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A B S T R A C T

In the past decades, numerous efforts have been dedicated to establishing a direct correlation between a
geometric parameter that represents wall roughness and the corresponding velocity reduction, known as the
Roughness Function 𝛥𝑈+. This reduction is influenced by various statistical measures of roughness height,
including average roughness height, peak-to-valley roughness distance, roughness root mean square, and
Effective Slope, among others. It has been demonstrated that a singular measure of roughness height cannot
sufficiently predict the Roughness Function across all turbulent regimes. Consequently, many studies have
concentrated on identifying a universal correlation between roughness geometry and the downward shift
of the mean velocity profile. In this study, we investigated the correlation between various geometrical
parameters and the Roughness Function using Large Eddy Simulation (LES) techniques in channel flows at
a friction Reynolds number of 𝑅𝑒𝜏 = 400. Given the complexity introduced by the random nature of irregular
roughness, we explored specific aspects of the relationship between wall irregularities and the roughness
function by studying 2D geometries. This approach allowed us to systematically investigate the impact of
geometrical properties on the roughness function and isolate the effects of roughness density and coverage area.
Several irregular rough surfaces, characterized by different average oscillations height, different distributions
and different densities, were designed throughout 2D Gaussian functions. With the aim to find a universal
correlation between the roughness geometry and the Roughness Function, new geometrical quantities were
investigated, based on the global area occupied by the roughness 𝐴∗. The prediction of the roughness function
can be thus obtained using apriori data. To predict the roughness function, we introduced a parameter called
Effective Area (EA), which is derived from the correlation between the Effective Slope (ES) and the roughness
area 𝐴∗. Our findings indicate that a single geometric parameter, whether ES or Area A, is insufficient to
predict the roughness effect. Conversely, combining these two parameters enhances predictive accuracy, at
least for the proposed roughness model. This improvement can be attributed to the ability of ES to interpret
the roughness distribution and height, while the coverage area is effective in predicting roughness density over
a flat plate.
. Introduction

Which roughness length scales best typify a surface hydraulically?
ince the early experimental works in the last decades, several re-
earchers have been working to reply to this question. The attention
f the scientific community on the roughness effect is clearly justified
onsidering that, in almost all the engineering systems, the boundaries
re characterized by irregularity and only seldom can be considered
ydraulically smooth. Despite extensive efforts have been made to
nderstand the turbulent flow physics over corrugated walls, through
omputational and laboratory experiments, the knowledge cannot be
onsidered sufficiently robust and universal. This can be attributed to
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the large number of roughness topographies. In fact, surfaces become
rough over time owing to deposition as well as time-related deteri-
oration, including erosion, corrosion, organic and inorganic fouling
processes. Basically, the roughness is somewhat of dynamic phenom-
ena and it can induce dramatic reduction of the system performance
and huge increase of the management costs. Hence, the prediction of
the turbulence effects becomes an important prerequisite for optimal
engineering design and machine maintenance.

Since the fundamental studies of Nikuradse (1993) and Moody
(1944), the research of a geometric length scale able to predict the
roughness effect on the mean flow was investigated. The preliminary
142-727X/© 2024 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/).
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experiments focused the attention on the relationship between wall
frictional drag and sand grain roughness at different Reynolds number.
One of the first contribution able to find a mathematical law to predict
the main roughness effect was given by Hama (1954), introducing
the correlation between a parameter, known as equivalent sand grain
roughness 𝑘𝑠 and the energy loss induced by the roughness. Hama
(1954) focused the attention on the downward shift of the mean
velocity profile in the log region, known as Roughness Function 𝛥𝑈+

(hereafter, the superscript + denotes variables made non-dimensional
with inner variables 𝑢𝜏 = (𝜏𝑠∕𝜌)0.5 and 𝜈∕𝑢𝜏 , where 𝑢𝜏 is the friction
velocity, 𝜏𝑠 is the wall stress, 𝜌 the fluid density and 𝜈 the kinematic vis-
cosity). This shift is correlated with the equivalent sand grain roughness
𝑘𝑠 through the equation:

𝛥𝑈+ = 1
𝜅
𝑙𝑛(𝑘+𝑠 ) + 𝐵 (1)

where 𝜅 is the von Kàrmàn constant, 𝑘+𝑠 = 𝑘𝑠 ⋅ 𝑢𝜏∕𝜈 and B is a
constant. Unfortunately, 𝑘𝑠 cannot be assigned a priori; it is not, in
fact, a real geometric parameter and can be determined once the
mean velocity profile in rough conditions is known. The prediction of
the roughness-induced friction drag, merely based on the knowledge
of the roughness topography, has received extensive attention in the
past and a variety of roughness correlations have been developed in
literature (see Sigal and Danberg (1990), Waigh and Kind (1998), Van
Rij et al. (2002), Bons (2005), Napoli et al. (2008) and Flack and
Schultz (2010)). More recently, experimental (Barros et al., 2018; Flack
et al., 2020) and numerical (see among others Forooghi et al., 2017;
Kuwata and Kawaguchi, 2019; Chan et al., 2015; Thakkar et al., 2017;
Yang et al., 2022; Jouybari et al., 2021) studies have systematically
analyzed rough surfaces to investigate on the effect 3D Gaussian and
non-Gaussian geometries on the turbulent flows, focusing the attention
on the roughness parametrization. Some widely discussed statistical
measures in this context were summarized by Chung et al. (2021). The
authors, in fact, investigated the average roughness height 𝑘+, the peak-
to-valley roughness distance 𝑘+𝑝𝑣, the roughness root mean square 𝑘+𝑟𝑚𝑠,
the skewness 𝑆𝑘, the Effective Slope 𝐸𝑆, the density parameter 𝜆𝑠 and
the correlation length 𝐿𝑐𝑜𝑟𝑟. The extensive works carried out in the
past, as highlighted by Flack and Schultz (2014), showed how a single
roughness feature, is not able to adequately predict the Roughness
Function. Indeed, a single parameter can be representative of a single
feature of the roughness: the height or the asymmetry or the random-
ness, etc. Therefore, a number of questions regarding the relationship
between 𝛥𝑈+ and a physical measure of the surface irregularities,
applicable in both the transitionally and fully rough regimes, are still
open. This is mainly due to the heterogeneity of rough topography.
In literature, in fact, wall roughness was reproduced with 2D or 3D
elements or was distributed through regular or irregular shapes (see
among others Napoli et al., 2008; Schultz and Flack, 2009). The earliest
studies focused the attention on regular geometry and distribution, in-
volving ribbed, cubed or spherical elements (see Leonardi et al. (2003),
Antonia and Krogstad (2001), Ashrafian et al. (2004), Bhaganagar
et al. (2004), Lee et al. (2022) and Orlandi et al. (2006)). One of this
contribution was given by Schlichting (1937) who compared the effect
of several different roughness elements (spheres, cones, hamburg sand,
etc.) on the mean flow. The author highlighted the dependence of the
wall resistance on both the roughness height and a parameter, defined
as solidity, related to the element density and defined as 𝜆 = 𝐴𝑃

𝐴𝑇
, where

𝐴𝑃 is the projected plan area of a roughness element, which occupies
an area 𝐴𝑇 on the wall. Following the definition of the solidity, Sigal
and Danberg (1990) performed a number of studies to determine a
suitable geometric correlation relating to the roughness density effect.
Their new roughness density parameter, known as 𝜆𝑠, reads 𝜆𝑠 =
𝑆
𝑆𝑓

⋅
(𝐴𝑓

𝐴𝑠

)−1∕6
, where 𝑆 is the plan form area of the corresponding

mooth surface, 𝑆𝑓 is the total frontal area of all roughness elements
𝑆 and 𝑆𝑓 are equivalent to those used in Schlichting’s studies), 𝐴𝑓 is
he frontal area of a single roughness element and 𝐴 is the wetted
2

𝑠

rea of a single roughness element. Within this correlation, (𝑆/𝑆𝑓 )
represented a roughness density parameter and (𝐴𝑓 /𝐴𝑠) represented

roughness shape parameter. More recently, Napoli et al. (2008),
ntroduced the Effective Slope ES, similar to the solidity and defined
s 𝐸𝑆 = 1

𝐿𝑥1
∫𝐿𝑥1

|

|

|

|

𝑑𝑘(𝑥1)
𝑑𝑥1

|

|

|

|

𝑑𝑥1, where 𝑘(𝑥1) is the roughness height along

the streamwise direction and 𝐿𝑋1
is the respective streamwise lengths

of the rough surface. Extensive investigations on the effects of solidity
and of the Effective Slope were also conducted by Leonardi and Castro
(2010), as well as Macdonald et al. (2016), who pointed out that 𝐸𝑆
is strictly connected with the concept of the solidity, 𝐸𝑆 = 2 ⋅ 𝜆.
Subsequent researches, carried over 2D and 3D roughness elements,
both regularly or irregularly distributed (see among others Yuan and
Piomelli, 2014; Anderson et al., 2015; Busse et al., 2015; De Marchis,
2016; Milici and De Marchis, 2016), observed a direct correlation
between the downward shift of the mean velocity profile 𝛥𝑈+ and
𝐸𝑆. The dependence of the 𝛥𝑈+ on 𝐸𝑆 was studied by Schultz and
Flack (2009) in their analysis on close-packed pyramids characterized
by different value of height and slope. The achieved results were then
confirmed by Chan et al. (2015) through Direct Numerical Simulations
(DNSs) over sinusoidal wavy walls and by Forooghi et al. (2017) over
randomly distributed semi-ellipsoid/cone roughness and more recently
by Garg et al. (2023). Despite the overall effectiveness of the cor-
relation between 𝐸𝑆 and turbulent flows, some independent studies
have observed that roughness with different geometries but the same
𝐸𝑆 can result in varying values of the Roughness Function (Schultz
and Flack, 2009; Mejia-Alvarez and Christensen, 2013; Macdonald
et al., 2016; De Marchis et al., 2020). This observation underscores the
necessity for further investigation into this specific parameter. Many
other geometrical statistical quantities have been investigated in order
to find a direct correlation between roughness type and effects on
turbulent flows. Some authors focused the attention on the skewness
factor of the roughness oscillations (Flack and Schultz, 2010; Chan
et al., 2015; Thakkar et al., 2017). Flack and Schultz (2010), thanks to a
large amount of experimental data for different types of rough surfaces,
proposed a new correlation between 𝑆𝑘 and 𝑘𝑠. The authors continued
to investigate this aspect revealing that a dramatic increase in friction
drag occurred when the 𝑆𝑘 value changed from a negative value to
ero, while a change from zero to a positive value caused a modest
ncrease in friction drag (Flack et al., 2020). Nevertheless, Busse et al.
2017) and Flack et al. (2020) showed how some turbulent features are
lmost independent of the skewness factor.

Looking at the researches performed over irregular rough walls,
ome studies specifically focused their efforts on the correlation be-
ween 𝛥𝑈+ and the roughness geometry. Among the more recent
nvestigations, Thakkar et al. (2017) applied DNS techniques to study
he effect of roughness topography on 17 industrially relevant irregular
urfaces. The authors proposed a correlation between 𝛥𝑈+ and 𝜆, 𝑆𝑘,

and 𝑘𝑟𝑚𝑠. Jouybari et al. (2021) developed a high-fidelity prediction
approach of 𝑘𝑠 for turbulent flows over 45 different surface geometries.
To this end, Deep Neural Network (DNN) and Gaussian Process Re-
gression (GPR) machine learning approach was used to find a mapping
of 17 different rough surface statistics to equivalent sand-grain height.
The surface parameters include 8 primary variables widely investigated
in literature (𝑘, 𝑘𝑟𝑚𝑠, 𝑅𝑎, 𝐸𝑆𝑥, 𝐸𝑆𝑧, 𝑆𝑘, 𝐾𝑢, 𝑛𝑐𝑥𝑖) and 9 products
of them such as 𝐸𝑆𝑥*𝑘, 𝑆𝑘*𝐾𝑢 and so on. The authors pointed out
that there is some correlation between kurtosis and rms roughness
and kurtosis and skewness, conversely the relationship between others
parameters appears to be more random. A formulation to predict
𝑘𝑠 was recently proposed by Abdelaziz et al. (2022). The authors
performed laboratory experiments in a zero pressure gradient turbulent
boundary layer, to investigate the downward shift of the mean velocity
profile, in the streamwise direction, induced by two-dimensional rough
surfaces. While 𝑘𝑠 is not an actual physical roughness parameter that
can be measured directly from the topology of the surface, the authors
proposed a new expression for 𝑘 involving some physical roughness
𝑠
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parameters. The study shows that the equivalent sand grain roughness
can be correlated with the mean roughness height, the effective slope
ES and the skewness 𝑆𝑘. The authors pointed out the importance to an-
alyze simple 2D uniformly distributed roughness shapes and confirmed
how a relation proposed for 2D rough wall can be applied also for 3D
rough geometries. They concluded that a general scaling cannot exist
because of the complexity of the roughness geometries which involve
too the many parameters. Similar considerations have been discussed
by Chung et al. (2021) who observed that there is not a universal model
able to accurately predict the drag from a sufficiently wide range of
roughness. This is mainly attributed to the high-dimensional feature
space of irregular rough structures. The effects of several geometrical
parameters on the Roughness Function was investigated by De Marchis
et al. (2020), through Large Eddy Simulation (LES) on irregularly
roughened textures obtained by the superimposition of four sinusoidal
functions of different wavelengths and random amplitudes. The authors
analyzed the effect of more than a single geometrical parameter and
they reported a correlation between the 𝐸𝑆 and the root mean square
of the wall oscillation 𝑘+𝑟𝑚𝑠, as well as between 𝐸𝑆 and the mean
absolute deviation 𝑘

+
. Specifically, the authors observed that a single

eometrical feature of the roughness cannot be able to estimate the
oughness function. In fact, a lot of data having the same 𝐸𝑆 or
+ or 𝑘+𝑟𝑚𝑠 values, are characterized by very different 𝛥𝑈+. On the

other hands, they reported a specific trend analyzing data in term of
𝐸𝑆 ⋅ 𝑘+ and 𝐸𝑆 ⋅ 𝑘+𝑟𝑚𝑠. The authors also tried to correlate 𝑘+ with
other geometrical parameters without finding a specific correlation.
The paper suggested that a combination between the Effective Slope
with a geometrical parameter may be the key to predict the Roughness
Function. The results obtained by De Marchis et al. (2020) has been
confirmed by the independent study of Zhen Ma et al. (2022), where a
good correlation between 𝛥𝑈+ and 𝑘

+
⋅𝐸𝑆 was found. The above anal-

ysis clearly pointed out the importance to find a geometrical feature of
the roughness able to be representative of the effect on turbulent flows.
Furthermore, it is evident that a combination between two or more
roughness length scales can better represent the roughness geometry.

In order to contribute on this fundamental issue, a systematic study
of 2D irregular rough surfaces, having different height and density,
is performed. Furthermore, the attention is focused on the impact
of roughness density and coverage roughness area on the mean flow.
Similar analyses have been recently carried out by Nugroho et al.
(2023) and Sarakinos and Busse (2022) confirming the significance of
coverage area in understanding roughness effects. Specifically, Saraki-
nos and Busse (2022) examined idealized barnacle-shaped roughness,
considering a range of roughness coverage from 10% to 85%. Their
findings revealed that the 𝛥𝑈+ peaked at 60% coverage. On the other
hand, Nugroho et al. (2023) investigated the relationship between skin
friction drag and the coverage area of surface roughness. Their results
demonstrated an increase in the Hama roughness function as roughness
area coverage increased from 5% to 30%. Unfortunately, these studies
did not investigate the correlation between 𝛥𝑈+ and a specific areal
parameter. Our study is dedicated to addressing this gap by attempting
to establish such a correlation. Given the complexity introduced by the
random nature of irregular solid walls, 2D roughness elements have
been studied to isolate the effects of roughness density and height, thus
to isolate the effects of the roughness area amount. Resolved LES have
been performed over irregularly roughened surfaces having different
roughness distribution and shapes.

The organization of the paper is as follow: Section 2 describes the
numerical code adopted for LES, Section 3 highlights flow conditions
and numerical parameters, whereas the roughness parameters are de-
scribed in Section 4; results are presented in Section 5 and conclusions
3

are drawn in Section 6. t
2. Mathematical model and numerical procedure

The turbulent channel flow is resolved using the LES technique,
based on the numerical solution of the filtered Navier–Stokes and
continuity equations for incompressible fluids given by:

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

− 1
𝑅𝑒𝜏

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+𝛱 𝛿𝑖1 = 0 (2)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (3)

the symbol ⋅ is applied for filtered quantities. All the terms reported in
Eqs. (2) and (3) are non-dimensional. In particular, the velocities 𝑢𝑖 are
normalized with the friction velocity 𝑢𝜏 and the spatial coordinates 𝑥𝑖
with the channel half height ℎ, 𝑡 is time normalized with 𝑢𝜏/ℎ, 𝑝 is the
inematic pressure field (pressure divided by density and 𝑢2𝜏 ), 𝛿𝑖1 is the
ronecker function and 𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈 is the friction Reynolds number.

The last term 𝛱 is the non-dimensional imposed pressure gradient
driving the flow. Hereafter 𝑥1 indicates the streamwise direction, 𝑥2
indicates the spanwise direction and 𝑥3 indicates the wall-normal di-
rection. In statistically steady-state conditions, the equilibrium between
the imposed driving stress and the overall streamwise component of the
wall stress holds, thus:

𝛱𝑑 =
𝜏𝑢𝑝𝑠,𝑑 + 𝜏𝑑𝑜𝑤𝑛

𝑠,𝑑

2ℎ
=

𝜏𝑠,𝑑
ℎ

(4)

where the average wall stress reads 𝜏𝑠,𝑑 = 1
2𝐴 ∫𝐴

[

𝜇 𝜕𝑢𝑠,𝑑
𝜕𝑛 𝐭 ⋅ 𝐬 − 𝑝𝑑𝐧 ⋅ 𝐬

]

𝑑𝐴. 𝐴 is wall wet surface, 𝑢𝑠 is the tangential velocity component, 𝐭
and 𝐧 are the tangential and normal unit vectors to the wall surface
element 𝑑𝐴. Finally, 𝐬 is the streamwise direction vector. Since the
equations are made non-dimensional with the friction velocity 𝑢𝜏 =
√

𝜏𝑠,𝑑∕𝜌 and the half-channel height ℎ, it is always |𝛱𝑑 | = 1. The
omentum and continuity equations are resolved using the finite-

olume numerical code PANORMUS (PArallel Numerical Open-souRce
odel for Unsteady flow Simulations) which is second-order accurate

oth in time and space (Napoli et al., 2008). The numerical model
ses the explicit Adams–Bashforth method for the time advancement
f the solution, while the fractional-step technique is used to overcome
he pressure–velocity decoupling, in conjunction with the multigrid
ccelerator V-cycle. The Sub-Grid Scale turbulent stress tensor 𝜏𝑖𝑗 is
odeled using the Dynamic Mixed Model (DMM) of Zang et al. (1993).
he quality of the numerical code in simulating turbulent channel
lows has been extensively validated over smooth as well as rough
onditions. Specifically, the results over smooth walls were compared
ith the available data of Moser et al. (1999), whereas the results
btained simulating wavy wall roughness were compared with the DNS
ata published by Maaß and Schumann (1996). In both cases a very
atisfying agreement with the reference data was achieved. Details on
he numerical procedure and on the sub-grid model can be found in De
archis et al. (2019, 2020). The numerical model was furthermore

xtensively and favorably validated over a wide range of cases (Napoli
t al., 2008; De Marchis et al., 2010; De Marchis and Napoli, 2012; De
archis, 2016; De Marchis et al., 2020). A discussion on the performed

alidation tests up to 𝑅𝑒𝜏 = 1000, in turbulent channel flows, is
eported in De Marchis et al. (2020).

. Physical and numerical parameters

The wall roughness is investigated reproducing irregular geometries
n an archetypal way. Specifically, 2D rough surfaces were designed
hroughout Gaussian distribution. Thanks to the Gaussian function is
ossible to modulate the roughness geometry modifying the standard
eviation and generate rough shapes having different geometrical pa-
ameters. In the proposed study, several numerical simulations were
erformed considering irregular roughness having different average
scillation, different distribution and different density. Specifically,

urbulent channel flows were investigated at five increasing roughness



International Journal of Heat and Fluid Flow 106 (2024) 109287F. Bruno et al.

d
3
a
r
t

𝑘

w
m
t
𝜎
w
𝑗
𝑗

S
w
i
s
i
n
b
A
t
r
D
n
a
t
a
𝑅
t

4

s
n
f
A
G
w
d
a
q
f
r

d
s
r
r
p
i
G

𝑥
i
𝑥
f
𝑥
f
a
f
r

t

average height equal to 𝑘 = 0.005 ⋅ ℎ, 𝑘 = 0.01 ⋅ ℎ, 𝑘 = 0.02 ⋅ ℎ,
𝑘 = 0.03 ⋅ ℎ, 𝑘 = 0.04 ⋅ ℎ. For each value of roughness height,
ifferent roughness densities were considered through the imposition of
2 or 64 subsequent positive and negative Gaussian functions. Indeed,
s shown in the following, 64 Gaussian functions generate highest
oughness densities. Both upper and lower walls were generated using
he following equation:

[𝑥1(𝑖𝑖)] =
32⋅𝑗𝑗
∑

𝑖=1
𝛽
8∕𝑗𝑗
∑

𝑗=1

1

𝜎𝑖
√

2𝜋
𝑒−

1
2

( 𝑥1(𝑗)−𝜇
𝜎𝑖

)2

(5)

here the parameter 𝜇 is the mean of the distribution (and also its
edian and mode), whereas 𝜎 is the standard deviation. Specifically,

he standard deviation 𝜎𝑖 is randomly generated in a range between 𝐵 <
𝑖 < 1 +𝐵, with B a constant of the specific geometry. 𝛽 is equal to +1
hen 𝑖 is even, whereas 𝛽 = −1 for odd value of 𝑖. Moreover, 𝑖𝑖 = 𝑖⋅𝑗 and
𝑗 = 1 for the cases having 32 subsequent Gaussian functions, whereas
𝑗 = 2 for 64 Gaussian. The parameter 𝜇 is kept constant equal to 4𝜋

16 .
Due to the randomness of 𝜎, upper and lower walls have different shape
even though their share the statistics. Fig. 1 shows the 3D sketch of the
computational domain for two surfaces, having 32 and 64 Gaussian
functions. The domain is sized 4𝜋ℎ × 𝜋ℎ × 2ℎ in the 𝑥1, 𝑥2 and 𝑥3
direction, respectively and it has been discretized using 256 × 64 × 64
computational cells, along 𝑥1, 𝑥2 and 𝑥3 directions. Thanks to the
periodic condition a uniform distribution has been applied in the 𝑥1
and 𝑥2 direction, resulting in 𝛥𝑥+1 = 19.6 and 𝛥𝑥+2 = 19.6. On the
other hand a non-uniform mesh has been used in the 𝑥3 direction.
pecifically, in wall-normal direction the points are clustered near the
all ensuring a minimum cell size equal to 𝛥𝑥+3𝑚𝑖𝑛 = 0.5. The mesh

ncrease toward the channel centerline thus to have 𝛥𝑥+3𝑚𝑎𝑥 = 26.5. To
imulate the turbulent channel flow, periodic boundary conditions are
mposed in both the streamwise and spanwise directions., while the
o-slip condition is enforced at the rough walls. Curvilinear structured
oundary-fitted grids are used to discretize the computational domain.
ll simulation were carried out at friction Reynolds number equal

o 𝑅𝑒𝜏 = 400. The numerical simulations have been performed at
elatively low Reynolds number, especially compared with some recent
NS and LES studies over rough surfaces, where friction Reynolds
umbers up to 1000 have been investigated (see Forooghi et al. (2017)
nd De Marchis et al. (2020)). Despite of this in rough wall cases,
he correlation obtained for 𝑅𝑒𝜏 = 400 between geometric parameters
nd roughness functions is valid also for Reynolds values higher than
𝑒𝜏 = 1000 (De Marchis et al., 2020), ensuring the generalization of

he achieved results.

. Roughness parameters

One of the main challenge in the study of turbulent flow over rough
urfaces is to find a geometrical parameter able to match the stochastic
ature of random roughness and its effect on the flow. Therefore,
ollowing recent researches (see among others De Marchis et al., 2020;
nderson et al., 2015; Jouybari et al., 2021; Zhen Ma et al., 2022;
anju et al., 2022), in the proposed study, several surface parameters
ere analyzed for a number of roughness shapes. In Table 1 the
efinition and the values of the most widely used roughness parameters
re reported, whereas in Table 2, details on the studied geometrical
uantities are reported. Using a height-map to characterize the surface
rom the zero plane (Chung et al., 2021), some of geometrical data are
epresented in Fig. 2.

Among the most studied parameter, those based on the roughness
ensity (see Sigal and Danberg (1990)) or 𝐸𝑆 (Napoli et al., 2008),
eem to have a very good correlation with the flow resistance. The
oughness area, less analyzed in literature, take into account of the
oughness density. In order to investigate on this issue, geometrical
arameters able to reflect the roughness area, were introduced. Specif-
cally, four roughness areal parameters, based on the filled part of the
aussian rough profile, plotted in Fig. 3, were defined. Fig. 3a shows
4

Table 1
Definition of roughness parameters.
𝑘 Average roughness height 1

𝑛

∑𝑛
𝑖=1 |𝑥3,𝑖|

𝑘𝑚𝑎𝑥 Maximum peak to valley above the zero plane 𝑚𝑎𝑥(𝑥3)
𝑘𝑚𝑖𝑛 Maximum valley depth below the zero plane 𝑚𝑖𝑛(𝑥3)
𝑘𝑝𝑣 Maximum peak to valley height of the profile 𝑘𝑚𝑎𝑥 + |𝑘𝑚𝑖𝑛|

𝑘𝑟𝑚𝑠 Root mean square roughness height
√

1
𝑛

∑𝑛
𝑖=1 𝑥3,𝑖2

𝑆𝑘 Skewness 1
𝑛(𝑘𝑟𝑚𝑠 )3

∑𝑛
𝑖=1 𝑥

3
3,𝑖

𝐾𝑢 Kurtosis 1
𝑛(𝑘𝑟𝑚𝑠 )3

∑𝑛
𝑖=1 𝑥

4
3,𝑖

𝐸𝑆 Effective slope 1
𝐿𝑥1

∫𝐿𝑥1

|

|

|

𝜕𝑘(𝑥1 )
𝜕𝑥1

|

|

|

𝑑𝑥1

the peaks area above the zero plane, indicated as 𝐴𝑃 ; Fig. 3b shows
the peaks area above the absolute average deviation 𝑘, indicated with
𝐴𝑃𝑘; Fig. 3c plots the area of the absolute value of Gaussian peaks
and cavities 𝐴. Finally, Fig. 3d shows the area of the absolute value
of Gaussian peaks and cavities above the absolute average deviation 𝑘,
indicated with 𝐴𝑘.

The above normalized areal parameters are calculated according to
the following equations:

𝐴𝑃 = ∫

𝐿𝑥1

0
𝑓 (𝑥3)𝑑𝑥1 for 𝑥3,𝑖 > 0 (6)

𝐴𝑃𝑘 = ∫

𝐿𝑥1

0

(

𝑓 (𝑥3) − 𝑘
)

𝑑𝑥1 for 𝑥3,𝑖 > 0 (7)

𝐴 = ∫

𝐿𝑥1

0
|𝑓 (𝑥3)|𝑑𝑥1 (8)

𝐴𝑘 = ∫

𝐿𝑥1

0

(

|𝑓 (𝑥3)| − 𝑘
)

𝑑𝑥1 (9)

where 𝑓 (𝑥3) is the function obtained through Eq. (5). In Table 3 the
above areal parameters are reported.

5. Results

5.1. Mean velocity profiles

The mean streamwise velocity profile is one of the main indicator of
the effect of wall roughness on turbulent flows. Indeed, wall asperities
are responsible of the downward shift of the mean velocity profiles.
Compared to the smooth wall case, as previously mentioned, the dis-
tance between smooth and rough velocities in the logarithmic region,
represents the Roughness Function 𝛥𝑈+. Therefore, the following re-
sults focus the attention on the effect of corrugated walls on the velocity
reduction. Hereafter, the shown statistical quantities are made non-
dimensional with the friction velocity 𝑢𝜏 ; moreover with the symbol
⟨⋅⟩ the data averaged in time, over the statistical homogeneity planes
1−𝑥2 and taking advantage of symmetry with respect to mid-plane, are
ndicated. In the following figures, the non-dimensional wall distance
+
3 is measured from the flat reference plane to which the Gaussian
unctions are superimposed to generate the wall roughness. Usually
+
3 should be measured from the plane at which the total drag acts,
requently referred as ‘‘zero-plane displacement’’. Following several
uthors the zero-plane displacement was obtained by optimizing the
it of the spatially averaged mean velocity to the log-linear profile. The
esults confirmed the identification of the origin in 𝑥+3 = 0.

Fig. 4a–b show the mean velocity profiles in the streamwise direc-
ion achieved for all the numerical simulations performed at 𝑅𝑒𝜏 = 400.

In Fig. 4a, the results of the simulations characterized by the subsequent
32 Gaussian shapes, are plotted (see the geometry sketch depicted in
Fig. 1a). As expected, the picture clearly shows an increase of the
downward shift of the velocity, increasing the mean roughness height
from 𝑘 = 0.005⋅ℎ to 𝑘 = 0.04⋅ℎ (see Table 3). Fig. 4b shows the mean
velocity profiles achieved over irregular roughness surfaces character-
ized by a density of 64 Gaussian shapes (see the 3D representation of
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Fig. 1. 3D sketches of irregular rough channel. Top panel: 32 Gaussian functions configuration; Bottom panel: 64 Gaussian functions configuration.
Table 2
Geometrical and flow properties for the Gaussian roughness. 𝑘∕ℎ: average roughness height. 𝑘+: mean roughness height. 𝑘+𝑚𝑎𝑥:
maximum roughness height. 𝑘+𝑝𝑣: maximum peak to valley height of the profile. 𝑘+𝑟𝑚𝑠: root mean squares of the wall roughness.
𝐸𝑆: Effective Slope. 𝑆𝑘: skewness. 𝐾𝑢: kurtosis.
the rough domain plotted in Fig. 1b). The profiles confirm that the more
the roughness height the more the Roughness Function. This behavior
can be attributed to the augmentation of energy dissipation induced
5

by wall oscillations. Interestingly, all the profiles share the same slope
regardless the roughness conditions and it is equal to the classical von
Kàrmàn constant suggesting the validity of the log region.
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Table 3
Details on the roughness type and the related areal parameters, normalized with outer length scale. 𝐴+

𝑃 : Peaks area above
the zero plane. 𝐴+

𝑃𝑘
: Peaks area above the absolute average deviation. 𝐴

+
: Area of the absolute value of Gaussian peaks and

cavities. 𝐴
+
𝑘 : Area of the absolute value of Gaussian peaks and cavities above the absolute average deviation.
Fig. 2. Schematic representation of geometrical data. 𝑘: average roughness height. 𝑘𝑝𝑣:
maximum peak to valley height of the profile. 𝑘𝑚𝑎𝑥: maximum peak to valley above
the zero plane. 𝑘𝑚𝑖𝑛: maximum valley depth below the zero plane.

In order to verify this validity and to calculate the effective value of
the Roughness Function, in Fig. 4c–d, the difference in the mean veloc-
ity profile between the smooth and rough cases (𝛿𝑈+ = ⟨𝑈+

𝐹 ⟩ − ⟨𝑈+
𝑅 ⟩)

is depicted. The profiles remain fairly constant in the region above
𝑥+3 = 100, confirming the qualitative findings observed in Fig. 4a–b,
where all the distributions share the slope of the mean velocity profiles.
Therefore, the 𝛥𝑈+ has been obtained averaging the 𝛿𝑈+ value in the
log-region.

In Table 4 the flow properties of the simulations over rough surfaces
are reported. Specifically, the friction Reynolds number, the centerline
Reynolds number, the bulk Reynolds number, the normalized centerline
mean velocity and the bulk velocity were calculated. In addition, the
Table summarizes the values of Roughness Function and equivalent
sand-grain roughness which can be estimated after the mean velocity
6

Table 4
Flow properties of the numerical simulations. 𝑅𝑒𝜏 , 𝑅𝑒𝑐𝑙 and 𝑅𝑒𝑏 are the friction,
centerline and bulk Reynolds number. 𝑈𝑐𝑙+ is the normalized centerline mean velocity,
𝑈𝑏+ is the normalized bulk velocity. The 𝛥𝑈+ is the Hama Roughness Function and 𝑘+𝑠
is the equivalent sand grain roughness.
𝑀𝑎𝑟𝑘𝑒𝑟 𝐶𝑎𝑠𝑒 𝑁𝐺 𝑅𝑒𝜏 𝑅𝑒𝑐𝑙 𝑅𝑒𝑏 𝑈𝑐𝑙+ 𝑈𝑏+ 𝑈𝑐𝑙+∕𝑈𝑏+ 𝛥𝑈+ 𝑘+𝑠

I32_0.5 32 400 7443 6427 18.61 16.07 1.16 1.65 12.80
I32_1 32 400 5980 5030 14.95 12.57 1.19 5.12 26.00
I32_ 32 400 3960 3095 9.90 7.74 1.28 9.91 188.00
I32_3 32 400 3000 2129 7.50 5.32 1.41 12.55 520.00
I32_4 32 400 2504 1686 6.26 4.21 1.49 13.31 840.00

⧫ I64_0.5 64 400 7588 6553 18.97 16.38 1.16 1.41 12.00
⧫ I64_1 64 400 6181 5175 15.45 12.94 1.19 4.87 24.00
⧫ I64_2 64 400 4760 3824 11.90 9.56 1.24 8.33 100.00
⧫ I64_3 64 400 3971 3067 9.93 7.67 1.29 10.17 180.00
⧫ I64_4 64 400 3391 2517 8.48 6.29 1.35 11.24 360.00

profile is known. In fact, 𝑘+𝑠 can be calculated equating, in the log
region, the mean streamwise velocity profile with the wall law for
the mean velocity in a rough-wall turbulent boundary layer. According
to Ligrani and Moffat (1986), in the transitional regime the equivalent
sand grain roughness has been estimated through the equation:

𝑈+ = 1
𝜅
𝑙𝑛(𝑥+3 ) + 𝐶𝑠 + (8.5 − 𝐶𝑠 − 1

𝜅
𝑙𝑛(𝑅𝑒𝑘𝑠 )) ⋅ 𝑠𝑒𝑛(

𝜋 ⋅ 𝐺
2

) (10)

where

𝐺 =
𝑙𝑛(

𝑅𝑒𝑘𝑠
5 )

𝑙𝑛( 705 )
; 𝑅𝑒𝑘𝑠 =

𝑘𝑠 ⋅ 𝑢∗

𝜈
(11)

When the fully rough regime is achieved, the following equation is
applied:

1 𝑙𝑛(𝑥+) + 𝐶 − 𝛥𝑈+ = 1 𝑙𝑛(𝑥+∕𝑘+) + 8.5 (12)

𝜅 3 𝑠 𝜅 3 𝑠
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Fig. 3. Areal parameters estimation, based on the rough profile. (a) Peaks area above the zero plane: 𝐴𝑃 . (b) Peaks area above the absolute average deviation 𝑘: 𝐴𝑃𝑘. (c) Area
of the absolute value of Gaussian peaks and cavities: 𝐴. (d) Area of the absolute value of Gaussian peaks and cavities above the absolute average deviation 𝑘: 𝐴𝑘.

Fig. 4. (a) Mean streamwise velocity profile for the smooth wall and cases I32. (b) Mean streamwise velocity profile for the smooth wall and cases I64. (c) Difference in the
mean velocity profile between the smooth and rough cases I32. (d) Difference in the mean velocity profile between the smooth and rough cases I64.
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In Eqs. (10), (11) and (12) the mean velocity, as well as the roughness
function, is obtained by the numerical mean velocity profile, whereas
𝐶𝑠 is the classical additive constant for smooth case.

Several authors have performed numerical and experimental analy-
ses to investigate the dependence of the roughness type on the different
flow regimes. As pointed out by Flack and Schultz (2014), when 𝑘

+

is small, the perturbations generated by the roughness elements are
damped out by the fluid viscosity. For this condition, the flow is
hydraulically smooth and 𝛥𝑈+ = 0. This regime is conventionally
observed for 𝑘𝑠 < 5. Increasing 𝑘

+
, viscosity no longer damps out the

eddies and the roughness elements start to increase the pressure drag,
with a substantial balance between friction and pressure resistance.
This is the transitionally rough regime, achieved for 5 < 𝑘+𝑠 < 70. A
urther increases of the roughness height causes the migration toward
ully rough regime (𝑘+𝑠 > 70), where the skin friction is independent
f Reynolds number and form drag, on the roughness elements, is the
ominant mechanism. In the present research, 4 numerical simulations
ave an equivalent sand grain roughness in the range 5 < 𝑘+𝑠 < 70, thus
o drop into transitional regime, whereas 6 simulations fall in the fully
ough regime.

The velocity reduction in the streamwise direction is certainly
uided by the roughness shape. The rough geometry can be correctly
nterpreted only through a combination of geometrical parameters,
hile a single feature of the corrugation geometry may not be represen-

ative of the whole effect. In this framework, to predict the Roughness
unction or the equivalent sand grain roughness a parameter com-
ination could be considered. This issue was recently highlighted
y Jouybari et al. (2021). The authors provided a database to predict
he equivalent sand-grain height for several rough geometries, also ap-
lying modern technique of Machine Learning to take into account for
everal parameters. In the following, the possible correlation between
he mean flow fields and geometrical parameters is investigated.

.2. Roughness function correlation

One of the main challenge correlated with the effect of the rough-
ess on turbulent flow is the prediction of the mean velocity reduction,
n the core region (i.e. the Roughness Function 𝛥𝑈+), once the ge-
metry is a-priori known. Nowadays, rough walls can be precisely
haracterized through surface scan, indeed, roughness parameters can
e easily determined. In this framework, the ability to determine the
orrelation between 𝛥𝑈+ and a geometric feature 𝑘∗ is a key issue in
he turbulence analysis. In Fig. 5 the correlations with the geometrical
ata reported in Table 2 are plotted. Specifically, the average roughness
eight 𝑘+, the maximum roughness peak height 𝑘+𝑚𝑎𝑥, the root-mean

square roughness height 𝑘+𝑟𝑚𝑠, the maximum roughness peak-to-valley
height 𝑘+𝑝𝑣, the Effective Slope 𝐸𝑆 and the equivalent sand grain 𝑘+𝑠
are analyzed. In the Figure, literature data of De Marchis et al. (2010)
and De Marchis (2016) are included too. The picture clearly illustrates
how a single parameter is not able to correctly predict the 𝛥𝑈+. In fact,
geometries having the same parameter (i.e 𝑘+𝑚𝑎𝑥 or ES, for instance),
give rise to very different values of Roughness Function, confirming
the achieved results of some recent literature findings (i.e. Kuwata and
Nagura (2020)). Among the analyzed parameters, the Effective Slope
has the better correlation, and the data are more or less aligned follow-
ing a logarithmic law. This result is in agreement with the observations
of Napoli et al. (2008). Even though a logarithmic relationship is visible
(a law was recently suggested by De Marchis (2016)), a level of scatter
can be found. Indeed, geometries having the same ES have differences
in the 𝛥𝑈+ estimation of about 30%. In Fig. 5, and hereafter, the
dotted lines represent the interpolating line, whereas the depicted gray
region indicate the dispersion area of the achieved data. This deviation
was quantified in term of Roughness Function, through a parameter
indicated with 𝛥𝑈+

𝑑 . A discussion about this deviation is given in the
8

following.
The correlations shown in Fig. 5a–e can be considered only partial
adequate to predict the effect of rough walls on the mean flow, due to
their scatter from the interpolating lines. On the other hand, looking
at Fig. 5f, where 𝛥𝑈+ vs. 𝑘𝑠 is depicted, an almost perfect correlation
is found. Unfortunately, as previously mentioned, the equivalent sand
grain roughness is not a geometrical parameter a-priori known. To
assess the goodness of a specific combination, we can look at how
well the interpolating line fits the numerical results. In order to this,
the Roughness Function dispersion 𝛥𝑈+

𝑑 , was calculated. Specifically, it is
btained through the shift of the interpolating line either above and
elow the extreme data points. By measuring, in vertical direction,
he distance between these extreme lines, a measure of the overall
‘scattering’’ can be obtained. A smaller 𝛥𝑈+

𝑑 value indicates good corre-
ation between the Roughness Function and the geometrical parameter,
onversely a larger 𝛥𝑈+

𝑑 suggests a less optimal combination. Looking
t the Fig. 5a–e a significant dispersion of data points can be observed,
eading to a high value of 𝛥𝑈+

𝑑 . On the other hand, the correlation
ith the equivalent sand grain roughness 𝑘+𝑠 , reported in Fig. 5f, is fine

nough to have 𝛥𝑈+
𝑑 = 2.0, the smallest one.

In order to further investigate on the link between the corruga-
ion shape and the energy dissipation, here other new geometrical
arameters have been considered based on the roughness area 𝐴∗+

see Eqs. (6)–(9)). These parameters, reported in Table 3, are the area
f peaks above the zero plane 𝐴+

𝑃 ; the peaks area above the absolute
verage deviation 𝐴+

𝑃𝑘
; the area of the absolute value of Gaussian

peaks and cavities 𝐴
+
; the area of the absolute value of Gaussian peaks

nd cavities above the absolute average deviation 𝐴
+
𝑘 . In Fig. 6 the

ependence between the areal parameter 𝐴∗+ and 𝛥𝑈+ is plotted. The
igure illustrates a general augmentation of the Roughness Function
ith the corrugation area. Unfortunately, cannot be found a collapse
f the data along a specific curve, as obtained for 𝑘+𝑠 . Focusing the
ttention on the single roughness group, for instance 𝐼64, all the data
re aligned and follow a logarithmic law. The same rule applies for the
ther rough walls groups. Despite of this, the results are translated each
ther, and geometries having the same area generate huge difference in
he downward shift estimations. This behavior is also demonstrated by
he quantification of 𝛥𝑈+

𝑑 , with values spanning in the range between
.19 and 7.14. The achieved results confirm how neither the areal
arameters, neither the classical roughness statistics are able to predict
he velocity reduction in the outer-layer. Basically, as already observed
n the previous section, a single geometrical parameter is not able to
haracterize the wall roughness.

In order to find a correlation with 𝛥𝑈+, a combination of two
arameters was analyzed. Some recent literature findings (see among
thers De Marchis et al., 2020; Jouybari et al., 2021), in fact, ob-
erved how the combination of two parameters, characteristic of the
oughness density and distribution, can be the key to predict 𝛥𝑈+.
n the following, the product between ES and a surface feature 𝑘∗ is
nvestigated. The choice to kept fixed ES and varies 𝑘∗ is given by the
ood correlation of ES with 𝛥𝑈+ (plotted in Fig. 5e) and by the ability
f ES to represent the roughness density. Specifically, the following
oints are considered: 𝐸𝑆 ⋅𝑘

+
, 𝐸𝑆 ⋅𝑘

+
𝑚𝑎𝑥, 𝐸𝑆 ⋅𝑘

+
𝑝𝑣, 𝐸𝑆 ⋅𝑘

+
𝑟𝑚𝑠. The results,

epicted in Fig. 7, clearly illustrate how the use of the roughness slope
nd a parameter representative of the roughness height reduces the
catter of the results. This can be also quantified through the low values
f 𝛥𝑈+

𝑑 . Comparing Figs. 5b and 7b, where 𝛥𝑈+ vs 𝑘
+
𝑚𝑎𝑥 and 𝛥𝑈+ vs.

𝐸𝑆 ⋅ 𝑘
+
𝑚𝑎𝑥 are plotted respectively, it can be argue how, taking into

account both ES and 𝑘
+
𝑚𝑎𝑥, the data tend to collapse over a log-line and

the 𝛥𝑈+
𝑑 goes from 4.31 to 2.45, a value quite similar to that achieved

for 𝑘+𝑠 . Similar results are observed for the other combinations reported.
The findings are in agreement with the previous studies of De Marchis
et al. (2020). Despite of this, the collapse shown in Fig. 7 is far from
the alignment observed in Fig. 5f, where 𝛥𝑈+ vs. 𝑘+𝑠 was reported,
confirming the need to further investigate on the use of a couple of
parameters.
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Fig. 5. Dependence of the Roughness Function 𝛥𝑈+ on geometrical parameters. (a) 𝑘+: mean absolute deviation; (b) 𝑘+𝑚𝑎𝑥: maximum roughness peak; (c) 𝑘+𝑝𝑣: maximum roughness
peak-to-valley; (d) 𝑘+𝑟𝑚𝑠 : root mean square of the roughness height; (e) 𝐸𝑆: Effective Slope; (f) 𝑘+𝑠 : equivalent sand grain roughness.
Interestingly, when the product between the Effective Slope and
a specific areal feature 𝐴∗ is taken into account, an almost collapse
of the data is achieved. The findings are plotted in Fig. 8, where the
dependence of the Roughness Function on 𝐸𝑆 ⋅𝐴+

𝑃 , 𝐸𝑆 ⋅𝐴+
𝑃𝑘

, 𝐸𝑆 ⋅𝐴
+

and

𝐸𝑆 ⋅𝐴
+
𝑘 is reported. The good correlation can be explained considering

that the slope is representative of the roughness steepness, whereas
the proposed areal parameters are representative of the corrugation
distribution, i.e. the amount of region occupied by solid roughness.
Thanks to both parameters can be thus taken into account for the global
feature of the roughness.
9

All cases are characterized by a visible alignment, where increasing
the value of the geometrical parameter the Roughness Function raises.
Nevertheless, among the four correlations, those related with the Area
filtered by the absolute deviation 𝑘 (𝐸𝑆 ⋅𝐴+

𝑃𝑘
and 𝐸𝑆 ⋅𝐴

+
𝑘 ), plotted in the

left panels of Fig. 8, seem to be characterized by an highest collapse of
the data along a straight line, in the semi-log plot. It is worthwhile to
point out how the proposed correlation took into account the existing
literature data of De Marchis et al. (2010) and De Marchis (2016),
who investigate different roughness shapes, specifically 2D regular
triangular roughness and irregular sinusoidal shapes. A good alignment
is observed also for these geometries, suggesting the goodness of the
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Fig. 6. Dependence of the Roughness Function 𝛥𝑈+ on the areal parameters. (a) 𝐴+
𝑃 : Peaks area above the zero plane. (b) 𝐴+

𝑃𝑘
: Peaks area above the absolute average deviation.

(c) 𝐴
+
: Area of the absolute value of Gaussian peaks and cavities. (d) 𝐴

+
𝑘 : Area of the absolute value of Gaussian peaks and cavities above the absolute average deviation. The

Area values are normalized with respect to friction Reynolds number and the kinematic viscosity, thus to achieve quantity in inner units.
proposed correlation. Following the pioneering work of Hama (1954),
and the subsequent researches (see among others De Marchis et al.,
2020; Ganju et al., 2022), in the figure the black line is given by the
equation:

𝛥𝑈+ = 1
𝜅
𝑙𝑛(𝐸𝐴∗) + 𝐵 + 𝐶 (13)

where B is the typical log law constant for smooth wall equal to
5.0, whereas C is a constant specific for each correlation. To improve
the clarity, below the values of C achieved for each specific 𝐴∗+ are
reported: C = −21 for 𝐸𝑆 ⋅𝐴+

𝑃 ; C = −16 for 𝐸𝑆 ⋅𝐴+
𝑃𝑘

; C = −21 for 𝐸𝑆 ⋅𝐴
+

and finally C = −18 for 𝐸𝑆 ⋅ 𝐴
+
𝑘 . The coefficient C has been obtained

thus to achieve the best fit of the numerical data. This best fit was
obtained through the minimization of the least-square. According to the
literature findings, the von Kàrmàn constant is equal to 1

𝜅 = 0.4 ± 0.02.
In addition, the method of regression analysis allowed to calculate
the root-mean square error (RMSE) of all correlations investigated.
Specifically, the following values were obtained, RMSE = 0.932 for 𝛥𝑈+

versus 𝐸𝑆 ⋅𝐴+
𝑃 , RMSE = 0.564 for 𝛥𝑈+ versus 𝐸𝑆 ⋅𝐴+

𝑃𝑘
, RMSE = 0.871

for 𝛥𝑈+ versus 𝐸𝑆 ⋅𝐴
+

and finally RMSE = 0.609 for 𝛥𝑈+ versus 𝐸𝑆 ⋅
𝐴
+
𝑘 . The same error calculation was applied also for the 𝑘+𝑠 , shown in

Fig. 5f, which leaded to a value of RMSE = 0.445. The achieved results
10
clearly show a very similar RMSE values obtained with 𝑘+𝑠 and 𝐸𝑆 ⋅𝐴+
𝑃𝑘

,
suggesting the ability of the proposed parameter to predict the down-
ward shift of the mean velocity profiles. The above discussed results
confirm how Roughness Function does not show consistent dependence
on the single geometric parameter being considered (such as 𝑘+, 𝑘𝑟𝑚𝑠,
𝑘𝑝𝑣 or 𝐸𝑠), whereas the combination of two parameters improve the
Roughness Function estimation. In particular, the combination between
𝐸𝑆 and 𝐴∗ allows to reduce the dispersion. Consequently the 𝛥𝑈+

𝑑
value is very small compared to the previous cases. 𝛥𝑈+

𝑑 achieve its
lowest value, equal to 2.23, using 𝐸𝑆 ⋅𝐴+

𝑃𝑘
. This value is quite similar

to that obtained for 𝑘+𝑠 , confirming the ability to have a reliable and
accurate correlation. The parameter based on the Effective Slope ES and
𝐴+
𝑃𝑘

is defined as Effective Area EA and can be calculated according to
the equation:

𝐸𝐴 =
𝐿𝑥1
∑

𝑖=1

|

|

|

|

𝑑𝑘(𝑥1)
𝑑𝑥1

|

|

|

|

⋅
32⋅𝑗𝑗
∑

𝑖=1
𝛽
8∕𝑗𝑗
∑

𝑗=1

1

𝜎𝑖
√

2𝜋
𝑒−

1
2

( 𝑥1(𝑗)−𝜇
𝜎𝑖

)2

⋅ 𝑑𝑥1 (14)

The above analysis puts in light the possibility to estimate the Rough-
ness Function once the roughness area is known. As previously stated,
the Effective Area EA can be easily calculated through a scan surface
of the physical domain of investigation. It can found direct application
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Fig. 7. Dependence of the Roughness Function 𝛥𝑈+ on geometrical parameters. (a) 𝐸𝑆 ⋅ 𝑘+; (b) 𝐸𝑆 ⋅ 𝑘+𝑚𝑎𝑥; (c) 𝐸𝑆 ⋅ 𝑘+𝑝𝑣; (d) 𝐸𝑆 ⋅ 𝑘+𝑟𝑚𝑠.
in engineering (i.e. roughness pipes or blade turbines degradation) as
well as in environmental cases (i.e. land roughness or ripples). The
above results were achieved over 2D rough shapes and clearly further
simulations are required to confirm the proposed findings, including 3D
regular and irregular rough geometries.

6. Conclusions

Large Eddy Simulations were carried out over irregular rough walls
at friction Reynolds number 𝑅𝑒𝜏 = 400 in order to investigate on
the downward shift of the streamwise mean velocity profile, known
in literature as Roughness Function 𝛥𝑈+. A total of 10 simulations
were performed over 2D rough surfaces designed throughout Gaussian
function, having different average height of the oscillations, different
distribution and different density. Specifically, turbulent channel flows
were investigated at five increasing roughness average height equal
to 𝑘 = 0.005 ⋅ ℎ, 𝑘 = 0.01 ⋅ ℎ, 𝑘 = 0.02 ⋅ ℎ, 𝑘 = 0.03 ⋅ ℎ and 𝑘 =
0.04⋅ℎ. For each value of roughness height, different roughness densities
were considered and, specifically, two groups of roughness have been
generated through the imposition of 32 or 64 subsequent positive and
negative irregular Gaussian function. In order to investigate on the
effect of roughness density and distribution, the mean velocity profiles
were analyzed keeping constant the 𝑘. The study clearly illustrate how,
11
for small value of the mean roughness height, the profiles collapse
each other (cases 𝐼32_0.5 and 𝐼64_0.5). Therefore, the roughness density
and distribution do not affect the velocity reduction in the logarithmic
region. The results, is also confirmed by the mean velocity profiles over
rough walls having 𝑘 = 0.01 ⋅ ℎ. The mean velocity profiles obtained
over geometries having 𝑘 = 0.02 ⋅ ℎ, clearly show how the energy
dissipation is influenced by the roughness density. Basically, the lower
the roughness density (32 Gaussian curves), the higher the downward
shift of the velocity.

The mean velocity profile reduction was correlated to some geo-
metrical parameters such as the equivalent sand grain roughness 𝑘+𝑠 ,
the mean roughness height 𝑘

+
, the peak-to-valley roughness height 𝑘+𝑝𝑣,

the root mean square roughness height 𝑘+𝑟𝑚𝑠, the Effective Slope ES.
The analysis pointed out that the velocity reduction in the streamwise
direction is given by a combination of geometrical parameters and a
single feature of the corrugation geometry may not be representative
of the whole effect. In order to further investigate on the link between
the corrugation shape and the energy dissipation, here other new
geometrical parameters have been considered based on the roughness
Area 𝐴∗+: the peaks area above the zero plane 𝐴𝑃 , the peaks area
above the absolute average deviation 𝐴+

𝑃𝑘
, the area of absolute value of

Gaussian peaks and cavities 𝐴
+
, the area of absolute value of Gaussian
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Fig. 8. Dependence of the Roughness Function 𝛥𝑈+ on the areal parameters. (a) 𝐸𝑆 ⋅ 𝐴+
𝑃 ; (b) 𝐸𝑆 ⋅ 𝐴+

𝑃𝑘
; (c) 𝐸𝑆 ⋅ 𝐴

+
; (d) 𝐸𝑆 ⋅ 𝐴

+
𝑘 .
peaks and cavities above the absolute average deviation 𝐴
∗
𝑘. Looking

at the dependence between the areal parameter 𝐴∗+ and 𝛥𝑈+, it was
not found a collapse of the data along a specific curve, as obtained
for 𝑘+𝑠 . A combination of two parameters was, thus, analyzed, among
others: 𝐸𝑆 ⋅ 𝑘

+
, 𝐸𝑆 ⋅ 𝑘+𝑚𝑎𝑥, 𝐸𝑆 ⋅ 𝑘+𝑝𝑣, 𝐸𝑆 ⋅ 𝑘+𝑟𝑚𝑠, 𝐸𝑆 ⋅ 𝐴+

𝑃 , 𝐸𝑆 ⋅ 𝐴𝑃𝑘,
𝐸𝑆 ⋅𝐴

+
, 𝐸𝑆 ⋅𝐴

+
𝑘 . Comparing the correlation between 𝛥𝑈+ vs. 𝑘+𝑚𝑎𝑥 and

𝛥𝑈+ vs. 𝐸𝑆 ⋅ 𝑘+𝑚𝑎𝑥, it was observed how taking into account both ES
and 𝑘+𝑚𝑎𝑥, the data collapsed over a line. Similar results was obtained
for the other combinations 𝐸𝑆 ⋅ 𝑘∗ investigated. Despite of this, the
collapse was still far from the alignment achieved with 𝛥𝑈+ vs. 𝑘+𝑠 .
On the other hand, when the product between the Effective Slope
and a specific areal feature 𝐴∗ was taken into account, an almost
collapse of the data was observed. Therefore, results revealed how
a single geometric parameter, whether ES or Area A, is insufficient
to predict the roughness effect. Conversely, the combination of these
two parameters improves predictive accuracy, at least for the proposed
roughness model. This improvement can be attributed to ES ability to
interpret the roughness distribution and height and to 𝐴∗+ ability to
take into account for the coverage area over a flat plate. The major goal
of this study was the introduction of the new geometrical parameter
defined as the Effective Area 𝐸𝐴, based on the combination between
the Effective Slope ES and the peaks Area above the absolute average
12
deviation 𝐴+
𝑃𝑘

. A good correlation between the 𝛥𝑈+ and 𝐸𝐴 was
achieved, at least for 2D Gaussian roughness. Further investigations are
required to confirm the proposed law in a wider range of 3D roughness
configurations. The numerical simulations here performed suggest that
the Effective Area EA is able to predict 𝛥𝑈+, similarly to the equivalent
sand grain roughness 𝑘𝑠.
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