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Background
The intensive interplay of molecular components is at the basis of cellular life. Under-
standing how genes, proteins and RNAs interact each other allows to uncover complex 
mechanisms which underlie the occurrence and progress of complex diseases [1–3]. 
With the advent of high throughput and computational techniques, massive amounts 
of interaction data have been produced and collected in publicly available databases 
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(e.g., Intact [4], String [5]). Molecular interaction data are usually modelled by molecular 
interaction networks (MIN, for short), such that nodes are associated with cellular com-
ponents, and edges represent their pairwise interactions, experimentally discovered in 
laboratory or predicted computationally [6].

Different types of molecular interaction networks (e.g., protein–protein interaction 
networks) have been broadly studied in the literature, showing to be successful also 
in real-life applications [7]. Moreover, a number of software tools have been proposed 
and are commonly used for their analysis and visualization, the most used of which is 
Cytoscape [8]. However, interaction data collected in public databases have impressively 
increased in the last few years, bringing such networks to reach huge sizes, with thou-
sands proteins and millions interactions to be processed. Unfortunately, this has started 
to make the analysis of molecular interaction networks yet more challenging, and often 
out-of-reach for standard computing platforms.

A possible solution is to carry out the analysis of these very large networks by identi-
fying independent tasks to be solved, in parallel, across the nodes of a distributed com-
puting system. However, further significant issues would need to be solved in this case. 
Among them, there is the definition of a strategy for partitioning in a balanced way the 
elements of the interaction network under analysis on the nodes of the distributed sys-
tem. Then, the development of distributed algorithms able to carry out the target analy-
sis in parallel over these nodes, thus that each node may work mostly on its local data, 
while keeping small the amount of data to be exchanged with the other nodes.

Indeed, these issues are not easy to tackle as they require a profound knowledge of 
the way a distributed system works, as well as non-trivial programming skills. For these 
reasons, the usage of distributed computing in the analysis of molecular interaction net-
works has been pretty limited so far, despite its potential and possible social impact have 
been widely pointed out in the literature (see, e.g., [9]).

To address the above problems, we propose DIAMIN, a high-level software library 
implemented in Java, based on the Object-Oriented Programming paradigm and built 
on the Apache Spark framework. The main goal of this library is to enable efficient dis-
tributed analysis of large molecular interaction networks, both for users with program-
ming skills (PSU) and for data analysts (DAU). In both cases, the user does not need any 
special knowledge of distributed computing to fully utilise the features provided by the 
library. Instead, it is the library provided that takes care of the various problems that 
arise when working in a distributed environment, such as balancing the distribution of 
the elements of an input interaction network among the nodes of a distributed system 
and processing them in parallel.

In summary, DIAMIN utilities allow the user to perform the following three main 
classes of actions. 

1.	 (PSU, DAU) Build and query molecular interaction networks, with nodes represent-
ing cellular components and edges their interactions, starting from the most com-
mon file formats available in public databases that store annotations on molecular 
interactions (e.g., mitab files).

2.	 (DAU) Perform basic analysis of molecular interaction networks, through a set of 
useful functionalities (e.g., neighborhood extraction).
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3.	 (PSU) Compose and modify in a simple way the suitable primitives provided by the 
platform, to perform more complex analysis and/or to solve specific problems (e.g., 
network alignment).

It is worth pointing out that many of such actions cannot be accomplished by the state 
of the art currently available tools (e.g., Cytoscape [8]), especially when large-scale net-
works (order of million edges) have to be analyzed in their entirety. Therefore, to the best 
of our knowledge, DIAMIN is the first and only software library specifically designed to 
allow MIN analysis in the distributed.

The remaining part of this section is devoted to provide some basic definitions on net-
works and graphs, as well as the main notions on big data frameworks and methodolo-
gies the proposed library relies on.

Molecular interaction networks and basics on graphs

As defined in several papers of the literature (see, e.g., [6, 10, 11]) a Molecular Interac-
tion Network (MIN) N = �V ,E� is an undirected graph such that V is the set of nodes, 
representing cellular components (e.g., proteins, mRNA, genes, etc.), and E is the set of 
edges. An edge occurs between two nodes if a physical interaction between the two cor-
responding cellular components has been found in laboratory or computationally pre-
dicted, as stored in annotated interaction databases. If each edge of a MIN has a label 
(usually, a real number), the MIN is labelled. We recall that, given the edge (vi, vj) ∈ E , 
it is incident to both nodes vi and vj . Also, vi and vj are adjacent. Two edges are adjacent 
as well if they share a node. The degree of a node v is the number of edges incident to v.

The following definitions hold.

Definition 1  x-Path. Given a MIN N = �V ,E�,an x-Path is a sequence (e1, e2, . . . , eh) of 
h edges such that:

•	 ei and ei+1 are adjacent, for each i = 1, . . . , h− 1;
•	 the product of labels of the edges (e1, e2, . . . , eh) is greater than x, if N  is labelled.
•	 h = x , if N  is not labelled.

Definition 2  Density. The density of a MIN N = �V ,E� is defined as:

where |E| and |V| are the number of edges and nodes, respectively.

Definition 3  Closeness. Given a MIN N = �V ,E� and an interactor p ∈ V  , the close-
ness of p is defined as:

where d(y, p) is the length of the shortest path between y and p.

2|E|

|V |(|V | − 1)

y∈V \{p}

1

d(y, p)
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Given a node p of a MIN N  , it can be useful in many applications to consider nodes at 
a certain distance from p on N  . In particular, this may be important for both unlabelled 
MIN, and for labelled ones. In the latter case, we assume that labels are real values in the 
range [0, 1]. Then, one can refer to the previous definitions, and consider the x-Neigh-
borhood of p as the set of all nodes {v1, v2, . . . , vh} in N  for which there exists a y-Path 
between vi ( i = 1, . . . , h ) and p, such that y ≥ x.

Definition 4  Closest Component. Given a MIN N = �V ,E� and a partition A of N, the 
closest component to a subset of interactors S ⊂ N  is the set C ∈ A with the largest num-
ber of interactors in common with S:

Big data technologies

Distributed computing

Distributed Computing is an environment in which a group of independent, heterogene-
ous and geographically dispersed computer systems take part to solve a complex prob-
lem, each by solving a part of solution and then combining the result from all computers. 
These systems are loosely coupled systems coordinately working for a common goal [12]. 
The use of distributed computing is particularly helpful when working with big data, as 
it allows both to manage very large amounts of data by partitioning them among the 
nodes of a distributed system, and to significantly speed up their analysis thanks to par-
allel computation.

The MapReduce paradigm

MapReduce [13] is a paradigm for the processing of large amounts of data on a distrib-
uted computing infrastructure. Assuming that the input data is organized as a set of 
〈 key, value 〉 pairs, the paradigm is based on the definition of two functions. The map 
function, which processes an input 〈 key, value 〉 pair and returns a (possibly empty) 
intermediate set of 〈 key, value 〉 pairs. The reduce function, which merges all the inter-
mediate values sharing the same key to form a (possibly smaller) set of values. These 
functions are run, as tasks, on the nodes of a distributed computing framework. A com-
plex algorithm can be implemented by running a sequence containing an arbitrary num-
ber of map and/or reduce functions. The management of map and reduce functions/
results are transparently handled by the underlying framework (implicit parallelism), 
with no burden on the programmer.

Apache spark

Apache Spark [14] is one of the most popular engines for large scale data processing, 
based on RDDs (Resilient Distributed Datasets) and DataFrames. These are distributed 
memory abstractions that let programmers perform in-memory computations on large 
clusters in a fault-tolerant manner. The physical architecture of a Spark Cluster is char-
acterized by a master node that supervises a series of workers nodes through daemon 

C = arg max
A∈A

|A ∩ S|
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processes. Data are usually partitioned among the worker nodes and MapReduce is also 
supported.

The GraphX and GraphFrame libraries

Apache Spark includes two high-level APIs useful for writing applications able to pro-
cess large-scale graphs, distributed across a computer cluster: GraphX [15] and Graph-
Frame [16]. These two APIs mainly differ in the data structures used to represent an 
input graph.

GraphX extends Spark’s RDDs to introduce a new graph abstraction, called Resilient 
Distributed Graph. On top of this data structure, a set of operations is provided to sim-
plify distributed graph construction and processing. It models the edges and the verti-
ces of the graph using two different RDDs: VertexDataTable and EdgeTable. The former 
stores, for each vertex of the graph, a unique vertex id and a set of user-defined data. The 
latter stores, for each edge of the graph, the source vertex id, the destination vertex id, 
a set of user-defined data and a virtual partition identifier (pid). The elements of EdgeT-
able instances are partitioned across the nodes of a Spark Cluster according to their pid 
attribute, while the elements of VertexDataTable instances are partitioned according to 
their vertex id.

GraphX generates a further RDD, called VertexMap, that provides a mapping from the 
id of a vertex to the partitions that contain adjacent edges. Since graph algorithms often 
require to explore the neighborhood of each vertex, an efficient strategy aims to mini-
mize communications between different graph partitions, ensuring at the same time a 
balanced computation workload.

GraphFrame unifies graph analytics and relational queries using a graph representa-
tion based on Spark DataFrames. These data structures model a dataset as a distributed 
relational table, to be queried using an SQL-like language.

GraphFrame represents a distributed graph using two DataFrames: a DataFrame hold-
ing all vertices and a DataFrame holding all edges. The main difference with respect to 
GraphX is the availability of a graph search operator that accepts, as input, a pattern 
specifying the structure of the subgraph being searched and returns a new DataFrame 
containing all edges and/or vertices of the original graph matching the provided pattern.

PREGEL. PREGEL [17] is a node-centric programming model where the developer 
can implement an algorithm from the perspective of a node, rather than of the whole 
graph. Namely, it allows to code the behavior of each node of a graph, provided that it 
can exchange messages with the other nodes it is connected to. Execution takes place in 
several rounds and stops when every computation at each node votes to halt.

Pregel is based on a multi-iteration procedure where adjacent nodes communicate 
by means of messages. Within each iteration (called superstep) a set of active nodes 
update their attributes according to a user-defined function which elaborates the mes-
sage sent by the adjacent nodes. The sequence of supersteps continue until no more 
active nodes are detected (i.e there are no messages to forward to the next iteration). The 
pregel schema is meant to be extremely suitable for per-node computations over many 
machines.

The GraphX API provides the tools to implement a Pregel through parallel com-
putations on the triplets of the graph. A triplet is made of an edge, its source and its 
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destination node. The high level of abstraction requires the user to specify three cus-
tom functions:

•	 Vertex-Programme function (Vprog);
•	 Merge-Message function (MergeMsg);
•	 Send-Message function (SendMsg).

MergeMsg aggregates for each node the messages delivered by the adjacent nodes. 
The output is processed by the Vprog function to update the node data. At the end, 
SendMsg generates the message to be forwarded to the next superstep, selecting 
those nodes that will be active. Moreover, the GraphX API allows to fix other param-
eters, such as the maximum number of iterations and the direction of messages 
propagation.

Neo4J. Neo4J is a NoSQL database designed for efficiently managing and querying 
highly connected data, by means of a graph-based representation. It can be deployed 
as a distributed database, using sharding, when it is needed to analyze huge networks. 
Cypher is the language included in Neo4J and designed for querying stored data and 
for calling the built-in functions implementing many useful graph algorithms. Neo4J 
includes also software components for a deep integration with Apache Spark, that allows 
users to easily implement distributed software pipelines using Neo4J as a data storage.

Implementation
The library has been implemented as a collection of Java classes. This language has 
been chosen against the other two languages supported by Apache Spark, Scala and 
Python, due to the fact that it provides an optimal trade-off between the need for 
a robust Object-Oriented implementation (unlike Python) and the use of a widely 
known programming language (unlike Scala).

We describe in the following the main two classes it contains: BioGraph and 
IOmanager. A class diagram reporting a high-level description of the architecture 
of MIN is available in Fig. 1. The library also includes other classes to manage import/
export routines or to represent the basic concepts of a graph structure.
BioGraph. The core component of MIN is the BioGraph class. It enables the 

management and processing of a MIN using a distributed representation. From the 
outside, an instance of this class appears to enclose a MIN and provides a set of meth-
ods and algorithms for interacting with it. From the inside, the enclosed MIN is not 
local to the instance of the class, but it is instead implemented by two different dis-
tributed Spark data structures, each containing nodes and edges of the MIN. Thus, 
the BioGraph instance contains only one stub pointing to the various partitions of 
MIN. As a consequence, the distributed nature of this data structure is completely 
invisible to the end user.

Similarly, methods supported by this class are also represented as standard meth-
ods, but they are implemented as distributed algorithms. This allows the user to take 
advantage of distributed computing for processing very large MIN networks without 
having any knowledge of distributed programming.
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In details, BioGraph supports three main types of operations:

•	 MIN statistics useful to summarize the properties of a whole MIN network or of 
some of its parts by means of centrality measures;

•	 MIN analysis useful to explore the interaction, in terms of connectivity and 
weighted connectivity, between different parts of a same MIN network. Includes 
path-finding and connected components algorithms;

•	 MIN exploration useful to explore the structure a MIN network by traversing it or 
by giving access to some of its parts, even according to user-defined conditions;

Functions belonging to the first type cover tasks typical for the analysis of any type 
of graphs, while the others are designed to implement higher-level algorithms, con-
ceived for the solution of specific domain-driven problems. The considered domain-
driven problems focus mainly on cellular components connectivity and the evaluation 
of the related connected components.

In the following, a list of the main algorithms available within this class is provided, 
where each algorithm is implemented as a method. It is worth pointing out that all 
these methods, when run, implicitly use the MIN stored in the class itself as input.

•	 interactors()

Input:  -
Description:  writes on an external text file the unique id or the name of all 
the interactors (i.e., the nodes) of the underlying graph.

•	 interactorsCounter()

Input: -
Description: returns the number of interactors of the underlying graph.

Fig. 1  High-level design of the DIAMIN architecture, depicted as a class diagram. It reports the main classes 
used by the library and their interactions
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•	 interactions()

Input: -
Description: writes on an external text file the unique id or the name of all inter-
actions (i.e., edges) of the underlying graph.

•	 interactionsCounter()

Input: -
Description: returns the number of interactions (i.e., the edges) of the underly-
ing graph.

•	 density()

Input: -
Description: returns the density index of the underlying graph.

•	 degrees()

Input: -
Description: returns the list of interactors of the underlying graph, with their 
associated degree.

•	 closeness()

Input: an interactor i of the underlying graph.
Description: returns the closeness of the interactor i.

•	 xNeighbors()

Input: a subset S of interactors of the (unlabeled) underlying graph, an integer x.
Description: returns the x-neighbors of the interactors in S.

•	 xSubGraph()

Input: a subset S of interactors of the (unlabeled) underlying graph, an integer x.
Description: returns the subgraph containing interactors in S and their x-neigh-
bors.

•	 xWeightedNeighbors()

Input: an interactor i of the (labeled) underlying graph, an integer x.
Description: returns the x-weighted-neighborhood of i.

•	 xWeightedSubgraph()

Input: an interactor i of the (labeled) underlying graph, an integer x.
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Description: returns the subgraph containing i and its x-weighted-neighbors.

•	 closestComponent()

Input: a subset S of interactors of the underlying graph.
Description: returns the interactors forming the connected component of the 
underlying graph, containing the largest number of elements in common with S.

•	 intersectionByComponent()

Input: a subset S of interactors of the underlying graph.
Description: for each distinct connected component of the underlying graph, 
returns its unique id number and the size of its intersection with S.

IOmanager. The IOmanager class keeps a collection of methods that can be invoked to 
manage the import/export of MIN from/to external sources. Usually, molecular networks 
are not stored in the original sources in a format ready to be analyzed by a distributed 
approach. Instead, they are stored in text files adopting a structured format (e.g., MITAB).

Using the methods available in IOmanager, it is possible to load automatically the MIN 
from an external file and instantiate it as a distributed data structure.

We consider also another case, less frequent but interesting as well, such that the net-
work is initially stored in a NoSQL database. In particular, we take into account the scenario 
where nodes and edges are stored in a Neo4j instance. In such a case, it is usually required 
to properly use the query language to acquire a complete description of the molecular inter-
actions. Again, using the methods available in IOmanager, it is possible to automatically 
load the MIN from a Neo4J database without the need of writing any query.

The list of methods managing the import procedures is reported in the following:

•	 importFromTxt()

•	 importFromNeo4j()

Conversely, it may be required to store the network resulting from an analysis on a device 
external to the distributed system, allowing to process it by other tools. The library provides 
the following functions to transfer MIN information on a text file and to transfer or update 
MIN information on a Neo4j instance:

•	 exportToTxt()

•	 exportToNeo4j()

•	 updateNeo4j()

Results
In order to assess the performance and effectiveness of the proposed library, differ-
ent experiments have been performed, as described in the following paragraphs. In 
particular, a first class of experiments has been devoted to test the efficiency and scal-
ability of DIAMIN. A second one has regarded its ability to solve specific problems by 
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using directly its functionalities (e.g., for data analysis use). Finally, an example use 
case showing how the DIAMIN functionalities may be used to develop new ones is 
provided as well.

For the described experiments, two different networks have been considered, refer-
ring to Homo sapiens and built upon the interactions retrieved from two databases: 
Intact [4] and String [5]. Both databases store mainly protein–protein interactions, 
however they also include a small fraction of interactions between proteins and other 
molecules (e.g., miRNA). Their main differences is that the former stores interactions 
experimentally verified only, while the latter includes also interactions computation-
ally predicted.

We denoted by NI the MIN obtained from Intact and NS that from String, 
respectively. NI has 116,  641 nodes and 768,  993 edges, NS has 19,  354 nodes and 
11, 759, 454 edges. The tests have been performed on an HPC infrastructure equipped 
with 8 compute nodes running Linux, each equipped with 2 AMD Epyc 7452 proces-
sors and 256 GB RAM, for a total of 512 compute cores (see [18] for more details).

Performance evaluation

We have assessed the performance of our library, both in terms of efficiency and scal-
ability, by benchmarking it when used to solve a reference use-case. Given a set of 
interactors P = {p1, . . . , pn} of NS , performance of DIAMIN has been then evaluated 
by considering the task of computing, for each pi ∈ P , its xWeightedNeighborhood, 
by fixing x = 0.45.

Efficiency has been measured by comparing the elapsed execution time of a solution 
for this task based on our library, against an equivalent solution developed using the 
Neo4J graph-oriented database (see Background). In this latter case, first we loaded 
in memory the whole network, then we completed each task by running a properly 
crafted Neo4J query (a copy of the used queries is included in the DIAMIN documen-
tation). We stress here that, since Neo4J does not support the deployment of fully 
distributed graphs, the graph under analysis has been loaded and queried using one 
single server machine.

For both competitors, the considered task has been executed several times, by dou-
bling the size of P at each time. Figure  2 shows that the Neo4j solution is strongly 
influenced by the size of P, indeed its execution time increases linearly with P, start-
ing when the latter is yet quite small (that is, 100). On the contrary, the execution 
time of the DIAMIN solution is just slightly influenced by the increase of P. Indeed, 
this behavior can be explained by considering the fully distributed nature of our solu-
tion. That is, DIAMIN allows all nodes of the distributed system to explore in parallel 
the neighborhood of the proteins they hold, including the interactors in P. Instead, 
due to its inherently sequential nature, the Neo4j solution takes a time that is linearly 
proportional to the number of interactors being considered.

Scalability has been measured by analyzing the elapsed execution time of our solution 
for this task, as a function of the number of computing cores. As shown in Fig. 3, our 
distributed solution succeeds in achieving a nearly linear scalability when accomplishing 
this task, thanks to its ability to process large graphs in a truly distributed way.
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Direct use of existing functions

Here two case studies are discussed regarding the solution of specific data analysis prob-
lems, by using directly the primitives included in DIAMIN.

Example 1  The top hubs in the network The search of the most central nodes/edges 
in biological networks has received wide attention in the literature (e.g., [19–22]). In 
a MIN, pivotal interactors are likely to be represented by highly connected nodes (i.e., 
hubs). The degrees() function of our library allows the user to extract a subset of 
interactors, according to the value of their degree. This function computes the degrees 

Fig. 2  Execution time (in minutes) of our solutions, respectively based on DIAMIN and Neo4J, when 
executing the considered task, as a function of the number of interactors being analyzed (chosen uniformly 
at random among those in N )

Fig. 3  Performance scalability of our DIAMIN-based solution, when accomplishing our reference Task, 
considering a set of 1, 600 interactors chosen uniformly at random from N  and using an increasing number 
of computing cores



Page 12 of 18Di Rocco et al. BMC Bioinformatics          (2022) 23:474 

of each interactor and it returns all those elements satisfying a given condition. Listing 
1 shows how to return the interactors associated with the 20 largest degrees (in case of 
ties, the nodes exceeding the required amount, are left out).

Table 1 shows interactors associated with the 20 largest degrees in NI and NS , respec-
tively. A first observation is that, as expected, the values of node degrees are much larger 
in NS than in NI , due to the fact that String contains a largest number of interactions 
than Intact, including also those predicted computationally. Moreover, NI and NS share 
three of the nodes in the top-20 degree classification. In particular, such nodes are:

•	 LRRK2 (uniprotkb:Q5S007), that is, a leucine-rich repeat serine/threonine-protein 
kinase 2, involved in multiple processes such as neuronal plasticity, autophagy, and 
vesicle trafficking (see, e.g., [23]).

•	 JUN (uniprotkb:P05412), a transcription factor AP-1 that recognizes and binds to the 
enhancer heptamer motif 5’-TGA[CG]TCA-3’ [24].

Table 1  Interactors for Homo sapiens associated with the 20 largest degrees, respectively in the 
Intact and in the String databases

 Interactors appearing in both rankings are drawn in bold

Intact String

Node ID Degree Node ID Degree

1 uniprotkb:P42858 6807 uniprotkb:P04406 15,014

2 uniprotkb:Q5S007 4512 uniprotkb:P60709 13,880

3 uniprotkb:P13569 4291 uniprotkb:P31749 11,836

4 uniprotkb:P03372 3574 uniprotkb:Q5S007 11,608

5 uniprotkb:P54253 2231 uniprotkb:P04637 11,304

6 uniprotkb:P05412 2188 uniprotkb:P01106 11,226

7 uniprotkb:P19320 2060 uniprotkb:P35222 10,142

8 uniprotkb:Q08379 2027 uniprotkb:P02768 9990

9 uniprotkb:P62993 1736 uniprotkb:P00533 9024

10 uniprotkb:A8MQ03 1663 uniprotkb:P07900 8872

11 uniprotkb:Q6FHY5 1651 uniprotkb:P01112 8824

12 uniprotkb:P60410 1578 uniprotkb:P27361 8600

13 uniprotkb:Q99750 1531 uniprotkb:P12931 8418

14 uniprotkb:P00533 1506 uniprotkb:P01308 8290

15 uniprotkb:P04637 1493 uniprotkb:P01116 8234

16 uniprotkb:O76024 1484 uniprotkb:P60484 8214

17 uniprotkb:Q7Z699 1464 uniprotkb:P34932 8170

18 uniprotkb:Q8TBB1 1456 uniprotkb:P05412 7874

19 uniprotkb:P05067 1451 uniprotkb:P01375 7774

20 intact:EBI-25847655 1437 uniprotkb:O15550 7562
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•	 TP53 (uniprotkb:P04637), that is, cellular tumor antigen p53 which acts as a tumor 
suppressor in many tumor types, and induces growth arrest or apoptosis depending 
on the physiological circumstances and cell type [25].

Example 2  Neighborhood functional analysis The analysis of neighborhoods of spe-
cific nodes in a MIN is a very common task in the literature (e.g., [26–29]). The func-
tion with name xWeightedNeighbors() returns the x-weighted-Neighborhood of 
an input node. Listing 2 shows the instructions to perform this task. Table 2 shows the 
neighborhoods obtained for the protein TP53 (uniprotkb:P04637) at different values of 
x (0.70, 0.75, 0.80 and 0.85, respectively), with reference to the reliability scores returned 
by Intact for each interaction.

 

Table 2  Neighborhoods obtained for the protein TP53 (uniprotkb:P04637) at different values of x, 
w.r.t. the Intact reliability scores

x Neighborhood

0.70 AKT1, APEX1,ARRB2,ATRX,BAD,BAK1,BAX,BBC3,BCL2L11,BHLHE40,BID,

BRD7,BRI1,CCAR2,CCND1,CDK2,CDKN2A,COP1,CREBBP,CSNK2A1,CUL7,

CUL9,Crebbp,DAPK1,DAXX,DLG1,DNMT1,DVL2,E6,EBNA1,EEF1A1,EGFR,

EP300,FYN,GTF2H1,H4-16,H4C1,H4C11,H4C12,H4C13,H4C14,H4C15,H4C2,

H4C3,H4C4,H4C5,H4C6,H4C8,H4C9,HDAC1,HGS,HIF1A,HIPK2,HMGB1,

HNRNPUL1,HSPA9,HTRA1,HTRA4,HTT,ICP0,IKBKB,IKBKG,IRF3,L,LCK,

LRRK2,Lrrk2,MAGEA2,MAGEA2B,MAP3K5,MDM2,MDM4,MKRN3,MYH9,

NCL,NME1,PARP1,PBK,PCNA,PIN1,PLK1,PML,POLA1,PPP1CA,PPP1CC,

PPP1R13L,PSMD4,PTK2,Ptk2,RAD23A,RANGAP1,RB1,RBCK1,RCHY1,

RELA,RIPK3,RNF31,RPL11,RPS19BP1,RPS7,S100A4,S100B,SERK1,SETD7,

SHARPIN,SIRT1,SMYD2,SQSTM1,STAM,SUMO1,Sirt1,TBP,TFB1,TOP1,

TP53BP1,TP53BP2,TPT1,TRAF6,TWIST1,Tp53,UBC,UBE2D2,UBE2I,

UBE3A,USP7,VRK1,WRN,Wasl,abrB,cph1,degP,kaiC,kinA

0.75 AKT1,BAK1,BAX,BBC3,BCL2L11,BID,CDKN2A,CREBBP,Crebbp,DAPK1,

DAXX,DVL2,E6,EBNA1,EGFR,EP300,HGS,HIF1A,HSPA9,HTRA1,IKBKB,

IKBKG,IRF3,LRRK2,MAP3K5,MDM2,MDM4,MKRN3,MYH9,NME1,PARP1,

PCNA,PIN1,PPP1CA,PPP1CC,PPP1R13L,PSMD4,PTK2,RAD23A,RB1,RCHY1,

RPL11,S100A4,SETD7,SIRT1,SMYD2,SQSTM1,Sirt1,TBP,TP53BP1,TP53BP2,

TWIST1,Tp53,UBC,UBE2D2,UBE3A,USP7,VRK1,cph1,degP,kaiC,kinA

0.80 AKT1,BAK1,BAX,BCL2L11,CDKN2A,CREBBP,Crebbp,DAXX,E6,EGFR,EP300,

HGS,HIF1A,HSPA9,IKBKB,IKBKG,IRF3,LRRK2,MDM2,MDM4,NME1,PIN1,

PPP1R13L,PSMD4,RAD23A,RB1,RCHY1,RPL11,S100A4,SETD7,SIRT1,SMYD2,

SQSTM1,TP53BP1,TP53BP2,TWIST1,Tp53,UBC,UBE2D2,USP7,cph1,degP

0.85 BAX,CREBBP,Crebbp,DAXX,EGFR,EP300,HIF1A,IKBKB,IRF3,LRRK2,MDM2,

MDM4,NME1,PIN1,RB1,RCHY1,RPL11,S100A4,SETD7,SIRT1,TP53BP2,Tp53,

UBC,USP7,cph1,degP
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We now show how, for example, it is possible to exploit the obtained neighborhoods 
in order to perform Functional Enrichment Analysis. It is worth pointing out that this 
type of analysis is particularly interesting in the case of weighted neighborhood, due to 
the fact that the nodes involved in the neighborhood are not simply at a “fixed distance” 
from TP53 in the network (e.g., by paths of a fixed length). Instead, they all share the 
property to be linked to TP53 by paths which preserve a given degree of reliability, guar-
anteed by the fact that the product of labels of the corresponding edges cannot exceed 
the value x.

Functional Enrichment Analysis has been performed on the largest neighborhood 
shown in Table 2, by using the enrichment analysis service, available on the Gene Ontol-
ogy (GO) [30] website, using the analysis tool from the PANTHER Classification System 
[31]. Gene sets with a p-value less than 0.05 have been considered significantly enriched, 
with references to each of the three GO vocabularies, i.e., biological process, molecular 
function and cellular component. In particular, genes coding for the proteins in the con-
sidered set are significantly involved in several biological processes, such as B cell nega-
tive selection, apoptotic process involved in embryonic digit morphogenesis, positive 
regulation of macrophage apoptotic process and others. Moreover, they have also dif-
ferent molecular functions in common, e.g., enzyme binding, kinase binding and nitric-
oxide synthase regulator activity. On the cellular component vocabulary, the enrichment 
analysis has returned mitochondrial outer membrane, PML body, cytosol and others.

Implementation of new functions

DIAMIN also allows user-driven analysis of MIN. Indeed, the provided functions can 
be suitably combined, or usefully modified, in order to implement new algorithms that 
solve both standard and more specific problems in network analysis. As an example, 
many algorithms proposed for network alignment are based on neighborhoods explo-
ration (e.g., [26–29]), therefore DIAMIN functions for neighbors and closeness com-
putation may be useful to carry out network alignment on very large MINs using a 
distributed approach. On the other hand, many algorithms have been proposed in the 
last few years for biological networks clustering (e.g., [11, 32–35]). Again, DIAMIN func-
tions for subgraphs and components extraction may be useful to implement novel algo-
rithms for very large MINs clustering.

Another interesting problem in biological network analysis is the study of node/edge cen-
trality in the network, that is both interesting per se and considered in some cases as a sub-
task for the solution of other problems (network alignment and clustering, for example).

In Example 1 we have discussed a very basic type of node centrality, that is, node 
degree. However, also more complex centrality measures have been introduced in the 
literature [36]. In Example 3 we show how it is possible to use DIAMIN for computing 
one of the latters efficiently.

Example 3  Kleinberg dispersion computation Given a MIN N = �V ,E� , a pair of 
nodes u, v ∈ V  and their corresponding sets of neighbors Cu and Cv , the Kleinberg dis-
persion [37] between u and v is defined as:
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where Cuv is the set of common neighbors of u and v, C is the cardinality of Cuv 
and dv(s, t) is the function equal to 1 if s and t belong to different connected compo-
nents of Cu \ {u, v} , and equal to 0 otherwise. In particular, the Kleinberg dispersion 
takes into account both the size and the connectivity of u,v’s common neighborhood. 
Intuitively, it quantifies how “not well”-connected is the u,v’s common neighborhood 
within Gu , i.e., the subgraph induced by u and its neighbors.

By exploiting the DIAMIN functions, K(u, v) can be easily computed with the short 
pipeline shown in Listing 3. Figure 4 illustrates the Kleinberg dispersion computation 
on a small graph.

K (u, v) =
∑

s,t∈Cuv

dv(s, t)

Fig. 4  Subnetwork extracted from NI . The proteins uniprotkb:P04637 and uniprotkb:Q09472 represent 
bridge-like nodes between the four components denoted with different colours and K(P04637, Q09472) is 
equal to 56. Conversely, K(P04637, P06422) is equal to 0 since their common neighbors (uniprotkb:P15884,unip
rotkb:P22736,uniprotkb:P06790) belong to the same component
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Conclusion
We have presented a high-level software library designed and developed to allow users 
without any distributed programming skill to perform data analysis, and expert pro-
grammers to implement new algorithms, on large-scale molecular interaction networks. 
The library has been tested on data retrieved from the Intact and String databases, show-
ing to be highly efficient and scalable. Moreover, we have provided different examples for 
its usage.

In the future, we plan to approach specific problems for the analysis of molecular inter-
action networks by implementing novel algorithms in the distributed based on the prim-
itives provided by DIAMIN. In particular, an interesting problem to deal with is multiple 
network alignment, which is well suited to be faced in a distributed environment.

Finally, we plan to extend this project, hopefully including further functionalities 
designed and developed also by other researchers working on molecular interaction 
networks.
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