

Università degli Studi di Messina

Atti del

Congresso Congiunto 2024 delle Sezioni Sicilia e Calabria della Società Chimica Italiana

Messina, 2-3 dicembre 2024 Polo Papardo UniMe Viale F. Stagno d'Alcontres 31

Società Chimica Italiana Congresso Congiunto Sezioni Sicilia e Calabria 2024

COMITATO SCIENTIFICO

COMITATO ORGANIZZATORE

Donatella Aiello Delia Francesca Chillura Martino Francesca D'Anna Laura De Luca Mariagrazia Fortino Cosimo Fortuna Emilia Furia Daniela Iannazzo Gabriele Lando Angela Malara Raffaella Mancuso Tiziana Marino Agostino Marrazzo Teresa Pellicanò Ugo Perricone Pierluigi Plastina Maria Rosaria Plutino Mario Prejanò Cataldo Simari

Laura De Luca Daniela Iannazzo Gabriele Lando Maria Rosaria Plutino Consuelo Celesti Carla Di Chio Claudia Granata Lisa Lombardo Francesca Mancuso Salvatore Mirabile Giovanna Pitasi Salvatore Giovanni Michele Raccuia Giulia Rando Chiara Rossini Elisabetta Scalone Silvia Sfameni

Web manager: Gabriele Lando, Maria Rosaria Plutino, Giulia Rando, Chiara Rossini

Società Chimica Italiana Congresso Congiunto Sezioni Sicilia e Calabria 2024

Patrocinio di:

Università degli Studi di Messina

Sponsor ufficiale

Sponsor:

PO18

Hydrogen production by photoreforming using different TiO₂ or Nb₂O₅ composites with graphene or graphene oxide as photocatalysts.

<u>Alberta Genco</u>,^{1,2*} Elisa I. García-López,³ Narimene Aoun,¹ Bartolo Megna,¹ Conchi O. Ania,⁴ Giuseppe Marcì¹

¹Department of Engineering (DI), Viale delle Scienze, University of Palermo, Palermo, Italy
²Department of Chemistry, University of Perugia, Perugia, Italy
³Department of Chemistry (STEBICEF) University of Palermo, Italy (elisaisabel.garcialopez@unipa.it)
⁴POR2E Group, CEMHTI CNRS (UPR 3079), Université d'Orléans, 45071 Orléans, France

*alberta.genco@dottorandi.unipg.it

The photoreforming of aqueous solutions containing organic compounds combines the photocatalytic splitting of water with the oxidation of organics in a single process under ambient conditions. TiO₂ and Nb₂O₅ suffer from limited absorption of sunlight due to their large bandgap (~3 eV) and low photocatalytic activity due to the rapid recombination of charge carriers. Various strategies have been employed to solve these problems, and the combination of TiO₂ nanoparticles (NPs) with carbon nanomaterials, such as carbon nanotubes, graphite oxide (**GO**) and graphene (**G**), has been proposed as a suitable method to increase photocatalytic activity. From previous work, we have seen that homemade Nb₂O₅ ¹ from ANbO (Ammonium Niobium Oxalate) is an excellent catalyst that has activity comparable to that of TiO₂.

This research focuses on the development of hetero-junctions synthesized with different weight ratios between carbon materials (5, 10 or 20 %) and TiO₂ (named Ti-G 10:X or Ti-GO 10:X, where X represent the mass of G or GO per 10 g of TiO₂) or Nb₂O₅ (named Nb-G 10:X or Nb-GO 10:X, where X represent the mass of G or GO per 10 g of Nb₂O₅) for the photo-reforming of organics dissolved in water ². In these composites, the oxide semiconductor acts as the photocatalyst, while the carbon materials (commercial or homemade) act as a reservoir and electron carrier, facilitating the transfer of electrons to the reaction sites. Photoreforming tests of water solutions of ethanol or glycerol or water dispersion of microplastics were conducted both under UV and natural sunlight irradiation. The activity of the catalysts was compared based on the amount of hydrogen produced. The catalysts were tested without and with the use of platinum as co-catalyst. In the first case, small amounts of hydrogen were obtained. The best result was obtained in the presence of Ti-G 10:1 with 1wt% of Pt reaching a productivity of 311 mmol·h⁻¹·g⁻¹ (AQE of 100 %) under UV light and 13 mmol·h⁻¹·g⁻¹ under natural sunlight.

References

¹E.I. García-López, E.I.; Genco, A.; Lagostina, V.; Paganini, M.C.; Marcì, G. *Catal. Today*, **2023**, 423, 114283 ² H. Kim, G. Moon, D. Monllor-Satoca, Y. Park, W. Choi, *The J. of Physical Chemistry C* **2012** *116* (1), 1535-1543

