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Abstract: This article aims to provide rigorous and convenient statistical models for dealing with high-
variability phenomena. The presence of discrepance in variance represents a substantial issue when it is not
possible to reduce variability before analysing the data, leading to the possibility to estimate an inadequate
model. In this paper, the application of Generalized Additive Model for Location, Scale and Shape (GAMLSS)
and theuse of finitemixturemodel for GAMLSSwill be proposed as a solution to the problemof overdispersion.
An application to Liver fibrosis data is illustrated in order to identify potential risk factors for patients, which
could determine the presence of the disease but also its levels of severity.
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1 Introduction

In many applicative studies, the average level of certain response variables cannot be controlled unless
variability in its measurements is previously reduced. This happens very often in medical studies when the
interest lies in determining the presence of somediseases and the relevant level of progression, through the use
of some laboratory measurements. Those are characterized by high-variability between observations and no
gold standard exists; or, alternatively, when repeatedmeasurements with high-variability are available for the
same patient. In both cases, it is essential to know the within-subject variability in order to establish the
presence of the disease. Clinicians must understand variability in measurements both qualitatively and
quantitatively and endeavour to reduce that variability before trying to use data to establish a patient’s health
condition.

In fact, when data exhibit high-variability, any model fit in order to derive an average behaviour of the
phenomenon under study will be characterized by “overdispersion” [1]. When it is not possible to eliminate
variability before analysing the data, it will result in a substantial discrepancy in variance, which constitutes
evidence of an inadequate model fit for the high-frequency variations in the outcome. In this regard, [2, 3]
obtained results suggesting that the extent of overdispersion can be reduced, but not necessarily eliminated,
by fittingmore complex stochasticmodels that better reflect the nature of the observed extra-variability. In this
paper, we propose management of the problem caused by overdispersed data by applying the generalized
additive model for location, scale and shape framework (GAMLSS) as introduced by [4]. The idea of using a
GAMLSS approach for handling our problem comes from the idea of [5] consisting in the use of an EM
maximum likelihood estimation algorithm [6] to deal with overdispersed generalized linear models (GLM). As
in the GLM case, the algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing
distribution. The GAMLSS specification allows the extension of the Aitkin algorithm to probability distribu-
tions not belonging to the exponential family. In particular, aim of this work is to show the importance of using
a GAMLSS strutcure when a mixture is used to provide a natural representation of heterogeneity in a finite
number of latent classes [7].
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Froman applicative point of view, the need for the specification of a GAMLSS able to dealwith overdispersed
data comes from the analysis of Liver fibrosis data. In the Liver fibrosis data, the response variable is liver
stiffness measured as wave speed (expressed inm/s) registered by the Acoustic Radiation Force Impulse (ARFI),
while the explanatory variables are divided into two groups: patient-specific explanatory variables (sex, age, size
and weight) and explanatory variables relevant to the exam (depth, liver segment, patient position). As Figure 1
shows, wave speed data seem to exhibit overdispersion. In particular, data show a variance increasing with the
mean (A) and a non-linear relationship betweenmeans and the log transformed variances (B) is observed. In this
work, theuseof afinitemixturemodel forGAMLSSwill be proposedas a solution to theproblemofmultimodality
in determining the presence of liver diseases and to establish its level of severity.

The paper is structured as follows: after a brief review of GAMLSS theory (Section 2), an extension of the
finite mixture framework to the class of GAMLSS is introduced in Section 3. Section 4 is devoted to an
application of the proposed approach to Liver fibrosis data. Some simulation results are reported in Section 5
before presenting our conclusions.

2 GAMLSS modelling: a real application

General Additive Models for Location Scale and Shape were introduced firstly by [8] as a way of overcoming
some of the limitations associated with Generalized Linear Models [9] and Generalized Additive Models [10].
They represent a flexible class of models for several reasons. Firstly, they allow the response variable to be
selected in a very general family of distributions D including highly skewed and kurtotic continuous and
discrete distributions.Moreover, they are a flexible class ofmodels because, once the response distribution has
beenfixed, all the parameters characterizing the chosen distribution canbemodelled byusing parametric and/
or non-parametric smooth functions of the explanatory variables (i. e. cubic splines, penalized splines, lowess)
and/or random effects. Thus, assuming the response variable Y follows a four-parameter distribution Y ∼ D(θ)
with θ = (μ, σ, ν, τ), where µ and σ are usually location and scale parameters, while ν and τ shape parameters,
the formulation of GAMLSS given by [4] is:

gk(θk) = ηk = Xkβk + ∑
Jk

j=1
hjk(xjk)  k = 1, 2, 3, 4 (1)

Figure 1: Mean-variance (A) andmean-log(variance) (B) relationships in Liver fibrosis data, in green a fitted curve for loess, in red
a fitted curve for quadratic.
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where Xk is a known fixed effects design matrix of order n × J′k, gk(.) are known monotonic link functions
relating, in a parametric way, the distribution parameters to the explanatory variablesXk and hjk represent the
non-parametric additive terms. The model in Equation (1) can be extended to allow for the inclusion of non-
linear parametric terms in the model, for μ, σ, ν and τ, as discussed in [11]. The vector of parameters βk and the
non-parametric terms hjk are estimated by maximizing a penalized likelihood function lp defined as the
difference between the log likelihood function of the distribution parameters given the data
l = ∑n

i=1log fY(yi
⃒⃒⃒⃒
θi) = ∑n

i=1log f Y(yi
⃒⃒⃒⃒
μi, σi, νi, τi) and a quadratic penalty term which depends on fixed hyper-

parameters λ. The penalized log-likelihood lp can be estimated following two basic algorithms. The first one,
the CG algorithm, is a generalization of the [12] algorithm that uses the first derivatives and the expected values
of the second and cross derivatives of the likelihood functionwith respect to θ = (μ, σ, ν, τ) for a four-parameter
distribution. However, for many probability (density) functions, fY(y⃒⃒⃒θ), the θ parameters are information
orthogonal. In this case, the simpler RS algorithm that does not use the cross derivatives is more suitable. The
RS algorithm is a generalization of the algorithm used by [13, 14] for fitting Mean And Dispersion Additive
Models (MADAM). Details about the algorithms used to maximize the penalized log likelihood lp can be found
in [15]; an application of GAMLSS on Liver fibrosis data is shown below.

Liver fibrosis is one of the 10 most frequent causes of death in the world and consists of excessive
accumulation of extracellular matrix proteins, including collagen, which occurs in most types of chronic liver
diseases. Advanced liver fibrosis can result in cirrhosis, liver failure, and portal hypertension and often
requires liver transplantation [16]. The severity of liver fibrosis can be classified in five stages, based on the
Metavir scoring system, from a normal (F0) to a cirrhotic (F4) liver [17]. In medicine, liver biopsy represents the
gold standard test for staging liver disease [18]. An alternative diagnostic technique is represented by the
Acoustic Radiation Force Impulse (ARFI) [19].

ARFI measures liver stiffness through mechanical excitation of tissue, using acoustic pulses producing
shear wave propagation. According to the ARFI principle, the stiffer the tissue, the faster shear waves will
propagate. The dataset used in this example consists of ARFImeasurements taken in 2013 from 141 patients. As
during each elastography, several measurements are gathered, the dataset has a two-step hierarchical
structure: a macro “exam level” and a second nested level for the measurements taken during the same exam.
The response variable is liver stiffnessmeasured aswave speed (expressed inm/s) registered byARFI,while the
explanatory variables are divided into two groups: patient-specific explanatory variables (sex, age, size and
weight) and explanatory variables relevant to the exam (depth, liver segment, patient position).

Since hepatic fibrosis affects the liver patchy, the advantage of obtaining repeated measurements from
different parts of liver becomes fundamental. The possibility of obtaining depth data represents the most
important innovation of this dataset since data on depth is available for the first time. ARFI allows to measure
liver stiffness at different depths starting from 1.5 cm to a maximum of 8 cm. Understanding how wave speed
changes when stiffness is measured at different depths represents a very important objective of this study.
Moreover, as liver is divided into segments, a four-level (Segment = 5, 6, 7, 8) factor variable has been included
in the dataset. Some studies in the literature show how the position of a patient during the examination affects
the value of wave speed measured by ARFI [20, 21]. Liver fibrosis data also include information about patient
positions: supine (ant), lateral (lat) and prone (pos).

The complexity of the dataset, together with the overdispersion already shown in Figure 1, has led us to
consider not only modelling of the location parameter but also use of GAMLSS object in order to provide a
structure to the other parameters characterizing the assumed response variable distribution. Among the more
than 80 distributions implemented in GAMLSS, we have to search for a continuous and positive skewed
distribution in R+ taking kurtosis also into account. Six probability distributions have been selected, and a null
model has been fitted for the reduced dataset. In particular, we fitted the following probability distributions: IG
(Inverse Gaussian) [22]; BCCG (Box–Cox Cole and Green) [12]; BCPE (Box-Cox Power Exponential) [23]; BCT
(Box–Cox generalized t) [11]; GB2 (Generalized Beta 2) [24]; ex-GAUS (exponentially modified Gaussian (EMG)
distribution) [25]. The choice of a suitable distribution for the ARFI speed variable relapsed on the Box–Cox
Power Exponential (BCPE) distribution. It was introduced by [23] in order tomodel both skewness and kurtosis
in the distribution of a continuous response variable Y.
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Once the response variable distribution has been properly specified, the GAMLSS model is selected by
comparing various competing models in which different combinations of the components of the model are
used. Thus, for example, a set G of link functions (g1, g2, g3, g4) for the four parameters in θ has to be properly
specified. A set of linear predictor terms has to be defined for the four parameters of the assumed response
distribution. Selection of the predictor terms can be considered the biggest problem for the model selection
procedure due to the high number of variables involved in a linear system of four equations. Moreover, the
hierarchical structure of data and the presence of repeated measurements suggest the inclusion of some
random effects in order to account for the correlation between observations on the same patient. Therefore,
another important aspect in model selection is the inclusion of hyperparameters in the model. The specifi-
cation of all these components will be based on a measure of global goodness of fit used to compare several
models. Each GAMLSS fitted model is generally assessed by using its Global Deviance (GD) given by

GD = −2lp(θ̂) where lp(θ̂) = ∑n
i=1lpi(θ̂). Two nested models M0 and M1 will be compared by using the test

statistic Λ = GD0 − GD1 which has an asymptotic χ2-distribution under M0 with d = dfM0
− dfM1

degrees of

freedom. When comparing non-nested GAMLSS, the Generalized Akaike Information Criterion (GAIC) [26] can
be used to penalize overfittings. GAIC is obtained by adding a fixed penalty term p to the fitted global
deviances, for each effective degree of freedom used in the model (p = 2 corresponds to the standard Akaike
Information Criterion [26], while p = log n is the Bayesian Information Criterion [BIC] [27]).

Themodel with the smallest GAIC value will be selected. Several GAMLSSmodels have been fitted to Liver
fibrosis data. A grid of penalty values p has been checked, and the respective number of explanatory variables
included in themodel for each parameter (μ, σ, ν, τ) is displayed in Table 1. A penalty p = log(n) = 8.32 has been
chosen looking for a satisfactory trade-off between simplicity of the model and loss of information.

Once the value p for the penalty has been selected, we tried to use a modified version of BCPE distribution
using a log link function for parameter µ of the model. Finally, in order to account for the correlation between
observations measured on the same patient, a random effect component for the patient grouping factor was
included. The selected final model is shown below:

speed =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log μ = α1 + age + depth + segment + (1|patient)
log σ = α2 + age +weight + size + position

ν = α3 + age
log τ = α4 + age

(2)

where 1|patient stands for the random effect for the single patient. Results from the fittedmodel are reported in
Table 2.

Age seems to be the most important predictor for wave speed since it enters each equation of the selected
model. Its estimated value is positive for all the equations. On the contrary, depth has a negative effect onwave
speed; in particular, a unitary increase in depth produces, on average, a 5% decrease (1 − exp(−0.048)) in the
mean value of wave speed. Segment is significant only for the µ parameter with Segment 5 (baseline) not
significantly different from Segment 6. Segment 7 is highly different from baseline with wave speed for
Segment 7, on average, 12% (1 − exp(−0.128)) lower than that in baseline; the estimated value for Segment 8 is
positive with an average effect on the logarithm of speed equal to exp(0.075) = 1.077. For the scale parameter
σ, four variables are significant. The negative coefficient for size (the patient height) is an interesting result:

Table : Number of linear predictor terms included in the fitted GAMLSS for different penalty values p.

p μ σ ν τ

 (AIC)    

–     

–    

    

log(n) = .    
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when size increases by 1 cm, the variability in wave speed seems to decrease 0.6% (1 − exp(−0.920)). No
significant differences in variability exist between anterior and lateral positions, while the posterior position
results are significantly different with a variability in posterior wavemeasurements that is 14% higher than for
observations in the anterior one. For skewness and kurtosis, the only significant terms are negative intercepts
and positive coefficients for age.

3 Mixture models in GAMLSS

When conducting any statistical analysis, it is important to evaluate how well the model fits the data and
whether the data meet the assumptions of the model. There are numerous ways to do this and a variety of
statistical tests to evaluate deviations from model assumptions. Generally, once a model is fitted, the overall
adequacy of the selectedmodel is assessed through the analysis of residuals by using both diagnostic plots and
tests. Within the framework of GAMLSS, the analysis of residuals is based on the use of randomized quantile
residuals. This class of residuals has been introduced by [28] for regression models with independent re-
sponses. They are defined as the standard normal quantiles corresponding to the inverse of the fitted distri-
bution function evaluated for each response value. In particular, let us assume that F(y ; μ,ϕ) is the cumulative
distribution function of P(μ,ϕ). If F is continuous, then the F(yi ; μi,ϕ) are uniformly distributed on the unit
interval. In this case, the quantile residuals are defined by

rqi = Φ−1(F(yi ; μ̂i, ϕ̂)),  i = 1,…, n (3)

Table : Results from the best fitting GAMLSS for the response variablewave speed: standard error of the estimates in brackets.
Significance codes: “***” <.; “**” (.–.); “*” (.–.); “.” (.–.).

log μ Estimate p-value

α . (.) .*
Depth −. (.) <e-***
Age . (.) <e-***
seg −. (.) .
seg −. (.) <e-***
seg . (.) .*

log σ Estimate p-value

α −. (.) .
Age . (.) .e-***
weight . (.) <e-***
Size −. (.) .e-***
positlat −. (.) .
positpos . (.) .***

ν Estimate p-value

α −. (.) <e-***
Age . (.) <e-***

log τ Estimate p-value

α −. (.) .e-***
Age . (.) <e-***
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whereΦ(⋅) represents the cumulative distribution function of the standard normal distribution. Such residuals
can also be derived when the response variable is discrete, by including a number of randomization pro-
cedures in order to ensure continuous residuals. Dunn and Smyth [28] have shown that such a definition
produces residuals that are exactly normal, apart from sampling variability in the estimated parameters. Since
the properties of residuals are known, a graphic representation of the quantile residuals against the predictors
could represent a diagnostic tool capable of identifying regions of explanatory variables within which the
models do not show an adequate fit. In this work, among the several graphical diagnostic tools proposed in the
literature, we propose the use of the worm plot of residuals introduced by [29]. The worm plot consists of a
number of detrended Q–Q plots split according to certain predictors. In particular, the vertical axis of a worm
plot portrays, for each observation, the difference between its location in the theoretical and empirical dis-
tributions. The data points in each plot form a worm-like string. The shape of the worm indicates how the data
differ from the assumed underlying distribution. A model that fits the data well is characterized by a “flat
worm”. The 95 per cent confidence interval is plotted as well in order to delineate the region where the worm
should be located most of the times, provided the empirical and theoretical distributions agree.

In a GAMLSS context, wormplots are largely used to derive hints about the positionswhere the GAMLSS fit
needs to be improved, but also to identify particular features in the data [30], such as overdispersion or
multimodality. Liver fibrosis data, from a first descriptive analysis, appear to be characterized by high vari-
ability; in particular, thewormplot relevant to the selectedmodel, which is summarized in Equation (2) (Figure
2 (A)) exhibits an M-shape pattern that requires improvement in the specified parametric model. In fact, as
extensively discussed in the literature, when inadequately modelled, heterogeneity can lead to underesti-
mation of the standard errors of regression parameters, too narrow confidence intervals and too small p-values
[5, 31].

When heterogeneity is due to the presence of subpopulations within an overall population, then amixture
model could be the best solution for representing the probability distribution of observations in the overall
population. There is an extensive amount of literature onmixture distributions and their use inmodelling data
[32–35]. Yet, the use ofmixture distributions for GAMLSS represents a complex and interesting area of research
for this class of models.

The aim of this paper is to suggest the use of a mixture approach for GAMLSS when, as in the Liver fibrosis
example, data exhibit heterogeneity. The central idea is that the M-shaped pattern in the worm plots could be
the result of a spurious appearance of a bimodal distribution. Therefore, the use of a GAMLSS mixture model
could be useful for proper identification of the underlying distribution. Thus, as in a standard finite mixture

Figure 2: Worm plots for two fitted GAMLSS objects: (A) the worm plot of the BCPEo GAMLSS in Equation (2); (B) the worm plot of
the GAMLSS with a finite mixture distribution for the response.
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model, let us assume that the response variable Y follows a distribution f that is a mixture of R component
distributions f 1, f 2,…, f R:

f Y(y) = ∑
R

r=1
πrf r(y) (4)

where each component contributes to the total density with weights πr, being the mixing weights, πr > 0,
∑rπr = 1. The natural way to introduce finite mixture distributions in a GAMLSS framework consists in
assuming that all theR components of themixture are represented byGAMLSSmodels. Moreover, according to
the assumptions about the parameters involved in eachR component, it is possible to distinguish two different
specifications of finite mixture models in GAMLSS [36]. The first one assumes that each density function f r(y)
depends on a set of parameters θr with no parameters in common with two or more parameter sets.

This assumption allows the use of different GAMLSS distributions for each conditional distribution
component f r(y) in themixture. Alternatively, the second approach allows the R components of themixture to
have parameters in common, that is the parameter sets (θ1, θ2,…, θR) are not disjoint. Note that since some of
the parameters may be common to the R components, the distribution used and the assumed link functions
must be the same for all components. An important issue, valid for both the specifications discussed above, is
the dependence of the mixing weights on a number of explanatory variables. The possibility to use non
constantmixingweights can be applied in all situations where the probability of belonging to one of the R sub-
populations could depend on exogenous variables (healthy status, age, exposure to some agents, etc.).
However, it is specified that maximization of the likelihood function of a finite mixture model in GAMLSS is
carried out using an EM algorithm [6]. The R package gamlss.mx enables fitting of mixtures of distributions
with estimated weights, which can also depend on covariates. Figure 2 (B) represents the worm plot for the
GAMLSS with predictor terms as in Equation (2) but with the BCPEo replaced by a finite mixture. The com-
parison of the two worm plots shows the gain in goodness of fit derived from the use of the mixture. The worm
becomes flatter and a fewer number of points fall out of the 95 per cent confidence intervals.

4 Mixture GAMLSS and Liver fibrosis: results

As already discussed in the previous Section, the comparison between the worm plots obtained by the two
properly specified GAMLSS fits seems to confirm the hypothesis about a bimodality in Liver fibrosis data that
could justify the observed high variability. From a medical point of view, a possible explanation of this
bimodality is that the two components in the mixture could represent two classes of subjects: healthy and
cirrhotic patients.

Once the proposed finite mixture GAMLSS has been fitted, it is possible to derive the estimated posterior
probabilities pertaining to the twomixture components for each statistical unit. If the fitted model works well,
a correspondence between the estimated probabilities of belonging to a specific sub-population and the
objective classification represented by the Metavir score is desired. In order to assess the aforementioned
relationship, a graphical representation of the estimated probabilities versus the observed values of speed can
be useful. According to theMetavir classification, liver fibrosis is divided into five stages, from F0 to F4, on the
basis of the presence of connective tissue in the liver. For simplicity purposes, a three-group classification is
used here, as proposed in [20]: F0–F1 (normal liver), F2–F3 (mild fibrosis) and F4 (cirrhosis). The pattern of the
scatter plot (Figure 3) suggests a three-category classification for the estimated probabilities, with thresholds
derived by visual inspection. By crossing both the categorized variables, a 9-sectors grid is obtained and it is
noted thatmeasurements fall within certain specific sectors only. Therefore, this result confirms the hypothesis
of a direct relationship between the posterior probabilities and theMetavir staging system, and emphasizes the
advantage of using a mixture GAMLSS model for this type of data. In particular, speed values in the category
F0 − F1 have a 0–69%probability of belonging to the first component of themixture. The estimated probability
reaches the 90% for measurements belonging to cirrhotic patients (F4). A 3-by-3 table (see Table 3) has been
derived from the graph to summarize the results in a quantitative way. Considering all the n = 4129
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measurements, the table contains the frequencies observed in each sector of the grid. It is important to
emphasize the presence of four zero-cells in the correspondences matrix that implies a considerable associ-
ation between speed values and the probabilities of falling within a specific mixture component.

From a medical point of view, this represents an important result because the use of mixture GAMLSS
allows to take into account variability inmeasurements and to derive the disease severity stage through the use
of important explanatory variables. Since until now only risk factors have been considered as predictors, it
could be also interesting to introduce clinical variables in the dataset. From the existing literature, it is known
that laboratory tests play an important role in detecting liver diseases, since anomalous values of alanine
transaminase (ALT) and aspartate transaminase (AST) are potential markers of hepatitis. Besides, production
of newer serologic markers has been proposed as an aid in determining the degree of liver fibrosis. For this
reason, the first clinical variable considered is an indicator variable of anomalous values for the tra ratio index
defined asAST/ALT. Since anomalous values of this index could be symptom related to other liver diseases, an
additional clinical variable has been introduced. It is an indicator variable of fibrosing Hepatitis C Virus (HCV).
It is based on the diagnosis provided by medical doctors after accurate exams. Like many liver diseases, it is
asymptomatic and could culminates in cirrhosis. Thus, high correlation is expected between the presence of
HCV and high values of ARFI speed.

The selection model procedure previously described has been implemented including clinical variables
and coefficient estimates of the final selected model with the corresponding standard errors are displayed in
Table 4. The model has a framework similar to the one in Table 2 except for the clinical variables. Both tra and
HCV have an effect on the location parameter with positive coefficients. Moreover, Segment effect is no longer
included in the model. Predictor terms for the scale parameter are the same in model 2 while tra has a positive
effect on the skewness of the response variable.

Figure 3: Metavir Stage speed versus mixture posterior probability.

Table : Cross classified Metavir scores (M) and estimated probabilities (p).

P\M F0–F1 F2–F3 F4

–%   

–%   

–%   
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Nevertheless, the introduction of clinical variables does not solve the problem of overdispersion. An M-
shaped pattern is still present in the worm plot as shown in Figure 4 (A). When a finite mixture is assumed for
the response variable an improvement inmodelfit is again evident Figure 4 (B). Randomized quantile residuals
take a flatter worm shape and few points fall out of the 95 per cent confidence intervals.

Table : Results from the best fitting GAMLSS for the response variable wave speed: in round brackets standard error of the
estimates. Significance codes: “***” <.; “**” (.–.); “*” (.–.); “.” (.–.).

log μ Estimate p-value

α . (.) .**
Depth −. (.) <e-***
Age . (.) <e-***
tra . (.) .e-***
hcv . (.) .e-***

log σ Estimate p-value

α −. (.) .e-***
Age . (.) <e-***
Weight . (.) .e-***
Size −. (.) .**
positlat −. (.) .
positpos . (.) .e-***

ν Estimate p-value

α −. (.) <e-***
Age . (.) <e-***
tra . (.) .e-***

log τ Estimate p-value

α −. (.) .***
Age . (.) <e-***

Figure 4: Worm plots for two fitted GAMLSS objects adding clinical variables: (A) the worm plot of the BCPEo GAMLSS in
Equation (2); (B) the worm plot of the GAMLSS with a finite mixture distribution for the response.
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The conclusions derived from this applicative example show that the processing of data characterized by
high-variability cannot be solved by increasing the number of predictor terms in the model. Even the intro-
duction of clinical variables did not help in establishing the severity degree of the disease. Hence, the proposed
mixture approach in GAMLSS can be considered the best solution for dealing with overdispersed data.

In Table 5, the estimates of coefficients for the mixture model are presented. It is possible to compare the
coefficients tables of the two models: the one in Table 2 and the mixture model one in Table 5. Most of the
conclusions derived from the first output are confirmed here. Among predictors, Age is again the most
important since it is present in all the equations of the model. Depth has a significant negative effect on Speed.
The only liver segment that differs from the baseline (segment 5) is segment 7. As for as logσ is concerned, even
in this case there is no significant difference between anterior or lateral position, while the posterior one has a
positive effect on the variance. All other coefficients are equally signed and similar in terms of absolute value.
Moreover, the new coefficient namedMASS is positive and statistically significant. The use of a mixture model
is justified and the difference between the two components is positive.

Besides, comparisons between linear GAMLSS andGAMLSSmixture extension are carried out in twoways.
Firstly, a comparison in terms of goodness of fit is achieved using Global Deviances (GD). Secondly, the worm
plot is used as diagnostic tool and since, according to our hypotheses, the use of a mixture model gets a more
flat worm, the h number of points outside the confidence interval bands, is used as criterion for comparison.
We wish for a lower GD and a lower h for the mixture model. Mixture model has a lower GD with ΔGD = 34.30.
As we can see from Figure 2, there is a difference between the two worm plots: compared to the one on the left
(original model), the second one with the mixture approach is more flat and on the right tail more points are
now within the boundaries with a difference of 1355 points.

Table : Coefficients for mixture models in GAMLSS: in round brackets standard error of the estimates. Significance codes:
“***” <.; “**” (.–.); “*” (.–.); “.” (.–.).

log μ Estimate p-value

α −. .e-***
Depth −. <e-***
Age . <e-***
seg . .
seg −. .e-***
seg . ..
MASS . <e-***

log σ Estimate p-value

α −. <e-***
Age . <e-***
Weight . <e-***
Size −. .***
positlat −. .
positpos . .e-***

ν Estimate p-value

α −. <e-***
Age . <e-***

log τ Estimate p-value

α −. .***
Age . <e-***
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5 Simulation studies

A number of simulations have been run in order to evaluate the goodness of a mixture approach in GAMLSS
when the response variable seems to be bimodal. The starting scenario is very similar to the one in Liver fibrosis
data. M = 50 datasets have been simulated with n = 1000 observations. Each dataset includes a response
variable Y and three explanatory variables X1,X2,X3. The Y variable is obtained as mixture of two BCPEo
distributions with weights of π1 = 0.75 (the observed proportion of non-cirrhotic patients in the real Liver
fibrosis dataset) and π2 = 0.25 respectively. The three predictors X1,X2,X3 are simulated from a normal dis-
tribution (X1,X2,X3 ∼ N(5, 1)). Simulated densities of the two components Y1 and Y2 are displayed in Figure 5.

A GAMLSS involving four parameters (μ, σ, ν, τ) has been fitted to these simulated data. The framework
used in GAMLSS specification is similar to the final model selected with the real data and it is shown below:

Y = Y 1,Y2 =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log μ = α1 + X1 + X2 + X3

log σ = α2 + X1 + X2

ν = α3 + X1

log τ = α4 + X1

(5)

where Y 1 ∼ BCPEo(5,0.1, 1, 2) and Y2 ∼ BCPEo(7,0.1, 1, 2).
Using the same dataset, a GAMLSS with a finite mixture assumed for the response variable was estimated.

Comparisons between standard GAMLSS and the proposed GAMLSS mixture are carried out in two ways.
Firstly, a comparison in terms of goodness of fit is achieved using their Global Deviances. Then, wormplots are
used as a diagnostic tool. In particular, since according to our hypotheses the use of a mixture model products
a flatter worm, the number of points h outside the confidence interval bands is used as a criterion for model
comparisons. A lower GD and a lower number of points outside the bandwidths for the mixture model are
desirable.

Several scenarios have been simulated by changing a parameter value each time: differentmean values for
μ2 have been used in order to check the dependence on the mean values of the selected mixture distributions
(scenario 2–5); two different values for the parameter σ1 relevant to the first BCPEo mixture component have
been used σ = 0.25,0.5 (scenario 6–7); ν = −1,0 (scenario 8–9) and τ = 1, 3 (scenario 10–11) have been
implemented; finally, different weights π1 for the mixture component have been considered π1 = 0.5, 0.9
(scenario 12–13).
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Figure 5: Densities of the two mixture components in
Scenario 1.
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Table 6 summarizes all possible scenarios and contains, for each of them, both the average difference in

Global Deviance between the standard GAMLSS fit and the model assuming the finite mixture ( ¯ΔGD) and the
difference between the two fitted models in terms of number of points outside the confidence interval bands

(Δ̄h). Looking at the table, it is possible to note that good results are obtained with the starting scenario

characterized by a ¯ΔGD = 19.4 and a difference in terms of number of points equal to Δ̄h = 52.
Moreover, the table shows that, when the distance between μ1 and μ2 decreases, the two approaches

appear to be very similar; when this distance increases, the two indicators used for the comparison increase
too. When μ1 and μ2 are fixed and σ increases (scenario 6–7), the mixture components are flatter and similar
results to scenario 2 are obtained where there are no differences between the two approaches. Scenarios for
negatively skewed or symmetric distributions (8–9) seem to give better results than the first one. Different
values for kurtosis τ = 1, 3 (10–11) show that, when low values are selected, the results are similar for both
models; instead, when using higher values, the results are similar to scenario 1. Finally, differentweights π1 for
the mixing component lead to slight differences between the two fits (12–13).

Similar results are obtained when increasing the number of observations (n = 2000) in the simulated

datasets (Table 7). In conclusion, it possible to state that differences in terms of ¯ΔGD and Δh̄ are related to the
features of the mixture components: when they do not totally overlap, there is a clear gain in global goodness

Table : Simulation scenarios and comparison measures with n = .

μ1 μ2 π1 σ1 ν1 τ1 �ΔGD Δ�h

   . .   . 

   . .   −. −
   . .   . 

   . .   . 

   . .   . 

   . .   . 

   . .   . −
   . . −  . 

   . .   . 

   . .    

   . .   . 

   . .   . −
   . .   . 

In bold, the modified values respect to the baseline situation

Table : Simulation scenarios and comparison measures with n = .

μ1 μ2 π1 σ1 ν1 τ1 �ΔGD Δ�h

   . .   . 

   . .   −. −
   . .   . 

   . .    

   . .   . 

   . .    

   . .   . −
   . . −   

   . .   . 

   . .   −. 

   . .   . 

   . .   −. −
   . .    

In bold, the modified values respect to the baseline situation
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of fit when using the proposed finite mixture GAMLSS fit rather than the classical GAMLSS approach. On the
contrary, when the mixture components are not perfectly separate, the advantage of using a mixture depends
on the location and scale parameters of the distributions. Finally, the choice of weightsπ can also influence the
results because opportunely chosen weights allow to weaken roughly high-variability in data.

6 Discussion

The GAMLSS modelling procedures described here are useful for several reasons. First, they prove to be
convenient statistical models for dealing with high-variability phenomena. Secondly, they provide informa-
tion about the relationship between predictive factors, clinical variables anddisease risk that is not revealed by
the use of standard modelling techniques. GAMLSS could be widely applied to medical research, since high
variability and overdispersion are frequently recurring situations when clinical data are analysed. For Liver
fibrosisdata, a linear GAMLSSmodel points out thatwave speedproduced byARFI is influenced by a number of
risk factors. In particular, age of patient, depth and segment of the measurements are the most relevant
predictors in the study. In Liver fibrosis data, overdispersion appears when randomized quantile residuals are
displayed through the use of worm plots. Specifically, an M-shaped pattern arises and the use of a finite
mixture approach in GAMLSS appears to be the best solution for detecting this bimodality. Moreover, a
graphical tool is introduced where the estimated posterior probabilities are plotted versus a categorization of
wave speed; the resulting pattern confirms the hypothesis that the two identified mixture components are
related to the clinical status of the statistical unit. A number of simulation studies have been run in order to
evaluate the goodness of a mixture approach in GAMLSS considering similar scenarios for the Liver fibrosis
data showing that, when mixture components do not overlap totally, there is a clear gain in global goodness
of fit.

Concerning future works, the possibility of solving bimodality problems using this method should be
verified through similar datasets and additional simulation studies; this might cover, for example simulated
data from other probability distributions, different from the BCPE and data where more than two mixture
components are considered.
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