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This dissertation explores two constructions of loop extensions: Schreier
extensions of Steiner loops and a new extension formula for right Bol loops
arising from Bol reflections.

Steiner loops are a key tool in studying Steiner triple systems. We investi-
gate extensions of Steiner loops, focusing in particular on the case of Schreier
extensions, which provides a powerful method for constructing Steiner triple sys-
tems containing Veblen points. We determine the number of the Steiner triple
systems of sizes 19, 27 and 31 with Veblen points, presenting some examples.

Furthermore, we study a new extension formula for right Bol loops. We
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as well. We describe the most important invariants: right multiplication group,
nuclei, center. We show that the core is an involutory quandle which is the
disjoint union of two isomorphic involutory quandles. Lastly, we derive further
results on the structure group of the core of the extension.
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Chapter 1

Backgrounds

1.1 Introduction
As of now, a general extension theory for loops still does not exist. The lack of
associativity makes the situation less controllable and very different from the
theory of group extensions. Many authors have contributed in this field, working
on specific kinds of extensions for some classes of loops. Examples include
nuclear extensions [30], [56], Schreier extensions [74] or the famous Chein’s
extensions for Moufang loops [15]. See also [17], [26], [55], [72], [31], [50].

This dissertation primarily focuses on two constructions of loop extensions.
The initial focus of our study is on the Schreier extensions of Steiner loops, which
offer a highly effective approach to construct and classify specific Steiner triple
systems which present similarities to the point-line designs of projective spaces
over the field GF(2). Additionally, we are going to consider a new extension
formula for Bol loops, arising from the Bol reflections of the associated 3-nets.

This dissertation is based on research papers written by the author during
his Ph.D. program. Specifically, Chapter 2 derives from the work presented in
[32], Chapter 3 from [36], and Chapter 4 from [38]. The structure of the thesis
is as follows.

After this introduction, in the first chapter, we present a brief history of
Steiner triple systems and loops, the two main topics of this thesis. Addition-
ally, we provide the fundamental concepts which are essential to a clear and
comprehensive understanding of the dissertation.

In Chapter 2 we study Steiner triple systems by means of the associated
Steiner loops, using a classic algebraic technique, that is, reducing their struc-
ture to that of suitable normal subloops and the corresponding factor loops. In
fact, subloops correspond to Steiner triple subsystems and normal subloops give
in turn quotient loops which are associated with quotient Steiner triple systems,
as well.

We must remark, to this extent, that recursive methods for the construction
of "products" of Steiner triple systems are very well known [20, Ch. 3], but
among these methods only one, the so-calling doubling construction, coincides
with the extension provided by our construction in the trivial case where the
factor loop corresponds to the degenerate Steiner triple system with only one
point. This is as well the case where the normal subloop corresponds to a
projective hyperplane, a topic which in turn was firstly studied by Teirlinck [93]
and later by Doyen, Hubaut, and Vandensavel [29].
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We distinguish the case where the normal subloop is central: after show-
ing that central elements correspond to Veblen points (see Definition 2.1.7), we
introduce an extension theory which takes inspiration by the well-known coho-
mology theory for commutative groups. This specific theory provides a con-
structive approach to describe Steiner triple systems containing Veblen points.
In particular, the set of Veblen points, which corresponds to the center of the
loop, always gives a Steiner triple subsystem of size 2n−1 which is the point-line
design of a projective space over the field GF(2). The whole Steiner loop, in this
case, is a Schreier extension of its center by the corresponding quotient loop,
which can be described by a factor system f as in Lemma 2.5.1. In Section 2.6
we face with the problem of defining equivalent and isomorphic extensions.

It is worthwhile to point out that the center of a Steiner loop different from
an elementary abelian 2-group has index at least eight (see Theorem 2.5.3).
This means that projective geometries over GF(2) are the only Steiner triple
systems of size v with more than v−7

8
Veblen points (see Corollary 2.5.4).

In Chapter 3, we use the theoretical methods introduced previously with the
aim of classifying Steiner triple systems with Veblen points. Counting all Steiner
triple systems of a given order is a problem which becomes very challenging as
the order increases. The last full result in this direction is by P. Kaski and P. R.
J. Östergård [51]: they determined that the number of non-isomorphic STS(19)s
is 11, 084, 874, 829. In [52] and [47], the authors classified STS(21)s containing
subsystems of order 7 and 9, and also gave an estimation of the total number of
all STS(21)s, but a complete classification seems (for now) out of hand. For this
reason, we decided to focus on the number of Steiner triple systems containing
Veblen points, which can be seen as a generalization of projective STSs. We
found results for the cases of size 19, 27 and 31, respectively.

In Chapter 4 we deal with a new extension formula for right Bol loops,
giving a construction method arising from Bol reflections. Before going into the
details, we provide the necessary notions, with the main focus on the geometric
and group theoretical tools. We will use Aschbacher’s efficient Bol loop folder
method to describe the extension. Starting from a Bol loop L, we denote with L̃
the resulting extension loop. In Section 4.4, we study L̃ and find necessary and
sufficient conditions for it to be right Bol as well, Moufang or associative. In
Section 4.5, we describe the most important invariants of L̃: right multiplication
group, nuclei, center. Finally, in Section 4.6, we prove some results about the
core of L̃, which is an involutory quandle and investigate its structure group.

1.2 Preliminaries
Here we present some preliminaries about Steiner triple systems and the basic
notions of loop theory, together with a brief historical introduction to both
topics.
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1.2.1 A brief historical introduction to Steiner triple sys-
tems

The study of block designs can be traced back to 1835 when Plücker [82] in-
vestigated algebraic curves and came across a Steiner triple system of order 9.
Initially, he claimed that an STS(v) could exist only if v ≡ 3 (mod 6), but he
later corrected this to v ≡ 1, 3 (mod 6) in 1839 [83]. Plücker’s results shed light
on the early relation of designs and geometry.

In England, Woolhouse presented a question about the number of possible
combinations of v symbols in subsets of order p such that no combination of q
symbols which may appear in any one of them shall be repeated in any other.

In 1847, Kirkman investigated the existence of such a system when p = 3
and q = 2, constructing STS(v)s for all v ≡ 1, 3 (mod 6) [58]. However, the
expression Kirkman triple systems was not used. Steiner, who was unaware
of Kirkman’s research, inquired about their existence in 1853 [89]. Following
that, Reiss [87] proved their existence, and Witt [95] later named them after
Steiner. Kirkman’s name is now associated with solvable Steiner systems after
his famous problem with fifteen schoolgirls: fifteen young ladies from a school
walk out in five rows of three consecutively for seven days; the task is to arrange
them daily so that no two of them walk together twice.

In 1850, Cayley first published his solution to the schoolgirls problem [14],
which was followed in the same year by Kirkman’s solution [59]. Although the
two solutions are distinct as Kirkman triple systems, they are isomorphic as
Steiner triple systems and represent different resolutions into parallel classes of
the point-line design of the projective geometry PG(3, 2). In 1860, Peirce identi-
fied all three solutions to the 15-schoolgirls problem admitting an automorphism
of order 7 [79]. In 1917 and 1922, Mulder [66] and Cole [21], respectively, in-
dependently enumerated the seven non-isomorphic solutions to the problem.
Ray-Chaudhuri and Wilson proved the existence of Kirkman triple systems of
order v, denoted as KTS(v), for all v ≡ 3 (mod 6) in 1971 [85]. Denniston
ultimately resolved the problem in 1974 [24].

Early discoveries revealed that there are unique STS(7) and STS(9). In 1897,
Zulauf [96] showed that the known STS(13)s can be divided into two isomor-
phism classes, and in 1899 De Pasquale [23] proved that these are the only two
possible isomorphism classes. In a groundbreaking memoir from 1919, White,
Cole, and Cummings [22] classified precisely 80 non-isomorphic STS(15)s. Their
results were confirmed in 1955 when Hall and Swift [45] used computers: this
represents one of the first cases where computers were used to catalog com-
binatorial designs. Many years later, in 2004, the number of non-isomorphic
STS(19)s was found to be 11, 084, 874, 829 by P. Kaski and P. R. J. Östergård
[51].

In 1891, Netto [76], without knowledge of Kirkman’s work, presented four
methods for constructing Steiner triple systems:

(i) an STS(2n+ 1) from an STS(n) (previously studied by Kirkman);

(ii) an STS(nm) from an STS(m) and an STS(n);

(iii) an STS(p) where p is a prime number of the form 6m+ 1;



4 Chapter 1. Backgrounds

(iv) an STS(3p) where p is of the form 6m+ 5.

These methods enabled the construction of STS(v)s for all admissible values of
v < 100, except for 25 and 85. In 1893, Moore [64] extended Netto’s work by
providing a formula for constructing STS(w + u(v − w)) using an STS(u) and
an STS(v) with an STS(w) subsystem. In this same work, Moore also proved
that for all admissible v > 13 there exist at least two non-isomorphic STS(v)s.

Three of the most famous and cited sources on Steiner triple systems in-
clude the book "Triple Systems" by C. J. Colbourn and A. Rosa [20], C. J.
Colbourn and J.H. Dinitz’s "Handbook of Combinatorial Designs" [19], and
"Design Theory" by T. Beth, D. Jungnickel, and H. Lenz [6].

1.2.2 Some basic notions about Steiner triple systems

Steiner triple systems are among the most studied objects in design theory and
more in general in the field of combinatorics.

Definition 1.2.1. A triple system (S, T ) consists of a set S of v elements
(points) and a family T of 3-subsets of S, called triples (also blocks or lines),
with the property that every 2-subset of S occurs in exactly λ triples of T . The
size v of the set S is called the order of the triple system. If λ = 1 we speak
about Steiner triple systems, denoted by STS(v) for short.

Throughout this work, we will denote a Steiner triple system (S, T ) by just
its set of points S. The order of a STS(v) is necessarily an odd number. Indeed,
fixed an element, it occurs in one block with every other point of S, and within
every block in which it occurs it appears with two other elements, hence the
number v − 1 must be even. Moreover, since each block contains three pairs,
the number

(
v
2

)
must be divisible by 3. These two conditions together say that

a Steiner triple systems of order v can exist only when v ≡ 1, 3 (mod 6). This
condition was proved to be also sufficient in 1847 (inserire reference). If v is 1 or
3 (mod 6), we call it admissible. The number of 2-subsets of S is

(
v
2

)
= v(v−1)

2
,

of which 3 appear in one same triple B ∈ B, hence the total number of blocks
of a STS(v) is b = v(v−1)

6
.

We remark here that we also consider the trivial cases of a STS(1) with one
point and no blocks, and of a STS(3) with three points and a unique triple.

Example 1.2.1.1 (Projective systems). Let V be an (n+1)-dimensional vector
space over the field GF(2). A punctured subspace of V is a subspace of V
without the zero vector. The set of all the punctured subspace of V is the n-
dimensional projective geometry PG(n, 2). Punctured subspaces of dimension
1 are the points and the ones of dimension 2 are the lines of the projective
space. Since each line contains three points and for two distinct points there is
exactly on line passing through them, the points and lines of a projective space
PG(n, 2) are respectively the elements and the triples of a STS(2n+1 − 1). The
Steiner triple systems of this kind are called projective. The smallest significant
example is the so called Fano plane shown in Figure 1.1, that is the projective
plane PG(2, 2).

P1 = [0, 0, 1], P2 = [0, 1, 0], P3 = [0, 1, 1], P4 = [1, 0, 0],
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P5 = [1, 0, 1], P6 = [1, 1, 0], P7 = [1, 1, 1].

P4

P3

P7

P1 P2

P5 P6

Figure 1.1: The Fano plane PG(2, 2)

The seven points and lines represent the elements and triples of a STS(7).

Example 1.2.1.2 (Affine systems). Let V be an n-dimensional vector space
over the field GF(3). The n-dimensional affine geometry AG(n, 3) is the set of
all the subspaces of V and their cosets. The points of the affine space are the
vectors of V and the lines of the affine space are translates of the 1-dimensional
subspaces of V . Since each affine line contains three points and for two distinct
points there is exactly on line passing through them, the points and lines of an
affine space AG(n, 3) are respectively the elements and the triples of a STS(3n).
The Steiner triple systems of this kind are called affine. The smallest significant
example is the affine plane AG(3, 2), shown in Figure 1.2.

P1 = (−1, 1), P2 = (0, 1), P3 = (1, 1), P4 = (−1, 0), P5 = (0, 0),

P6 = (1, 0), P7 = (−1,−1), P8 = (0,−1), P9 = (1,−1),

P1 P2 P3

P4
P5 P6

P7 P8 P9

Figure 1.2: The affine plane AG(2, 3)

The nine points and twelve lines represent the elements and triples of a STS(9).

An STS(u) (V ,B) is a subsystem of an STS(v) (S, T ) if V ⊆ S and B ⊆ T .
Two Steiner triple systems (S, T ) and (V ,B) are isomorphic if there is a bijection
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ϕ : S ⇆ V between the sets of points which induces a bijection T ⇆ B between
the families of triples as well. Up to isomorphism, the Fano plane PG(2, 2) and
the affine plane AG(2, 3) are the only Steiner triple systems of orders 7 and 9.
The number of non-isomorphic STS(v)s grows really quickly with v. Indeed, up
to isomorphism, there are only 2 STS(13)s, 80 STS(13)s and 11, 084, 874, 829
STS(19). For the next admissible order, which is 21, the non-isomorphic STSs is
still unknown. In general, the number of non-isomorphic STS(v)s is vv

2( 1
6
+o(1))

as v →∞ [53].
We conclude this section with the definitions of an important class of Steiner

triple Systems, which generalize the affine ones.

Definition 1.2.2. A Hall triple system (HTS) is a Steiner triple system in
which any three points not in a triple generate a sub-STS(9).

The cardinality of any HTS is 3m for some integer m ≥ 2. The first example
of a non-affine HTS has order 81, and there exists an HTS of order 3m for any
m ≥ 4.

1.2.3 A brief historical introduction to loop theory

The most simple description of a loop is “a group without associativity”. This
explanation is true, but it merely provides a basic definition. In fact, loop theory
is not just a generalization of group theory, but a distinct discipline rooted in
algebra, geometry, topology, and combinatorics.

Throughout the history of science, revolutionary ideas have emerged inde-
pendently in different places. The concept of non-associative operations dates
back to simple subtraction of natural numbers, but the first abstract example,
the Cayley numbers, emerged in 1845, later generalized into Cayley-Dickson
algebras by Dickson.

Anton K. Suschkewitsch, a Russian mathematician, discussed non-associativity
explicitly in 1929 [92]. Suschkewitsch conjectured the existence of non-associative
binary systems satisfying the Lagrange property, since he noticed that in the
proof of the Lagrange Theorem for groups, the associativity law is not used.
Despite his insights, his ideas were not widely appreciated in his home country
at the time.

Turning to 1930s Germany, our next milestone emerges simultaneously from
algebra, geometry, and topology. Two key papers, Ruth Moufang’s "Zur Struk-
tur von Alternativkörpern" (1934) [65] and Gerrit Bol’s "Gewebe und Gruppen"
(1937) [7], established a formal beginning for loop theory. These works defined
the foundations of the two most important classes of loops as we know them
now: Moufang loops and Bol loops.

Now, let us examine Moufang’s paper. She introduces a structure named a
quasigroup Q∗ satisfying the following properties:

(1) closure under the operation ·;

(2) existence of an identity element 1 and unique inverse x−1 for each x;

(3) a(a−1b) = (aa−1)b and (ba−1) = b(aa−1) for every a, b;
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(4) (a(ca))b = a(c(ab)) for every a, b, c.

She also defines a further system Q∗∗, believing it to be different from Q∗,
satisfying the following additional identity:

(5) (ab)(ca) = a((bc)a) for every a, b, c.

Bol soon demonstrated that condition (4) leads to (5), and later Bruck showed
that both are equivalent to the following identity:

(6) ((ab)c)b = a(b(cb)) for every a, b, c.

The structure introduced as Q∗ is now known as a Moufang loop, which can
be defined by any of the Moufang identities (4) through (6). Ruth Moufang,
together with Sofia Kovalevskaya and Emmy Noether, is known as a pioneering
woman who made significant contributions to mathematics.

The next major contribution to quasigroups following Moufang’s work ap-
peared in Gerrit Bol’s paper, three years later. Here, Bol takes a web-geometric
approach to the topic. He presents the first non-associative, commutative Mo-
ufang loop (of order 81) constructed by Zassenhaus. Moreover, Bol explains
the algebraic meaning of specific configurations and how they relate to the laws
that nowadays we call the right and left Bol identities, respectively:

a((bc)b) = ((ab)c)b and (b(cb))a = b(c(ba)). (1.1)

Bol’s work effectively split the Moufang identity in two, proving that a loop
is Moufang if and only if it satisfies both the right and left Bol properties.
Moreover, it is noteworthy that Bol did not have knowledge of Moufang’s work
when he was writing his paper; as mentioned in a footnote, he only became aware
of it after he had finished his paper. It was Zassenhaus again who constructed
the first instance of a right Bol loop.

Despite their early contributions, neither Moufang nor Bol returned to fur-
ther studies on quasigroups. Bol instead redirected his publications towards
questions on differential geometry.

After quasigroups declined in Germany, the United States became the new
center for quasigroup research. American publications on quasigroups such
as the works by Hausmann and Ore in 1937 [46], Murdoch in 1939 [67], and
Garrison in 1940 [40] had already emerged. In 1942, there was a significant
transformation in the terminology of quasigroup theory as it became essential
to differentiate between systems with and without an identity element. The
term "loop" was created by Albert’s circle in Chicago, drawing inspiration from
the Chicago Loop, the city’s central business area, and its elevated train system.
Albert introduced this term in his 1943 publications, "Quasigroups. I" [1] and
"Quasigroups. II" [2]. The former also marked the introduction of isotopy for
quasigroups. Soon thereafter, Richard Hubert Bruck contributed significantly
to the field with his papers in 1944 [11] and 1946 [9], and later in 1958 with
the book "A Survey of Binary Systems" [8]. This book still remains one of the
most cited work on loops, together with Hala O. Pflugfelder’s "Quasigroups and
loops: introduction" [81].
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During this time in England, Latin squares were a major research area,
even though this subjects is much older than loop theory. There appeared
links between the combinatorial aspects of Latin squares and quasigroup theory.
Additionally, combinatorial structures such as block designs and Steiner triple
systems are related to algebraic varieties of Steiner quasigroups and totally
symmetric loops.

Belousov had a crucial role in the development of quasigroup and loop theory
for the Soviet Union and the nations under its influence. His book, "Founda-
tions of the Theory of Quasigroups and Loops" [5], published in 1967, had a
comparable influence to that of Bruck in the United States. However, Belousov’s
remarkable achievements are less recognized in the West due to the language
barrier as the book is in Russian and never been translated.

While Bruck’s focus was on loops, Belousov’s emphasis shifted towards
quasigroups in general. His contributions had a significant impact on the spread
of loop theory throughout Central Europe, specifically in Hungary, Romania,
and the former Czechoslovakia.

1.2.4 Some basic notions about loops

A quasigroup is a set L endowed with a binary operation x · y such that the
equations a · x = b, y · a = b have unique solutions for x, y. The solutions are
denoted by divisions on the left and on the right x = a\b, y = b/a. Loops are
quasigroups with a unit element 1. The multiplication sign is often ignored,
(x · y) · z is written as xy · z. The left and right multiplication maps

La : x 7−→ ax, Ra : x 7−→ xa (1.2)

are invertible maps of L into itself.
The operation of a loop does not need to be associative: when associativity

holds, the loop is in fact a group. A subloop N ≤ L is normal if it is the kernel
of a homomorphism or, equivalently, if the relations

xN = Nx, x ·Ny = xN · y, x · yN = xy ·N,

hold for any x, y ∈ L. If L is commutative, the three normality conditions
reduce to the only x · yN = xy ·N .

The left, middle and right nuclei of a loop L are, respectively, the subloops

Nλ(L) = {n ∈ L | na · b = n · ab, for all a, b ∈ L},
Nµ(L) = {n ∈ L | an · b = a · nb, for all a, b ∈ L},
Nρ(L) = {n ∈ L | ab · n = a · bn, for all a, b ∈ L}.

The intersection of the three nuclei N = Nλ ∩Nµ ∩Nρ is called the nucleus of
L. The commutant of a loop L is

C(L) = {z ∈ L | xz = zx for all x ∈ L}.
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The center of L is the intersection of the commutant and the nucleus:

Z(L) = C(L) ∩N(L)

The center is always a normal subloop in L.
A loop L is said totally symmetric (TS) if it is commutative and the identity

x(xy) = y (1.3)

holds for every x, y ∈ L. In a TS loop the left and right inverses x\1 and 1/x of
any element x coincide; we call it the inverse of x, denoted by x−1. Every TS
loop has exponent 2. Furthermore, the three nuclei of a TS loop coincide. For
loops of exponent two, the totally symmetric property x(xy) = y is equivalent
to the weak associativity which says that x(yz) = 1 whenever (xy)z = 1, for
any x, y, z ∈ L.

A loop is said a right Bol loop if it satisfies the following identity for all
x, y, z ∈ L:

(((xy)z)y) = x((yz)y). (1.4)

Also in a right Bol loop the left and right inverses x\1 and 1/x of any ele-
ment x coincide, and we denote the inverse by x−1. Furthermore, any right
Bol loop is power associative, meaning that every element generates a cyclic
group. In particular, (xy)y−1 = x for all x, y. If a loop satisfies the right Bol
property (1.4) and its opposite x(y(xz)) = (x(yx))z, then it is called a Moufang
loop. Moufang loops are diassociative, that is, any two elements generate an
associative subloop. In particular, the inverse map is an anti-automorphism:
(xy)−1 = y−1x−1.
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Chapter 2

Steiner loops

Although it has been known since the 1950s ([44], [8]) that Steiner triple sys-
tems can be endowed with the algebraic structure of a loop, a comprehensive
extension theory for these systems has not been explored yet. Surprisingly, the
potential of loop theory in this context appears to have been underestimated.
For instance, prominent results in [60], [80] not only can be significantly sim-
plified but also strengthened, as highlighted in Section 2.3.

Considering a Steiner triple system, there are two approaches of defining an
operation which gives a loop structure. In one case, the resulting loop is called
a Steiner loop of projective type (or simply a Steiner loop), while in the other, it
is called a Steiner loop of affine type (see Definition 2.2.1). The former involves
an additional element for the unit, whereas in the latter the identity element is
a (chosen) fixed point within the Steiner triple system. Here, we provide the
definition for the projective case, which will be our main focus. However, in
Section 2.2 we will present the definition of the Steiner loop of affine type and
discuss analogies and differences between the two cases.

Definition 2.0.1. Consider a Steiner triple system S and let Ω be a further
element not belonging to S. We define LS as the set S ∪{Ω} endowed with the
binary operation · described as follows:

• for any distinct x and y in S, their product x · y is defined as the third
point in the triple of S containing x and y;

• for any x ∈ LS , we set x2 = Ω and x · Ω = Ω · x = x.

LS is called a Steiner loop of projective type (or simply a Steiner loop).

If there is no ambiguity, the multiplication sign is usually dropped. Clearly,
using the commutative operation defined above, the equation ax = b has a
unique solution, which is the third point of the triple through a and b. Addi-
tionally, Ω is the unit of LS , confirming that LS is indeed a loop. Moreover,
Steiner loops of projective type are precisely the finite totally symmetric loops,
as defined in § 1.2.4. Indeed, for any triple {x, y, z} of S, the totally symmetric
property holds:

x(xy) = xz = y.

Although the concept of a loop arising from a Steiner triple system is well
established, the name of projective type is a relatively recent terminology. We
have chosen to use this name in alignment with the ideas in [33], where the
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authors deal with an alternative construction, previously introduced by Chein
in [15], of a loop associated with a given STS, which they call of affine type. We
will deal with this other construction in Sections 2.2 and 2.3. However, when
there is no ambiguity, we will use the term "Steiner loop" specifically to denote
those of projective type.

The concept of Steiner loops of projective type gives a one-to-one corre-
spondence between Steiner triple systems and finite totally symmetric loops.
In fact, already in 1958, Bruck in [8] observed that a totally symmetric loop is
essentially the algebraic version of an Steiner triple system. This concepts have
been studied, for instance, in [84] and [91].

Moreover, LS fulfills the weak inverse property. Indeed, the triples {x, y, z}
of S are characterized by

xyz = Ω, (2.1)

and the elements in each triple associate. A Steiner loop of projective type LS
turns out to be a group, specifically an elementary abelian 2-group, precisely
when the Steiner triple system S is projective (see [27]).

2.1 Substructures, quotients and multiplication
group

It is natural now to talk about isomorphism, ask if there is some correspondence
between subloops and subsystems, and investigating normality and quotient
loops. Let LS1 and LS2 be two Steiner loops of projective type with identities
Ω1 and Ω2 respectively. The homomorphisms LS1 → LS2 are exactly the maps
sending Ω1 to Ω2 and any triple of S1 either into a triple of S2 or into Ω2. If
S1 and S2 have the same order, then the isomorphisms of loops LS1 ⇆ LS2
correspond exactly to the isomorphisms of Steiner triple systems S1 ⇆ S2.
Naturally, the group Aut(LS) can be identified with Aut(S).

Moreover, there is a one-to-one correspondence between subloops of LS and
Steiner triple subsystems of S. In addition, when a subloop is normal, the
quotient loop gives in turn a further Steiner triple system, as shown in the
following Theorem.

Theorem 2.1.1. Let S be a Steiner triple system and LS the corresponding
Steiner loop with identity Ω.

i) L′ is a subloop of LS if, and only if, it is the Steiner loop LR associated
with a subsystem R of S.

ii) If LN is a normal subloop of LS , then each non-trivial coset xLN generates
a subsystem of S containing N .

iii) If LN is a normal subloop of LS , then the factor loop LS/LN is a Steiner
loop LQ, with Q the Steiner triple system consisting of the non-trivial
cosets of LN .

Proof. i) L′ is a subloop of LS if, and only if, it is closed under the operation
of LS , which is equivalent to saying that if two distinct elements of S are
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contained in R := L′ \ {Ω}, then the third point z = xy of the triple
through x and y is in R as well.

ii) Let LN be a normal subloop of LS and x /∈ LN . The non-trivial coset
xLN generates the Steiner triple subystems xLN ∪N .
In fact, if xn1 and xn2 are two distinct elements of xLN , then (xn1) ·
(xn2) = n3 ∈ LN , since (xLN ) · (xLN ) = LN . This means that the third
poit in the triple through xn1 and xn2 is an element of N . Hence, the
subsystem of S generate by N must be contained in xLN ∪N .
Moreover, if xn1 ∈ xLN and n2 ∈ N , then we have that (xn1) · n2 = xn3

since (xLN ) · LN = xLN , that is {xn1, n2, xn3} is a triple S contained in
N ∪ xLN .
This proves that xLN generates the subsystem xLN ∪ N . Furthermore,
we note that the order of N ∪xLN is admissible: indeed, if w is the size of
N , then |N ∪xLN | = |N |+ |xLN | = w+w+1 = 2w+1, and 2w+1 ≡ 3
or 1 mod 6 whenever w ≡ 1 or 3 mod 6, respectively.

iii) The last assertion follows from the fact that the quotient LS/LN is a finite
totally symmetric loop.

Now we give some remarks about the multiplication group of a Steiner loop.
In [91] it is proved that if the order of any product of two different translations
of a Steiner triple system S of size v > 3 is odd, then Mult(LS) contains the
alternating group of degree v+1. In particular, the order of any product of two
different translations of a Hall triple system is three, a fact proved in [25]. They
also remark that in the Steiner triple systems constructed in [28] from a cyclic
group the order of any product of two different translations is odd, as well.

Theorem 2.1.2. Let S be a Steiner triple system of order v. Each translation
of LS has the form

Rx = (Ω, x)(y1, y2)(y3, y4) · · · (yv−1, yn). (2.2)

Moreover, the multiplication group Mult(LS) is contained in the alternating
group Av+1 if and only if v ≡ 3 or 7, mod 12.

Proof. Since LS has exponent two, in every translation Rx we find the transpo-
sition (Ω, x). Every triple {x, y1, y2} gives a transposition (y1, y2) in Rx. Hence
Rx has the form expressed in (2.2).

Since v ≡ 1, 3 mod 6, we have v ≡ 1, 3, 7, 9 mod 12. If v ≡ 3, 7, mod 12,
then one has |LS | ≡ 4, 8 mod 12. Therefore in both cases |LS | is divisible by
4. The number of transpositions in Rx for all x ̸= Ω is |LS |

2
which is even.

Therefore, the permutation Rx is even and the group Mult(LS) is contained
in Av+1. On the other hand, if v ≡ 1, 9 mod 12, the cardinality |LS | is not
divisible by 4. Therefore, number of transpositions in Rx is odd.

To take an initial step toward reducing the problem of studying STSs to
the case of simple Steiner loops, we present the following theorem, in which we
characterize the multiplication group in a specific case.
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Theorem 2.1.3. Let S be a Steiner triple system containing an STS(9) with
the Steiner loop LS being simple. If v ≡ 3, 7 mod 12, then Mult(LS) = Av+1.
If v ≡ 1, 9 mod 12 then Mult(LS) = Sv+1.

Proof. Since LS is simple, Mult(LS) is primitive. LetR be the sub-STS(9) of S,
then Mult(LS) contains Mult(LR), which is the symmetric group on 10 elements
[91]. In particular, Mult(LS) contains a 3-cycle, and by Jordan’s theorem on
primitive groups of permutations the assert is proved.

2.1.1 Normal subsystems and Veblen points

If LN is a normal subloop of LS and LQ is the corresponding quotient loop,
we say that N is a normal subsystem of S and Q is the corresponding quotient
system. We remind the reader that the normality of a subloop LN is described
by the relation x(yLN ) = (xy)LN , hence for every x, y ∈ LS and n ∈ LN , there
exists a unique m ∈ LN such that

x · yn = xy ·m.

With a combinatorial point of view, we can visualize the normality of a subsys-
tem N of S with the following Figure (2.1), where t = x · yn = xy ·m.

x

n

m

N
xy t

y yn

Figure 2.1: Normality of a subsystem N

Definition 2.1.4. Let v be the order of a Steiner triple system. We say that
v + 1 = (u+ 1)(w + 1) is an admissible factorization if u and w are admissible
in the sense of Steiner triple systems.

Example 2.1.4.1. Since the factorization 14 = 2 · 7 is not admissible, we can
say that the two non-isomorphic STS(13)s cannot have normal subsystem, or
equivalently, the corresponding Steiner loops are simple.

A class of subsystems which are always normal is that of projective hyper-
planes.

Definition 2.1.5. A proper subsystem N of S is called a projective hyperplane
if every triple of S has a non empty intersection with N .
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Equivalently, a subsystem N of an STS(v) is a projective hyperplane if and
only if |N | = v−1

2
. In fact, each of the v−1

2
blocks through a point x outside

N must have exactly one point in common with N . By cardinality reasons,
projective hyperplanes correspond exactly to subloops of index 2, which are
always normal. Therefore, we can say that If LS is a simple loop, then S does
not contain any projective hyperplane.

On the other hand, when raise the index to 4, a subloop of LS is not neces-
sarily normal.

Example 2.1.5.1. Let S be the STS(15) with the set of points {0, 1, . . . , 9, a, . . . , e}
and the triples given by the columns of the following table.

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 9 a 7 8 9 a 7 8 9 c 7 8 a b 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 b c d e e d c b a b e d d 9 c e c e b d

In the classification of the 80 non-isomorphic Steiner triple systems of order 15
in [19], pp. 31-33, it is presented as #2. S contains the sub-STS(7) given by
the the following Figure 2.2,

0

5

6

2 4

1 3

Figure 2.2: Sub-STS(7)

which is a projective hyperplane, hence normal. On the other hand, any
triple N of S gives a subloop LN < LS of index 4. Let N be, for instance, the
triple {3, 9, c}. Normality requires that for any x, y ∈ LS and any n1 ∈ LN ,
x(yn1) = (xy)n2 for some n2 ∈ LN . If we choose x = 5, y = 7, n1 = 3, then

x(yn1) = 5(7 · 3) = 5 · e = b,

but the equation (5 · 7)n2 = b, being equivalent to d · n2 = b, leads to n2 = 1,
that is not an element of LN .

We want to describe normality of subloops with a combinatorial prospective,
especially in small cases. Before going into this, it is important to recall that
in Steiner loops of projective type the nuclei and the center coincide, since they
are totally symmetric. On the one hand, the center Z of a Steiner loop LS has
order 2t, for some non-negative integer t, since it is an elementary abelian 2-
group. On the other hand, being Z a normal subloop, its order must divide that
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of LS . Thus, when its center is not trivial, LS has an admissible factorization
v + 1 = 2t(w + 1) with t ≥ 1.

Now we give the definition of particular configurations of points and lines
in Steiner triple systems, giving us the instruments to describe normality of
subloops and later to prove the power of loops in the study of STSs.

Definition 2.1.6. Let {x, a, b}, {x, c, d}, {y, a, c}, {y, b, d} be a configuration
of four distinct triples of a Steiner triple system S.

(i) If z = y, then the configuration is called a Pasch configuration (or C16).

(ii) If z ̸= y, then the configuration is called an anti-Pasch configuration (or
C14).

A visual representation of a Pasch and an anti-Pasch configurations is given
the following Figure 2.3.

x

y

b c

a d

x

y

z
b c

a d

Figure 2.3: A Pasch (left) and an anti-Pasch (right) configu-
rations

Definition 2.1.7. [20, p. 147] A point x in a Steiner triple system S is a Veblen
point if whenever {x, a, b}, {x, c, d}, {y, a, c} are triples of S, also {y, b, d} is a
triple of S.

Definition 2.1.7 says that any two distinct triples through a Veblen point
x produce a Pasch configuration. Equivalently we can say that x is a Veblen
point if and only if any two different triples containing x generate an STS(7).
Indeed, if in a Pasch configuration there is a Veblen point, it generates a Fano
plane, but in general this is not true. A result concerning this topic deals with
Steiner loops satisfying Moufang’s theorem. It is known that a Steiner loops is
a Moufang loop if and only if it is associative. However, some non-associative
Steiner loops can satisfy Moufang’s theorem, that is, every three associating
elements generate a group. In [18], the authors proved that a Steiner loop
LS satisfies Moufang’s theorem if and only if every Pasch configuration in S
generates a sub-STS(7).

Veblen points give a characterization of projective Steiner triple systems,
which was presented in its original form as part of the Veblen-Young axioms for
projective spaces (see [94]). However, the version we give here was presented
by C.J. Colbourn and A. Rosa.
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Theorem 2.1.8. [20, Th. 8.15] Let S be a Steiner triple system of order v,
and suppose that 2n ≤ v < 2n+1. The system S is isomorphic to PG(n + 1, 2),
and v = 2n+1 − 1, if and only if every element of S is a Veblen point.

The previous Theorem 2.1.8 will be sensibly improved by Corollary 2.5.4,
but first we need to show some results about normality and Veblen points.
The next theorem characterizes explicitly normal subsystems consisting of a
singleton, and gives also an algebraic meaning to Veblen points in the contest
of Steiner loops.

Theorem 2.1.9. Let S be a Steiner triple system. The following are equivalent.

(i) The sub-STS(1) N = {x} is a normal subsystem of S;

(ii) x is a Veblen point of S;

(iii) x is a non-trivial central element of LS .

Proof. Let N = {x} be a normal subsystem of S. The normality condition of
the corresponding Steiner subloop LN , that is

a · bLN = ab · LN for all a, b ∈ LS ,

is equivalent, in this case, to

a · bx = ab · x or all a, b ∈ LS .

Hence, (i) and (iii) are equivalent.
Let now x be a Veblen point of LS . Consider two triples {x, a, ax} and

{x, b, bx}. Since {a, bx, a · bx} is a triple, then {ax, b, a · bx} is a triple as well,
which means that ax · b = a · xb. The next figure 2.4 helps in visualizing the
situation.

x

ax · b

a · xb

ax xb

a b

Figure 2.4: Centrality of a Veblen point

This proves the equivalence between (ii) and (iii).

The following result is an immediate consequence of Theorem 2.1.9, more
precisely it follows from the fact that the set of Veblen points of a Steiner
triple system is precisely the set of non-trivial central elements of the associated
Steiner loop.
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Corollary 2.1.10. The Veblen points of a Steiner triple system of order v form
a normal subsystem of order 2n+1 − 1 ≤ v, isomorphic to PG(n, 2).

We want to describe in combinatorial terms also normality of subsystems of
order three.

Theorem 2.1.11. Let S be a Steiner triple system. If a triple is normal, then
any outer point generates with it a Fano plane.

Proof. Let N = {x, y, xy} be a normal triple of S and a an outer point. From
the normality condition, we know that the solutions n1, n2, n3 of the equations

a(xy) = (ax)n1, a(yx) = (ay)n2, (xa)(ya) = xn3,

belong to LN . It is easy to check that the only possibilities which do not lead
to any contradiction are n1 = y, n2 = x and n3 = y, giving the identities

a(xy) = (ax)y, a(yx) = (ay)x, (xa)(ya) = xy.

This means that N and a generate a Fano plane, as shown in figure 2.5.

x

xa

a

xy ya

y axy

Figure 2.5: Fano plane generated by a normal triple and an
outer point

Using the characterization of Veblen points in Theorem 2.1.9, we can give a
necessary condition on the existence of Steiner triple systems with such points.

Proposition 2.1.12. If v + 1 = 2t(w + 1) is an admissible factorization only
for t = 0, then any STS(v) contains no Veblen points.

Proof. The claim follows from the fact that, if the center has cardinality 2c,
then v+1

2c
must be the order of the quotient Steiner loop.

After the definition of Schreier extension, in Section 2.5, we will be able
to give a necessary and sufficient condition on the existence of Steiner triple
systems of order v with (at least) 2c − 1 Veblen points, and we will present a
constructive method for obtaining all such STSs .

Now we prove a more general fact about Veblen points, Pasch configurations
and Fano planes which can be useful in the classification of Steiner triple systems
with Veblen points.
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Lemma 2.1.13. If S is a STS(v), then:

(i) The number of Pasch configurations through a fixed Veblen point is (v−1)(v−3)
4

.

(ii) The number of Fano planes containing a fixed Veblen point is (v−1)(v−3)
24

.

(iii) If S has two distinct Veblen points a, b, then the third point c = ab in
their triple is a Veblen point as well. Moreover, there are v−3

4
Fano planes

containing the line ℓ = {a, b, ab}.
Proof. If a is a Veblen point, then for all points b ∈ STS(v), a ̸= b, there are v−3

4

Pasch configurations through b and a which do not contain the block {a, b, ab}.
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Figure 2.6: Pasch configuration containing two a and b but not
their triple

This follows from the fact that we cannot choose ab to be in the Pasch
configuration, so we are left with v − 3 points of the STS(v). In a Pasch
configuration there are 4 further points different from a and b. Fixing one of
these 4 points, the others are uniquely determined: indeed, if we fix x to be in
the configuration, the other must necessarily be ax, bx and a(bx) = (ax)b, and
rearranging these four points we obtain the same configuration. Finally, since
the point b can be chosen in v − 1 different ways we obtain the first assertion.

The second assertion follows from the fact that any sub-Fano plane contain-
ing the Veblen point x is obtained by 6 Pasch configurations, as shown in figure
2.7.

Figure 2.7: The six Pasch configurations through x forming a
Fano plane
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We notice here that the number (v−1)(v−3)
24

is in fact an integer. Indeed, v
can be 1, 3, 7, 9 mod 12: if v ≡ 1, 3 mod 12, one between v − 1 and v − 3 is
divisible by 12 and the other is even; if v ≡ 7, 9 mod 12, one between v − 1
and v − 3 is divisible by 4 and the other by 6.

Fixed the Veblen line ℓ = {a, b, ab}, let x be a point of S not in ℓ. Since ℓ is
a Veblen line, together with x it generates the Fano plane. We can choose x in
v− 3 different ways, but replacing it with ax, bx or with (ab)x = b(ax) = a(bx)
we obtain the same Fano plane. Hence there are v−3

4
different Fano planes

containing the Veblen line ℓ = {a, b, ab}.

Remark 2.1.1. These results can simplify the counting of Veblen point in a
Steiner triple system. To illustrate this, we consider Steiner triple systems of
order 15. We use the classification of the 80 non-isomorphic STS(15)s and their
main properties listed in [19, Tables 1.28 and 1.29, pp. 30 - 32]

If S is an STS(15) with a Veblen point, then it contains at least 7 Fano
planes. The only STS(15)s with that many sub-Fano planes are #1 and #2. If
S has more than one Veblen point, then it contains at least one triple {a, b, ab} of
Veblen points. For each of these Veblen points, there are 7 Fano planes passing
through it, 3 of which contain the entire line {a, b, ab}. Thus, S contains at
least 3(7−3)+3 = 15 Fano planes. The only STS(15) with this many sub-Fano
planes is #1, that is, PG(3, 2), therefore all of its element are Veblen points.
Moreover, the STS(15)#2 has precisely one Veblen point, and it is easy to see
that it is the element labeled with 0, by checking that it is a central element of
the Steiner loop.

2.2 Steiner loops of affine type
aaaa

Definition 2.2.1. Consider a Steiner triple system S, and let Ω be a fixed
element of S. We define AS as the set S endowed with the binary operation +
defined as follows:

• for any element x ̸= Ω, the opposite −x is the third point in the triple
through x and Ω, and we set −Ω = Ω;

• for any element x, Ω + x = x+ Ω = x and x+ x = −x;

• for any distinct x and y in S \ {Ω}, x + y = −z whenever {x, y, z} is a
triple of S.

AS = (S,+) is called called Steiner loop of affine type.

Clearly, with the above commutative operation, the unique solution of the
equation a+ x = b is the third point in the triple through a and −b. Also, Ω is
the identity element of AS , hence AS is indeed a loop. Moreover, Steiner loops
of affine type have exponent 3 and fulfill the weak inverse property. Indeed, the
triples {x, y, z} of S are characterized by the relation

x+ y + z = Ω,
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and, as in the projective case, we note here that the elements in each triple
associate. Two Steiner loops of affine type associated with the same Steiner
triple system S, say AS and A′S , with different identity elements Ω and Ω′

respectively, are isotopic but not isomorphic in general. Indeed, let µ and ν
be the maps defining the inverse elements in AS and A′S respectively, that is,
µ(x) and ν(x) define the triples {x,Ω, µ(x)} and {x,Ω′, ν(x)}. Then the map
γ = νµ : AS → A′S induces an isotopism (id, id, γ) : AS → A′S .

Similarly to the projective case, a Steiner loop of affine type AS turns out
to be a group, specifically an elementary abelian 3-group, exactly when S is
affine Steiner triple system. Moreover, S is a Hall triple system whenever AS
is a Moufang loop, more precisely a commutative Moufang loop of exponent 3,
a class of loops usually denoted with 3-CML. Since isotopic commutative loops
are isomorphic (see [8]), any two Steiner loops of affine type associated with the
same Hall triple system S with different identities are actually isomorphic.

Proposition 2.2.2. Let AS and A′S be two Steiner loops of affine type defined
on the same Steiner triple system S with different identities Ω and Ω′, respec-
tively. AS and A′S are isomorphic if and only if there exists φ ∈ Aut(S) such
that φ(Ω) = Ω′.

Proof. If φ : AS −→ A′S is an isomorphism, then naturally φ(Ω) = Ω′. The
triples of S are characterized by the condition

x+ y + z = Ω, (2.3)

where + is the operation in AS . Applying φ to equation (2.3), we obtain

φ(x)⊕ φ(y)⊕ φ(z) = Ω′, (2.4)

where ⊕ is the operation in A′S . Thus {φ(x), φ(y), φ(z)} is still a triple of S
and φ is an automorphism of S.

Conversely, let φ be an automorphism of S mapping Ω into Ω′. The triples

{x, y,−(x+ y)} and {−(x+ y),Ω, x+ y} (2.5)

are mapped by φ into the triples

{φ(x), φ(y), φ(−(x+ y))} and {φ(−(x+ y)),Ω′, φ(x+ y)}, (2.6)

respectively. Hence φ(x + y) = φ(x) ⊕ φ(y), that is, φ is an isomorphism of
loops AS −→ A′S .

As a direct consequence of Proposition 2.2.2, we have the following char-
acterization for Steiner triple systems defining an isomophism class of Steiner
loops of affine type.

Corollary 2.2.3. A Steiner triple system S has the property that any two
Steiner loops of affine type defined on S are isomorphic if and only if the group
Aut(S) acts transitively on S.
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Corollary 2.2.3 indicates that not only does any HTS (and consequently any
affine STS) define an isomorphism class of Steiner loops of affine type, but also
any projective STS has the same property, due to its transitive automorphism
group. Additionally, it is worth noting a correction to a small mistake in [33].
On page 148, the authors present an example of two Steiner loops of affine
type defined on the STS(7), saying that they are isotopic but not isomorphic.
However, this assertion is not true as they are, in fact, isomorphic by Corollary
2.2.3.

Since the two STS(13)s have transitive automorphism groups, for the small-
est example of two isotopic but non isomorphic Steiner loops of affine type
defined on the same STS(v) one has to consider v = 15. For instance, the
STS(15) #2 S has a unique Veblen point, which is fixed by any automorphism
of S since it is the only non-trivial central point in the Steiner loop of projec-
tive type LS . For this reason the Steiner loop of affine type AS with identity
the Veblen point is isotopic, but not isomorphic, to any other loop A′S with a
different identity element. Furthermore, since the STS(15) #23 have trivial au-
tomorphism group (see [19]), it gives 15 non-isomorphic Steiner loops of affine
type.

For Steiner loops of affine type, unlike the projective case, the subloops of
AS are exactly the subsystems of S containing Ω. If AS has a normal subloop,
then each coset corresponds to a subsystem of S, and the corresponding quotient
yields a Steiner triple system as well. While in the projective case the groups
Aut(LS) and Aut(S) coincides, in this case the automorphisms of the loop AS
are the automorphism of the Steiner triple system S fixing the element Ω.

Another difference between Steiner loops of affine and projective type con-
cerns the normality of maximal subloops. While in a Steiner loop of projective
type every maximal subloop, that is of index 2, is normal, this is not true in
the affine case. In this context, maximal means of index 3. Now we give an
example arising from an STS(21) called B.3 in [63].

Example 2.2.3.1. Let S be an STS(21) given by the set of points Z/7Z ×
{1, 2, 3}. For an easier notation, in [63], the authors denote with xi the couple
(x, i) ∈ Z/7Z × {1, 2, 3}. Let the family of triples of S be generated by the
following base blocks,

{01, 11, 31}, {01, 02, 03}, {01, 12, 23}, {01, 22, 53}, {01, 32, 62},
{01, 42, 52}, {01, 13, 63}, {01, 33, 43}, {02, 22, 63}, {02, 23, 53},

together with the automorphism

α = (01, 11, . . . , 61)(02, 12, . . . , 62)(03, 13, . . . , 63) (2.7)

Let us fix Ω := 01 as the identity element of the Steiner loop of affine type AS .
The subset N := Z/7Z× {1} is the unique sub-STS(7) of S and it contains Ω,
thus AN is a subloop of AS of index 3.

The normality condition requires that for every xi, yj ∈ AS , n1 ∈ AN , there
exists an element m1 ∈ AN such that

xi + (yj + n1) = (xi + yj) +m1.
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If we choose xi = 22 and yj = −xi = 53 we have that the normality condition
requires that 22 + (53 + n1) ∈ AN for every n1 ∈ AN . Choosing n1 = 21 we
have that

22 + (53 + n1) = 22 + (53 + 21) = 22 + (−63) = 22 + 13 = −42 = 52 ̸∈ AN .

It follows that AN is not a normal subloop of AS .

2.3 Some applications of Steiner loops
In this section, through the following examples, we intend to support the as-
sertion regarding the effectiveness of loop theory in the study of Steiner triple
systems.

We give now a first evidence of the strength of using Steiner loops. A
t− (v, k, λ) design D = (P ,B) is said additive if it is possible to embed P into a
suitable (commutative) group (GD,+) such that the sum of the elements in each
block is zero. Additivity of block designs has been studied by A. Caggegi, G.
Falcone and M. Pavone in [13]. They show that, with only one exception, any
symmetric 2− (v, k, λ) design is additive, and its blocks are the only k-subsets
in which the elements sum up to zero. Furthermore, they proved that the
automorphism group of D is the subgroup of Aut(GD) which leaves P invariant.
A special case is when D has prime order p which do not divide k: in this
situation the group GD is isomorphic to (Z/pZ) v−1

2 . Moreover, they proved that
the only additive Steiner triple systems are the projective and affine STSs. We
report in passing that M. Buratti and A. Nakić in [12] studied super-regular
design, that are additive designs D such that their point-set is exactly GD, and
any translate of any block is still a block. Their main result says that there are
infinitely many values of v for which there exists a super-regular 2 − (v, k, 1)
design whenever k is neither singly even nor of the form 2n3 ≥ 12. They also
find super-regular 2− (pn, p, 1) designs different from AG(n, p), for p = 5, 7.

The proof in [13] of affine and projective geometries being the only additive
STSs takes several pages, but using Steiner loops it can be sensibly improved.
In fact, if we want to define a binary operation + on a Steiner triple system S
such that x+y+ z = 0 for each block {x, y, z} of S, then the construction gives
in turn a Steiner loop of either affine or projective type. Indeed, if the identity
0 is an element of S, then this construction corresponds exactly to the Steiner
loop of affine type. This loop is associative precisely when S is the point-line
design of an affine geometry AG(d, 3). If 0 is not an element of S, since the
triples must be the only 3-subsets of the group that sum up to 0, we have that
every element has order 2. Hence, this construction coincides with the Steiner
loop of projective type, which is associative precisely when S is the point-line
design of a projective geometry PG(d, 2).

Now we provide another example which proves again the strength of Steiner
loops of both types. It is very well known that if any set of three non-collinear
points always determines a Pasch configuration, then the Steiner triple system
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is a projective geometry over GF(2). Conversely, the same property can be
formulated in terms of lack of the anti-Pasch configuration C14.

Trying to find a corresponding characterization for affine geometries AG(d, 3),
M. Hall ended up discovering Hall triple systems (HTS), a family of STSs that
contains properly the affine geometries over GF(3). For HTSs, in fact, any three
points belong to an affine plane AG(2, 3). As shown by M. Pavone in [78], the
corresponding characterization for Steiner triple systems as affine geometries
over GF(3) is that any four points belong to an AG(3, 3), simply because the
associated Steiner loop of affine type fulfills, for any three points (together with
the zero element) the associative law, hence being a group. In the same lecture,
he noticed that if the Steiner loop of affine type is not a group (equivalently,
the associated Steiner triple system is not an affine space AG(d, 3)), then three
non associating elements form, together with the element Ω, a C1

S configuration
(instead of a grid), as displayed in the next Figure 2.8,

t

a b

a+ b c

b+ cΩ

x

y

a b

a+ b c

b+ cΩ

Figure 2.8: A grid (left) and a C1
S configuration (right)

where −t = (a+ b) + c = a+ (b+ c), −x = a+ (b+ c), −y = (a+ b) + c. This
insight allowed him to strengthen a result by Kral et alii in [60] characterizing
affine spaces over the field GF(3). Their results say that a Steiner triple system
is affine if and only if it contains neither of the configurations C16 (Pasch),
C1

S and C2
S (see Figure 2.9), and that a Hall triple systems is affine if and

only if it contains none of the configurations C1
S and C2

S. Whereas, M. Pavone
was able to strengthen the previous results by removing the hypothesis on the
C2

S configuration. Indeed, he proved that the affine geometries over GF(3)
are exactly the Steiner triple systems where the configurations C16 and C1

S are
missing, as well as the Hall triple systems where the configuration C1

S is missing.

Figure 2.9: A C2
S configuration
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2.4 Extensions of Steiner loops
The theory of group extensions has a rich history in group theory, and it played
a crucial role in various areas of mathematics from its early development in
the 20th century. The concept involves understanding how groups can be con-
structed by extending one group by another. While the theory of group exten-
sions is a milestone in algebra, a general extension theory for loops does not
exist. Indeed, the lack of associativity changes the situation very drastically.

In this section we want to study extensions of Steiner loops of projective
type. As one can expect by considering that the number of Steiner triple systems
with v elements increases as

(
v/e2+o(v)

)v2/6 (see [53]), this construction is more
flexible than the corresponding extension theory for commutative groups (cf. [2]
and [10], [73]).

It is worthwhile here to recall the next theorem, which follows from [1], § 10
and 11, and which links the extension theory for loop with the extension theory
for the corresponding multiplication groups.

Theorem 2.4.1. Let LS be an extension of LN by LQ. Then Mult(LN ) is a nor-
mal subgroup of Mult(LS) and Mult(LQ) is isomorphic to Mult(LS)/Mult(LN ).

2.4.1 Steiner operators

The most general way of constructing an extension of Steiner triple System
is via a Steiner operator. It allows us to construct, starting from a STS(u)
and STS(w) a further Steiner triple system of order (u + 1)(w + 1) − 1, with
one of them as normal subsystem and the the other one as the corresponding
quotient. Eventually, our focus we will be on d Schreier extensions, a specific
kind of extensions which provides a powerful tool for constructing and classifying
Steiner triple systems that contain Veblen points. However, before delving into
the details of these extensions, we present the general case.

Definition 2.4.2. Let LN and LQ be Steiner loops of order n = u + 1 and
m = w+1 with identity elements Ω′ and Ω̄ respectively, and let LS(LN ) be the
set of n× n Latin squares with entries in the set LN .

An operator Φ : LQ×LQ −→ LS(LN ), which maps the couple (P,Q) into a
Latin square ΦP,Q : LN ×LN −→ LN , is called a Steiner operator (of projective
type) if it fulfills the following conditions:

(i) the Latin square ΦΩ̄,Ω̄ is the (symmetric) multiplication table of LN ;

(ii) ΦQ,P (y, x) = ΦP,Q(x, y), that is, ΦQ,P is the transpose of ΦP,Q;

(iii) ΦP,P (x, x) = Ω′;

(iv) ΦP,PQ(x,ΦP,Q(x, y)) = y

for all (P, x), (Q, y) ∈ LQ × LN .

Steiner operators can also be defined in the context of Steiner loops of affine
type, they have been studied in [33].
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We note here that with P = Q and x = y, conditions iii) and iv) lead to

ΦP,Ω̄(x,Ω
′) = x. (2.8)

Theorem 2.4.3. Let LN and LQ be two Steiner loops of order u + 1, w + 1
and with identities Ω′ and Ω̄, respectively. Let Φ : LQ × LQ −→ LS(LN ) be a
Steiner operator. If we define on the set LQ × LN the following operation,

(P, x) ◦ (Q, y) :=
(
PQ,ΦP,Q(x, y)

)
, (2.9)

we obtain a Steiner loop LS of order v + 1 = (u + 1)(w + 1) with identity
Ω = (Ω̄,Ω′). The subloop

LN = {(Ω̄, x) | x ∈ LN}

is a normal subloop of LS isomorphic to LN , with corresponding quotient LS/LN
isomorphic to LQ.

Conversely, any Steiner loop with a proper normal subloop is isomorphic to
the construction described above, for a suitable Steiner operator.

Proof. Let LS be defined by a Steiner operator Φ as above. If (Q, y) and (R, z)
are two given elements in LS , then the equation

(Q, y) ◦ (P, x) = (R, z)

has a unique solution (P, x), where P = QR and x is the unique element in LN
such that ΦQ,QR(y, x) = z, that is, the column index of the element z in row y
in the Latin square ΦQ,QR.
By (2.8), the element (Ω̄,Ω′) is the identity of LS . By Definition 2.4.2, condition
ii), the operation is commutative, by condition iii) LS has exponent 2 and
condition iv) is equivalent to (P, x) ◦

(
(P, x) ◦ (Q, y)) = (Q, y), that is the

totally symmetric property. Thus, LS is a Steiner loop. By Definition 2.4.2,
condition i), the subloop

LN = {(Ω̄, x) | x ∈ LN}

is isomorphic to LN . For every (Q, y), (R, z) ∈ LS , (Ω̄, n) ∈ LN the equation

((Q, y) (R, z)) ◦
(
Ω̄, n

)
= (Q, y) ◦ ((R, z) (P, x)) , (2.10)

that is,
(QR,ΦQ,R (y, z)) ◦

(
Ω̄, n

)
= (Q, y) ◦ (RP,ΦR,P (z, x)) ,

is equivalent to(
QR,ΦQR,Ω̄ (ΦQ,R (y, z) , n)

)
= (Q ·RP,ΦQ,RP (y,ΦR,P (z, x))) . (2.11)

The equation (2.11) implies P = Ω̄, that is, the solution (P, x) of the equation
(2.10) belongs to LN which, as a consequence, is normal.
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Conversely, consider a Steiner loop LS with a normal subloop LN and cor-
responding quotient loop LQ. Let π : LS −→ LQ be the canonical epimorphism
and σ : LQ −→ LS a section with σ(LN ) = Ω and πσ = idLQ . Since for every
π(X) ∈ LQ it holds π(X) = π(σ(π(X))), we have that

X = σ(π(X)) · x, (2.12)

with x ∈ LN . By normality of LN and using the fact that σ(π(X))σ(π(Y )) and
σ(π(X)π(Y )) are in the same coset, we obtain that

XY = (σ(π(X)) · x) (σ(π(Y )) · y) = (σ(π(X)π(Y ))) · Φπ(X),π(Y )(x, y)

for a suitable element Φπ(X),π(Y )(x, y) of LN depending on π(X), π(Y ), x and
y. Since LS is a loop, for any π(X), π(Y ) ∈ LQ, Φπ(X),π(Y )(−,−) defines a
Latin square with entries in LN and rows and columns indexed by LN as
well. Thus, we can define an operator Φ: LQ × LQ −→ LS(LN ) such that
Φ: (π(X), π(Y )) 7−→ Φπ(X),π(Y ). Up to renaming the elements of LQ, every
X ∈ LS can be represented by a couple (P, x) defined as in (2.12), where
P = π(X). With this representation, the operation of LS is described by

(P, x) ◦ (Q, y) = (PQ,ΦP,Q(x, y)) .

The first condition of Definition 2.0.1 is trivially fulfilled since x = (Ω̄, x) for
every x ∈ LN . Condition ii) holds for commutativity, condition iii) comes from
the exponent 2 and condition iv) reflects the totally symmetric property.

In this case LS is called an extension of LN by LQ or, equivalently, that the
short sequence

Ω′ → LN → LS → LQ → Ω̄ (2.13)

is exact. The size of the quotient loop LQ is called the index of the extension.
We say that the Steiner triple system S is an extension of N by Q as well.

Roughly speaking, a Steiner operator Φ replaces the entry PQ in the mul-
tiplication table of LQ with the Latin square ΦP,Q.

. . . Q . . .
...

...
P · · · PQ · · ·
...

...

⇝

· · ·
Q︷︸︸︷ · · ·

...
...

P
{

. . . ΦP,Q . . .
...

...

In this way, we obtain the multiplication table of LS by gluing together all
the tables ΦP,Q and recalling that in the first component we simply have the
multiplication of LQ.

Theorem 2.4.4. Consider an extension

Ω′ → LN → LS → LQ → Ω̄,
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of Steiner loops with N and Q of order u and w respectively. The (u+ 1)(w +
1) × (u + 1)(w + 1) multiplication table of the Steiner loop LS is completely
determined by its w+1 diagonal symmetric blocks of size (u+1)× (u+1), and
additional w(w−1)

6
tables.

Proof. Since the multiplication of LS is given by

(P, x) ◦ (Q, y) = (PQ,ΦP,Q(x, y)) ,

for a suitable Steiner operator Φ, the multiplication table of LS is described by
the (w + 1)2 tables of size (u+ 1)× (u+ 1) corresponding to the Latin squares
ΦP,Q, with P,Q ∈ LQ. Every Latin square ΦP,P in the main diagonal uniquely
determines the Latin squares ΦΩ̄,P and ΦP,Ω̄. If {P,Q,R} is a triple of Q,
then ΦP,Q uniquely determines ΦP,R, ΦQ,R, and consequently ΦQ,P ,ΦR,P ,ΦR,Q.
Hence, once the blocks on the main diagonal are fixed, the remaining w(w− 1)
blocks can be determined by specifying just 1

6
of them.

Ω̄ . . . P . . . Q . . . R . . .
Ω̄ ΦΩ̄,Ω̄ ΦΩ̄,P ΦΩ̄,Q ΦΩ̄,R . . .
... . . .
P ΦP,Ω̄ ΦP,P ΦP,Q ΦP,R

... . . .
Q ΦQ,Ω̄ ΦQ,P ΦQ,Q ΦQ,R

... . . .
R ΦR,Ω̄ ΦR,P ΦR,Q ΦR,R

... . . .

Table 2.1: Multiplication table of LS

For example, with the tool provided by the notion of extensions of Steiner
triple systems, the problem of classifying STS(v)s containing a projective hy-
perplane can be reduced to classifying STS(v−1

2
)s and symmetric Latin squares

on v−1
2

letters with a fixed element in the main diagonal.

Example 2.4.4.1. Here we give an example of an STS(19), denoted with S,
having a projective hyperplaneN , which has order 9. The corresponding Steiner
loop LN is a normal subloop of index 2 in the Steiner loop of order 20. The
corresponding quotient loop is LQ = {Ω̄, 1̄}. For LN we fix the following mul-
tiplication table.
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Ω′ 1 2 3 4 5 6 7 8 9
Ω′ Ω′ 1 2 3 4 5 6 7 8 9
1 1 Ω′ 3 2 7 9 8 4 6 5
2 2 3 Ω′ 1 9 8 7 6 5 4
3 3 2 1 Ω′ 8 7 9 5 4 6
4 4 7 9 8 Ω′ 6 5 1 3 2
5 5 9 8 7 6 Ω′ 4 3 2 1
6 6 8 7 9 5 4 Ω′ 2 1 3
7 7 4 6 5 1 3 2 Ω′ 9 8
8 8 6 5 4 3 2 1 9 Ω′ 7
9 9 5 4 6 2 1 3 8 7 Ω′

Table 2.2: Multiplication table of LN

The Latin square Φ1̄,1̄ is a symmetric table with the identity element Ω′

occurring the whole main diagonal. We choose, for instance, Φ1̄,1̄ to be the
table

Ω′ 1 2 3 4 5 6 7 8 9
Ω′ Ω′ 7 6 5 4 9 8 2 1 3
1 7 Ω′ 5 6 2 8 9 4 3 1
2 6 5 Ω′ 7 8 2 1 3 4 9
3 5 6 7 Ω′ 1 3 4 9 8 2
4 4 2 8 1 Ω′ 5 3 7 9 6
5 9 8 2 3 5 Ω′ 7 1 6 4
6 8 9 1 4 3 7 Ω′ 6 2 5
7 2 4 3 9 7 1 6 Ω′ 5 8
8 1 3 4 8 9 6 2 5 Ω′ 7
9 3 1 9 2 6 4 5 8 7 Ω′

Table 2.3: Φ1̄,1̄

Each of the 45 entries in the upper triangular part of Φ1̄,1̄ determines a triple
of the STS(19). For instance, we can read from the table that

(1̄, 4) ◦ (1̄, 1) = (Ω̄, 2), (2.14)

meaning that {(1̄, 4), (1̄, 1), (Ω̄, 2)} is a triple of S. Therefore, ΦΩ̄,1̄(2, 1) = 4
and ΦΩ̄,1̄(2, 4) = 1. In this way we find 45 triples of S, each of which gives two
entries in the Latin square ΦΩ̄,1̄. The table Φ1̄,Ω̄ is the transpose of ΦΩ̄,1̄.

The Latin square ΦΩ̄,1̄ is thoroughly determined as shown in the next table.
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Ω′ 1 2 3 4 5 6 7 8 9
Ω′ Ω′ 1 2 3 4 5 6 7 8 9
1 8 9 6 4 3 7 2 5 Ω′ 1
2 7 4 5 9 1 2 8 Ω′ 6 3
3 9 8 7 5 6 3 4 2 1 Ω′

4 4 7 8 6 Ω′ 9 3 1 2 5
5 3 2 1 Ω′ 5 4 9 8 7 6
6 2 3 Ω′ 1 9 8 7 6 5 4
7 1 Ω′ 3 2 7 6 5 4 9 8
8 6 5 4 8 2 1 Ω′ 9 3 7
9 5 6 9 7 8 Ω′ 1 3 4 2

Table 2.4: ΦΩ̄,1̄

The entries in ΦΩ̄,Ω̄, which is the multiplication table of LN , yield the 12
triples of the hyperplane N , thus we have all of the 57 triples of the STS(19).
The elements of LS are represented by couples (P, x) in LQ × LN and the
multiplication table of LS is given by the four 10× 10 block matrices ΦP,Q.

LS :
ΦΩ̄,Ω̄ Φ1̄,Ω̄

ΦΩ̄,1̄ Φ1̄,1̄

2.5 Schreier extensions of Steiner loops
As mentioned in the beginning of this section, we are interested in the study of
the class of loop extensions called Schreier extensions, introduced in [75].

Let N be a group with identity Ω′ and Q be a loop with identity Ω̄. Consider
a map T : Q → Aut(N) with T (Ω̄) = Id, and f : Q × Q → N a function with
the property f(P, Ω̄) = f(Ω̄, P ) = Ω′, for every P ∈ Q. From now on, we will
use the additive notation for N and the multiplicative notation for Q. The
operation

(P, x) ◦ (R, y) :=
(
PR, f(P,R) + xT (R) + y

)
, (2.15)

defines on Q × N a loop L, usually denoted by L(T, f). This loop L gives an
extension

Ω′ −→ N −→ L −→ Q −→ Ω̄ (2.16)

called a Schreier extension of N by Q. Indeed, the loop L contains

N = {(Ω̄, x) | x ∈ N} ≃ N

as a normal subgroup with corresponding quotient loop isomorphic to Q. The
function f defining the extension is called a factor system.

This construction is very similar to the corresponding definition for groups,
but as we anticipated before the lack of associativity makes things less control-
lable. The following Proposition 2.5.1 gives necessary and sufficient conditions
for Schreier extensions of Steiner loops to be a Steiner loops as well.
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Theorem 2.5.1. A Schreier extension of an associative Steiner loop LN by a
Steiner loop LQ, defined by functions T and f , gives in turn a Steiner loop LS
if and only if the following hold:

1. LN is central;

2. T is trivial;

3. f is symmetric and

f(P,Q) = f(P, PQ) = f(Q,PQ), for every P,Q ∈ LQ. (2.17)

In particular, the operation of LS becomes

(P, x) ◦ (Q, y) =
(
PQ, x+ y + f(P,Q)

)
.

Proof. By Proposition 3.2. in [75], we find that the map T is trivial, LN is a
central subgroup of LS and f is symmetric.

In the resulting loop, the totally symmetric property

(P, x) ◦
(
(P, x) ◦ (Q, y)

)
= (Q, y),

for every P,Q ∈ LQ, x, y ∈ LN , is equivalent to(
Q, y + f (P,Q) + f (P, PQ)

)
= (Q, y) .

This last condition holds exactly when f(P,Q) = f(P, PQ) for every P,Q ∈ Q.
Of course, by the symmetry of f , f(P,Q) coincides also with f(Q,PQ).

Schreier extensions are used, for exmple in the study, of oriented Steiner
triple system. An oriented Steiner triple system is an STS in which to each triple
is assigned a cyclic order. This concept has been studied in [90]. In such systems,
if {a1, a2, a3} is a triple, it is represented in an oriented way as (a1, a2, a3),
meaning it is oriented with respect to the permutation (1 2 3). An oriented
Steiner loop L is defined as a Schreier extension of the group {1,−1} of order two
by a Steiner loop with associated Steiner triple system being oriented. Moreover,
the factor system f must be compatible with the orientation structure, that is,
f(a1, a2) = 1 and f(a2, a1) = −1 whenever a1 and a2 are two distinct points of
S determining an oriented triple (a1, a2, a3), and f(x, x) = −1, or respectively
f(x, x) = 1, for every x ∈ S. The authors describe the left, right and full
translation groups of L, and they also study its group of automorphisms.

Schreier extensions play a crucial role also in the study of nilpotent Steiner
loops of class 2, which are Steiner loops LS such that LS/Z(LS) ̸= 1 and is an
abelian group. Of course these loops can be seen as Schreier extensions of their
center by the group LS/Z(LS). For more about this topic, the interested reader
can refer to [42].

From now on, by Schreier extensions of Steiner loops, denoted as in the
general case with an exact short sequence

Ω′ −→ LN −→ LS −→ LQ −→ Ω̄, (2.18)



32 Chapter 2. Steiner loops

we will mean Schreier extensions satisfying the conditions of Proposition 2.5.1.
We say that the Seiner triple system S is a Schreier extension of N by Q as
well.

The condition (2.17) can be reformulated by saying that

f(P, P ) = f(P, Ω̄) = Ω′ for every P ∈ LQ, (2.19)

and that f is constant on the triples of Q, that is,

f(P,Q) = f(P,R) = f(Q,R) whenever {P,Q,R} is a triple of Q. (2.20)

We want to stress the fact that since LN is in the center of LS , the elements
of N are Veblen points of S.

Now we give an example of a Schreier extension resulting in a Steiner triple
system of order 15 with precisely one Veblen point.

Example 2.5.1.1. Consider the STS(7) Q with points and triples as shown in
the following figure (2.10).

P5

P2

P7

P1 P3

P4 P6

Figure 2.10: STS(7) Q

Let LS be the Schreier extension of LN = {Ω′, 1} by LQ given by the factor
system f with

f(P3, P5) = f(P3, P6) = f(P5, P6) = 1,

f(P3, P4) = f(P3, P7) = f(P4, P7) = 1,
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and f(P,Q) = Ω′ elsewhere. If we rename the elements of LS as follows,

Ω = (Ω̄,Ω′), 0 = (Ω̄, 1),

1 = (P1,Ω
′), 2 = (P1, 1),

3 = (P2,Ω
′), 4 = (P2, 1),

5 = (P3,Ω
′), 6 = (P3, 1),

7 = (P4,Ω
′), 8 = (P4, 1),

9 = (P5,Ω
′), a = (P5, 1),

b = (P6,Ω
′), c = (P6, 1),

d = (P7,Ω
′), e = (P7, 1),

we obtain the presentation of the STS(15) #2 given in [19], where the triples
are organized as columns of the following table 2.5.

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 b c 7 8 9 a 7 8 9 a 7 8 9 a 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 a 9 e d b c d e c b e d e d c b d e b c

Table 2.5: STS(15) #2

The theory of Schreier extensions offers a constructive method to obtain
Steiner triple systems with Veblen points. On the other hand, if LN is a central
subgroup of LS , then LS can be obtained as a Schreier extension of LN by LQ =
LS/LN (cf. [9], p. 334). This means that any Steiner triple system S containing
Veblen points can be regarded as a Schreier extension of the projective STS
consisting of its Veblen points, or a proper subsystem of it.

This provides a necessary and sufficient condition on an admissible positive
integer v for the existence of a Steiner triple system of order v containing (at
least) a specified number of Veblen points.

Theorem 2.5.2. There exists an STS(v) with (at least) 2c−1 Veblen points if,
and only if, v+1

2c
≡ 2, 4 (mod 6).

Proof. One direction of the claim follows from the fact that, if the center of a
Steiner loop has cardinality 2c, then v+1

2c
must be the cardinality of the quotient

projective Steiner loop. The other direction is true because we can construct a
Steiner loop LS with non-trivial center by considering a Schreier extension of
an elementary abelian 2-group LN of cardinality 2c by a (suitable) Steiner loop
LQ of order v+1

2c
.

Remark 2.5.1. By Theorem 2.5.2, we can determine whether a Steiner triple
system can have Veblen points simply by looking at its order. Presented below
there is a list of the first 100 admissible integers v for which any STS(v) cannot
have Veblen points.

9, 13, 21, 25, 33, 37, 45, 49, 57, 61, 69, 73, 81, 85, 93, 97, 105, 109, 117, 121,
129, 133, 141, 145, 153, 157, 165, 169, 177, 181, 189, 193, 201, 205, 213, 217,
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225, 229, 237, 241, 249, 253, 261, 265, 273, 277, 285, 289, 297, 301, 309, 313,
321, 325, 333, 337, 345, 349, 357, 361, 369, 373, 381, 385, 393, 397, 405, 409,
417, 421, 429, 433, 441, 445, 453, 457, 465, 469, 477, 481, 489, 493, 501, 505,
513, 517, 525, 529, 537, 541, 549, 553, 561, 565, 573, 577, 585, 589, 597, 601.

Regarding the orders not mentioned in Remark 2.5.1, Theorem 2.5.2 demon-
strates, for instance, that each STS(19) and each STS(27) can have at most one
Veblen point. Additionally, any STS(31) can have (at least) 1, 3, 7, 15 or 31 Ve-
blen points. However, we will see that not for all of these numbers it is possible
to have an STS(31) with this precise amount of Veblen points. In fact, there is
a crucial threshold: exceeding a certain number of Veblen points forces an STS
to be projective, and hence to have all its elements as Veblen points. This will
be a consequence of Theorem 2.5.3. More specifically, We will delve into Steiner
triple systems of size 19, 27 and 31 containing Veblen points in Chapter 3.

Theorem 2.5.3. If a Schreier extension of Steiner loops

Ω′ −→ LN −→ LS −→ LQ −→ Ω̄, (2.21)

has index at most 4, then the resulting Steiner triple system S is projective.

Proof. Since the factor loop LQ has order less or equal 4, it can be either
the elementary abelian 2-group of order 2 or 4. We want to prove that the
associative property

(P, x) ◦ ((Q, y) ◦ (R, z)) = ((P, x) ◦ (Q, y)) ◦ (R, z) (2.22)

holds for every P,Q,R ∈ LQ and x, y, z ∈ LN . Let f be the factor system
defining the Schreier extension. If LQ has cardinality 2, then f is the null
function and LS is a group. Let now LQ be the elementary abelian 2-group of
order 4. On the left-hand side we have

(P, x) ◦ ((Q, y) ◦ (R, z)) = (P, x) ◦ (QR, y + z + f(Q,R))

= (PQR, x+ y + z + f(P,QR) + f(Q,R)),

and on the right-hand side

((P, x) ◦ (Q, y)) ◦ (R, z) = (PQ, x+ y + f(P,Q)) ◦ (R, z)
= (PQR, x+ y + z + f(PQ,R) + f(P,Q)).

Hence we have to check that

f(P,QR) + f(Q,R) = f(PQ,R) + f(P,Q). (2.23)

• If the three points form the only triple in the underlying STS(3) Q, then
by condition (2.20) we obtain (2.23).

• If one out of the three points is the identity element, say P = Ω̄ without
loss of generality, the equation (2.23) reduces to

f(Ω̄, QR) + f(Q,R) = f(Q,R) + f(Ω̄, Q), (2.24)
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which is true since f(Ω̄, QR) = Ω′ = f(Ω̄, Q) by condition (2.19).

• If two out of the three points coincide, say P = Q without loss of gener-
ality, then the equation (2.23) reduces to

f(P, PR) + f(P,R) = f(Ω̄, R) + f(P, P ), (2.25)

which holds since both sides are equal to Ω′.

As a direct consequence, Theorem 2.5.3 enables us to strengthen the Veblen-
Young Theorem 2.1.8, setting a threshold for the maximum number of Veblen
points in a non-projective Steiner triple system.

Corollary 2.5.4. Let S be a Steiner triple system of order v ≥ 7. S is projective
if and only if it has more than v−7

8
Veblen points.

Proof. If an STS(v) S has more than v−7
8

Veblen points, the center of LS has
order more than v+1

8
, hence index at most 4, and by Theorem 2.5.3 S is projec-

tive.

Corollary 2.5.4 specifically addresses Steiner triple systems of order v ≥ 7.
However, it is worth noting that Steiner triple systems of order 1 and 3, which
are the only cases left out by the result, are inherently projective.

Another similar consequence of Theorem 2.5.3 is given by the following re-
sult.

Corollary 2.5.5. If a Steiner triple system of order v, with 2n − 1 ≤ v <
2n+1 − 1 and n > 1, contains at least 2n−3 Veblen points, then it is isomorphic
to PG(n− 1, 2).

Proof. If we suppose that S has at least 2n−3 Veblen points, then, since they
form a projective subsystem, the number of Veblen points is at least 2n−2 − 1.
Hence, the center Z(LS) of LS has at least 2n−2 elements. If v < 2n+1− 1, then
one has |LS/Z(LS)| < 2n+1

2n−2 = 8. Therefore, S is a projective and by cardinality
reasons it is isomorphic to PG(n− 1, 2).

Remark 2.5.2. In view of the last two results, we can easily see the fact that
the only STS(15) with more than one Veblen point is PG(3, 2), as we showed
before. Actually, now we can say even more: the only STS(v)s with v < 31
having more than one Veblen point are PG(1, 2), PG(2, 2) and PG(3, 2).

In the next result we characterize projective geometries over GF(2) in terms
of subcentral series.

Theorem 2.5.6. A Steiner loop LS has a subcentral series

Ω� LS1 � · · ·� LSn = LS ,

where the factors LSi+1
/LSi have order 2 if, and only if, S is isomorphic to

PG(n− 1, 2).
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Proof. We prove the first part of the assertion by induction. If n = 1, then
LS = GF(2), so S consists of a single point and we can see it as PG(0, 2).
Let now n > 1 and assume that Sn−1 is projective. Since LSn−1 is central and
of index 2, then by Theorem 2.5.3 S is projective as well. In particular, S is
isomorphic to PG(n− 1, 2).

Conversely, if S is a projective geometry PG(n−1, 2), then the corresponding
Steiner loop is an elementary abelian 2-group and the assertion follows directly.

In the final part of this section we want to give a result concerning Steiner
loops of cardinality v + 1 which have only one admissible factorization of the
type v + 1 = 2(w + 1).

Theorem 2.5.7. Let LS be a Steiner loop with cardinality v + 1 and suppose
that it has a unique admissible factorization v + 1 = 2(w+ 1). Then one of the
following holds:

• LS is simple;

• S has precisely one Veblen point, and hence it is a Schreier extension of
this point by an STS(w);

• has a projective hyperplane as a subsystem, and therefore it is an exten-
sions of this hyperplane by an STS(1).

Proof. If LS is not a simple loop, then it has a normal subloop LN of size 2 or
w. In the former case, LN is actually central. Therefore S has a Veblen point
and LS is a Schreier extension of LN by a quotient loop LQ of order w + 1.
In the latter case, N is a projective hyperplane, hence normal, and LS is an
extension of LN by the loop LQ of order 2 for a suitable Steiner operator.

As a consequence of the above Corollary it is possible, in principle, to con-
struct all the non-simple STS(v) admitting the unique factorization v + 1 =
2(w + 1).

2.6 An introductive cohomology theory for Steiner
triple systems

In this section, we will introduce a (small) cohomology theory for Schreier ex-
tensions of Steiner loops. This approach offers a systematic way to construct
Steiner triple systems containing Veblen points. We will apply these methods
in Chapter 3. In order to stay constructive and not be too theoretical, fixed
LN and LQ, we identify each Schreier extension with the corresponding factor
system. We denote the set of all factor systems with

ExtS(LN ,LQ).

We recall that the output values of factor systems lie in LN , which is associative.
Therefore, ExtS(LN ,LQ) forms a group under the addition of functions. Since
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a factor system is completely determined by the values it takes on the triples
of the quotient system Q, it is easy to see that the total number of possible
Schreier extensions of LN by LQ is

|ExtS(LN ,LQ)| = 2tb, (2.26)

where b is the number of triples of Q and 2t is the cardinality of the elementary
abelian 2-group LN . An important subgroup of ExtS(LN ,LQ) is given by the
so called coboundaries, defined by the cohomology operator δ1. If φ is a map
LQ −→ LN sending Ω′ 7−→ Ω̄, then δ1φ is the map LQ × LQ −→ LN defined
by

(δ1φ)(P,Q) := φ(PQ)− (φ(P ) + φ(Q)). (2.27)

We notice here that in the last equation (2.27), the parentheses and the minus
sign are redundant, since the Steiner loop LN is associative and of exponent
2, but we decided to present a more general definition for a non-associative
context. We notice that, by the definition of the operator δ1, every function
δ1φ as above is in fact a factor system. Indeed, δ1φ is of course symmetric since
LQ is commutative. Furthermore, for every P,Q ∈ LQ,

(δ1φ)(P, P ) = (δ1φ)(P, Ω̄) = ϕ(Ω̄) = Ω′

and

(δ1φ)(P, PQ) = φ(P · PQ) + φ(P ) + φ(PQ)

= φ(Q) + φ(P ) + φ(PQ)

= (δ1φ)(P,Q),

since LQ is totally symmetric. Analogously, (δ1φ)(PQ,Q) = (δ1φ)(P,Q).
Moreover, naturally δ1(φ+ ψ) = δ1φ+ δ1ψ holds, hence the set

B2(LQ,LN ) :=
{
δ1φ | φ : LQ → LN , φ(Ω′) = Ω̄

}
(2.28)

is a subgroup of ExtS(LN ,LQ). Since δ1 is additive, two coboundaries δ1φ and
δ1ψ coincides if and only if they differ by a function g such that δ1g is zero,
that is, an homomorphism LQ −→ LN . Therefore, the size of this subgroup is

|B2(LQ,LN )| =
|{φ : LQ → LN | φ(Ω̄) = Ω′}|

|Hom(LQ,LN )|
=

2wt

|Hom(LQ,LN )|
,

where 2t = |LN | and w = |Q|. This subgroup will turn out to be useful for the
classification of factor systems up to equivalence.

Definition 2.6.1. Two Schreier extensions

Ω′ −→ LN−→LS1−→LQ −→ Ω̄,

Ω′ −→ LN−→LS2−→LQ −→ Ω̄,

are called equivalent if there is an isomorphism LS1 −→ LS2 which induces the
identity homomorphism both on LN and LQ. In this case, the corresponding
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factor systems f1 and f2 are called also equivalent and we write f1 ∼ f2.

The following result gives a characterization of equivalent factor systems.

Lemma 2.6.2. Two factor systems f1, f2 ∈ ExtS(LN ,LQ) are equivalent if and
only if they differ by a suitable coboundary δ1φ. Moreover, the isomorphism
between the corresponding loops realizing the equivalence has the following form:

(P, x) 7−→ (P, x+ φ(P )) . (2.29)

Proof. Let Φ: LS1 −→ LS2 be an isomorphism between the Steiner loops corre-
sponding, respectively, to the factor systems f1 and f2. Let us suppose that Φ
defines an equivalence of extensions. We have that

Φ(P, x) = Φ
(
(P,Ω′) ◦ (Ω̄, x)

)
(2.30)

= Φ(P,Ω′) ◦ (Ω̄, x) (2.31)
= (P, φ(P )) ◦ (Ω̄, x) (2.32)
= (P, x+ φ(P )), (2.33)

for a suitable function φ : LQ −→ LN . Since Φ(Ω̄,Ω′) = (Ω̄,Ω′), the map φ
sends Ω̄ 7→ Ω′. If we multiply two elements in LS1 ,

(P, x) ◦ (Q, y) = (PQ, x+ y + f1(P,Q)), (2.34)

the isomorphism Φ maps the left-hand side of the equation (2.34) into

(P, x+ φ(P )) ◦ (Q, y + φ(Q)) = (PQ, x+ φ(P ) + y + φ(Q) + f2(P,Q)),

and the the right-hand side into

(PQ, x+ y + f1(P,Q) + φ(PQ)).

Hence, f2 = f1 + δ1φ.
Conversely, if f2 = f1 + δ1φ, then the function Φ(P, x) := (P, x + φ(P ))

defines an isomorphism Φ: LS1 −→ LS2 which induces the identity both on LN
and LQ. Hence, the factor systems f1 and f2 are equivalent.

Using the characterization obtained with the previous Lemma 2.6.2, we can
find the number of non-equivalent extensions of LN by LQ, that is,∣∣∣∣ExtS(LN ,LQ)B2(LQ,LN )

∣∣∣∣ = 2tb

|B2(LQ,LN )|
.

Since |B2(LQ,LN )| = 2wt/|Hom(LQ,LN )| and b = w−1
6

, this number is∣∣∣∣ExtS(LN ,LQ)B2(LQ,LN )

∣∣∣∣ = 2tw(
w−7
6 )|Hom(LQ,LN )|.
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Example 2.6.2.1. We want to construct a Steiner triple system of order 15
with (at least) one Veblen point. Let LN be of order 2 and Q be STS(7). The
number of functions φ : LQ → LN with φ(Ω̄) = Ω′ is 27, and the cardinality
of Hom(LQ,LN ) is 23, hence |B2(LQ,LN )| = 24. Therefore, the number of
non-equivalent Schreier extensions of LN by LQ is 27

24
= 8. Actually, we know

that among the resulting 8 Steiner triple systems, we have only 2 isomorphism
classes, since the only STS(15) with Veblen points are #1 and #2, and for this
we need a further reduction.

Definition 2.6.3. Two Schreier extensions

Ω′ −→ LN−→LS1−→LQ −→ Ω̄,

Ω′ −→ LN−→LS2−→LQ −→ Ω̄,

are called isomorphic if there is an isomorphism LS1 −→ LS2 leaving LN in-
variant. In this case, the corresponding factor systems f1 and f2 are called also
isomorphic and we write f1 ≃ f2.

By definition, two isomorphic Schreier extensions give in turn two isomorphic
Steiner loops, and consequently, isomorphic Steiner triple systems. However, it
is important to notice that the converse is not always true. Since the isomor-
phism between the Steiner loops might not preserve LN , it is possible to have
two isomorphic Steiner loops arising from non-isomorphic Schreier extensions.
This situation may occur when the Steiner triple systems produced by the two
Schreier extensions have additional Veblen points not contained in N . In the
following Remark 2.6.1, we provide a criterion to determine if this is the case.
Of course this cannot happen if LN coincides with the whole center of the re-
sulting Steiner loops, since it must be preserved. Therefore, in this last case,
two extensions are isomorphic if and only if the resulting loops are isomorphic
as well.

Remark 2.6.1. Let the Steiner loop LS be a Schreier extension of LN by LQ
with factor system f . The Steiner triple system S has a Veblen point (P, x) not
contained in N if and only if P is itself a Veblen point of Q and

f(P,Q) + f(PQ,R) = f(Q,R) + f(P,QR), (2.35)

for every Q,R ∈ Q. The condition (2.35) reflects the centrality of the element
(P, x) in LS .

Of course, two equivalent extensions are also isomorphic, but the converse
is not always true. However, reducing up to equivalence is useful in order to
easily characterize isomorphism of extensions, as we show in the next result. For
simplicity of notation, if β is an automorphism of LQ and f ∈ ExtS(LN ,LQ),
we denote with fβ the factor system defined by

(P,Q) 7−→ f (β(P ), β(Q)) .

Proposition 2.6.4. Two factor systems f1, f2 ∈ ExtS(LN ,LQ) are isomorphic
if and only if

αf1 ∼ f2β (2.36)
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for suitable α ∈ Aut(LN ) and β ∈ Aut(LQ). Moreover, the isomorphism be-
tween the corresponding loops has, up to equivalence, the following form

(P, x) 7−→ (β(P ), α(x)). (2.37)

Proof. Let Φ: LS1 −→ LS2 be an isomorphism between the Steiner loops cor-
responding, respectively, to the factor systems f1 and f2, and let us suppose
that Φ defines an isomorphism of extensions. Since Φ(LN ) = LN and of course
Φ(LQ) = LQ, we obtain that

Φ(Ω̄, x) = (Ω̄, α(x)), for every x ∈ LN , (2.38)

where α is an automorphism of LN , and

Φ(P,Ω′) = (β(P ), φ(P )), for every P ∈ LQ,

where β is a suitable automorphism of LQ and φ is a function LQ → LN
mapping Ω̄ 7→ Ω′. Hence

Φ(P, x) = Φ
(
(P,Ω′) ◦ (Ω̄, x)

)
= (β(P ), φ(P )) ◦ (Ω̄, α(x))
= (β(P ), α(x) + φ(P )).

If we multiply two elements in LS1 ,

(P, x) ◦ (Q, y) = (PQ, x+ y + f1(P,Q)), (2.39)

the isomorphism Φ maps the left-hand side of the last equation into

(β(P ), α(x) + φ(P )) ◦ (β(Q), α(y) + φ(Q))

= (β(PQ), α(x+ y) + φ(P ) + φ(Q) + f2 (β(P ), β(Q)))

and the the right-hand side into(
β(PQ), α(x+ y) + αf1(P,Q) + φ(PQ)

)
.

Therefore, for evrey P,Q ∈ LQ, the following holds

f2 (β(P ), β(Q)) = αf1(P,Q) + φ(PQ) + φ(P ) + φ(Q).

Thus,
f2β = αf1 + δ1φ,

that is, f2β ∼ αf1. By Lemma 2.6.2, up to equivalence Φ has the form in
Equation (2.37).

Conversely, if f2β ∼ αf1, the map in (2.37) defines an isomorphism of ex-
tensions.

An immediate consequence of the last result is that the isomorphism class of
the null factor system f0 coincides with its equivalence class. One direction, as
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pointed out before, is clear, since the equivalence is a stronger concept than the
isomorphism. Conversely, if a factor system f is isomorphic to the null function
f0, and Φ: (P, x) 7→ (β(P ), α(x)) defines, up to equivalence, an isomorphism of
extensions, then from

Φ ((P, x) ◦ (Q, y)) = Φ(P, x) ◦ Φ(Q, y),

we obtain

(β(PQ), α(x+ y)) = (β(PQ), α(x+ y) + fβ(P,Q)) , (2.40)

which says that f coincides (up to an equivalence) with f0.
Now we give an example of two isomorphic but not equivalent Schreier ex-

tensions.

Example 2.6.4.1. Now we give an example of two isomorphic but non-equivalent
Schreier extensions of cardinality 20. Let LN = {Ω′, 1} be the unique loop of
cardinality 2 and LQ the Steiner loop corresponding to the STS(9). We can
represent Q as the affine plane AG(3, 2) with points and lines given by the
following Figure 2.11.

P1 P2 P3

P4
P5 P6

P7 P8 P9

Figure 2.11: STS(9) Q

Consider the Schreier extension LS1 associated with the factor system f1
such that

f1(P3, P6) = f1(P3, P9) = f1(P6, P9) = 1

and f1 is null elsewhere. The automorphism β of LQ induced by the affine map
x 7→ Ax+ b of AG(3, 2), with

A =

(
1 1
0 1

)
, b =

(
−1
0

)
permutes the points of Q as

β(Pi) = Pσ(i), with σ = (465)(789).
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Consider the Steiner loop LS2 which is the Schreier extension associated with
the factor system f2 := f1β, which clearly satisfies

f2(P3, P4) = f2(P3, P8) = f2(P4, P8) = 1

and is null elsewhere. By construction, f1 and f2 are isomorphic, but they are
not equivalent. In fact, by Lemma 2.6.2, f1 and f2 are equivalent if and only
if f1 + f2 = δ1φ, for a suitable function φ. If this would be the case, for every
triple {Pi, Pj, Pk = PiPj} of Q, the following must hold

φ(Pi) + φ(Pj) + φ(Pk) = (f1 + f2)(Pi, Pj). (2.41)

Denoting φ(Pi) with Xi, for every i = 1, . . . , 9, from (2.41), we obtain the
following linear system in equation (2.42) with scalar in the field GF(2) and
twelve linear equations in the nine unknowns Xi.

1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 1 0 1 0 1 0 0
0 0 1 0 0 1 0 0 1
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1





X1

X2

X3

X4

X5

X6

X7

X8

X9


=



0
0
0
0
0
0
0
1
0
1
0
0



(2.42)

By straightforward arguments of linear algebra, it is easy to see that the system
in (2.42) has no solution, implying that such a function φ does not exist.

By Proposition 2.6.4, non-equivalent but isomorphic factor systems f1, f2
are characterized by the relation αf1 = f2β, for suitable α ∈ Aut(LN ) and
β ∈ Aut(LQ). This relation can be rewritten as

f2 = αf1β
−1. (2.43)

In this way, we can define a left action of the group Aut(LN )×Aut(LQ) on the
set ExtS(LN ,LQ)/B2(LQ,LN ) of non-equivalent extensions given by

(α, β)(f) = αfβ−1,

whose orbits are the isomorphism classes of all the factor systems. In Chapter
3, we will apply this method in order to classify Steiner triple systems of order
19, 27 and 31 containing Veblen points.
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Chapter 3

Counting Steiner triple systems
with Veblen points

Counting all Steiner triple systems of a given order is a wild problem. The
last full computation was done by P. Kaski and P. R. J. Östergård in [51],
in which they determined the number of non-isomorphic STS(19)s, that is
11, 084, 874, 829. Attempting to compute the number of all Steiner triple sys-
tems for the next admissible order, which is 21, appears currently unfeasible.
However, in [52] and [47], the authors classified STS(21)s containing subsys-
tems of order 7 and 9, and also gave an estimation of the total number of all
STS(21)s.

For this reason, instead of an extensive enumeration, it is better to look
for classifying Steiner triple systems presenting some regular structures, for
examples having some given subsystems. We focus our investigation on the
number of STSs containing Veblen points. Since such a point has the property
that any two distinct triples through it generate a Fano plane, in this sense
Steiner triple systems containing Veblen points are close to projective STSs.
The latter, as pointed in Theorem 2.1.8, are indeed characterized by the fact
every element is a Veblen point. For this reason, we can say that Steiner triple
systems with Veblen points preserve some sort of regularity resembling the
structure of the point-line design of a projective geometry. In Chapter 2 we
provided a theoretical algebraic technique for constructing Steiner triple systems
containing Veblen points by using tools from the theory of loop extensions. In
this chapter, we will use this approach to investigate the cases of sizes 19, 27
and 31, respectively.

3.1 Description of the algorithms
In order to make the results presented in this chapter more clear, we describe
the algorithms used for classifying the Steiner triple systems of order 19, 27 and
31 with Veblen points. The computations were done by computer, using python
programming. The pseudocodes of the programs can be found in Appendix A.

In general, we begin with an associative Steiner loop LN , which, being an
elementary abelian 2-group, we represent by GF(2)t. In our specific cases, t will
be either 1 or 2. Additionally, we have a Steiner loop LQ whose the operation
is defined by the triples of Q arranged as columns of a table. Fixed an order
for the b triples of Q, we define the ordered set of fundamental pairs, denoted
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with Q2, as the family of 2-subsets obtained by removing one element from each
triple and fixing an order.

Since a factor system f ∈ ExtS(LN ,LQ) is defined by the value it takes in
every fundamental pair, in order to improve the efficiency of our implementation
we can represent f with an integer in the following way. Let ni ∈ GF(2)t

be the image of the fundamental pair ci under f , i = 1, . . . , b. Then f can
be identified uniquely with the vector (n1, n2, . . . , nb) ∈ (GF(2)t)b. Of course
f can be compressed into a binary vector of length tb, which is the binary
representation of an integer.

On the other hand, every vector v of GF(2)tb defines uniquely a factor system
f , precisely the one mapping the i-th fundamental pair into the i-th sub-vector
of v of length t, i = 1, . . . , b. In this way, we can uniquely describe every factor
system as an integer 0 ≤ k ≤ 2tb − 1.

Example 3.1.0.1. For instance, let LN be GF(2)2, and Q be the STS(9) with
points {1, . . . , 9} and triples given by the columns of the following Table 3.1.

1 1 1 1 2 2 2 3 3 3 4 7
2 4 5 6 4 5 6 4 5 6 5 8
3 7 9 8 9 8 7 5 7 9 6 9

Table 3.1: Triples of the STS(9)

The fundamental pairs of Q are given in lexicographic order as follows:

{1, 2}, {1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5},
{2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {7, 8}.

Let f be the factor system defined by:

f(1, 2) = (0, 0), f(1, 4) = (0, 0), f(1, 5) = (0, 0), f(1, 6) = (0, 0),

f(2, 4) = (0, 1), f(2, 5) = (1, 1), f(2, 6) = (0, 0), f(3, 4) = (1, 1),

f(3, 5) = (1, 0), f(3, 6) = (0, 1), f(4, 5) = (0, 0), f(7, 8) = (0, 0).

We can represent f as the vector

((0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 1), (0, 0), (1, 1), (1, 0), (0, 1), (0, 0), (0, 0))

of (GF(2)2)6 which can be compacted into the binary vector

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0)

representing the integer 29584.

In the same way, after computing the set B2(LQ,LN ) = {δ1φ | φ : LQ →
LN , φ(Ω̄) = Ω}, we can represent every coboundary as one of the integers k,
0 ≤ k ≤ 2tb − 1. In order to find the cosets in ExtS(LN ,LQ)/B2(LQ,LN ),
we compute the sum f + δ1φ as the operation XOR between binary vectors.
Consequently, we can find the set of non-equivalent extensions by taking one
representative in each coset.
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In order to find the set of non-isomorphic extensions, we compute the au-
tomorphism group Aut(LN ) and Aut(LQ). In our cases, the former is either
the trivial group or GL(2, 2). For the latter, since the quotient system Q in our
cases have order w either 7, 9, 13 or 15, it presents more possibilities.

If Q is the STS(7), STS(9) or STS(15) #1, then the group Aut(LQ) is
GL(3, 2), Aff(2, 3) or GL(4, 2), respectively. If Q is an STS(13), then the group
Aut(LQ) is either symmetric group S3 or the unique non-abelian group of order
39 denoted with F39, if Q is the STS(13) #1 or #2, respectively. Let us denote,
in both cases, the set of points of the STS(13) with {0, 1, . . . , 12}. In the first
case, where the triples are given by the table A.1, Aut(LQ) is computed as
the group generated by the function x 7→ x (mod 13) and the permutation
(6 8)(2 11)(3 9)(4 12)(5 7). In the second case, where the triples are given
by the table A.2, Aut(LQ) is computed as the group of functions x 7→ ax + b
(mod 13), where a ∈ {1, 3, 9} and b ∈ {0, . . . , 12}. If Q is a non-projective STS,
we compute the group Aut(LQ) as the group of permutations of the 15 points
which induce a permutation of the 35 triples as well.

Let us now consider a factor systems f represented as a vector (n1, n2, . . . , nb) ∈
(GF(2)t)b and two automorphisms α ∈ Aut(LN ), β ∈ Aut(LN ). The factor sys-
tems αf and fβ−1 are represented, respectively, by the vectors

(α(n1), α(n2), . . . , α(nb)) and
(
nσ(1), nσ(2), . . . , nσ(b)

)
.

where σ ∈ Sb is the permutation induced by the automorphism β on the set of
indexes of the the fundamental pairs. After computing the action of both LN
and LQ on the set of non-equivalent extensions, we take one representative for
each orbit.

Let us now see how to apply this algorithms in order to find some a classifi-
cation for Steiner triple systems of order 19, 27 or 31 containing Veblen points.

3.2 STS(19) with one Veblen point
By Theorem 2.5.2, which says there exists an STS(v) with (at least) 2c − 1
Veblen points if and only if v+1

2c
≡ 2, 4 (mod 6), we deduce that the number of

Veblen points of an STS(19) is at most 1. The following result classify all such
Steiner triple systems with Veblen points.

Theorem 3.2.1. Among the 11, 084, 874, 829 non-isomorphic STS(19)s, there
are only 3 Steiner triple systems with (precisely) one Veblen point.

Proof. If an STS(19) S has one Veblen point, then this point is the only non-
trivial central element of the Steiner loop LS . Hence, we can obtain LS as a
Schreier extension of its center LN , which is the group of order 2, by the unique
Steiner loop LQ of order 10 corresponding to the STS(9). Since the order of
LN is 2 and Q has 12 triples, the total number of possible factor systems in
ExtS(LN ,LQ) is 212 = 4096. Using Algorithm 9 in A, we computed the set of
co-boundaries B2(LQ,LN ) = {δ1φ | φ : LQ → LN , φ(Ω̄) = Ω}, which has order
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29 = 512. Consequently, the number of non-equivalent extensions is 8, and
we found the corresponding factor systems using Algorithm 10 in A. We note
now that, since Aut(LN ) is trivial, the action of the group Aut(LN )×Aut(LQ)
can be reduced to the action of just Aut(LQ) = Aff(2, 3), which has order
432. We computed this group with Algorithm 14. The 8 equivalence classes
of factor systems are divided, under this action, into 3 orbits, found explicitly
using Algorithm 13. Each of these orbits represents one isomorphism class of
extensions of LN by LQ. Since LN is the whole center of LS , these orbits
correspond to the isomorphism classes of STS(19)s with precisely one Veblen
point.

In order to provide a full description of the Steiner triple systems of size 19
containing one Veblen point, let us fix the following presentation of the STS(9)
as the affine plane AG(2, 3), as in the next Figure 3.1.

P1 P2 P3

P4
P5 P6

P7 P8 P9

Figure 3.1: STS(9)

Let us denote the 3 non-isomorphic STS(19)s containing one Veblen point
with Si, i = 0, 1, 2. The corresponding Steiner loops LS i are given as Schreier
extensions of LN = {Ω, 1} by LQ, by the following factor systems, respectively:

f0, the null function;
f1, defined by f1(P3, P6) = f1(P3, P9) = f1(P6, P9) = 1, and Ω elsewhere;
f2, defined by f2(P3, P6) = f2(P3, P9) = f2(P6, P9) = 1,

f2(P7, P8) = f2(P7, P9) = f2(P8, P9) = 1, and Ω elsewhere.

The following Figure 3.2 provides a visual representation of the non-trivial
factor systems f1 and f2, where the triples of the STS(9) Q in which fi is
non-zero, i = 1, 2, are drawn in red.
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P1

P4

P7

P2

P8

P3

P6

P9

P5

P1

P4

P7

P2

P8

P3

P6

P9

P5

Figure 3.2: Factor systems f1 (left) and f2 (right)

Now we want to exhibit explicitly the points and triples of each of these
Steiner triple systems Si, i = 1, 2, 3.

Since the factor systems f0 is the null function, in the loop LS0 the operation
is simply described by

(Pi, x) ◦ (Pj, y) = (PiPj, x+ y).

Hence the triples are given by the union of the following three families:{
(Pi,Ω), (Pj,Ω), (PiPj,Ω) | Pi, Pj ∈ Q, i ̸= j

}
,{

(Pi, 1), (Pj, 1), (PiPj,Ω) | Pi, Pj ∈ Q, i ̸= j
}
,{

(Pi, 1), (Pi,Ω), (Ω, 1) | Pi ∈ Q
}
.

It is worth noticing that the first family has 12 triples, the second one has 36
and the third one has 9, for a total of 57, which is the exact number of triples
of an STS(19). Renaming the elements as follows,

0 := (Ω̄, 1) (the Veblen point),
i := (Pi,Ω), i = 1, . . . , 9

i+ 9 := (Pi, 1), i = 1, . . . , 9

we obtain the representation of the STS(19) S0 as in the table 3.2, where each
column corresponds to one triple.

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2
1 2 3 4 5 6 7 8 9 2 4 5 6 11 13 14 15 4 5
10 11 12 13 14 15 16 17 18 3 7 9 8 12 16 18 17 9 8

2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5
6 10 13 14 15 4 5 6 10 13 14 15 5 10 11 12 14 10 11
7 12 18 17 16 8 7 9 11 17 16 18 6 16 18 17 15 18 17

5 5 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 9
12 13 10 11 12 13 8 10 11 12 17 10 11 12 16 10 11 12 16
16 15 17 16 18 14 9 13 15 14 18 15 14 13 18 14 13 15 17

Table 3.2: STS(19) S0 with one Veblen point
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Since the factor systems f1 is zero everywhere except for any pair of points
in the triple {P3, P6, P9} of the STS(9) Q, the operation in LS1 is the same as
in LS0 except for:

(P3,Ω) ◦ (P6,Ω) ◦ (P9, 1) = (Ω̄,Ω), (P3,Ω) ◦ (P6, 1) ◦ (P9,Ω) = (Ω̄,Ω),

(P3, 1) ◦ (P6,Ω) ◦ (P9,Ω) = (Ω̄,Ω), (P3, 1) ◦ (P6, 1) ◦ (P9, 1) = (Ω̄,Ω).

Hence the triples of S1 are obtained by those of S0 by performing the Pasch
switch corresponding to replacing the triples {3, 6, 9}, {3, 15, 18}, {6, 12, 18}
and {9, 12, 15} with the triples {3, 6, 18}, {3, 15, 9}, {6, 9, 12} and {12, 15, 18},
as in Figure 3.3.

3

12

9 18

6 14

3

12

18 9

6 14

Figure 3.3: Pasch switch

We provide the representation of the STS(19) S1 shown in the table 3.3,
where each column corresponds to one triple.

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2
1 2 3 4 5 6 7 8 9 2 4 5 6 11 13 14 15 4 5
10 11 12 13 14 15 16 17 18 3 7 9 8 12 16 18 17 9 8

2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5
6 10 13 14 15 4 5 6 9 10 13 14 5 10 11 12 14 10 11
7 12 18 17 16 8 7 18 15 11 17 16 6 16 18 17 15 18 17

5 5 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 9 12
12 13 9 10 11 13 8 10 11 12 17 10 11 12 16 10 11 16 15
16 15 12 17 16 14 9 13 15 14 18 15 14 13 18 14 13 17 18

Table 3.3: STS(19) S1 with one Veblen point

Since the factor system f2 coincides with f1 everywhere except for any two
points in the triple {P7, P8, P9} of the STS(9) Q, the operation in LS2 is the
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same as in LS1 except for

(P7,Ω) ◦ (P8,Ω) ◦ (P9, 1) = (Ω̄,Ω′),

(P7,Ω) ◦ (P8, 1) ◦ (P9,Ω) = (Ω̄,Ω′),

(P7, 1) ◦ (P8,Ω) ◦ (P9,Ω) = (Ω̄,Ω′),

(P7, 1) ◦ (P8, 1) ◦ (P9, 1) = (Ω̄,Ω′).

Hence the triples of S2 are obtained by those of S1 by the Pasch switch corre-
sponding to substituting the triples {7, 8, 9}, {7, 17, 18}, {8, 16, 18} and {9, 16, 17}
with the triples {7, 8, 18}, {7, 9, 17}, {8, 9, 16} and {16, 17, 18}, as in Figure 3.4.

7

16

9 18

8 17

7

16

18 9

8 17

Figure 3.4: Pasch switch

We provide the representation of the STS(19) S2 shown in the table 3.4,
where each column corresponds to one triple.

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2
1 2 3 4 5 6 7 8 9 2 4 5 6 11 13 14 15 4 5
10 11 12 13 14 15 16 17 18 3 7 9 8 12 16 18 17 9 8

2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5
6 10 13 14 15 4 5 6 9 10 13 14 5 10 11 12 14 10 11
7 12 18 17 16 8 7 18 15 11 17 16 6 16 18 17 15 18 17

5 5 6 6 6 6 7 7 7 7 7 8 8 8 8 9 9 12 16
12 13 9 10 11 13 8 9 10 11 12 9 10 11 12 10 11 15 17
16 15 12 17 16 14 18 17 13 15 14 16 15 14 13 14 13 18 18

Table 3.4: STS(19) S2 with one Veblen point

3.3 STS(27) with one Veblen point
Again, using the formula v+1

2c
≡ 2, 4 (mod 6), we deduce that the number of

Veblen points of an STS(v), with v = 27, is at most 1. Hence, we can obtain
LS as a Schreier extension of its center LN , which is the group of order 2, by
a Steiner loop LQ of order 14 corresponding to one of the two non-isomorphic
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STS(13)s. The following Theorem determines the number of such STS(27)s,
investigating both cases for the quotient system Q.

Theorem 3.3.1. There are 1736 non-isomotphic STS(27)s containing one Ve-
blen point, among which 1504 present the non-cyclic STS(13) as the quotient
system, and 232 present the cyclic STS(13) as the quotient system.

Proof. Let S be an STS(27) with one Veblen point, let LN be the center of LS
and LQ the corresponding quotient loop. Since LN has order 2 and Q has 26
triples, the total number of all possible factor systems in ExtS(LN ,LQ) is 226.
Using Algorithm 9 in A, we computed the set of co-boundaries B2(LQ,LN ) =
{δ1φ | φ : LQ → LN , φ(Ω̄) = Ω}, which has order 213. Consequently, the num-
ber of non-equivalent extensions is 213, and we computed them using Algorithm
10 in A. We note now that, since Aut(LN ) is trivial, the action of the group
Aut(LN ) × Aut(LQ) can be reduced to the action of just Aut(LQ), which we
computed using Algorithm 2.

If Q is the non-cyclic STS(13) (see [19, Table II.1.27, n. 1]), then Aut(LQ)
is the symmetric group Sym(3) (see [77]). Under its action, the set of non-
equivalent extensions is divided into 1504 orbits, computed using Algorithm 13.
Each of these orbits represents one isomorphism class of extensions of LN by
LQ. Since LN is the center of LS , these orbits are exactly the isomorphism
classes of STS(27)s with one Veblen point and quotient system the non-cyclic
STS(13).

Let nowQ be the cyclic STS(13) (see [19, Table II.1.27, n. 2]), then Aut(LQ)
is the unique non-abelian group of order 39 F39 (see [77]). Under its action, the
set of non-equivalent extension is divided into 232 orbits, computed using Al-
gorithm 13. Each of these orbits represents one isomorphism class of extensions
of LN by LQ. Since LN is the center of LS , these orbits are exactly to the
isomorphism classes of STS(27)s with one Veblen point and quotient system
the cyclic STS(13).

3.4 STS(31) with one or three Veblen points
Lastly, using the formula v+1

2c
≡ 2, 4 (mod 6) and the fact that an STS(v)

with more than v−7
8

Veblen points is a projective geometry, we deduce that
the number of Veblen points of an STS(31) can be either one, three, or thirty-
one. In the last case, the Steiner triple system is the point-line design of the
projective geometry PG(4, 2), thus we confine ourselves to the cases of STS(31)s
with one or three Veblen points.

If a Steiner triple system of size 31 contains one Veblen point, then the
corresponding quotient system Q is an STS(15). Since there are 80 possibilities
for such a quotient system (see [19]), we focus our attention on six cases that
in our opinion are the most interesting, namely:

1. STS(15) #1, that is PG(3, 2);

2. STS(15) #2, which is the only other one with a Veblen point itself;
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3. STS(15) #3, which is the one with the largest number of Pasch configu-
rations without containing Veblen points;

4. STS(15) #7, which is the one with the second-largest automorphism group
after PG(3, 2));

5. STS(15) #61, which, among the ones containing a Fano plane, is the one
with the least number of Pasch configurations;

6. STS(15) #80, which is the only one containing no Pasch configurations.

Theorem 3.4.1. The number of non-isomorphic STS(31)s with precisely one
Veblen point and given quotient system Q of order 15 is:

Q count
PG(3, 2) 278

STS(15)#2 48072
STS(15)#3 47744
STS(15)#7 16520
STS(15)#61 99952
STS(15)#80 17888

Table 3.5: STS(31)s with one Veblen point and corresponding
quotient system Q

Proof. Let S be an STS(31) with (at least) 1 Veblen point. We can obtain the
Steiner loop LS as a Schreier extension of its central subloop LN corresponding
to the given Veblen point by a Steiner loop LQ of order 16 corresponding to
one of the eighty STS(15)s. Since LN has order 2 and Q has 35 triples, in any
case, the total number of all possible factor systems in ExtS(LN ,LQ) is 235.

Using Algorithm 9 in A, we computed, in every case, the set of co-boundaries
B2(LQ,LN ) = {δ1φ | φ : LQ → LN , φ(Ω̄) = Ω}, whose order is listed in the
following table 3.6.

Q |B2(LQ,LN )|
PG(3, 2) 211

STS(15)#2 212

STS(15)#3 213

STS(15)#7 213

STS(15)#61 214

STS(15)#80 215

Table 3.6: Number of coboundaries for the corresponding Q

We computed the associated factor system using Algorithm 10 in A.
We note now that, since Aut(LN ) is trivial, the action of the group Aut(LN )×

Aut(LQ) can be reduced to the action of just Aut(LQ). We computed this group
in every case using Algorithm 3. The possible orders of this group are listed in
the following table 3.7.
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Q |Aut(Q)|
PG(3, 2) 20160

STS(15)#2 192
STS(15)#3 96
STS(15)#7 288
STS(15)#61 21
STS(15)#80 60

Table 3.7: Order of the automorphism group of Q

Under this action, the equivalence classes of factor systems are divided into 1240
orbits for the STS(15) #1, 48080 for #2, 47744 for #3, 16520 for #7, 99952
for #61, and 17888 for #80, computed using Algorithm 15. These orbits are
exactly the isomorphism classes of extensions of LN by LQ.

Since STS(15) #3, 7, 61, 80 have no Veblen points, in these cases LN is the
whole center of LS . This implies that the isomorphism classes of extension coin-
cide with the isomorphism classes of the corresponding STS(31)s. In conclusion
we can say that, for these four cases, the numbers listed above are exactly the
numbers of non-isomorphic STS(31)s with precisely one Veblen point and factor
system Q.

For the STS(15)s #1 and 2, the situation is different, due to the fact that
they have Veblen points as well. This means that LN could be (in general)
just a proper subgroup of the center of LS , that is, S could have more than 1
Veblen point. Therefore, the isomorphism classes of extension do not coincide,
in these two cases, with the isomorphism classes of the corresponding STS(31)s.
For this reason we need a further reduction, in order to cut out all the factor
systems which produce an STS(31) with more than 1 Veblen point. As seen in
Remark 2.6.1, we need to count just the factor systems f for which does not
exist any point P ∈ Q that fulfills the following condition

f(P,Q) + f(PQ,R) = f(Q,R) + f(P,QR),

for every Q,R ∈ Q. Using Algorithm 16, we performed this analysis on all the
1240 factor systems for the case #1 as well as on all the 48080 factor systems for
the case #2. Since the STS(15) #1 is a projective geometry, this study needs to
be done considering all the points of the Steiner triple system. For the STS(15)
#2 we can consider just the point labeled with 0 (see [19, Table 1.28, p. 30])
since, in this case, it is the only Veblen point. After the computation, we found
out that there are 278 non-isomorphic STS(31)s with precisely 1 Veblen point
and corresponding quotient system the STS(15) #1 and 48072 non-isomorphic
STS(31)s with precisely 1 Veblen point and corresponding quotient system the
STS(15) #2.

As we observed in this last case of an STS(31) with precisely one Veblen
point, the problem of constructing all Steiner triple systems of given size and
number of Veblen points using Schreier extensions becomes progressively chal-
lenging with size growth, in particular when the ratio of the order and the
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number of Veblen points becomes larger. This is due to the fact that, if the
number of Veblen points is relatively small, the number of non-isomorphic cases
for the quotient system Q increases sensibly. Indeed, the problem of STS(31)s
with 3 number of Veblen points is way easier to deal with, as shown in the next
result.

Theorem 3.4.2. There are only 2 non-isomorphic STS(31)s with precisely three
Veblen points.

Proof. Let S be an STS(31) with (at least) 3 Veblen points. We can obtain the
Steiner loop LS as a Schreier extension of its central subloop LN corresponding
to the given 3 Veblen points, which is the elementary abelian 2-group of order
4, by the unique Steiner loop LQ of order 8 corresponding to the STS(7). Since
LN has order 4 and Q has 7 triples, the total number of all possible factor
systems in ExtS(LN ,LQ) is 47 = 16383. Using Algorithm 9 in A, we computed
the set of co-boundaries B2(LQ,LN ) = {δ1φ | φ : LQ → LN , φ(Ω̄) = Ω}, which
has order 28 = 256. Consequently, the number of non-equivalent extensions is
26 = 64, and we explicitly found them using Algorithm 10 in A. The group
Aut(LN ) × Aut(LQ) is PGL(2, 2) × PGL(3, 2), which has order 1008. Under
its action,the 64 equivalence classes of factor systems are divided into 3 orbits,
computed using Algorithm 13. Each of these orbits represents one isomorphism
class of extensions of LN by LQ.

Since Q has Veblen points itself, LN could be, in general, a proper subgroup
of the center of LS . Hence S could have more than 3 Veblen points, and that
would be the case where it is PG(4, 2). Therefore, these orbits do not necessarily
coincide with the isomorphism classes of STS(19)s with three Veblen points. We
need to perform an analysis to see if some of these 3 resulting factor systems
produce a projective geometry.

In order to do this, let us to describe explicitly the three obtained factor
systems. We see LN as GF(2)2 and LQ as GF(2)3, and we give the Fano plane
Q the following coordinates:

P1 = [0, 0, 1], P2 = [0, 1, 0], P3 = [0, 1, 1], P4 = [1, 0, 0],

P5 = [1, 0, 1], P6 = [1, 1, 0], P7 = [1, 1, 1].

P4

P3

P7

P1 P2

P5 P6

Figure 3.5: Fano plane
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P4

P3

P7

P1 P2

P5 P6

P4

P3

P7

P1 P2

P5 P6

Figure 3.6: The factor systems f1 (left) and f2 (right)

The three orbits that we obtained, are represented, respectively, by the
following three factor systems:

f0, the null function;
f1, defined by f1(P3, P5) = f1(P3, P6) = f1(P5, P6) = (0, 1), and Ω elsewhere;
f2, defined by f2(P3, P4) = f2(P3, P7) = f2(P4, P7) = (0, 1),

f2(P3, P5) = f2(P3, P6) = f2(P5, P6) = (1, 0) and Ω elsewhere.

The Steiner loop defined by the null factor system f0 is a group, hence the
corresponding STS(31) is PG(4, 2), which has 31 Veblen points.

The following figure 3.6 provides a visual representation of the non-trivial
factor systems f1 and f2, where the triples of Q in which fi is equal to (0, 1)
are drawn in red, and the ones in which fi is equal to (1, 0) are drawn in blue,
i = 1, 2.

For i = 1, 2, it is easy to check by hand that for any P ∈ Q, no element
of the form (P, x) can be a Veblen point of Si since the following condition is
never satisfied:

fi(P,Q) + fi(PQ,R) = fi(Q,R) + fi(P,QR) for every Q,R ∈ Q.

Hence, LN is in both cases the whole center of LSi , i = 1, 2. In conclusion,
there are only 2 non-isomorphic STS(31)s with precisely 3 Veblen points.

The two non-trivial factor systems defined in the proof of Theorem 3.4.2
give a compact representation of all the 155 triples of each of the two STS(31)s
with exactly 3 Veblen points.
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Chapter 4

An extension formula for right Bol
loops arising from Bol reflections

In this chapter we are going to work with right Bol loops, and for this reason in
is more convenient to use the right notation. For example, if α is a map defined
on a loop L, then xα is the image of x under α. Moreover, xαβ = (xα)β, meaning
that in the composition of two maps αβ, we first apply α and consequently β.

We recall that a loop is called a right Bol loop if it satisfies the following
identity for all x, y, z ∈ L:

(((xy)z)y) = x((yz)y). (4.1)

Equivalently, RyRzRy = Ryz·y for every y, z ∈ L. A loop is said to be right
conjugacy closed if RxRyR

−1
x = Rxy/x holds for all x, y, z.

In right Bol loops, the right and middle nuclei coincide, and in Moufang
loops, they coincide with the left nucleus as well. In groups, the commutant is
the same as the center, hence normal. In Moufang loops, the commutant is a
subloop, but not necessarily normal ([43]). However, there are infinite classes
of right Bol loops, in which the commutant is not even a subloop ([57]).

This chapter deals with a new extension formula for right Bol loops. Let
(L, ·) be such a loop, and let

T = {ta | a ∈ L},
V = {va | a ∈ L},

be two disjoint copies of L. If we define a product on L̃ = T ∪ V by

ta · tb = tab, ta · vb = vab, va · tb = vab−1 , va · vb = tab−1 . (4.2)

then we have that (L̃, ·) is a loop with unit t1, and T is a normal subloop of
index 2, isomorphic to L.

The core of a right Bol loop is the binary operation

x+ y = (yx−1)y. (4.3)



56 Chapter 4. An extension formula for right Bol loops

It satisfies the identities

x+ x = x (idempotent), (4.4)
(x+ y) + y = x (involutorial), (4.5)
(x+ y) + z = (x+ z) + (y + z) (right distributive), (4.6)

A binary structure with these properties is also called an involutorial quandle.
Quandles (see Definition 4.6.1) are algebraic structures associated to knots:
given a finite quandle and a cocycle, one can construct a knot invariant. Invo-
lutorial quandles are also called abstract symmetric spaces (in the sense of Loos
[62]).

Not all involutorial quandles happen to be the core of some right Bol loop.
For example, if the core of (L, ·) is a trivial involutorial quandle, that is x+y = x
for all x, y, then L has to be an elementary abelian 2-group. Hence, a trivial
involutorial quandle whose order is not a 2-power cannot be the core of a right
Bol loop.

Problem 4.0.1. Let (Q, ◁) be an involutorial quandle. Find necessary or suf-
ficient conditions for the existence of a right Bol loop whose core is isomorphic
to (Q, ◁).

This problem is settled for finite involutorial quandles of odd order: they are
the core of a right Bol loop if and only if they are quasigroups, see [54, Theorem
6.14]. Notice that an involutorial quandle is a quasigroup if and only if its left
multiplication maps x 7→ a+ x are invertible.

Let us call the (Q, ◁) a RB-quandle, if it is the core of some right Bol loop
(Q, ·). One future long term goal could be to study RB-quandles which are
disjoint unions of two proper RB-subquandles. The right Bol loop extension L̃
has some relevant property. Indeed, in the case where L̃ is a right Bol loop, its
core decomposes to the disjoint union of two subquandles both isomorphic to
the core of L.

The structure of this chapter is as follows. First, we give the necessary
definitions and properties. Our focus is on the geometric and group theoretical
tools, which enable us to use Aschbacher’s efficient Bol loop folder method to
study the extension. In Section 4.4, we study L̃ and derive conditions for it
to be right Bol, Moufang or associative. Surprisingly enough, L̃ cannot be a
proper Moufang loop, but only a group (see Theorem 4.4.1). In Section 4.5, we
prove results on the center as well as on the right and the left nuclei. Finally,
in Section 4.6, we prove Theorem 4.6.2 about the core of the extension and find
further results on its structure group.

4.1 Loop folders
In [3], Aschbacher studied the correspondence between loops and certain triples
of group theoretic data in order to investigate finite loops using techniques from
finite group theory.
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Let L be a loop, K = {Rx | x ∈ L} be the set of right translations of L,
G = ⟨K⟩ be the right multiplication group of L, and H = G1 the stabilizer of
the unit 1 of L. The triple ϵ(L) = (G,H,K) is called the envelope of the loop
L. It is known that a loop L with envelope ϵ(L) is a Bol loop if and only if K
is a twisted subgroup of G.

Definition 4.1.1. A loop folder is a triple ξ = (G,H,K) where G is a group,
H is a subgroup of G and K is a subset of G containing 1 such that K is a set
of coset representatives for G/Hg = {Hgx | x ∈ G} for each g ∈ G.

A morphism ξ → ξ′ of loop folders ξ = (G,H,K) and ξ′ = (G′, H ′, K ′) is a
group homomorphism π : G→ G′ such that Hπ ≤ H ′ and Kπ ⊆ K ′.

A folder is said faithful if kerH(G) = 1, that is, if G acts faithfully on the set
{Hx | x ∈ G}. A loop envelope is a loop folder (G,H,K) such that G = ⟨K⟩.
If L is a loop, then ϵ(L) = (G,H,K) is a faithful loop envelope.

Let ξ = (G,H,K) be a loop folder and define a binary operation ∗ on K by
taking a ∗ b to be the unique element in K such that H(a ∗ b) = H(ab). Then
ℓ(ξ) := (K, ∗) is a loop with identity the unit 1 of G. The loop ℓ(ξ) is called
the loop of the loop folder ξ. For π : ξ → ξ′ a homomorphism of loop folders,
define ℓ(π) : ℓ(ξ)→ ℓ(ξ′) as the restriction of π to K.

If L is a loop, then ℓ(ϵ(L)) ∼= L. Moreover, for a faithful loop envelope ξ,
one has ϵ(ℓ(ξ)) ∼= ξ.

Let G be a group acting transitively on a set Q. The subset S ⊆ G is sharply
transitive set, if for any x, y ∈ Q there is a unique s ∈ S such that xs = y. The
set R(L) = {Ra | a ∈ L} of the right translations of a loop L is a sharply
transitive on L and contains the identity Id = R1.

Definition 4.1.2. Let S ⊆ G be a sharply transitive set on Q, 1 ∈ S. Fix an
element e ∈ Q. Then ξ = (G,Ge, S) is a loop folder. The associated loop ℓ(ξ)
will be denoted by λ(G,S, e).

The operation of λ(G,S, e) can be given as follows: x ∗ y := xs, where s ∈ S
such that es = y for every x, y ∈ Q.

Finally, notice that ℓ(G,H,K) is a right Bol loop if and only if for all
a, b ∈ K, a−1, aba ∈ K. In this case, (G,H,K) is called a Bol loop folder.

4.2 Moufang loops by Chein extension
In [16], Chein showed a general method of constructing non-associative Moufang
loops as extensions of non-abelian groups by the cyclic group of order 2. In
the context of the next theorem, a set of generators is called minimal if it
contains the smallest number of elements, and not if no proper subset is a set
of generators.

Theorem 4.2.1. [16] If L is a non-associative Moufang loop for which every
minimal set of generators contains an element of order 2, then there exist a
non-abelian group G and an element x ∈ L of order 2 such that each element
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of L may be expressed in the form gxα, where g ∈ G, α = 0, 1, and the product
of two elements of L is given by(

g1x
δ
)
(g2x

ϵ) = (gν1g
µ
2 )x

δ+ϵ.

where ν = (−1)ϵ and µ = (−1)δ+ϵ.
Conversely, given any non-abelian group G, the loop constructed as indicated

above is a non-associative Moufang loop.

The Moufang loop of order 2n arising as from a group G of order n as in
Theorem 4.2.1 is denoted by M2n(G, 2). Chein’s purpose was to find all non-
associative Moufang loop of order ≤ 31. The choice of this stopping point is not
casual. Indeed, in order to find the Moufang loops of order n with his method
one needs to know the groups of order ≤ n

2
, and while the group of order ≤ 15

are well known, the ones of order 16 or larger start to become wild.
We can express Chein’s formula so that it can be compared to (4.2). Re-

placing g with tg and gx with vg, we have, for every g, h ∈ G

tgth = tgh, tgvh = vg−1h−1 , vgth = vgh−1 , vgvh = tg−1h. (4.7)

Conversely, (4.2) can also be reformulated for a direct comparison with Chein’s
formula. We identify ta with a and denote v1 with x. Then, every ℓ ∈ L̃ can be
written as axϵ, with ϵ = 0, 1, and the product becomes

(axδ)(bxϵ) = (abµ)xδ+ϵ, (4.8)

with µ = (−1)δ.

4.3 Nets and Bol reflections
This section has the aim of introducing the concept of a 3-net, specifically of a 3-
net associated with a loop, and showing some relations between these two items
are related. For further information on 3-nets and loops, interested readers can
refer to [81] or [74]. An incidence structure is a triple (P ,L, I) where P and
L are sets whose elements are called points and lines, respectively, and I is a
subset of the product P × L. A point P and a line ℓ are called incident if
(P, ℓ) ∈ I.

Definition 4.3.1. A 3-net N is an incidence structure (P ,L,∈) in which a
point P and a line ℓ are incident if and only if P ∈ ℓ, satisfying the following
axioms.

1. P ≠ ∅.

2. L is the union of 3 families (pencils), namely the horizontal, vertical and
transversal lines, such that:

(i) the lines from each pencil partition P ;

(ii) two lines of distinct pencils have a unique point in common.
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3. Every line has exactly n = |P| points.

We denote the families of horizontal, vertical, and transversal lines, respec-
tively, by H, V , and T . A collineation of a 3-net is a bijection on both P and
L which preserves the incidence relations between points and lines.

It is well known that any loop L can be associated with a 3-net N (L) where
the set of points is P = L× L, and the lines given by:

H =
{
ha = {(x, y) | y = a} | a ∈ L

}
,

V =
{
vb = {(x, y) | x = b} | b ∈ L

}
,

T =
{
tc = {(x, y) | xy = c} | c ∈ L

}
.

Conversely, to any 3-net corresponds an isotopy class of loops (cf. [4], p. 10
and [5], p. 20).

The most common way to represent the points of the 3-net N (L) is to use
their usual two coordinates (a, b). However, when computing with collineations,
representing points by three coordinates such as (a, b, ab) can be more conve-
nient. In this way, we can keep track of all the three lines containing the given
points, which are ha, vb, and tab.

Let us now fix an arbitrary horizontal line hd. For each point P = (a, b) ∈
P , consider the vertical line va and the transversal line tab incident in P . In
particular va and tab intersect hd, respectively, in the points Q = (a, d) and
R = (ab/d, d). The intersection between the transversal line through Q and
the vertical line through R consists of the point P ′ = (ab/d, u), with u ∈ L
depending on a, b and d, and fulfilling the equation

(ab)/d · u = ad. (4.9)

The next figure provides a visual representation of these points and lines.

P = (a, b)

Q = (a, d)

R = (ab/d, d)

P ′ = (ab/d, u)

hd

Figure 4.1: Bol reflection through the line hd

For any d ∈ L, the map

σd : (a, b) 7→
(
(ab)/d, u(a, b, d)

)
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is called the Bol reflection through the line hd. A Bol reflection is a collineation
of the 3-net N (L) if, and only if, the corresponding element u in the image of a
point P = (a, b) does not depend on the first coordinate of P . This means that
the whole line hb is mapped into the line hu.

It is easy to prove that the Bol reflections σd are collineations of the 3-net
N (L) exactly when L is a right Bol loop. In this case, for any d ∈ L, the Bol
reflection σd is given by the map

σd : (x, y, xy) 7−→
(
xy · d−1, dy−1 · d, xd

)
. (4.10)

Since in a right Bol loop L the property (ab · a)−1 = a−1b−1 · a−1 holds for every
a, b ∈ L, we have that each Bol reflection σd has order 2. In particular, the Bol
reflection through the horizontal line containing the unit of L is

σ1 : (x, y, xy) 7−→
(
xy, y−1, x

)
. (4.11)

Its action consist of swapping the first and third coordinates and inverting the
second. If we compute the composition σ1σd we obtain the following map

σ1σd : (x, y, xy) 7−→
(
xd−1, dy · d, xy · d

)
, (4.12)

which coincides with the autotopism (R−1d , LdRd, Rd) of the right Bol loop L.
It is easy to check that for every d ∈ L, σdσ1 = σ1σd−1 .

Let us consider the following sets

Σ := {σd, σ1σd | d ∈ L} and Σ0 := {σd | d ∈ L}.

Σ0 is invariant under conjugation by all collineations that preserves the pencil
H. For proper Bol loops, these are all the collineations of the associated 3-
net. In general, we can say that Σ0 is invariant under the direction preserving
collineations. The group Γ generated by Σ0 is a subgroup of the full group of
the collineations, and its subgroup G := ⟨σ1σd | d ∈ L⟩ is a subgroup of the full
group of autotopisms of L. The reader is referred to [69] or [37] for insights into
the collineation group.

4.4 Algebraic properties of the extension
In this section, L is a right Bol loop, with associated 3-net N . The vertical
and transversal lines are vb : x = b and tc : xy = c. The sets of transversal and
vertical lines of N are T , V . The Bol reflection on the horizontal line y = a is
denoted by σa. We will prove the following result.

Theorem 4.4.1. L̃ is a Bol loop if and only if L is right conjugacy closed
right Bol loop with x2 ∈ Z(L) for every x ∈ L. Moreover, the following are
equivalent:

(i) L̃ is Moufang.

(ii) L̃ is associative.
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(iii) L is an abelian group.

The class of right conjugacy closed right Bol loops with central squares
contains the class of Bol loops of exponent 2. The latter is a very rich class,
containing simple proper finite Bol loops of exponent 2 ([3], [68]). Right con-
jugacy closed Moufang loops are also called extra loops ([34], [35]). In extra
loops, all squares are in the nucleus. An important subclass is the class of code
loops, which are related to doubly even binary linear codes ([70], [41], [48]).

Lemma 4.4.2. The subset

Σ = {σd, σ1σd | d ∈ L}

of the group Γ = ⟨σd | d ∈ L⟩ is a sharply transitive set on T ∪ V.

Proof. Within the 3-net N (L), for every vertical line v ∈ V and transversal line
t ∈ T , there exists a unique horizontal line h ∈ H, such that the associated Bol
reflection interchanges v and t. In fact, let va ∈ V and tc ∈ T . The intersection
va ∩ tc is the unique point (a, b), where b = a−1c. For every y ∈ L,

(a, y, ay)σb = (ay · b−1, by−1 · b, ab)
= (ay · b−1, by−1 · b, c) ∈ tc,

and

(cy−1, y, c)σb = (cb−1, by−1 · b, cy−1 · b)
= (a, by−1 · b, cy−1 · b) ∈ va.

Hence, the Bol reflection σb thorough the horizontal line hb interchanges the
points of va with the points of tc.

Consequently any composition σ1σb induces a permutation on the vertical
lines, as well as on the transversal lines. In fact, If we consider now two vertical
lines, va and vc, the autotopism σ1σb = (Rb−1 , LbRb, Rb) of L, with ab−1 = c,
maps va into vc. Indeed,

(a, x, ax)σ1σb = (ab−1, bx · b, ax · b)
= (c, bx · b, ax · b) ∈ vc.

Similarly, the autotopism σ1σb of L, with ab = c, maps the transversal line
ta into tb.Indeed,

(ay−1, y, a)σ1σb = (ay−1 · b−1, by · y, ab)
= (ay−1 · b−1, by · y, c) ∈ tc.

Lemma 4.4.3. Let L̃ = (T ∪ V , ·), with product defined in (4.2). Then L̃ =
λ(Γ, T ∪ V , t1).

Proof. The loop λ(Γ, T ∪V , t1) is well-defined by Lemma 4.4.2, its unit element
is t1. The unique element of Σ mapping t1 into td and vd is σ1σd and σd−1 ,
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respectively. Hence, the loop operation is

ta · tb = tσ1σb
a = tab,

ta · vb = t
σb−1
a = vab,

va · tb = vσ1σb
a = vab−1 ,

va · vb = v
σb−1
a = tab−1 .

Lemma 4.4.4. The loop L̃ has size |L̃| = 2|L|. It contains T as a normal
subloop of index 2, which is isomorphic to L. Every element va (a vertical line)
has order two.

Proof. These properties follow from the product formulas.

Clearly, any equation which holds identically in L̃, does hold in L as well.
For example, if L̃ is right Bol, then L is right Bol too. The converse is not true
in general.

Proposition 4.4.5. L̃ is a right Bol loop if, and only if, L is right conjugacy
closed right Bol loop with the property

ab · a−1 = a−1b · a, ∀ a, b ∈ L. (4.13)

Proof. It is known that a loop is a right Bol loop if, and only if, the set of its
right translations is a twisted subgroup of the group of right multiplications. In
our case, since Σ is the set of right translations, we have that L̃ is a right Bol
loop if, and only if, for any a, b ∈ L{

σaσbσa, σ1σaσ1σbσ1σa, σ1σaσbσ1σa, σaσ1σbσa
}
⊂ Σ. (4.14)

Let us compute (x, y, xy)σaσbσa .

(x, y, xy)σaσbσa =
(
xy · a−1, ay−1 · a, xa

)σbσa

=
(
xa · b−1, b

(
a−1y · a−1

)
· b,

(
xy · a−1

)
b
)σa

=
( (
xy · a−1

)
b · a−1, a

(
b−1

(
ay−1 · a

)
· b−1

)
· a,

(
xa · b−1

)
a
)

=
(
(xy)

(
ab−1 · a

)−1
,
(
ab−1 · a

)
y−1 ·

(
ab−1 · a

)
, x

(
ab−1 · a

) )
.

Hence we have that
σaσbσa = σab−1·a ∈ Σ.

Furthermore,
σ1σaσ1σbσ1σa = σ1σaσb−1σa = σ1σab·a ∈ Σ.
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Now, let us compute (x, y, xy)σ1σaσbσ1σa .

(x, y, xy)σ1σaσbσ1σa =
(
xa−1, ay · a, xy · a

)σbσ1σa

=
(
(xy · a) b−1, b

(
a−1y−1 · a−1

)
· b, xd−1 · f

)σ1σa

=
(
(xy · a) b−1 · a−1, a

(
b
(
a−1y−1 · a−1

)
· b
)
· a,

(
xa−1 · b

)
a
)
.

The composition σ1σaσbσ1σa belongs to Σ exactly when it is equal to σε, for
a suitable ε ∈ L, since the first component depends on the product xy. By
setting x = 1, we can deduce from the third component that ε must be equal
to a−1b · a. Moreover, L needs to satisfy the condition

R−1a RbRa = Ra−1b·a, ∀ a, b ∈ L,

which means that L must be right conjugacy closed. Furthermore, since the
first component must be equal to xy · ε−1, we find that

(a−1b · a)−1 = ab−1 · a−1 ∀ a, b ∈ L. (4.15)

Since a right conjugacy closed loop satisfies the property that for any a, b,
(a−1b · a)−1 = a−1b−1 · a, we can rewrite the condition (4.15) as

ab−1 · a−1 = a−1b−1 · b ∀ a, b ∈ L. (4.16)

Lastly, the second component of (x, y, xy)σ1σaσbσ1σa must be εy−1 · ε, and by an
easy computation it is possible to see that this is equivalent to (4.16). Hence,
with these properties, for all a, b ∈ L we have that

σ1σaσbσ1σa = σa−1b·a ∈ Σ,

and also
σaσ1σbσa = σ1σ1σaσ

−1
b σ1σa = σ1σa−1b−1·a ∈ Σ. (4.17)

We can now prove the first part of our first main result of this chapter, which
replaces the equation (4.13) by the condition x2 ∈ Z(L) for all x.

Proof of the first assertion of Theorem 4.4.1. Let L be a right conjugacy closed
right Bol loop. Assume that (4.13) holds. Then

ab = (bb−1)a · b = b(b−1a · b) = b(ba · b−1) = b2a · b−1.

Hence for every a, b ∈ L we have that ab = b2a · b−1, which is equivalent to
ab2 = b2a. Conversely, if ab2 = b2a for every a, b ∈ L, then we have

ba · b−1 = ba · bb−2 = (ba · b)b−2 = b−2(ba · b) = (b−2b · a)b = b−1a · b.

Hence, since in every right conjugacy closed right Bol loops every square is in
the nucleus N(L), (4.13) is equivalent with the fact that x2 ∈ Z(L) for every x.
Proposition 4.4.5 implies the first assertion of Theorem 4.4.1.
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All of the six non-associative right Bol loops of order 8 are right conjugacy
closed and every square element x2 is central. In conclusion, if L is any right
Bol loop of order 8, the corresponding L̃ is a right Bol loop of order 16.

None of the proper Bol loops of order 12 is right conjugacy closed, and none
of the proper Bol loops of order 15 has all squares in the center. As a result,
it follows that the corresponding loop L̃ cannot be a right Bol loop in either of
these cases.

The situation changes for the Bol loops of order 16. Of the 2038 proper
Bol loops L with this size, using the GAP [39] package LOOPS [71], we found
that a significant majority of them, precisely 1940, satisfy the conditions of
Theorem 4.4.1. Consequently, the corresponding L̃ in these cases are in fact
Bol loops.

Remark 4.4.1. In this scenario, if L is an abelian group, then L̃ is the semidi-
rect product L ⋊ C2, where L ∼= T , C2

∼= {t1, v1}, and the action on L is
x 7→ x−1. This allows us to say that if L is an abelian group, then L̃ is asso-
ciative, but not necessarily abelian. L̃ is an abelian group exactly when L is an
elementary abelian 2-group.

Proposition 4.4.6. Let L be a right conjugacy closed right Bol loop with central
squares. The following are equivalent:

(i) L̃ is Moufang.

(ii) L̃ is associative.

(iii) L is an abelian group.

Proof. Of course, for L̃ to be Moufang, we need L to be Moufang as well. Since
L is right conjugacy closed, it is an extra loop.

L̃ is a right Bol loop, therefore it is Moufang if and only if

(ℓ1ℓ2)
−1 = ℓ−12 ℓ−11 (4.18)

for every ℓ1, ℓ2 ∈ L̃. The relation (ab)−1 = b−1a−1 holds in L, so (4.18) is trivially
satisfied for every pair of transversal lines. For vertical lines, the following holds.

(vavb)
−1 = t−1ab−1 = t(ab−1)−1 = tba−1 = vbva = v−1b v−1a .

If ℓ1 and ℓ2 are not both transversal nor both vertical, say ℓ1 = ta and ℓ2 = vb,
then

(tavb)
−1 = v−1ab = vab and v−1b t−1a = vbta−1 = vba.

Hence (tavb)
−1 = v−1b t−1a if, and only if, L is commutative. The same condition

is obtained by letting (vatb)
−1 = t−1b v−1a . The equivalence between (i) and (iii)

follows from the fact that a commutative extra loop is an abelian group. From
Remark 4.4.1, we have the equivalence between (ii) and (iii).

This completes the proof of Theorem 4.4.1.
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4.5 Nuclei and center of the extension
Our next aim is to describe the nuclei and center of L̃.

Proposition 4.5.1. Let L be a right conjugacy closed Bol loop with x2 ∈ Z(L)
for every x ∈ L. The right nucleus of L̃ is

Nρ(L̃) = {tz, vz | z ∈ Z(L)}. (4.19)

Proof. Consider tz ∈ Nρ(L̃). Since T is isomorphic to L, the equation

ta(tbtz) = (tatb)tz, ∀ a, b ∈ L,

is equivalent to saying that z belongs to Nρ(L). One can easily check that
requiring ta(vbtz) = (tavb)tz leads to the same condition. Now, by setting

va(vbtz) = (vavb)tz, ∀ a, b ∈ L,

we obtain
vavbz−1tz = (t−1ab )tz.

This last equation is equivalent to

a(bz−1)−1 = (ab−1)z, ∀ a, b ∈ L, (4.20)

which, since z is a right-nuclear element of L, means that a(bz−1)−1 = a(b−1z),
which can be further simplified to

(bz−1)−1 = b−1z, ∀ b ∈ L. (4.21)

Since again z belongs to Nρ(L), in L the equation (bz−1)−1 = zb−1 holds for
every b, allowing us to rewrite (4.21) as

zb−1 = b−1z, ∀ b ∈ L,

that is, z belongs to the commutant C(L). In conclusion, we have that

tz ∈ Nρ(L̃) ⇐⇒ z ∈ Nρ(L) ∩ C(L) = Z(L).

Let now vz ∈ Nρ(L̃). Both the conditions

ta(vbvz) = (tavb)vz and ta(tbvz) = (tatb)vz, ∀ a, b ∈ L,

lead easily to z ∈ Nρ(L). The remaining conditions va(vbvz) = (vavb)vz and
va(tbvz) = (vatb)vz are both equivalent to (4.20), leading to z ∈ C(L). There-
fore, we can say that also for vertical lines it holds

vz ∈ Nρ(L̃) ⇐⇒ z ∈ Nρ(L) ∩ C(L) = Z(L).

While Proposition 4.5.1 provides a complete description of the right nucleus
of the Bol loop L̃, which remains the same for all suitable L, the situation is
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different for the left nucleus, as shown by the next result.

Proposition 4.5.2. Let L be a right conjugacy closed Bol loop with x2 ∈ Z(L)
for every x ∈ L. For the left nucleus of L̃ it holds that

Nλ(L̃) ∩ T = {tn | n ∈ Nλ(L)} ∼= Nλ(L).

Furthermore,

Nλ(L̃) ∩ V = {vn | n = ((na)b)(a−1b−1) ∀a, b ∈ L}

In particular:

(i) if L is a non-abelian group, then

Nλ(L̃) = T ∼= L; (4.22)

(ii) if L is an AIP loop, then

Nλ(L̃) = {tn, vn | n ∈ Nλ(L)}. (4.23)

Proof. Since T is isomorphic to L,

Nλ(L̃) ∩ T ⊆ {tn | n ∈ Nλ(L)} ∼= Nλ(L).

The conditions

tn(vavb) = (tnva)vb, tn(tavb) = (tnta)vb, tn(vatb) = (tnva)tb

are satisfied for any a, b ∈ L and n ∈ Nλ(L). Hence, we can conclude that

Nλ(L̃) ∩ T = {tn | n ∈ Nλ(L)}.

Consider now vn ∈ Nλ(L̃). The equation vn(vavb) = (vnva)vb is equivalent
to

n(ab−1)−1 = (na−1)b ∀ a, b ∈ L. (4.24)

It is easy to see that the remaining associativity conditions

vn(tatb) = (vnta)tb, vn(tavb) = (vnta)vb, vn(vatb) = (vnva)tb,

are all equivalent to (4.24). Furthermore, (4.24) is equivalent to

n = ((na)b)(a−1b−1) ∀ a, b ∈ L. (4.25)

If L is a non-abelian group, then (4.25) is impossible, therefore the left
nucleus of L̃ contains no vertical lines, that is,

Nλ(L̃) ∩ V = ∅,
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and (i) is proved. Lastly, if L is an AIP loop, then (4.25) requires n to belong
to the left nucleus Nλ(L). Hence

Nλ(L̃) ∩ V = {vn |∈ Nλ(L)},

which proves the assertion (ii).

By Proposition 4.5.2 we can see that, differently than the right nucleus, the
left nucleus has a less schematic description. We can say that, if L is not AIP
and n belongs to Nλ(L), then, from equation (4.24), vn cannot be an element
of Nλ(L̃). That is, the following holds

Nλ(L̃) ∩ V ⊆ {vn | n ∈ L \Nλ(L)} . (4.26)

Among the 2038 right Bol loops of size 16, 1940 are RCC with central squares.
We performed an analysis using the GAP package LOOPS [71] and identified
1773 of them that are neither associative nor AIP loops. Out of these, there
are 14 cases where the left nucleus of the corresponding L̃ has largest intersec-
tion possible with V , that is Nλ(L̃) ∩ V = {vn | n ∈ L \Nλ(L)}. For example
L =RightBolLoop(16,181) has the following left nucleus

Nλ(L) = {1, 3, 4, 7, 9, 11, 12, 15}

and L̃ has
Nλ(L̃) ∩ V = {v2, v5, v6, v8, v10, v13, v14, v16}

Let L be a RCC right Bol loop of order 16 with central squares which is not
AIP, and ν(L) := |Nλ(L)∩V|. Also, let us denote with µk the size of the family
{L | ν(L) = k}, k = 0, . . . , 16. With LOOPS [71] we found the output listed in
Table 4.1.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
µk 1145 0 454 0 160 0 0 0 14 0 0 0 0 0 0 0 0

Table 4.1: Number of loops with ν(L) = k

Proposition 4.5.3. Let L be a right conjugacy closed Bol loop with x2 ∈ Z(L)
for every x ∈ L, and let Z(L̃) be the center of L̃. The following assertions hold:

(i) if L has not exponent 2, then

Z(L̃) = {tz | z ∈ Z(L), and z2 = 1}; (4.27)

(ii) if L has exponent 2, then

Z(L̃) = {tz, vz | z ∈ Z(L)}. (4.28)



68 Chapter 4. An extension formula for right Bol loops

Proof. By Proposition 4.5.1,

Z(L̃) ⊆ {tz, vz | z ∈ Z(L)}.

If L has not exponent 2, no vertical line can be in the commutant, since the
condition vzta = tavz, for any a ∈ L, is equivalent to za−1 = az, that is a = a−1

for any a ∈ L. Hence the center of L̃ consists only of transversal lines tz for
some z ∈ Z(L). The condition tzta = tatz is naturally satisfied, and tzva = vatz
requires that z2 = 1. Hence

Z(L̃) = {tz | z ∈ Z(L), and z2 = 1}.

If instead L has exponent 2, then

N(L̃) = {tz, vz | z ∈ Z(L)},

and with the same arguments we obtain that Z((L̃) = N((L̃).

4.6 The core of the extension
Now we want to see how to define a quandle starting from a Bol loop. A quandle,
which is a special case of a rack, is a set with a binary operation satisfying axioms
reflecting the three Reidemeister moves (c.f. [86]) in knot theory. Although
mainly used to study invariants for knots, quandles hold intrinsic interest as
algebraic structures. In particular, the definition of a quandle axiomatizes the
properties of conjugation within a group.

Definition 4.6.1. A quandle (Q, ◁) is a set Q with a binary operation ◁ : Q×
Q −→ Q which satisfies the following axioms:

1. for all a ∈ Q, a ◁ a = a (idempotence);

2. for all a, b ∈ Q, there exists a unique x ∈ Q such that x ◁ a = b;

3. for all a, b, c ∈ Q, (a ◁ b) ◁ c = (a ◁ c) ◁ (b ◁ c) (right self-distributivity).

In other words, a quandle can be described as a right quasigroup Q where
the right translations are automorphism of Q, with the element a itself being
fixed by Ra.

Example 4.6.1.1. If (G, ·) is a group, the conjugation a ◁ b := b−1ab gives a
quandle structure.

A quandle Q is said involutory if (a ◁ b) ◁ b for every a, b ∈ Q, and it is said
connected if the right multiplication group

RMlt(Q) = ⟨Rb | b ∈ Q, aRb = a ◁ b⟩
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acts transitively on Q. Connected quandles are the main objects in [49], where
the authors present a correspondence between with certain configuration in
transitive groups, called quandle envelopes.

If (L, ·) is a loop, the core (L,+) of L is defined by the operation

x+ y := (yx−1)y. (4.29)

If L is a right Bol loop, its core is a quandle (see [88]). Indeed, while the core is
trivially idempotent by the definition of +, let us show the other two axioms.

For every x, y ∈ L

(x+ y) + y = (yx−1 · y) + y

= y(yx−1 · y)−1 · y
= y(y−1x · y−1) · y
= (yy−1 · x)y−1 · y
= x.

Also, for every x, y, z ∈ L ,

(x+ y) + z = (yx−1 · y) + z = z(yx−1 · y)−1 · z,

and

(x+ z) + (y + z) = (zx−1 · z) + (zy−1 · z)
= (zy−1 · z)(zx−1 · z)−1 · (zy−1 · z)
= (zy−1 · z)(z−1x · z−1) · (zy−1 · z)
=

(((((
zy−1 · z

)
z−1

)
x
)
z−1

)
z
)
y−1 · z

=
((
zy−1 · x

)
y−1

)
z

= z(yx−1 · y)−1 · z.

If L is a right conjugacy closed right Bol loop with central squares, we define
the core of L̃ in the same way, denoting it with the same symbol +.

Theorem 4.6.2. Let L be a right conjugacy closed right Bol loops with central
squares. The core of L̃ decomposes to the disjoint union of two subquandles T
and V, both isomorphic to the core of L.

Proof. Since the subloop T of L̃ is L, ta + tb = ta+b. Moreover,

va + vb = vbva · vb = tba−1vb = vba−1·b = va+b.

Hence, the core of L̃ decomposes into the disjoint union of two cores T and V
both isomorphic to the core of L.

Furthermore, for the mixed computations it holds

ta + vb = tba·b−1 , va + tb = vba·b−1 . (4.30)
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We note here that the equation ta + ℓ = tba·b−1 has vb and vb−1 as solutions,
so in general the quandle (L̃,+) is not a quasigroup.

Definition 4.6.3. The structure group of a quandle (Q, ◁) is

STR(Q, ◁) = ⟨ga, a ∈ Q | gagb = gbga◁b, a, b ∈ Q⟩.

The structure group of a finite quandle is either free abelian of rank r, where
r is the number of orbits of Q with respect to all the right translations, or non-
abelian and with torsion. In the latter case, STR(Q, ◁) has a finite index free
abelian subgroup of rank r; see [61] for more details.

If L is a Bol loop, then the idempotence of the core implies

ga = g(a+b)+b = g−1b ga+bgb = g−2b gag
2
b .

Hence, g2b ∈ Z(STR(L,+)) for all b ∈ L. Moreover,

g2a+b = (g−1b gagb)
2 = g−1b g2agb = g2a.

Let a1, . . . , ar be orbit representatives of the right translation group of the core.
The subgroup T = ⟨g2a1 , . . . , g

2
ar⟩ is a free abelian group of rank r, which is

contained in the center of the structure group. As shown above, T contains
every g2a, a ∈ L. We call the factor STR(L,+)/T the restricted structure group

rSTR(L,+) = ⟨ĝa, a ∈ L | ĝbĝaĝb = ĝa+b, ĝ
2
a = 1 a, b ∈ L⟩.

The Bol reflections σa satisfy σ2
a = Id and σa+b = σbσaσb. Thus, ĝa 7−→ σa

extends to a surjective homomorphism from the restricted structure group onto
the collineation group

Γ = ⟨σa | a ∈ L⟩

generated by Bol reflections.

Lemma 4.6.4. Let L be a right Bol loop, and denote by r the number of orbits
of the right multiplication group of the core. Write G = rSTR(L,+). Then
G/G′ ∼= Cr

2 .

Proof. Let a1, . . . , ar be orbit representatives and let h1, . . . , hr be the free gen-
erators of the elemenatry abelian 2-group Cr

2 . For an element a in the orbit of
ai, we define the map Φ : ĝa → hi. It is clear that Φ extends to a surjective
homomorphism G→ Cr

2 . Hence, G/G′ is elementary abelian of rank at least r.
If a, b ∈ L are in the same orbit, then ĝta = ĝb for some t ∈ rSTR(L,+). This
implies ĝaĝb ∈ G′, or equivalently ĝaG

′ = ĝbG
′. Therefore, the rank of G/G′

cannot be more than r.

We finish this section by computing the restricted structure group of the
cores of right Bol loops in some cases.

Proposition 4.6.5. Let L be a right Bol loop, and denote by r the number of
orbits of the right multiplication group of the core. Then

rSTR(L× C2,+) ∼= rSTR(L,+)× Cr
2 .
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Proof. We denote the generators of rSTR(L×C2,+) by ĝa,i with a ∈ L, i ∈ F2.
ĝb,j ĝa,iĝb,j = ĝa+b,i implies that ĝb,0, ĝb,1 have the same action on all generators.
This means that cb = ĝb,0ĝb,1 is in the center, and

rSTR(L× C2,+) ∼= rSTR(L,+)× ⟨cb | b ∈ L⟩.

On the one hand, c2b = 1. On the other hand,

cb = ĝa,0cbĝa,0 = ĝa,0ĝb,0ĝb,1ĝa,0 = ĝb+a,0ĝb+a,1 = cb+a.

These show that ⟨cb | b ∈ L⟩ is an elementary abelian 2-group of rank at most
r. Lemma 4.6.4 implies that the rank is equal to r.

As for a right Bol loop L of exponent 2, the extension L̃ is simply the direct
product L× C2, the following result is immediate.

Corollary 4.6.6. Let L be a finite right Bol loop of exponent 2. Then

rSTR(L̃,+) ∼= rSTR(L,+)× Cr
2 ,

where r is the number of orbits of the right multiplicarion group of the core.

The restricted structure group can also be computed for another class, which
is rather trivial from the point of view of the theory of loops, namely for the
class of abelian groups. However, in this case, the formula for the restricted
structure group is surprisingly different.

Proposition 4.6.7. Let L be an abelian group. Then

rSTR(L̃,+) ∼= rSTR(L,+)× rSTR(L,+).

Proof. Define the subgroups

GT = ⟨ĝta | a ∈ L⟩,
GV = ⟨ĝva | a ∈ L⟩

of rSTR(L̃,+). Clearly rSTR(L̃,+) = ⟨GT , GV ⟩, and GT
∼= GV

∼= rSTR(L,+).
(4.30) implies that ĝvb commutes with GT , and ĝtb commutes with GV . The
claim rSTR(L̃,+) ∼= GT ×GV follows.
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Appendix A

Pseudocodes of the Algorithms
used in Chapter 3

In this Appendix, we present the pseudocodes utilized to derive the results in
chapter 3. The following tables are used in the pseudo-codes.

1 2 3 4 5 6 7 8 9 6 11 12 0 2 3 4 5 6 7 8 9 10 11 12 0 1
3 4 5 10 7 8 9 10 11 12 0 1 2 5 6 7 8 9 10 11 12 0 1 2 3 4
9 6 11 12 0 1 2 3 4 5 6 7 8 10 7 8 9 10 11 12 0 1 2 3 4 5

Table A.1: STS(13) #1

1 2 3 4 5 6 7 8 9 10 11 12 0 2 3 4 5 6 7 8 9 10 11 12 0 1
3 4 5 6 7 8 9 10 11 12 0 1 2 5 6 7 8 9 10 11 12 0 1 2 3 4
9 10 11 12 0 1 2 3 4 5 6 7 8 6 7 8 9 10 11 12 0 1 2 3 4 5

Table A.2: STS(13) #2

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 b c 7 8 9 a 7 8 9 a 7 8 9 a 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 a 9 e d b c d e c b e d e d c b d e b c

Table A.3: STS(15) #2

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 b c 7 8 9 a 7 8 9 a 7 8 9 a 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 a 9 e d b c d e d e b c e d c b c b e d

Table A.4: STS(15) #3

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 b c 3 4 7 8 b c 7 8 9 a 7 8 9 a 7 8 9 a 7 8 9 a
2 4 6 8 a c e 5 6 9 a d e 6 5 a 9 e d b d e c e c b d c e d b d b c e

Table A.5: STS(15) #7

0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
1 3 5 7 9 b d 3 4 7 8 a c 3 4 7 8 9 b 7 8 9 c 7 8 9 a 7 8 a b 7 8 9 a
2 4 6 8 a c e 5 6 9 b d e 6 5 a e c d b a e d e c d b d 9 c e c d b e

Table A.6: STS(15) #61
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0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 6 6 6 7 8
1 3 5 7 9 b d 3 4 6 9 a c 3 4 5 7 8 b 6 7 8 a 5 8 a b 7 8 9 7 9 c 9 a
2 4 6 8 a c e 5 7 8 b d e 9 6 a e c d b c d e d 9 c e b e c a e d d b

Table A.7: STS(15) #80
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Algorithm 1: Pseudocode to compute the list of all the automor-
phisms for STS(9)

Function STS-9-AUT() { // this function computes all the
automorphisms for STS(9)

{
Result: the list of all the automorphisms for STS(9)

A ←− ∅ // initialize the list of automorphisms as empty
// take all the triples (a, b, c) with elements in {1, . . . , 9}
foreach((a, b, c) ∈ {1, . . . , 9}3 )do
{
// ignore all the triples that do not meet the criteria
if(a ̸= b)
{
r ←− STS-9-SUM (a, b)
if(c ̸= a ∧ c ̸= b ∧ c ̸= r )
{
C←− 0 ∈ {0, . . . , 9}10 // initialize an empty vector of 10
zeros

// fix the three elements (a, b, c) and the neutral element
0

C[0]←− 0 // set the image of 0 as 0
C[1]←− a // set the image of 1 as a
C[2]←− b // set the image of 2 as b
C[3]←− c // set the image of 3 as c
// compute the remaing images
C[8]←− STS-9-SUM (C[1],C[2])
C[6]←− STS-9-SUM (C[1],C[3])
C[7]←− STS-9-SUM (C[6],C[8])
C[4]←− STS-9-SUM (C[2],C[3])
C[5]←− STS-9-SUM (C[4],C[6])
C[9]←− STS-9-SUM (C[1],C[5])
Append C to A

}
}

}
return A

}
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Algorithm 2: Pseudocode to compute the list of all the automor-
phisms for STS(13)

Function STS-13-AUT(i) { // this function computes all the
automorphisms for STS(13)

{
Data: i ∈ {1, 2} is the index of the table sum to use
Result: the list of all the automorphisms for STS(13)

A ←− ∅ // initialize the list of automorphisms as empty
if( i = 1)
{
Ω←− (1) // the identity permutation
P ←− (6 8)(2 11)(3 9)(4 12)(5 7) // permutation of the elements
of STS(13)

ρ(x)←− 3x (mod 13) // ρ is a function
σ(x)←− P (x) // function that apply the permutation P to the
element x
A ←− {Ω, ρ, ρ2, σ, ρ ◦ σ, ρ2 ◦ σ}

}
else // i = 2
{

foreach(a ∈ {1, 3, 9})do
{

foreach(b ∈ {0, . . . , 12})do
{
f(x)←− (ax+ b) (mod 13)
Append f(x) to A

}
}

}
return A

}
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Algorithm 3: Pseudocode to compute the list of all the automor-
phisms for STS(15)

Function STS-15-AUT(i) { // this function computes all the automorphisms for STS(15)
{

Data: i ∈ {2, 3, 7, 61, 80} is the index of the table sum to use
Result: the list of all the automorphisms for STS(15)

A ←− ∅ // initialize the list of automorphisms as empty
if( i ̸= 80)
{

r ←− 4
}
else
{

r ←− 3
}
foreach( l ∈ {0, . . . , 9, a, b, c, d, e}r )do
{

// check if the elements in l are independent
if( l contains repeated elements )
{

continue // ignore l and go to the next element in {0, . . . , 9, a, b, c, d, e}r
}
if( i ̸= 80)
{

(e1, e2, e3, e4)←− l
t1 ←− STS-15-SUM (i, e1, e2) // sum e1 and e2 according to the table of STS(15)#i
t2 ←− STS-15-SUM (i, e1, e3)
t3 ←− STS-15-SUM (i, e2, e3)
t4 ←− STS-15-SUM (i, t1, e3)
if( e3 = t1 ∨ e4 ∈ {t1, t2, t3, t4} )
{

continue // ignore l and go to the next element in {0, . . . , 9, a, b, c, d, e}r
}

}
else // i = 80
{

(e1, e2, e3)←− l
t1 ←− STS-15-SUM (i, e1, e2)
if( e3 = t1 )
{

continue // ignore l and go to the next element in {0, . . . , 9, a, b, c, d, e}r
}

}
C←− STS-15-AUT-TABLE(i, l) // see algorithms 4 and 5
// check if C is an automorphism
flag←− true
foreach( l′ ∈ STS-15-TABLE-COLUMNS(i) )do // consider all the columns of the table
STS(15)#i

{
(e1, e2, e3)←− l′

H ←− (C[e1],C[e2],C[e3])
if(H /∈ STS-15-TABLE-COLUMNS(i) ) // if H is not a column of the table i
{

flag←− false
break // exit from the loop

}
}
if(flag is true )
{

Append C to A
}

}
return A

}
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Algorithm 4: Compute a bijection of STS(15) that could potentially
be an automorphism - Part I

Function STS-15-AUT-TABLE(i, l) { // this function computes a possible
automorphism of STS(15)

{
Data: i ∈ {2, 3, 7, 61, 80} is the index of the table sum to use, and l is a vector

with 3 or 4 elements used to compute the automorphism
Result: a possible automorphism of STS(15) for the table i and a fixed element l

C ←− ∅ // initialize an empty set
if( i ̸= 80)
{
(e1, e2, e3, e4)←− l
C[Ω]←− Ω // set the image of Ω as Ω
C[1]←− a // set the image of 1 as e1
C[2]←− b // set the image of 2 as e2
C[3]←− c // set the image of 3 as e3
C[7]←− d // set the image of 3 as e4

}
else
{
(e1, e2, e3)←− l
C[Ω]←− Ω // set the image of Ω as Ω
C[1]←− a // set the image of 1 as e1
C[2]←− b // set the image of 2 as e2
C[3]←− c // set the image of 3 as e3

}
// compute the remaing images
if( i = 2)
{
C[2]←− STS-15-SUM (i,C[0],C[1])
C[4]←− STS-15-SUM (i,C[0],C[3])
C[5]←− STS-15-SUM (i,C[1],C[3])
C[6]←− STS-15-SUM (i,C[1],C[4])
C[8]←− STS-15-SUM (i,C[0],C[7])
C[9]←− STS-15-SUM (i,C[1],C[7])
C[a]←− STS-15-SUM (i,C[2],C[7])
C[b]←− STS-15-SUM (i,C[3],C[7])
C[c]←− STS-15-SUM (i,C[4],C[7])
C[d]←− STS-15-SUM (i,C[6],C[7])
C[e]←− STS-15-SUM (i,C[5],C[7])

}
else if( i = 3)
{
C[2]←− STS-15-SUM (i,C[0],C[1])
C[4]←− STS-15-SUM (i,C[0],C[3])
C[5]←− STS-15-SUM (i,C[1],C[3])
C[6]←− STS-15-SUM (i,C[2],C[3])
C[8]←− STS-15-SUM (i,C[0],C[7])
C[9]←− STS-15-SUM (i,C[1],C[7])
C[a]←− STS-15-SUM (i,C[2],C[7])
C[b]←− STS-15-SUM (i,C[3],C[7])
C[c]←− STS-15-SUM (i,C[6],C[7])
C[d]←− STS-15-SUM (i,C[4],C[7])
C[e]←− STS-15-SUM (i,C[5],C[7])

}

// continue on algorithm 5

}
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Algorithm 5: Compute a bijection of STS(15) that could potentially
be an automorphism - Part II

Function STS-15-AUT-TABLE(i, l) { // this function computes a possible
automorphism of STS(15)

{
Data: i ∈ {2, 3, 7, 61, 80} is the index of the table sum to use, and l is a vector

with 3 or 4 elements in used to compute the automorphism
Result: a possible automorphism of STS(15) for the table i and a fixed element l

// see algorithm 4 for the first part of the algorithm

else if( i = 7)
{
C[2]←− STS-15-SUM (i,C[0],C[1])
C[4]←− STS-15-SUM (i,C[0],C[3])
C[5]←− STS-15-SUM (i,C[1],C[3])
C[6]←− STS-15-SUM (i,C[2],C[3])
C[8]←− STS-15-SUM (i,C[0],C[7])
C[9]←− STS-15-SUM (i,C[1],C[7])
C[a]←− STS-15-SUM (i,C[2],C[7])
C[b]←− STS-15-SUM (i,C[3],C[7])
C[c]←− STS-15-SUM (i,C[5],C[7])
C[d]←− STS-15-SUM (i,C[6],C[7])
C[e]←− STS-15-SUM (i,C[4],C[7])

}
else if( i = 61)
{
C[2]←− STS-15-SUM (i,C[0],C[1])
C[4]←− STS-15-SUM (i,C[0],C[3])
C[5]←− STS-15-SUM (i,C[1],C[3])
C[6]←− STS-15-SUM (i,C[2],C[3])
C[8]←− STS-15-SUM (i,C[0],C[7])
C[9]←− STS-15-SUM (i,C[1],C[7])
C[a]←− STS-15-SUM (i,C[2],C[7])
C[b]←− STS-15-SUM (i,C[3],C[7])
C[c]←− STS-15-SUM (i,C[6],C[7])
C[d]←− STS-15-SUM (i,C[5],C[7])
C[e]←− STS-15-SUM (i,C[4],C[7])

}
else if( i = 80)
{
C[2]←− STS-15-SUM (i,C[0],C[1])
C[4]←− STS-15-SUM (i,C[0],C[3])
C[5]←− STS-15-SUM (i,C[1],C[3])
C[6]←− STS-15-SUM (i,C[0],C[5])
C[7]←− STS-15-SUM (i,C[1],C[4])
C[8]←− STS-15-SUM (i,C[1],C[6])
C[9]←− STS-15-SUM (i,C[2],C[3])
C[a]←− STS-15-SUM (i,C[2],C[5])
C[b]←− STS-15-SUM (i,C[3],C[6])
C[c]←− STS-15-SUM (i,C[3],C[7])
C[d]←− STS-15-SUM (i,C[4],C[5])
C[e]←− STS-15-SUM (i,C[2],C[7])

}
return C

}
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Algorithm 6: Main program
Function Main(LN , LQ, r, i) {
{

Data: r ∈ N is the number of expected coset representatives, and i is the
sum-table index

Q2 ←− Compute-Fundamental-Pairs(LQ, i) // see algorithm 7
Compute-Delta-1(LN , LQ, Q2, i) // see algorithm 9
Compute-Cosets(LN , Q2, r) // see algorithm 10
Compute-Alpha-F(LN) // see algorithm 11
Compute-F-Beta(LQ, Q2, i) // see algorithm 13
Join-Alpha-F-Beta() // see algorithm 15

}

Algorithm 7: Compute the fundamental pairs of Q×Q
Function Compute-Fundamental-Pairs(LQ, i) {
{

Data: i is the sum-table index
Result: the list Q2 of fundamental pairs in Q×Q
Q2 ←− ∅ // initialize an empty list
Q′2 ←−

(Q
2

)
// the set of 2-combinations of elements Q

foreach((A,B) ∈ Q′2 )do
{
C ←− Sum-Table(LQ, i, A, B) // see algorithm 8
i1 ←− Index-Of({A, B}, Q′2) // look for the index of the pair
{A,B} in Q′2

i2 ←− Index-Of({A, C}, Q′2) // look for the index of the pair
{A,C} in Q′2

i3 ←− Index-Of({B, C}, Q′2) // look for the index of the pair
{B,C} in Q′2

I ←− {i1, i2, i3} // create a set I with the three indices i1, i2,
and i3

Remove {A,B}, {A,C}, and {B,C} from Q′2
Append the pair related to Min(I ) to Q2

}
return Q2

}
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Algorithm 8: Compute the sum between two elements in LQ
Function Sum-Table(LQ, i, A, B) {
{

Data: i is the sum-table index, and (A,B) ∈ LQ2

Result: the sum A ∗B according to the sum table of LQ
if(LQ is GF(2)t for some t)
{

return A⊕B // (⊕) is the standard addition of vectors over
GF(2)t

}
else if(LQ is STS(9))
{

Use the table 3.1 to sum A and B and return the result
}
else if(LQ is STS(13))
{

if( i = 1)
{

Use the table A.1 to sum A and B and return the result
}
else
{

Use the table A.2 to sum A and B and return the result
}

}
else if(LQ is STS(15))
{

if( i = 1)
{

return A⊕B // (⊕) is the standard addition of vectors
over GF(2)4

}
else if( i = 2)
{

Use the table A.3 to sum A and B and return the result
}
else if( i = 3)
{

Use the table A.4 to sum A and B and return the result
}
else if( i = 7)
{

Use the table A.5 to sum A and B and return the result
}
else if( i = 61)
{

Use the table A.6 to sum A and B and return the result
}
else if( i = 80)
{

Use the table A.7 to sum A and B and return the result
}

}
}



82 Appendix A. Pseudocodes of the Algorithms used in Chapter 3

Algorithm 9: Compute the functions B2

Function Compute-Delta-1(LN , LQ, Q2, i) {
{

Data: Q2 is the list of fundamental pairs in Q×Q, and i is the sum-table
index

B2 ←− ∅ // initialize an empty list
// generate all the homomorphisms between LQ and LN
foreach(e ∈ {0, . . . , |LN | − 1}|LQ|−1 )do
{
// ϕ is a vector of indices
j ←− 1
λ←− Concatenate(0, e) // fix the mapping between the neutral
elements of LQ and LN

δ1ϕ←− Ω ∈ LN |Q2|

foreach((R,S) ∈ Q2 )do
{
T ←− Sum-Table(LQ, i, R, S) // see algorithm 8
iR ←− Index-Of(R, LQ) // look for the index of R in LQ
iS ←− Index-Of(S, LQ) // look for the index of S in LQ
iT ←− Index-Of(T, LQ) // look for the index of T in LQ
// set the j-th element of δ1-ϕ
// δ1ϕ = ϕ(R) ∗ ϕ(S) ∗ ϕ(R+ S), where ϕ is the composition of

the arrays LN and λ
δ1ϕj ←− LN [λ[iR]] ∗ LN [λ[iS ]] ∗ LN [λ[iT ]] // (∗) is the sum for
the elements in LN

j ←− j + 1
}
l←− As-Integer(δ1ϕ) // represent the vector δ1ϕ of elements
in LN as an integer

Append l to B2

}
Save B2 into a file

}
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Algorithm 10: Compute the cosets of the factor systems modulo the
functions δ1ϕ

Function Compute-Cosets(LN , Q2, r) {
{

Data: Q2 is the list of fundamental pairs in Q×Q, and r is the number of cosets

B2 ←− load from disk
n←− |LN ||Q2| // total number of factor systems
b←−

∣∣B2
∣∣

s←− n
b

i←− 0
STEP_INC←− 50

MAX_STEPS←−
⌊

s
100

⌋
cosets←− ∅
while( i < b ∧ |cosets| < r )do
{
j ←− 0
l←− |cosets|
F ←− {i · s+ k : 0 ≤ k < s}
while(j < MAX_STEPS ∧ |F | > 0 ∧ |cosets| < r )do
{
coset←− null
f ←− Pop-Random-Element(F) // remove a random element from F
and returns it

foreach(c ∈ {f ⊕ δ1ϕ : ∀ δ1ϕ ∈ B2} )do // (⊕) is the binary XOR
operation

{
if(c ∈ F )
{

Remove c from F
}
if(c ∈ cosets )
{
coset←− c

}
}
if(coset is null )
{
j ←− 0
cosets←− cosets ∪ {f}

}
else
{
j ←− j + 1

}
}
if(j < MAX_STEPS )
{
i←− i+ 1

}
else
{
i←− i+ STEP_INC

}
if( l < |cosets| )
{

Save/update cosets in a file
}

}
}
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Algorithm 11: Compute the classes from the automorphism α

Function Compute-Alpha-F(LN) {
{
αF ←− {} // initialize empty dictionary
B2 ←− load from disk
cosets←− load from disk
while( |cosets| > 0)do
{
f ←− Pop-Random-Element(cosets)
if(f is not key of αF )
{
// αF [f ] is the set of factor systems which are isomorphic

to f by α
αF [f ]←− ∅ // initialize as an empty set

}
f ′ ←− As-Vector(f ) // cast the integer f into its
representation as list of elements in LN

// since LN = GF(2)t, Alpha-Automorphisms generates all the
binary invertible matrices of order t

foreach(α ∈ Alpha-Automorphisms(LN))do
{
α
(i)
F ←− {} // empty list

for(j = 0 to |f ′| − 1)do
{
c←− α(f ′[j])

Append c to α
(i)
F

}
f (i) ←− As-Integer(α(i)

F ) // represent α
(i)
F as an integer

coset←− Get-Coset(f (i), cosets, B2) // see algorithm 12
if(coset is not null)
{
αF [f ]←− αF [f ] ∪ {coset}

}
}
Save αF in a file as a backup

}
// determine the classes by using αF

alpha_cosets←− ∅ // initialize as an empty set
foreach(f ∈ Get-Dictionary-Keys(αF))do
{
k ←− Get-Smallest-Element(αF [f ]) // get the smallest element
in αF [f ]

alpha_cosets←− alpha_cosets ∪ {k}
}
Save alpha_cosets to the disk

}
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Algorithm 12: Compute the coset representative
Function Get-Coset(f (i), cosets, B2) {
{

Data: f (i) is an integer representing a factor system, cosets is the set of
cosets modulo δ1ϕ, and B2 is the list of δ1ϕ functions

foreach(c ∈ {f (i) ⊕ δ1ϕ : ∀ δ1ϕ ∈ B2})do // (⊕) is the binary XOR
operation

{
if(c ∈ cosets)
{

return c
}

}
return null

}



86 Appendix A. Pseudocodes of the Algorithms used in Chapter 3

Algorithm 13: Compute the classes from the automorphism β

Function Compute-F-Beta(LQ, Q2, i) {
{

Data: Q2 is the list of fundamental pairs in Q×Q, and i is the sum-table
index

Fβ ←− {} // initialize empty dictionary
B2 ←− load from disk
if(alpha_cosets is on disk ) // see algorithm 11
{
cosets←− load alpha_cosets from disk

}
else
{
cosets←− load cosets from disk

}
while( |cosets| > 0)do
{
f ←− Pop-Random-Element(cosets)
if(f is not key of Fβ )
{
// Fβ[f ] is the set of factor systems which are isomorphic

to f by β
Fβ[f ]←− ∅ // initialize as an empty set

}
f ′ ←− As-Vector(f ) // cast the integer f into its
representation as list of elements in LN

foreach(β ∈ Beta-Automorphisms(LQ, i))do // see algorithm 14
for Beta-Automorphisms

{
l←− 0
// compute the permutation ρ by applying the automorphism

β to each pair (A,B) ∈ Q2

ρ←− 0 ∈ {0, |f ′| − 1}|Q2| // vector of |Q2| zeros
foreach((A,B) ∈ Q2 )do
{
A′ ←− β(A) // apply the automorphism β to A
B′ ←− β(B) // apply the automorphism β to B
j ←− Index-Of({A′, B′ }, Q2) // look for the index of the
pair {A′, B′} in Q2

ρ[l]←− j
}
fβ ←− Permute(ρ, f ′) // permute f ′ by using the permutation
ρ

fβ ←− As-Integer(fβ)
coset←− Get-Coset(fβ, cosets, B2) // see algorithm 12
if(coset is not null)
{
Fβ[f ]←− Fβ[f ] ∪ {coset}

}
}
Save Fβ in a file as a backup

}
}
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Algorithm 14: Compute the automorphisms β for LQ
Function Beta-Automorphisms(LQ, i) {
{

Data: i is the sum-table index

if(LQ is GF(2)c for some c)
{

Generate and return all the binary invertible matrices of order c
}
else if(LQ is STS(9))
{

return STS-9-AUT() // see algorithm 1
}
else if(LQ is STS(13))
{

return STS-13-AUT(i) // see algorithm 2
}
else if(LQ is STS(15))
{

if( i = 1)
{

Generate and return all the binary invertible matrices of order 4
}
else
{

return STS-15-AUT(i) // see algorithm 3
}

}
}

Algorithm 15: Compute the final classes by joining the classes from
the automorphism α and β

Function Join-Alpha-F-Beta() {
{
classes←− {} // inizialize an empty list
αF ←− load αF from disk
Fβ ←− load Fβ from disk
foreach(f1 ∈ Get-Dictionary-Keys(Fβ))do
{
S ←− ∅ // initialize an empty set
foreach(f2 ∈ Get-Dictionary-Keys(αF))do
{

if( |Fβ[f1] ∩ αF [f2]| > 0)
{
S ←− S ∪ αF [f2]

}
}
Append S to classes

}
Save classes to the disk

}
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Algorithm 16: Compute the precise number of factor systems which
produces exactly one Veblen point in the cases: Q = STS(15) #1, and
Q = STS(15) #2

Function Classes-Reduction(LQ, Q2, i) {
{

Data: Q2 is the list of fundamental pairs in Q×Q, and i is the STS(15) table index

Fβ ←− load Fβ for STS(31) with Q = STS(15) #i from disk
FS←− ∅ // initialize an empty list of factor systems
foreach( f ∈ Get-Dictionary-Keys(Fβ) )do // take a representative f for each orbit
{

c←− As-Vector(f) // represent f as a binary vector (since LN = GF(2))
Append c to FS

}
good_factor_systems←− ∅ // initialize an empty list of factor systems which do not produce further Veblen
points

foreach( f ∈ FS )do
{

if( i = 1 )
{

// in the case Q = STS(15) #1, any point can produce another Veblen point of S
S ←− Copy(LQ) \ {Ω} // make a copy of LQ removing the neutral element

}
else if( i = 2 )
{

// in the case Q = STS(15) #2, only the point 0 can produce a Veblen point of S
S ←− {0}

}
T ←− Copy(Q2) // make a copy of the fundamental pairs
bad_factor_system_flag←− false
while( Length(S) > 0 )do
{

good_pair←− null
P ←− S[0] // set P as the first element of the list S
T ←− {(A,B) ∈ T : A ̸= P ∧ B ̸= P ∧ A ∗ B ̸= P} // (∗) is the sum in LQ
if( Length(T ) = 0 ) // f is a good factor system
{

break // exit from the S loop
}
foreach( (A,B) ∈ T )do
{

// check if f(P,A)⊕ f(P ∗ A,B) ̸= f(A,B)⊕ f(P,A ∗ B), where (⊕) is the binary addition since
LN = GF(2)

P_A_idx←− Index-Of({P,A}, Q2) // look for the index of the pair {P,A} in Q2
PA_B_idx←− Index-Of({P ∗ A,B}, Q2) // look for the index of the pair {P ∗ A,B} in Q2
A_B_idx←− Index-Of({A,B}, Q2) // look for the index of the pair {A,B} in Q2
P_AB_idx←− Index-Of({P,A ∗ B}, Q2) // look for the index of the pair {P,A ∗ B} in Q2
left_side←− f [P_A_idx]⊕ f [PA_B_idx] // compute the left side of the equivalence to check
right_side←− f [A_B_idx]⊕ f [P_AB_idx] // compute the right side of the equivalence to check
if( left_side ̸= right_side )
{

good_pair = (A,B)
break // exit from the T loop

}
}
if( good_pair is not null )
{

(A,B)←− good_pair
S ←− S \ {P,A,B}

}
else
{

bad_factor_system_flag←− true
break // exit from the S loop

}
}
if( bad_factor_system_flag is false )
{

f ′ ←− As-Integer(f) // represent the vector f of elements in LN as an integer
Append f ′ to good_factor_systems

}
}
Save good_factor_systems to the disk
Print the number of good_factor_systems

}
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