity  Sequence Accession no. 

 Isolate  (accession no. of closest relative) by length (bp)  

   BLAST EzTaxon   

Grape marc CMP3 Bacillus velezensis 100 (MT375545.1) 99.93 (CR-502) 1426 MZ129212 

Grape marc CMP 9 Bacillus velezensis 100 (MT375545.1) 99.93 (CR-502) 1426 MZ129213 

Grape marc CMP12 Bacillus velezensis 100 (MT375545.1) 99.93 (CR-502) 1426 MZ129214 

Grape marc CMP36 Kocuria rhizophila 100 (MK465367.1) 99.79 (TA68) 1396 MZ128817 

Herbaceous crop residues CMP 43 Bacillus velezensis 100 (MK641661.1) 99.85 (CR-502) 1417 MZ129215 

Grape marc CMP52 Bacillus velezensis 100 (MK780002.1) 99.93 (CR-502) 1417 MZ129216 

Grape marc CMP72 Bacillus velezensis 100 (MT375545.1) 99.93 (CR-502) 1417 MZ129217 

Grape marc CMP92 Kocuria rhizophila 100 (MK465367.1) 99.93 (TA68) 1406 MZ128818 
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