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The study of high order dependencies in complex systems has recently led to the
introduction of statistical synergy, a novel quantity corresponding to a form of
emergence in which patterns at large scales are not traceable from lower scales.
As a consequence, several works in the last years dealt with the synergy and its
counterpart, the redundancy. In particular, the O-information is a signed metric
that measures the balance between redundant and synergistic statistical
dependencies. In spite of its growing use, this metric does not provide insight
about the role played by low-order scales in the formation of high order effects.
To fill this gap, the framework for the computation of theO-information has been
recently expanded introducing the so-called gradients of this metric, which
measure the irreducible contribution of a variable (or a group of variables) to
the high order informational circuits of a system. Here, we review the theory
behind the O-information and its gradients and present the potential of these
concepts in the field of network physiology, showing two new applications
relevant to brain functional connectivity probed via functional resonance
imaging and physiological interactions among the variability of heart rate,
arterial pressure, respiration and cerebral blood flow.
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1 Introduction

Two of the fields of complex systems science which are experiencing an increasing
interest in the last years are (i) the analysis of high order interactions and (ii) the
decomposition of multivariate information in redundant and synergistic contributions.

High order interactions represent the structural organization of couplings, in a complex
system, where interactions may involve groups of three or more units. Indeed, high order
structures, such as hypergraphs and simplicial complexes, are thought to be better tools than
dyadic networks to map the real organization of many social, biological and man-made
systems (Battiston et al., 2020; Battiston et al., 2021). On the other hand, the decomposition
of multivariate information in redundant and synergistic contributions is related to the joint
probability distribution of the system, evaluated exploiting samples from its dynamics, and
speaks to the properties of the marginal probabilities of groups of variables. Since the
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pairwise description has been found to be insufficient for explaining
the orchestrated information flow among multiple components of
complex systems, the quantification of high order statistical
dependencies attracted the attention of a large community
(Crutchfield, 1994; Bettencourt et al., 2008; Stramaglia et al.,
2012). In the language of information theory, redundancy occurs
when multiple copies of the same information can be found in
different parts of a group of variables, while synergy refers those
information which is not stored in any specific element, but rather in
the joint state of that group of variables.

These two lines of research are actually complementary and
realize, at the level of high order phenomena, the dualism structure-
function. The former focuses on the structural organization of a
system in terms of structural hyperlinks, the latter on emergent
properties related to what the system does, and characterises its high
order behavior identifying an equivalent to functional hyperlinks
from data sampled at nodes (Rosas et al., 2022). The present work
deals with the second perspective, studying high order dependencies
in data obtained from complex systems.

The emergence of new tools for the quantification of high order
interactions is opening new possibilities in the field of network
physiology, which aims to address the fundamental question of
how physiological networks collectively behave to maintain human
body in healthy conditions (Bashan et al., 2012; Lin et al., 2020;
Ivanov 2021). Historically, the study of physiological time series
has seen a shift from the univariate analysis of individual time
series, where measures such as the approximate entropy (Pincus,
1991), the sample entropy (Richman and Moorman, 2000) and the
corrected conditional entropy (Porta et al., 1998) have been
introduced to characterize the predictable dynamics of a
physiological system, to the bivariate analysis of two time series,
where symmetric or causal measures based on cross-entropies
(Porta et al., 1999; Faes et al., 2011), mutual information (Valderas,
2019) and its rate (Barà et al., 2023), directed information (Massey,
1990) or transfer entropy (Schreiber, 2000; Faes et al., 2014) have
been used extensively to quantify the information shared and
transferred between pairs of physiological systems. Multivariate
analyses involving more than two physiological time series have
been then introduced to quantify how the information transferred
between processes is affected by the rest of the network. (Montalto
et al., 2014; Wang et al., 2022). However, the multivariate approach
has been implemented largely to analyze pairwise interactions
between two systems while accounting for the presence of other
systems, rather than to investigate how several systems interact
collectively to shape the network dynamics. For this reason, high
order interactions have not been studied explicitly in physiological
networks until very recently (Stramaglia et al., 2021), and thus
remain a tool whose potential in the field of network physiology is
poorly addressed.

The major approach for estimating synergy and redundancy
from data is partial information decomposition (PID) (Williams and
Beer, 2010; Wibral et al., 2017; Lizier et al., 2018): applications in
neuroscience have shown that the description of the brain dynamics
in terms of synergy and redundancy (Luppi et al., 2022; Varley et al.,
2023) is particularly suited to the interplay between brain
segregation and integration (Bassett and Sporns, 2017).
Moreover, it has also been used in different physiological
contexts, such as to dissects control mechanisms of heart rate

variability at rest and during physiological stress (Krohova et al.,
2019); however, the use of PID in many applications is greatly
limited by the super-exponential growth of decomposition terms for
large systems. To cope with the computational burden of PID, but
giving up the possibility of independently evaluating synergy and
redundancy, the O-information has been introduced in (Rosas et al.,
2019) as a metric measuring the balance between synergy and
redundancy and thus being capable of characterising synergy-
dominated systems: its computational weight scales gracefully
with the size of systems. In (Scagliarini et al., 2022) the local
O-information has been proposed to study inter-dependencies on
individual patterns. A new framework for the time- and frequency
domain assessment of high order interactions in networks of
random processes has been developed in (Faes et al., 2022).

To complement the global assessment provided by the
O-information, it has been recently proposed to exploit the
gradients of the O-information as low-order descriptors that can
characterize how high order effects are localized across a system of
interest (Scagliarini et al., 2023). Instead of focusing on the
O-information of groups of variables, the attention here is
focused on the variation of the O-information when variables are
added to the rest of the system to form these groups. This provides a
more nuanced description of synergistic or redundant informational
circuits, in which the role of each variable can be disambiguated. In
this work, we first review the approach for the computation of the
O-information and its gradients, and then present two new
applications related to network physiology: (i) fMRI data from
healthy subjects in resting conditions and (ii) cardiovascular,
cerebrovascular and respiratory oscillations in healthy subjects in
the supine resting state and after head-up tilt.

2 Gradients of O-information

In this section, we recall the definition and the properties of the
gradients of O-information. First of all, it is useful to introduce
O-information, which measures the balance between redundancy
and synergy, representing the two basic types of high order statistical
dependencies. The two building blocks of O-information are the
total correlation TC (Watanabe, 1960) and the dual total correlation
DTC (Sun, 1975), defined as follows for a system described by n
stochastic variables Xn = {X1, . . ., Xn}:

TC Xn( ) ≔ ∑
n

i�0
H Xi( ) −H Xn( ),

DTC Xn( ) ≔ H Xn( ) −∑
n

i�0
H Xi | Xn

−i( ),

where Xn
−i denotes the set of all the variables in Xn but Xi, H is the

Shannon entropy andH(Xi|Xj) =H(Xi, Xj) −H(Xj) is the conditional
Shannon entropy. TC quantifies the collective constraints, whilst
DTC quantifies the shared randomness. TheO-information is defined
as the difference TC-DTC and assumes positive values when the
interdependencies among variables can be more efficiently explained
as shared randomness, and negative values when collective constraints
can be more convenient (Rosas et al., 2019).

Consequently, the O-information of the system can be written as
(Rosas et al., 2019)
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Ω Xn( ) � n − 2( )H Xn( ) +∑
n

i�1
H Xi( ) −H Xn

−i( )[ ]. (1)

If Ω > 0, the system is redundancy-dominated. On the other hand,
when Ω < 0 the dependencies are better explained as patterns that
can be observed in the joint state of multiple variables but not in
subsets of these; in other words, the system is synergy-dominated.
It is clear that the main drawback of the O-information is the fact
it does not put in evidence multiplets of variables which are both
redundant and synergistic with equal strength, whilst approaches
like PID evaluate both quantities and may, in principle, deal with
these cases. It is also worth mentioning that the O-information is
connected to the Synergy-Redundancy Index (SRI) developed in
(Gat and Tishby, 1998; Brenner et al., 2000; Reich et al., 2001;
Puchalla et al., 2005); although the SRI does not provide separate
quantifications of synergy and redundancy like PID does, it can
consider the respective contributions of signal correlations and
noise correlations to synergy and redundancy (Panzeri et al.,
1999; Nirenberg and Latham, 2003; Latham and Nirenberg, 2005;
Panzeri et al., 2022). Therefore, SRI should be regarded as
complementary to PID/O-information approaches.

In order to measure how much a given variable Xi plays a role in
the informational circuits contained in Xn, its “gradient of
O-information” is calculated as follows (Scagliarini et al., 2023):

∂iΩ Xn( ) � Ω Xn( ) − Ω Xn
−i( )

� 2 − n( )I Xi;Xn
−i( ) + ∑

n

k�1,k≠i
I Xk;Xn

−ik( ), (2)

where I is the mutual information and Xn
−ik denotes all the

variables in Xn except Xi and Xk. The quantity ∂iΩ(Xn)
captures how much the O-information changes when Xi is
added to the rest of the system, hence it gives an account of
how this variable contributes to the high order properties of the
system. Therefore, ∂iΩ(Xn) > 0 means that Xi introduces mainly
redundant information, while ∂iΩ(Xn) < 0 indicates that it fosters
synergistic interdependencies.

It has been shown in (Scagliarini et al., 2023) that the following
bounds hold and are tight:

− n − 2( )log|X |≤ ∂iΩ Xn( )≤ log|X |, (3)
where |X | is the cardinality of the largest alphabet in Xn. The lower
bound is achieved in correspondence of the n-XOR gate, that is
X1. . .Xn−1 as Bernoulli random variables with p = 1/2 and
Xn � (∑n−1

j�1Xj) mod 2; the upper bound is achieved by the n-
COPY gate, specifically by taking X1 as a Bernoulli variable with
p = 1/2 and X1 = X2 = / = Xn. The asymmetry between these two
bounds has the following consequence: while redundancy can be
only built step by step, synergy can be established more rapidly.
Indeed, adding a variable to a system of size n − 1 might provide a
maximal redundant contribution of log|X |, whilst the maximal
synergy that it might lend is (n − 2)log|X | — which can be
substantial if n is large.

Following a similar rationale to the one that leads to Eq. 2, one
can further introduce a second-order descriptor of high order
interdependencies by considering gradients of gradients. In
particular, the second-order gradient of a pair of variables Xi and
Xj can be defined as

∂ijΩ Xn( ) � ∂iΩ Xn( ) − ∂iΩ Xn
−j( ). (4)

This second-order gradient captures how much the presence of
the variable Xj alters the variation of O-information of the system
due to the inclusion of Xi. It is direct to verify the symmetry
∂i∂jΩ(Xn) = ∂j∂iΩ(Xn); therefore, we simply denote this quantity
as ∂2ijΩ(Xn). An interesting property of ∂2ijΩ(Xn) is that it can be re-
written as a ‘whole-minus-sum’ property:

∂2ijΩ Xn( ) � Ω Xn( ) −Ω Xn
−ij( )[ ]

− Ω Xn
−i( ) − Ω Xn

−ij( )[ ] − Ω Xn
−j( ) −Ω Xn

−ij( )[ ].
(5)

In other words, ∂2ijΩ(Xn)measures to what degree the variation
to the O-information due to the inclusions of both Xi and Xj is more
than the sum of the variations one obtains when including them
separately. It is interesting to evaluate ∂2ijΩ(Xn) on the n-COPY gate
and on the n-XOR gate: it is easy to obtain zero and (2 − n)
respectively. This means that for the n-COPY gate pairs of variables
do not provide further redundancy w.r.t. those provided by single
variables; on the other hand, for the n-XOR gate, pairs of variables
give an irreducible contribution to the synergy. This is a sign of the
sensitivity of gradients to evaluate synergistic informational circuits,
which occurs due to the partition of Xn

−ij into parts which is adopted
to calculate them.

Successive gradients can be similarly introduced, resulting in a
simple chain rule. If γ is a subset of {1, . . ., n} of cardinality |γ|, then:

∂|γ|γ Ω Xn( ) � ∑
α⊆γ

−1( )|α|Ω Xn
−α( ), (6)

the sum being over all the subsets α of γ. For example, for triplets of
variables the gradient of the O-information reads:

∂3ijkΩ Xn( ) � Ω Xn( ) −Ω Xn
−i( ) − Ω Xn

−j( ) − Ω Xn
−k( )

+Ω Xn
−ij( ) +Ω Xn

−ik( ) + Ω Xn
−jk( ) −Ω Xn

−ijk( ),
(7)

and measures the irreducible contribution to the O-information by
the triplet {i, j, k} which cannot be ascribed to the inclusion of pairs
nor single variables of the triplet.

3 Application to physiological networks

This section reports the application of the measures defined in
Section 2 to physiological networks where high order interactions are
expected to play a role in the generation of the network dynamics,
i.e., brain networks probed by functional magnetic resonance imaging
(fMRI) and networks of cardiovascular and cerebrovascular
interactions probed by the beat-to-beat variability series of cardiac,
vascular, respiratory and cerebral blood flow parameters. Gradients of
O-information were calculated using the Gaussian Copula approach
described in (Ince et al., 2017) to estimate entropy terms.

3.1 Brain networks: fMRI data

We first consider the data from the Human Connectome Project
(Van Essen et al., 2012) corresponding to 1,083 healthy subjects whose
organization of networks in the human cerebrum was explored using
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resting-state functional connectivity MRI (Yeo et al., 2011). The fMRI
data acquisitions have been performed on a Siemens 3T Skyra scanner
at Washington University (WashU). In order to construct a best-
estimate parcellation of the human cerebral cortex to serve as a
reference for future studies, a clustering algorithm was used to
parcellate the cerebral cortex into networks of functionally coupled
regions. Parcellations were examined for a coarse solution that
organized the cortex into seven networks as well as a finer solution
that identified 17 networks. The estimated networks were found to be
consistent across the discovery and replication data samples and were
confirmed by region-based functional connectivity MRI (fcMRI)
analyses. Here we consider the parcellation in 7 clusters, each

corresponding to the following connectivity networks: Default,
Control, Limbic, Visual, Somatosensor, Ventral Attention, and
Dorsal Attention. For each subject, we analyze the corresponding
seven fMRI time series. The significance of the detected high order
interactions is assessed using the statistics of subjects: gradients are
considered significantly redundant (synergistic) when the 5-th (95-th)
percentile of the distribution is higher (lower) than zero.

In bottom panel of Figure 1 we depict the first-order gradient
computed for the seven intrinsic connectivity networks. Except for
the Default, all the regions are significantly redundant. Going to the
second order gradients (middle panel of Figure 1), four pairs of
regions are significantly redundant: somatomotor—dorsal attention,

FIGURE 1
First order gradients of the O-information (bottom) for the seven fMRI time series of resting state brain networks. Six out of seven are significantly
redundant. Signals from the Default Mode Network (DMN) are not significantly redundant, hence suggesting that the DMN it is the region for whom the
balance synergy-redundancy is less leaning towards redundancy. The second-order (middle) and third-order (top) gradients of theO-information for the
21 pairs and the 35 triplets of fMRI time series of resting state brain networks. Colored rectangles represent the composition of the pairs and the
triplets in terms of the resting state networks shown in legend. Redundant and synergistic violins are depicted in red and blue, respectively. Four pairs are
significantly redundant. One triplet is significantly synergistic and one is significantly redundant.
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somatomotor—visual, dorsal attention—ventral attention, dorsal
attention—visual. Concerning third order gradients, we find a
significantly redundant triplet, default—control—dorsal attention,
and a significantly synergistic triplet: ventral attention-
somatomotor—visual (see top panel of Figure 1). These results
evidence peculiar intrinsic connectivity networks contributing to
redundancy and synergy in the large-scale organization of the
overall fMRI network, and confirm that gradients of increasing
order tend to highlight less redundant/more synergistic interactions.

3.2 Multi-organ networks: cardiovascular,
respiratory and cerebral blood flow
variability

In the second application, we analyze a database of physiological
time series collected to study the effect of postural stress on
cardiovascular, cerebrovascular and respiratory variability (Faes
et al., 2013; Bari et al., 2016). The original dataset is comprised of
13 healthy subjects (age: 27 ± 8 years; 5 males), enrolled at the
Neurology Division of Sacro Cuore Hospital, Negrar, Italy.
Electrocardiogram (ECG, lead II) was acquired together with
arterial pressure (AP) measured at the level of middle finger
through a photopletysmographic device (Finapres Medical Systems,
Ohmenda, Netherlands). Cerebral blood flow velocity (CBFV) and
respiration were measured at the level of the middle cerebral artery by
means of a transcranial Doppler ultrasonographic device (Multi-Dop
T2, Dwl, San Juan Capistrano, CA) and through a thoracic impedance
belt, respectively. Signals were synchronously acquired at a sampling

rate of 1 kHz. From the raw signals, the physiological beat-to-beat
variability series of heart period (H), systolic AP (S), mean AP (M),
mean CBFV (F) and respiration (R) were measured as detailed in
(Faes et al., 2013; Bari et al., 2016) during two stationary time
windows of length 250 beats in the following physiological
conditions: (i) supine rest (REST) and (ii) head-up tilt test with
table inclination of 60° (TILT). Prior to network analysis, each
series was high-pass filtered to remove slow trends and normalized
to zero mean and unit variance.

The first and second order gradients evaluated for the physiologic
network constituted by the five time series {H, S,M, F, R} (average over
subjects) are reported in Figure 2. Bootstrap data analysis was applied to
assess the statistical significance of the computed measures for each
subject: gradients are considered significantly redundant (synergistic)
when the 5-th (95-th) percentile of the bootstrap distribution is higher
(lower) than zero. Looking at the first order gradients (Figure 2, top
row), we see that the heart plays a synergistic role in the resting state,
whilst in the orthostatic position the system becomes dominated by
redundancy with a disconnection of respiration. The analysis of the
second order gradients provided similar results (Figure 2, bottom row),
with the cardiovascular link between H and S showing a synergistic
character during the supine rest, and with increasing redundant
behavior of the whole network after head-up tilt.

4 Discussion

In this work, we have shown that recently proposed
computational techniques show the ability to find multiplets of

FIGURE 2
First (top row) and second (bottom row) order gradients for the physiological system composed of the five time series {H, S,M, F, R}, averaged over
subjects and computed in the two experimental conditions: supine resting state (REST, left plots) and head-up tilt (TILT, right plots). Colours indicate
redundant (red) and synergistic (blue) characters of interaction. Width of the links indicates the strength of the gradients. Statistical significance was
assessed via bootstrap data analysis for each subject. As regards the first order gradients in the resting state, one out of the five showed significant
synergy in 50% of subjects (H), while in TILT significant redundancy was found for three of the five (S, M, F). Going to the second order gradients, only in the
TILT condition redundancy was significant in more than 50% of subjects for the pairs H-M, H-F, S-M, S-F, M-F. This suggests an important role of the
sympathetic activation led by head-up tilt in increasing redundancy in physiologic networks.
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synergistic variables in physiological applications without requiring
a huge amount of data.

In fMRI, data motion and physiological noise contribute
substantially to the overall system variance (Liu et al., 2017;
Colenbier et al., 2020). Redundancy is thus the first quantity to
be naturally reduced at lower orders. In (Luppi et al., 2022) the
synergistic and redundant districts of the resting brain have been
explored, and it has been found that redundant interactions are
especially prominent in the primary sensory, primary motor and
insular cortices, corresponding to the brain’s somatomotor and
salience subnetworks. In contrast, regions with higher relative
importance for synergy predominate in high order association
cortex, and are affiliated with the default mode (DMN) and
fronto-parietal executive control (FPN) subnetworks. We note
that in Varley et al. (2023) an analogous synergy-redundancy
gradient as in Luppi et al. (2022) has been found using partial
entropy decomposition.

It is worth mentioning that in (Luppi et al., 2022) dynamical
synergy and redundancy (from the double redundancy lattice,
(Mediano et al., 2021), have been explored for each pair of the
232 regions of the augmented Schaefer atlas. In agreement with
(Luppi et al., 2022), we find that the default network has the
minimum first order gradient, i.e., it is the less redundant;
moreover a major redundant role is played by the somatosensor
network. However our results refer to a different spatial scale and,
come from a static analysis, are not expected to be fully
reproducing with the results in (Luppi et al., 2022): notice that
the emergence of a synergistic circuit made of visual, somatomotor
and ventral attention has not been observed in previous studies.
We remark that in a recent paper it has been observed that ventral
attention and motor network connectivity are relevant to
functional impairment in spatial neglect after right brain stroke
(Barrett et al., 2019); moreover higher functional connectivity of
ventral attention and visual network has been found to play a role
to maintain cognitive performance in white matter hyperintensity
(Zhu et al., 2023). These findings renders even more interesting our
results, i.e., these three networks belonging to a synergistic
informational circuit in the resting brain.

Our results also document awell known fact in physiology, i.e., that
cardiovascular, cerebrovascular and respiratory interactions are highly
redundant. On the other hand, we also show an interesting aspect of
cardiovascular oscillations, i.e., that the heart rate plays a synergistic
role in the resting state analyzed with our static analysis; synergy could
result from the fact that heart rate variability is the target for several
neuro-autonomic mechanisms including the cardiac baroreflex and
the respiratory sinus arrhythmia (Cohen and Taylor, 2002). We also
find that redundancy is strongly enhanced by the entrainment of
cardiovascular and cerebrovascular oscillations and by sympathetic
activation; in particular, in the upright position all the series are highly
redundant, except for the respiration signal, which is out of the
redundant circuits in tilt conditions. These results agree with the
tilt-induced shift of the sympatho-vagal balance towards increased
sympathetic activity and decreased parasympathetic activity (Montano
et al., 1994), also previously documented via information-theoretic
analyses (Faes et al., 2011). Overall, the redundancy showed also a
tendency to increase with tilt, documenting an effect of
sympathetic activation on the redundant interactions among
cardiovascular and cerebrovascular oscillations (Faes et al.,

2022). Bootstrap data analysis (Politis, 2003) confirmed these
findings, suggesting that interactions involving respiratory,
arterial pressure and blood flow variabilities are more shifted to
synergistic rather than redundant modes of interplay, as well as
that significance increases moving from the supine to the upright
position, confirming that redundancy is significantly strongly
enhanced during the orthostatic stress.

Summarizing, gradients of O-information constitute a
promising tool to analyze many-body effects in complex systems,
with the advantage of providing a description of high order
phenomena which can be tuned and can even be at the level of
single variables or pairs. The applications here described show the
effectiveness of this approach for multivariate data in physiology. In
the big-data setting, evaluation of gradients of O-information
remains an heavy computational burden, indeed for n variables
even first order gradients require the estimation of entropy terms or
order up to n: further work will be devoted to develop approximate
approaches for the evaluation of gradients so as to make it feasible
also for a large number of variables n.
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