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A B S T R A C T

Breast cancer is the most prevalent disease that poses a significant threat to women’s health. Despite the
Dynamic Contrast-Enhanced MRI (DCE-MRI) has been widely used for breast cancer classification, its diagnostic
performance is still suboptimal. In this work, the Radiomic workflow was implemented to classify the
whole DCE-MRI sequence based on the distinction in contrast agent uptake between benign and malignant
lesions. The radiomic features extracted from each of the seven time instants within the DCE-MRI sequence
were fed into a multi-instant features selection strategy to select the discriminative features for time series
classification. Several time series classification algorithms including Rocket, MultiRocket, K-Nearest Neighbor,
Time Series Forest, and Supervised Time Series Forest were compared. Firstly, a univariate classification
was performed to find the five most informative radiomic series, and then, a multivariate time series
classification was implemented via a voting mechanism. The Multivariate Rocket model was the most accurate
(Accuracy = 0.852, AUC-ROC = 0.852, Specificity = 0.823, Sensitivity = 0.882). The intelligible radiomic
features enabled model findings explanations and clinical validation. In particular, the Energy and TotalEnergy
were among the most important features, and the most descriptive for the change in signal intensity, which
is the main effect of the contrast agent.
1. Introduction

Breast cancer represents the main disease threatens women’s health
(Sung et al., 2021). Dynamic Contrast-Enhanced Magnetic Resonance
Imaging (DCE-MRI) plays a pivotal role in the diagnosis of breast
lesions by offering both morphological and hemodynamic information.
This imaging technique evaluates the vasculature at multiple time
points following the administration of a contrast agent intravenously,
enabling the quantitative analysis of signal variations through enhance-
ment kinetic features (Xiao et al., 2021). By examining variations in the
contrast agent’s absorption, including factors such as the initial peak
enhancement and the presence of delayed phase washout, specificity
for malignancy identification can be improved. It is established that
malignant lesions exhibit an immediate increase in signal intensity,
while benign lesions show a slower increase (Padhani, 2002). Hence,
the DCE-MRI is a sequence of MRI, whose signal intensity varies due to
the contrast agent. The physician aims to evaluate the signal variation
captured by the whole sequence to diagnose the disease. Despite the
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DCE-MRI has been widely used to improve MRI in characterizing breast
lesions (Khouli et al., 2009), its specificity is still suboptimal (Kuhl
et al., 2005; Orlando, Dimarco, Cannella, & Bartolotta, 2020; Zhang,
Ren, et al., 2017).

Artificial Intelligence models have shown impressive results for
medical image analysis. Deep Learning architectures were employed
for breast cancer classification, segmentation, detection, etc., consider-
ing Convolutional Neural Networks, Autoencoder, Generative models,
etc (Mridha et al., 2021; Prinzi, Insalaco, Orlando, Gaglio, & Vitabile,
2024; Rautela, Kumar, & Kumar, 2022). These methodologies are fo-
cused on the extraction of highly informative features, exploiting the
abstraction mechanism of deep neural networks. Many Deep Learn-
ing architectures were proposed also for Time Series Analysis (Is-
mail Fawaz, Forestier, Weber, Idoumghar, & Muller, 2019). For exam-
ple, the Long Short-term Memory (LSTM) showed outstanding results
for learning temporal relationships in time series, as well as many
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convolutional architectures. Nonetheless, these architectures require
the training of millions of parameters, imposing a substantial need for
a vast quantity of well-annotated data. More importantly, the features
extracted via deep architectures are not intelligible, making it difficult
to provide a medical interpretation of the trained models. Deep features
are commonly interpreted through saliency maps, showing the most
important pixels for the predictions. Saliency maps produce only local
explanations (i.e., for each instance of the dataset), while they fail to
provide a global model explanation. However, to clinically validate
the systems and compare them with the medical literature, the global
explanation is mandatory.

In recent years, feature extraction from radiological images has been
commonly addressed by Radiomics. The radiomic workflow aims to
train data-driven models, through several image analysis steps, includ-
ing data acquisition, identification and segmentation of the Regions
of Interest (ROIs), features extraction, and features selection (Gillies,
Kinahan, & Hricak, 2016; Lambin et al., 2012). In particular, the ROIs
are converted into high-informative quantitative radiomic features,
used to correlate a clinical outcome. The radiomic features quantify
the ROIs shape, texture, and gray level intensity. Furthermore, more
advanced radiomic features can be derived by incorporating wavelet
transforms, Laplacian-of-Gaussian filtering, and other preprocessing
techniques (Biondi et al., 2023). The radiomic feature extraction pro-
cess has two main advantages over deep feature extraction. Achieving
precise feature extraction does not necessitate a vast dataset as in the
case of deep learning, in which extensive data is crucial for model train-
ing (Wei, 2021). Deep architectures trained with very small datasets
are strongly exposed to the overfitting risk. More importantly, the ra-
diomic features are intelligible, e.g. it is well-known the meaning each
radiomic feature expresses, making it possible to explain the models
and interpret the most important features. The latter requirement is
essential to integrate the models into real clinical practice. In fact,
through model interpretation, it is possible to clinically validate the
results and compare the model findings with the medical literature.
Indeed, several radiomics studies have been introduced for breast can-
cer classification in DCE-MRI. Four distinct heuristic parameter maps
were used by Gibbs et al. (2019) to train a support vector machine.
They focused on sub 1-cm Breast Lesion BI-RADS 4 or 5 classification
on a dataset composed of 165 lesions. Also in Zhou, Zhang et al.
(2020) the parametric maps were exploited, and a 133 court was
used to train a logistic regression model. In their study, Parekh and
Jacobs (2017) analyzied radiomic features from multiparametric breast
MR imaging, which included DCE-MRI. They then aggregated and
classified these features using the isoSVM algorithm, with a dataset
comprising 124 patients. Zhang et al. (2020) exploited five imaging
modalities for feature extraction, including DCE-MRI, and a support
vector machine was trained for the classification task. Nagarajan et al.
(2013) tackled the extraction of features specifically from the five post-
contrast images. Subsequently, they assessed the performance of both
a support vector regressor and a fuzzy k-nearest neighbor classifier
for the classification of small lesions. Militello et al. (2022) exploited
several feature selection algorithms on a court of 111 patients, and a
support vector machine was trained for classification. Following this
line of research, we also proposed a radiomic model for breast cancer
classification (Prinzi, Orlando, Gaglio, Midiri, & Vitabile, 2022). In
particular, our evaluation focused on assessing the predictive capabili-
ties of each time instance within the DCE-MRI sequence. Our findings
highlighted that the Random Forest classifier, when applied to the
third post-contrast time instant, accentuated the distinctions between
malignant and benign lesions. Also several deep learning applications
were proposed in the literature for DCE-MRI analysis. Zhao et al. (2023)
proposed a local–global cross attention fusion network (LG-CAFN) for
DCE-MRI breast segmentation and classification. They explored sev-
eral 2D and 3D deep architectures trained considering three types of
sequences: pre-contrast, post-contrast, and subtraction sequences. Ru
2

et al. (2023) proposed an Att-U-Node which uses attention modules to t
guide a neural ordinary differential equation (ODE) based framework.
The proposed model presents also some advantages in terms of inter-
pretability. Park et al. (2023) proposed a 3D model for segmentation.
They used 3D U-Net transformer on a proprietary dataset. Chen et al.
(2022) propose a Faster-RCNN-based model that first localizes lesions
and then a CNN performs classification.

However, the diagnostic efficacy of the DCE-MRI sequence lies in
its ability to assess the contrast agent uptake dissimilarity between
malignant and benign lesions. From an imaging point of view, this
is reflected in the variation in signal intensity between the sequence
instants. From a quantitative modeling point of view, the variation
uptake can be analyzed through time series classification algorithms.

To the best of our knowledge, no work has been proposed for
breast cancer classification in DCE-MRI through time series analysis
algorithms. In this work, a time series-based model was proposed for
breast cancer classification. More specifically, all seven time instants of
the DCE-MRI series were employed simultaneously and a comparative
analysis between several time series analysis classifiers was performed.
Fig. 1 shows the general workflow. In particular, after feature extrac-
tion and harmonization, the most predictive features were selected via
a multi-instant feature selection and a univariate time series classi-
fication. Then, five predictive features were aggregated via a voting
mechanism to implement a multivariate time series classifier. The goal
of this modeling is to mimic the physician’s diagnostic assessment
of the DCE-MRI sequence by evaluating the variation and trend of
radiomic features generated by the contrast agent administration. In ad-
dition, through the use of intelligible radiomic features, model findings
interpretation and clinical validation was performed. This approach
addresses a gap in the existing literature, as most previous work tends
to either overlook or underutilize time series classifiers in the context
of DCE-MRI analysis.

The main contributions of this paper include the following:

• A time series analysis for breast cancer classification by mimick-
ing the DCE-MRI physician’s diagnostic process.

• A comparison of several time series classifiers to capture the dif-
ferences in contrast agent uptake between benign and malignant
lesions in DCE-MRI.

• A deep discussion of the model findings obtained from time series
analysis as a result of the inherent explainability of radiomic
features (Arrieta et al., 2020; Montavon, Samek, & Müller, 2018).

The article is organized as follows: Section 2 Materials and Methods
describes the used multi-protocol dataset, its preparation for radiomic
features extraction, and the time series classification algorithms. Sec-
tion 3 Results exposes the obtained results in terms of selected radiomic
features, univariate and multivariate time series classification. Sec-
tion 4 Discussion, discusses the results compared with our previous
work (Prinzi et al., 2022), the clinical findings achieved through ra-
diomic features interpretation, and a literature comparison with other
works in DCE-MRI. Section 5 remarks on the main conclusions.

2. Materials and methods

2.1. Dataset description

The analyzed dataset included 226 breast DCE-MRI. Forty-eight
samples were excluded due to a lack of follow-up or absence of a patho-
logical diagnosis, and 12 due to technical or motion artifacts. Even-
tually, a cohort of 166 breast mass enhancements was included, with
a mean size of 15.3 mm (±10.5, size range: 3–75), detected through

CE-MRI in 104 patients. These patients comprised 103 women and
man, with a mean age of 51 years (±11, age range: 31–79), who

nderwent the examinations at University Hospital ‘‘Paolo Giaccone’’
Palermo, Italy) between April 2018 and March 2020. A consensus
lassification was carried out by two experienced breast radiologists for

he 166 breast mass enhancements. To give a detailed description of
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Fig. 1. General workflow. After the manual segmentation step, original, LoG-derived, and Wavelet-derived radiomic features were extracted for each sequence time-instant. The
multi-protocol dataset was harmonized using the Combat method. An instant-wise features selection was implemented to discard low variance and correlated features, and to
select only statistically significant features. Then, the multi-instant features selection allowed to select the discriminative features for time series classification, selecting only the
features statistically significant in each instant of the sequence simultaneously. Finally, an univariate time series classification was performed to select the most predictive features,
using several time series classifiers, including Rocket, MultiRocket, Time Series Forest (TSF), Supervised TSF (STSF), and K-nearest Neighbor. The five best features were used to
implement a multivariate classifier via a voting mechanism.
the dataset, the BI-RADS lexicon was employed (D’Orsi, Bassett, Feig,
et al., 2018), categorizing 73 of these enhancements as BI-RADS 2–3,
while 93 were assigned to BI-RADS 4–5. Only benignity/malignancy
were used as outcome variables. Breast non-mass enhancements were
not considered in our study. This single-center dataset was acquired
with a 1.5T MR scanner (GE Signa HDxt, General Electric Healthcare),
and a 3D Gradient-echo (GRE) T1-weighted with fat saturation se-
quence (called Vibrant) was considered. The DCE-MRI sequence allows
the evaluation of the tissue/parenchyma enhancement triggered by
the introduction of a paramagnetic contrast agent into the vascular
system. It consists of the acquisition of a pre-contrast image (without
the contrast agent), followed by a series of images (six in our case)
acquired after the endovenous introduction of the contrast agent. As a
consequence, radiologists study the so-called time-intensity curve for
classification. The temporal resolution for these acquisitions was ap-
proximately 70 to 90 s. Two different MRI protocols were used (Prinzi
et al., 2022), detailed in Table 1. In-plane resolution and slice thickness
affect the spatial resolution: the higher the image resolution, the more
effective the diagnosis of small pathologies becomes. Increasing the
spatial resolution will decrease the pixel size, consequently reducing
the signal-to-noise ratio (SNR) of the image. In this perspective, the
first protocol shows a higher spatial resolution. It was shown that the
effect of the scanner manufacturer is more prevalent in the features
compared to slice thickness (Saha, Yu, Sahoo, & Mazurowski, 2017).
TR and TE affect the image contrast and the ‘‘weighting’’ (T1 or T2)
of the MR image. In the case of T1-weighted (our case) the choice of
flip angle is critical for determining signal intensity, image weighting as
well as image contrast. It was shown in a 3T case study that increasing
TE showed no effect on the T1-weighted images, while increasing TR
3

Table 1
Employed breast MRI protocols.

1st 2nd

Number of slices 342 402
Matrix size 452 × 452 352 × 352
In-plane resolution (mm) 0.8 × 0.8 1 × 1
Slice thickness (mm) 0.8 1
Bandwidth 62.5 83.33
Field of view 35 × 35 35 × 35
Time repetition 4.7 3.5
Echo time 2.2 1.6
Flip angle 10 15
Number of lesions 81 85

leads to a slight decrease in blurring (Kim, Lee, Kim, Cho, & Lee, 2013).
Protocol 1 exhibited a distribution of 43% benign and 57% malignant
lesions, whereas Protocol 2 displayed a distribution of 55% benign
and 45% malignant lesions. Some examples of DCE-MRI sequences are
shown in Fig. 2 for benign and malignant lesions for both protocols.

2.1.1. ROI segmentation
In this study, the 166 breast mass enhancements were manually

segmented. The segmentation process was performed using the 3D-
Slicer software by three distinct operators along with three radiology
residents, each with four years of experience in breast MRI. To ensure
precise lesion delineation, each operator selected the post-contrast
phase that best highlights the lesion contours. Moreover, to capture
the anatomical context more comprehensively, a few millimeters of
perilesional fat were included in each segmentation. Subsequently, to
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Fig. 2. Four examples of DCE-MRI sequences: two benign cases (above) and two malignant cases (below) for the two protocols. In green are the related manual segmentations.
validate the accuracy and consistency of the segmentations, a third
independent breast radiologist with a decade of expertise in breast MR
imaging meticulously examined and confirmed the segmentation for all
166 breast masses.

2.2. Radiomic feature extraction

One thousand twenty-three radiomic features were extracted, fol-
lowing the Imaging Biomarker Standardization Initiative (IBSI) (Zwa-
nenburg et al., 2020) and using the pyradiomics toolkit (van Gri-
ethuysen et al., 2017). Radiomic feature extraction has shown several
advantages over deep feature extraction. It is possible to perform an
accurate feature extraction also on moderate sample sizes, while deep
feature extraction requires a large database to avoid the overfitting
issue (Wei, 2021). Features can also be extracted at the original spatial
resolution of the image, avoiding resizing that can cause information
loss. However, the main peculiarity lies in the intelligibility of radiomic
features, e.g. it is well-known the meaning each feature expresses. This
last aspect allows the clinical validation of the model findings. In this
perspective, radiomic workflow can satisfy the need for explainability
that the medical context requires (Combi et al., 2022) while enabling
the training of accurate models. The following feature categories were
extracted:

• First Order (FO) intensity histogram statistics;
• Gray Level Co-occurrence Matrix (GLCM) (Haralick, 1979; Haral-

ick, Shanmugam, & Dinstein, 1973);
• Gray Level Run Length Matrix (GLRLM) (Galloway, 1975);
• Gray Level Size Zone Matrix (GLSZM) (Thibault, Angulo, & Meyer,

2014);
• Gray Level Dependence Matrix (GLDM) (Sun & Wee, 1983);
• Neighboring Gray Tone Difference Matrix (NGTDM) (Amadasun

& King, 1989).
4

First-order features are defined as statistical features that provide in-
formation about the overall intensity distribution in the ROI. Textural
features are typically associated with the discussed matrices GLCM,
GLRLM, GLSZM, GLDM, and NGTDM. The above features were ex-
tracted from the original images, as well as Laplacian of Gaussian fil-
tered images (LoG-derived features) and Wavelet Transformed images
(Wavelet-derived features). The Discrete-Wavelet-Transforms (DWT)
has shown promising results in numerous image processing applica-
tions (Al Jumah, 2013; Boix & Canto, 2010; Carlini et al., 2023;
Dautov & Özerdem, 2018) due to its multi-resolution analysis (Mallat,
1989; Prinzi, Militello, Conti & Vitabile, 2023a; Ravichandran, Nim-
matoori, & Gulam Ahamad, 2016). Many works have demonstrated the
high predictive power of wavelet-derived features (Chitalia & Kontos,
2019). Zhou, Lu et al. (2020) demonstrated improved performance
using wavelet-derived texture features extracted from MRI in predict-
ing breast cancer response to neoadjuvant chemotherapy. Also Peng
et al. (2021) showed that wavelet-derived features may have a high
correlation with pathologic complete response to neoadjuvant therapy.
Exploiting wavelet features, Mahrooghy et al. (2013) have achieved
higher performance for breast cancer recurrence risk prediction. In this
work, the Haar kernel was used.

The Laplacian of Gaussian filter is commonly used to highlight
areas where rapid changes in intensity occur. Despite the LoG-derived
features showing benefits in some context (Li et al., 2022; Pereira,
Leite Duarte, Ribeiro Damasceno, de Oliveira Moura Santos, & Nogueira-
Barbosa, 2021), the predictive role in DCE-MRI is still unclear. In this
work, the LoG filter was used considering 2 and 3 as 𝜎 values.

Features were extracted independently from each of the seven DCE-
MRI time instants. Consequently, our dataset consisted of 166 samples,
encompassing 1037 distinct features across the seven time instants (1
pre-contrast and 6 post-contrast). Table 2 summarizes the extracted
features.
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Table 2
A comprehensive overview of the extracted features for each instant.

Features N Description

Original 93
Wavelet 744 93 × 8, where 93 are the Original features

and 8 are the wavelet decompositions.
LoG 186 93 × 2, where 93 are the Original features

and 3 are 𝜎 = [2, 3].
Total 1023 This amount was extracted for each of the

seven instants

2.3. Radiomic features preprocessing and selection

Considering the variability introduced by the two protocols and the
risk of harming the resulting radiomic analysis (Saha et al., 2018),
the ComBat algorithm was employed to harmonize the multi-protocol
dataset (Fortin, Cullen, Sheline, Taylor, Aselcioglu, Cook, Adams, Coope
Fava, McGrath, McInnis, Phillips, Trivedi, Weissman, & Shinohara,
2018; Johnson, Li, & Rabinovic, 2006). ComBat is used for the align-
ment of feature distributions extracted from images acquired at multi-
ple centers/protocols. The method was applied directly to the radiomic
features of each instant within the sequence. The authors (Orlhac et al.,
2022) state that, in many examples, each of these distributions is itself
composed of 2 or more distributions (e.g. patients with different tumor
stages). In the last case, the basic formula for ComBat harmonization
can be expanded by introducing covariate terms to consider intra-
protocol variability. In our work, no additional information regarding
tumor advancement or similar variables was included. Therefore, no
correction term was used to consider additional intra-protocol vari-
ability. For each sequence instant, low variance features (<0.01), and
highly correlated features (Spearman’s rank correlation |𝜌| > 0.9)
were discarded (Militello, Prinzi, Sollami, Rundo, La Grutta, & Vitabile,
2023). To compare the malignant and benign distributions, the Mann–
Whitney U test was employed. A significance level of 𝑝 < 0.05 was
considered as the threshold for statistical significance.

Subsequently, the features selected in each time instant were fed
into the multi-instant feature selection process. In particular, the fea-
tures simultaneously statistically significant in all the seven instants
were selected. With this procedure, selected features were relevant to
discriminate sequences rather than individual instants.

2.4. Time series analysis

In our previous research (Prinzi et al., 2022), classification was
conducted to evaluate the predictivity of each instant separately. The
dataset was acquired as discussed in Section 2.1. The features were
extracted and preprocessed as discussed in Sections 2.2 and 2.3. For
each instant, low variance and correlated features were discarded.
However, only the statistically significant features in at least 5 instants
of 7 were selected according to the Mann–Whitney U test. Support
Vector Machine, XGBoost, and Random Forest were trained considering
the selected features according to the Sequential Forward Floating
Selection (SFFS) (Raschka, 2018). Therefore, each algorithm at each
instant was trained with a subset of features that maximized accuracy,
computed via SFFS.

In this work, through time series analysis, a completely different
methodology for breast cancer classification was implemented. Con-
sidering the large number of features selected after the preprocessing
and selection stage, an univariate time series analysis was initially
performed: (1) for feature selection to identify the most discrimina-
tive features for time series classification, and (2) to evaluate the
optimal time series classifier. The univariate step for feature selection
represents a wrapper method because is based on a specific machine
learning algorithm. Then, a multivariate time series classification was
implemented via a voting mechanism, considering the best classifiers
5

and features found in the univariate step. Model and features assess-
ment were performed considering the accuracy computed during a
20-repeated Stratified 10-fold Cross-Validation (CV) procedure in the
training set. Then, the multivariate classification model was evaluated
on the independent test set.

Rocket, MultiRocket, Time Series Forest, Supervised Time Series
Forest, and K-Nearest Neighbors with several distance metrics were
compared as time series classifiers.

2.4.1. Rocket and MultiRocket
The RandOm Convolutional KErnel Transform (ROCKET) (Demp-

ster, Petitjean, & Webb, 2020) algorithm is a kernel-based classifier,
in which convolutional filters are applied to extract features from time
series data. In our case, the convolutions kernel extracts features from
the radiomic time series. Then a RidgeClassifierCV is trained using
these features.

For each kernel, Rocket generates two distinct features:

• Maximum (Max): The value represents the highest value within a
dataset, equivalent to the global max pooling operation.

• Portion of positive values (ppv): 𝑝𝑝𝑣(𝑍) = 1
𝑛
∑𝑛

𝑖=0[𝑧𝑖 > 0], where
Z represents the output of the convolution operation between the
series and the kernels.

his means that using 500 kernels, 1000 features are extracted for each
ime series. Despite the high dimensionality and the small size of the
ataset, it has been demonstrated that Rocket yields a remarkably high
lassification accuracy when used as input for a linear classifier, such
s ridge regression (Dempster et al., 2020).

The Rocket classifier has been used as a benchmark algorithm for
lassification and showed impressive performance in several datasets
Ruiz, Flynn, Large, Middlehurst, & Bagnall, 2021). However, also the
ultiRocket algorithm showed promising performance compared with

ts predecessor Rocket in terms of accuracy (Dempster, Schmidt, &
ebb, 2021; Tan, Dempster, Bergmeir, & Webb, 2022). MultiRocket

mploys a defined set of kernels characterized by a fixed length and
eight configuration, as well as the same set of dilatations. In addition,

t uses 4 pooling operators on the convolution output:

• The Proportion of Positive Values (ppv), the same as described in
Rocket.

• The Mean of Positive Values (mpv) is a statistical measure used
to capture the magnitude of positive values within a series. It is
defined as 𝑚𝑝𝑣(𝑍) = 1

𝑚
∑𝑚

𝑖=1 𝑧
+
𝑖 where 𝑧+ represents a vector of

positive value of length m.
• The Mean of Indices of Positive Values (mipv) is a statistical

metric used to capture information about the relative position of
positive values within the series. It is defined as:

𝑚𝑖𝑝𝑣 =

{

1
𝑚
∑𝑚

𝑗=1 𝑖
+
𝑗 𝑖𝑓 𝑚 > 0

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

• The Longest Stretch of Positive Values (lspv) is a metric used
to ascertain the greatest length of any positive value subse-
quence within a given series, calculated as 𝐿𝑆𝑃𝑉 (𝑍) = 𝑚𝑎𝑥[𝑗 −
𝑖|∀𝑖≤𝑘≤𝑗𝑧𝑘 > 0]

The main novelty of MultiRocket draws inspiration from the Diverse
Representation Canonical Interval Forest Classifier (Middlehurst et al.,
2021), where the initial time series undergoes a transformation into
its first-order difference, which is subsequently used for feature ex-
traction. For this reason, considering the fixed 6216 kernels, 2 series
representations, and 4 pooling operators, MultiRocket extracts about
50,000 features (Tan et al., 2022). However, the applicability of these
models for very short time series is unclear. In fact, these algorithms
are typically used on more than 60-length time series (UCR Dataset Dau

et al., 2019).
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2.4.2. Time Series Forest and Supervised Time Series Forest
The Time Series Forest (TSF) algorithm (Deng, Runger, Tuv, &

Vladimir, 2013) is an interval-based classifier. TSF trains a random
forest with features extracted by the series divided into

√

𝑚 intervals,
where m represent the series length, in this case 7. The features
extracted are mean, standard deviation, and slope. In addition, the
Supervised TSF (STSF) (Cabello, Naghizade, Qi, & Kulik, 2020) was im-
plemented. STFS aims to improve efficiency by exploiting a supervised
process to select only the discriminatory intervals from the series and
introducing median, interquartile range, minimum, and maximum as
features. It is proved that for several datasets, STSF obtained compara-
ble accuracy to state-of-the-art time series classification methods while
being significantly more efficient.

2.4.3. K-nearest neighbors
The K-Nearest Neighbors classifier for time series is a distance-

based algorithm in which specific metrics are used to determine the
samples’ distances. It represents a benchmark for time series classifi-
cation because it is simple and does not require tuning of numerous
hyperparameters. A comprehensive comparison was made considering
several metrics. In particular: Dynamic Time Warping (DTW) (Sakoe &
Chiba, 1978), Weighted DTW (WDTW) (Jeong, Jeong, & Omitaomu,
2011) and Derivative DTW (DDTW) (Keogh & Pazzani) were used,
as well as edit distances such as Longest Common SubSequence dis-
tance (LCSS) (Vlachos, Kollios, & Gunopulos, 2002), Edit distance
for Real Penalty (ERP) (Chen & Ng, 2004), Edit Distance for Real
sequences (EDR) (Chen, Özsu, & Oria, 2005), Time Warp Edit distance
(TWE) (Marteau, 2008). The K value was set to 3 for the experiments.

3. Experimental results

The dataset was divided into two sets: a training/validation set
(80%) and a test set (20%). The division of the dataset was performed
randomly and in a stratified manner to ensure an equal representation
of malignant and benign lesions in both the training/validation and test
groups. Ultimately, the training/validation dataset contained a total of
132 lesions, with 67 classified as malignant and 65 as benign. The test
dataset consisted of 34 examples, equally distributed between the two
classes. To assess the model performance, various metrics were taken
into account, including Accuracy, Sensitivity, Specificity, Negative Pre-
dictive Value (NPV), Positive Predictive Value (PPV), and Area Under
the Receiver Operating Characteristic (AUC-ROC). To ensure a fair and
accurate comparison between different algorithms, the same seed was
set for all probabilistic terms within the algorithms and for generating
the stratified cross-validation folds.

3.1. Workflow reproducibility

Reproducibility is one of the key issues in radiomic works. Many
initiatives have been proposed to increase their reproducibility, and this
work is particularly consistent with the CLEAR guidelines (Kocak et al.,
2023). Following are the main aspects.

(i) The former is related to the image scanner and the acquisition
protocol. The variability in image quality depends on hospital resources
(and thus the available scanners) and the progress of healthcare within
a given geographical area. Several scanners are currently used to ac-
quire MRIs and can result in very different images in terms of resolution
and noise. For example, when compared to 1.5T, a 3T scanner results
in better contrast resolution of the enhanced lesions (Menezes et al.,
2016). This discrepancy significantly influences various aspects of a ra-
diologist’s reporting and mainly the radiomic feature extraction, where
meticulous relationships between the pixels are considered (Ziayee
et al., 2022). In addition, for the same scanner, image acquisition can
differ significantly with the use of multiple protocols. In this case,
there are several examples in which the ComBat method was effec-
tive (Li, Ammari, Balleyguier, Lassau, & Chouzenoux, 2021) and for this
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Table 3
Feature variability before and after harmonization.

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6
Before 878 727 909 913 918 922 934
After 176 180 178 195 189 193 211

reason, we employed the ComBat method as reference harmonization
method (Nan et al., 2022).

(ii) Segmentation is one of the key steps to increase system re-
roducibility. In our case, segmentations were performed by three
istinct operators along with three senior radiologist residents and then
alidated by another expert radiologist. The procedure was described
n detail, indicating the software, the segmentation mode, and the
rotocol for validating segmentations.
(iii) The feature extraction process can be performed through sev-

ral tools and different settings. In this case, pyradiomics was employed
s an IBSI-compliant toolkit (Zwanenburg et al., 2020). All parameters
ot explicitly stated for extraction should be considered as default
ettings (Kocak et al., 2023).
(iv) Finally, for model training and test, the randomness of all

odels was set with the same seed, as well as the split to gener-
te the training and test subsets and to generate the folds of the
ross-validation procedures. In addition, a model interpretation was
erformed comparing the model findings with the clinical literature,
howing interesting overlapping with previous radiomic works as well
s clinical findings on breast cancer using DCE-MRI.

Regarding the software and libraries used for the entire workflow,
he following versions were employed: for Segmentation 3D Slicer
ersion 4.11.20200930; for feature extraction pyradiomics 3.0.1; for

eature harmonization NeuroCombat-sklearn 0.1.3; for model training
nd evaluation scikit-learn v1.1.2 and sktime v0.13.4. in python 3.7
nvironment.

.2. Features harmonization impact

To demonstrate how the variability introduced by the two protocols
as mitigated through data harmonization, a statistical analysis was
erformed to compare the harmonization process effects. Specifically,
he Mann–Whitney U test was applied to compare the feature distri-
ution of the two protocols before and after feature harmonization.
able 3 shows the number of features with a statistically significant
ifference, before and after harmonization, for the 1023 features of the
even instants. Before harmonization, on average, 86% of the features
esult in statistically different distributions between the two protocols,
otentially greatly affecting the radiomic analysis without any harmo-
ization step. However, after the harmonization process, only 18% of
eatures resulted in a different distribution between the two protocols.
his significant decrease reduces the variability introduced by the two
rotocols, making the radiomic analysis performed more robust.

.3. Features selected

Five original features, 4 LoG-derived, and 15 Wavelet-derived were
elected after the preprocessing and multi-instant selection
hases. These features resulted uncorrelated and statistically significant
n each instant of the sequence simultaneously. The number of wavelet-
erived features exceeded both the original and LoG-derived features
ignificantly. This disparity stems from the initial count of Wavelet
eatures, which was 744 per instant, four times greater than the LoG-
erived and eight times greater than the original features. Considering
his proportion, the original features were the most frequently selected,
ollowed by LoG-derived, and lastly, wavelet-derived features. Then, a
otal of 24 features were used for the univariate time series analysis.
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Table 4
Rocket validation accuracy of the five most accurate features.

Category Feature Class Accuracy

FO Energy Original 0.717
FO TotalEnergy Original 0.737
NGTDM Strength Original 0.696
GLCM Imc2 Wavelet HLH 0.729
FO 90Percentile LoG 𝜎 = 2 0.671

0.710

Table 5
MultiRocket validation accuracy of the five most accurate features.

Category Feature Class Accuracy

FO Energy Original 0.694
FO TotalEnergy Original 0.687
NGTDM Busyness LoG 𝜎 = 2 0.679
GLCM Imc2 Wavelet HLH 0.676
GLDM DependenceEntropy Original 0.673

0.681

Table 6
TSF validation accuracy of the five most accurate features (LDHGLE is for
LargeDependenceHighGrayLevelEmphasis).

Category Feature Class Accuracy

FO Energy Original 0.632
FO TotalEnergy Original 0.636
GLDM LDHGLE Wavelet LLH 0.635
GLCM Imc2 Wavelet HLH 0.630
GLSZM SmallAreaEmphasis Wavelet HHH 0.641

0.635

Table 7
STSF validation accuracy of the five most accurate features (LDE is for
LargeDependenceEmphasis).

Category Feature Class Accuracy

FO TotalEnergy Original 0.651
NGTDM Strength Original 0.648
GLCM Imc2 Wavelet HLH 0.677
GLSZM SmallAreaEmphasis Wavelet HHH 0.652
GLDM LDE Wavelet HHH 0.648

0.654

3.4. Univariate analysis

For each of the 24 features, Rocket, MultiRocket, TSF, STSF and,
KNN with all the discussed distances, were trained. In general, Rocket-
based algorithms outperform TSF, STSF, and KNN. In particular, consid-
ering the 24 selected radiomic features, MultiRocket was slightly better
than Rocket, with an average accuracy of 0.628 vs. 0.617 (see Supple-
mental Material, Table 1). Tables 4 and 5 show the top-five accurate
features for Rocket and MultiRocket models, respectively. Considering
the top-five accurate features, Rocket performs much better, achieving
an average accuracy of 0.710, compared with 0.681 of MultiRocket.
The STSF models outperform the TSF ones, showing an average accu-
racy of 0.602 vs. 0.594 over the 24 radiomic features (see Supplemental
Material, Table 1). The difference between STSF and TSF is higher when
the top-five features are considered, as shown in Tables 6 and 7. In fact,
0.654 and 0.635 were computed for STSF and TSF, respectively. The
performance computed for KNN, considering each discussed distance
were significantly lower than Rocket-based and TSF-based algorithms
(see Supplemental Material, Table 2). Considering the best models
(e.g., Rocket-based and TSF-based), the Total Energy and Icm2 features
resulted in the most predictive for each time series classifier employed.
The Energy features in three of the four best models.
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3.5. Multivariate analysis

The top-five features discussed for the Rocket models were used for
multivariate analysis using a voting mechanism. The meaning of the
five features is crucial in drawing important clinical conclusions, as
outlined in the discussions. In particular:

• The Original First Order Energy is a metric that quantifies the
magnitude of voxel values within an image. A higher value in-
dicates a larger sum of the squares of these voxel values. Visu-
ally, the lesion with high Energy should exhibit a very bright
appearance characterized by very high intensities.

• Original First Order TotalEnergy: is a metric derived by scaling
the Energy feature with respect to the volume of the voxel in cubic
millimeters.

• Original ngtdm Strength: exhibits a high value when an image
demonstrates a slow transition in intensity, accompanied by more
pronounced variations in gray-level intensities.

• Wavelet — HLH glcm Imc2: measures the complexity of the
texture.

• LoG — First Order 90Percentile.

Table 8 shows all the validation metrics for the top-five best features
resulting from the univariate analysis, reported considering the mean
and standard deviation of the 20-repeated 10-fold CV. Table 9 shows
the validation performance for the multivariate time series analysis
and the instant-wise analysis (Prinzi et al., 2022). Table 10 displays
the performance metrics calculated for both the multivariate time
series analysis and the instant-wise analysis (Prinzi et al., 2022) on
the test set. In the test phase, the Multivariate Rocket model outper-
forms the instant-wise model in terms of accuracy, sensitivity, and
NPV. On the other hand, the instant-wise model (Prinzi et al., 2022)
resulted in higher AUC-ROC, specificity, and PPV. However, the dif-
ference between specificity and sensitivity is significantly smaller for
the Multivariate Rocket, making the model more balanced compared
with the instant-wise model. It is possible to observe the substantial
improvement of the time series approach over the instant-wise one, in
the 20-repeated 10-fold CV performance (Table 9). In fact, considering
the small size of the dataset, the CV procedure enables a more precise
performance evaluation. Accuracy and AUC-ROC resulted higher for
the Multivariate Rocket model. Specificity was slightly lower with a
significantly higher sensitivity. PPV value was similar for both models
and higher PPV for Multivariate Rocket. In addition, a lower standard
deviation was computed for Multivariate Rocket in each metric.

3.6. Leave-one-protocol-out evaluation

To validate the promising model performance, a leave-one-protocol-
out evaluation was employed. Leveraging the multi-protocol dataset,
this methodology involves training the model using samples from one
protocol and subsequently evaluating its performance with samples
from the opposing protocol. This procedure simulates a kind of external
model validation. This evaluation method approximates, even if only
composed of two protocols, the leave-one-center-out cross-validation,
as performed in Soda et al. (2021). However, in our case, this ap-
proach assumes training a machine learning model on 81 samples for
the first protocol and 85 for the second one, making model training
complicated. Specifically, we employed the optimal configuration used
for the whole analysis, e.g. the Multivariate Rocket models with the
features outlined in Table 8. The performance achieved in the two
protocols exhibits differences and demonstrates a reasonable general-
ization capability. In both cases accuracy and AUROC overlap. Despite
the very-small dataset size, training on Protocol 1 and testing on
Protocol 2 yields an accuracy and AUROC of 0.691, whereas training
on Protocol 2 and testing on Protocol 1 an accuracy and AUROC of
0.605. While the selected features and model showcase effectiveness

even when the two protocols are analyzed separately, it is crucial to
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Table 8
Cross-validation performance of the top five features using the Rocket algorithm.

Model Accuracy AUC-ROC Specificity Sensitivity PPV NPV

Original FO Energy 0.717 ± 0.133 0.718 ± 0.133 0.719 ± 0.184 0.717 ± 0.196 0.733 ± 0.159 0.731 ± 0.156
Original FO TotalEnergy 0.736 ± 0.109 0.736 ± 0.110 0.727 ± 0.160 0.745 ± 0.173 0.747 ± 0.126 0.754 ± 0.140
Original NGTDM Strength 0.696 ± 0.111 0.696 ± 0.110 0.610 ± 0.169 0.782 ± 0.150 0.680 ± 0.118 0.747 ± 0.149
Wavelet HLH GLCM Imc2 0.728 ± 0.119 0.727 ± 0.120 0.666 ± 0.192 0.789 ± 0.160 0.722 ± 0.143 0.773 ± 0.149
LoG 𝜎 = 2 FO 90Percentile 0.671 ± 0.120 0.671 ± 0.121 0.681 ± 0.182 0.661 ± 0.172 0.693 ± 0.157 0.670 ± 0.133
Table 9
Corss-validation performance of the multivariate Rocket classification algorithm using a voting mechanism and its comparison against the
previous instant-wise analysis (Prinzi et al., 2022).

Model Accuracy AUC-ROC Specificity Sensitivity PPV NPV

Multivariate Rocket 0.742 ± 0.117 0.743 ± 0.118 0.710 ± 0.171 0.775 ± 0.156 0.742 ± 0.131 0.767 ± 0.138
Instant-wise (Prinzi et al., 2022) 0.710 ± 0.130 0.741 ± 0.135 0.738 ± 0.177 0.683 ± 0.178 0.743 ± 0.153 0.703 ± 0.145
Table 10
The overall model performance on the indipendent test set achieved using the Rocket algorithm and its comparison against
the previous instant-wise analysis (Prinzi et al., 2022).

Model Accuracy AUC-ROC Specificity Sensitivity PPV NPV

Multivariate Rocket 0.852 0.852 0.823 0.882 0.833 0.875
Instant-wise (Prinzi et al., 2022) 0.823 0.877 0.882 0.764 0.866 0.789
acknowledge the limitations posed by the small dataset. The current
results, while promising, warrant caution, and the generalization of
findings should be approached with care. Further investigations with a
more comprehensive dataset are recommended to validate the observed
performance.

4. Discussion and comparison

In our previous research (Prinzi et al., 2022), each instant within
the DCE-MRI sequence was evaluated separately. The Random Forest
model exhibited promising performance when trained on features from
the third post-contrast instant. This result was elucidated by taking into
account that, during the third post-contrast instant, the contrast agent
is effectively absorbed in both malignant and benign lesions, thereby
emphasizing their distinct characteristics. However, the instant-wise
analysis does not fully exploit the potential of the DCE-MRI sequence
because classification is performed on each instant separately.

In this view, the proposed method introduces several novelties and
advantages. Firstly, the series structure of the DCE-MRI acquisition was
analyzed through time series classification algorithms and exploiting all
the sequence instants simultaneously. The approach assumes the whole
series more informative than individual time instants. In addition, the
approach results similar to the radiologist’s diagnostic process, which
considers the whole sequence to determine the lesion benignity or
malignancy.

The MRI acquisition protocols were set by medical professionals,
including radiologic technologists and radiologists, based on clinical
evidence and individual patient needs. As a consequence, our dataset
is composed of two protocols reflecting the real clinical scenario,
introducing challenges and enhancing the validity of our work. For
multi-protocol dataset management, we performed a data harmoniza-
tion to align distributions from the two protocols. This step was critical
because it was proven a multi-protocol dataset can influence radiomic
analysis (Saha et al., 2017). In fact, Table 3 showed a significant reduc-
tion in inter-protocol variability due to the use of combat. Specifically,
on average 86% of features were statistically different between the two
protocols before harmonization, while only 18% after harmonization.
In addition, the use of multi-instant feature selection enabled the selec-
tion of descriptive features for time series classification, independently
of the specific instant within the instant under consideration.

Several time series classifiers were compared, proving Rocket and
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MultiRocket as the best on small datasets and short time series settings. F
In particular, the top-five radiomic features for Rocket were aggre-
gated via a voting mechanism. The LoG-derived features were not as
predictive as the original and Wavelet-derived features.

Compared with our previous work, the proposed model demon-
strates superiority in various aspects. Given the limited dataset size,
metrics calculated in cross-validation are considered more reliable. In
this context, the gaps observed in AUROC, specificity, and sensitivity
are minimal (Table 9). Specifically, the average AUROC is higher (0.743
vs. 0.741) with a lower standard deviation (0.118 vs. 0.135). Although
specificity is marginally lower (0.710 vs. 0.738), the standard deviation
is also lower (0.171 vs. 0.177). Furthermore, the positive predictive
value (PPV) is comparable on average (0.742 vs. 0.743) but exhibits a
significantly lower standard deviation (0.131 vs. 0.153). Notably, all
other metrics show a marked improvement. In the test dataset (Ta-
ble 10), it is crucial to highlight that the proposed method demonstrates
a more balanced sensitivity and specificity than the instance-wise anal-
ysis, as well as PPN and NPV. This balance results in a model that
is more adept at predicting both benign and malignant classes with
greater equality. In addition, it is important to emphasize the notable
improvement of the proposed method in terms of sensitivity, a critical
metric for breast cancer classification. Sensitivity is particularly crucial
as it describes the probability that a lesion is malignant when it is
indeed malignant. Recognizing that misclassifying a malignant lesion
as benign is a more serious error than the inverse, emphasizing a
higher sensitivity is imperative. In this context, the preference is for
a model that excels in sensitivity over specificity, as the former plays a
pivotal role in minimizing the risk associated with misclassification of
a malignant lesion as benign.

4.1. Literature comparison

Despite the use of a two-protocol dataset, which undoubtedly el-
evates the complexity of the classification task, the achieved perfor-
mance are either superior or in alignment with the state-of-the-art. In
fact, Gibbs et al. (2019) used radiomic features extracted from three
parameter maps, obtaining a high specificity (97%–100%) and a low
sensitivity (56%–67%) model using a support vector machine. Zhang
et al. (2020) achieved the same trend using a support vector machine,
achieving a sensitivity of 0.714 and a specificity of 0.800 considering
only the pharmacokinetic parameters maps. Also in Militello et al.
(2022) a support vector machine was trained to achieve a higher
specificity (0.741 ± 0.114) with respect to sensitivity (0.709 ± 0.176).

ocusing on radiomics analysis, an opposite trend was found by Zhou,
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Fig. 3. Average trend of Energy and Total Energy features for the 81 benign lesions (green) and 85 malignant lesions (red).
Fig. 4. Average trend of the NGTDM Strength feature for benign lesions (green) and
malignant lesions (red).

Zhang et al. (2020), achieving a sensitivity of 85% with respect to
a specificity of 65%. Furthermore, in the study conducted by Parekh
and Jacobs (2017), which involved the analysis of different image
sequences, a higher sensitivity (0.93) was observed in comparison to
specificity (0.85). Compared with the validation performance in Prinzi
et al. (2022) only specificity resulted slightly lower (0.710 ± 00171 vs.
0.738 ± 0.177). The sensitivity resulted significantly higher (0.775±0.156
vs 0.683 ± 0.178). The same considerations can be extended to the test
set. Except compared with the Parekh work (Parekh & Jacobs, 2017),
in which features from DCE-MRI, DCE High Spatial Resolution, DWI,
ADC map, T1, and T2 were aggregated, our performance results in
line or higher. In particular, a more balanced sensitivity and specificity
were computed, which means fair benign and malignant classifica-
tion rates. Also compared with the clinical diagnostic performance,
the Multivariate Rocket classifier shows a similar trend in terms of
sensitivity and specificity. In particular, was shown that MRI provided
an overall sensitivity and specificity of 94.6% and 74.2%, respectively,
while for the contrast-enhanced MRI, overall sensitivity and specificity
were 91.5% and 64.7% (Aristokli, Polycarpou, Themistocleous, Sopho-
cleous, & Mamais, 2022). Focusing on DCE-MRI, Zhang et al. (2016)
computed a sensitivity of 93.2% and a specificity of 71.1%, while 0.87
of sensitivity and 0.74 of specificity were found by Dong, Kang, Cheng,
and Zhang (2021). In this view, our model is coherent with the clinical
diagnostic performance, showing a slightly lower specificity and higher
sensitivity.
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4.2. Model interpretation and clinical validation

The main advantage of radiomic features extraction lies in their
intelligibility. Radiomic feature extraction allows model introspection
while maintaining high classification accuracy. In our case, model
introspection and features intelligibility allow comparing the model
findings with the real physician diagnosis process and the related
clinical literature (Liang et al., 2023; Prinzi, Militello, Scichilone, and
Gaglio & Vitabile, 2023). The main results concern features closely
related to changes in the intensity of gray levels: Energy and Total
Energy. In Fig. 2 is visually evident that the first effect of the contrast
agent administration is the increase in gray level (signal) intensities,
which is precisely the magnitude that the Energy and Total Energy
features describe. Fig. 3 shows the average trend of the two features
exhibiting this effect. The malignant lesion shows a more rapid increase
in energy, and thus signal intensity, until the last instant of the DCE-
MRI sequence. The quantitative explanation of these model findings
allows a clinical validation: much faster growth in the first instants
(the initial peak enhancement) is evident for malignant rather than
benign lesions, indicating that the contrast agent is absorbed faster in
malignant lesions (Padhani, 2002). Energy and Total Energy are the
statistical features that describe the intensity of the signal and thus
explain this clinical aspect. Fig. 3 shows that the greater differences
between the two trends lie in the first instants. Peak enhancement
typically occurs within the first 2 min after the injection of the contrast
agent (Mann, Kuhl, Kinkel, & Boetes, 2008). In our case then occurs in
about the first three instants as shown in Fig. 3.

Additionally, elevated NGTDM Strength values indicate that ROIs
exhibit a gradual shift in intensity, coupled with a prevalence of sub-
stantial and coarse variations in gray-level intensities. In our case, as
shown in Fig. 4, the greater difference lies in the latest time instants
of the sequence, in which benign lesions show higher Strength values.
This indicates that, when both lesions absorb the contrast agent, benign
lesions display a more consistent pattern characterized by fewer rapid
changes in intensity. High values mean an image with a slow change
in intensity but larger coarse differences in gray level intensities. This
means that when the contrast agent is absorbed by both lesions, be-
nign lesions show a more regular pattern, with less rapid changes in
intensity. This is explained because it was already clinically proved that
malignant lesions have typically a heterogeneous internal enhancement
in the delayed phase (Agrawal, Su, Nalcioglu, Feig, & Chen, 2009;
Tozaki, Igarashi, & Fukuda, 2006).

Features explanation becomes complicated when high-level features
such as wavelet-derived are considered. This is because the clinical
interpretation of the results is performed by the physician on the
original images, which are very different from the transformed images
(e.g. Wavelet Transformed and LoG filtered). This makes the association
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of radiomic features with clinical findings unfair. However, from a
quantitative point of view, the other feature series show a different
trend between benign and malignant tumors (See Figure 1 of Supple-
mental Materials for the average trend of the other selected radiomic
sequences).

4.3. Limitations

The use of an external test set acquired at another center/scanner
would be the optimal approach to evalue the model performance. We
tried to search some DCE-MRI open-source datasets as external test.
Unfortunately, datasets in the public domain are frequently scarce, and
even when available, they may differ significantly from the specific
dataset under analysis. Especially in the case of DCE-MRI, the situation
becomes more intricate due to its time series structure. This structure
may vary depending on the contrast agent used, resulting in different
absorption times, consequently leading to variations in time resolution
and number of instants within the sequence. For instance, the Duke-
Breast-Cancer-MRI dataset (Saha et al., 2018) is accessible; however, it
exclusively comprises invasive breast cancer patients, the related anno-
tations are sequences composed of 4/5 instants and the segmentations
are represented in the form of bounding boxes and thus very different
from the segmentation prepared for our study. In another available
dataset, which is the dataset proposed in Zhao et al. (2023), samples
are categorized into malignant and benign, but the entire acquisition
process takes less than 3 min consisting of 9 instants (1 pre-contrast
and 8 post-contrast) and is acquired using a 3T scanner. In contrast, our
dataset involves acquisitions every 70/90 s and 7 instants, rendering
the time intervals of this dataset staggered compared to ours. Many
other works use similar datasets; unfortunately, they are used for other
purposes (Huang et al., 2014) or are not made accessible.

5. Conclusion and future works

The proposed Multivariate Rocket model leverages the entire DCE-
MRI sequence to classify breast cancer. More specifically, it employs
multi-instant feature selection and univariate time series classification
techniques to identify the five most informative features for radiomic
time series classification. Then, the top-five features were aggregated
via a voting mechanism to implement a Multivariate Rocket model. The
use of radiomic features extracted from the whole DCE-MRI sequence
mimics the radiologist’s diagnostic process, which analyzes the entire
DCE-MRI sequence rather than individual instants for the diagnosis.
In fact, the implemented Multivariate Rocket model outperformed the
instant-wise analysis of our previous work (Prinzi et al., 2022). Fur-
thermore, the use of radiomic features was essential to clinically justify
and explain the model findings, showing how the trend of Energy,
Total Energy, and NGTDM Strength, can be approximated to some
clinical evidence (Agrawal et al., 2009; Mann et al., 2008; Padhani,
2002; Tozaki et al., 2006). The dataset derived from real clinical
practice reflects the heterogeneity inherent in actual clinical scenarios.
It encompasses images obtained through diverse protocols and a variety
of lesion types and sizes, thereby significantly enhancing the validity of
the conducted research. To the best of our knowledge, as highlighted
in the introduction, this sequence is typically addressed through the
analysis of individual time instants or, at most, through subtraction
methods. Our work is distinguished by focusing on the analysis of DCE-
MRI through time series classifiers, a perspective that, among other
advantages, aligns with the current medical diagnostic process for this
particular medical imaging modality. This approach addresses a gap in
the existing literature, as the majority of previous works tend to over-
look or underutilize time-series classifiers in the context of DCE-MRI
analysis. One of the main future directions is the information fusion of
different temporal instants as well as the extraction of an informative
embedding. This salient embedding that encapsulates information from
all instants can be the input for several new and recently proposed
classifiers (Liu et al., 2022; Xia et al., 2022). Through these approaches,
higher accuracy might be achieved even if model explainability can be
10
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