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Abstract

In this study, a two-dimensional multi-region framework, based on the use of the Virtual Element

Method (VEM), is developed for computational materials homogenization and applied to different

classes of widely employed heterogeneous materials. The VEM has recently emerged as a pow-

erful generalisation of the Finite Element Method capable of dealing with very general polygonal

mesh elements, including non-convex or highly distorted elements. Such features are appealing for

the treatment of problems whose analysis domains present complex or statistical morphological

features, which would generally require careful and time-consuming mesh/data preparation and

regularization. In this work, the lowest-order VEM for two-dimensional elastostatics is employed

for the homogenization of polycrystalline materials and unidirectional fibre-reinforced composites.

In both cases, artificial micro-morphologies are usually generated resorting to automatic algorithms

aimed at approximating/reproducing the statistical microscopic features of real materials. In such

a context, the likely presence of morphological irregularities, and subsequent mesh distortions, usu-

ally requires caution and the employment of sophisticated mesh regularization procedures. The

study demonstrates how the inherent features of the VEM can be conveniently exploited for such

classes of problems, as the method allows the relaxation of the requirements on the mesh quality,

yet providing accurate numerical results.
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1. Introduction

The properties of a material at a certain scale depend on the features of and mutual interac-

tions among the material constituents at lower scales [1]. The ability to understand, explain and

predict macroscopic material properties from a suitable description of the micro-scale is of relevant

technological interest, especially in connection with the contemporary availability of manufacturing5

technologies offering a tighter control on the materials microstructure.

Computational micro-mechanics has emerged as a consistent framework supporting the under-

standing of the link between the material microstructure and its macroscopic properties, i.e. the

structure-property relationship [2]. The field has enormously benefitted from the rapid advance-

ments of experimental techniques for materials microscopic characterization and reconstruction,10

able to provide a wealth of useful processable information, and from the increased affordability of

high performance computing (HPC), which provide the complementary ability of combining and

processing such information towards better understanding, prediction and manipulation.

Polycrystalline materials and fibre-reinforced composites are two classes of materials widely

employed in engineering applications. In polycrystalline materials, the availability of information15

about the mechanical properties of the grains and their inter-granular interfaces, their crystallo-

graphic orientation and size distribution can be conveniently exploited to predict the properties

of the aggregate and suggest potential manufacturing pathways for material optimization [3, 4, 5].

Analogously, the knowledge of the properties of carbon fibres, epoxy matrix and the characteri-

sation of the fibre-matrix interface can be used to investigate the effectiveness of different fibre20

arrangements on the structural performances of composite laminates [6, 7].

It is apparent how the computational capability of predicting the effect of microstructural pa-

rameters on the macro-properties has direct technological implications, contributing to reducing

the cost of experimental campaigns for the design of new materials. In the ambitious paradigm

known as materials-by-design, the much sought-after capability of modelling materials ab initio,25

i.e. starting from the smallest nano-scales, exploiting first principles, such as quantum mechanics,

should enable the design of materials with properties tailored to specific applications.

In this paper, attention is focused on continuum micro-mechanics, i.e. on the study of materials

whose basic building blocks, e.g. individual crystals, fibres or matrix, can be modelled resorting to

the continuum idealisation. In this framework, several numerical methods have been used to inves-30

tigate the structure-property link. The finite element method (FEM) is the most popular approach
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and it has been extensively used to investigate several kinds of materials, including polycrystalline

[3, 8, 9] and composite materials [10, 11, 12]. Other techniques have also been used, including the

extended finite element method (X-FEM) [13, 14], the boundary element method [15, 16, 17, 18],

meshfree methods [19, 20] among others.35

One of the key aspects in the effective modelling of materials micro-mechanics is the availability

of a suitable representation of the material micro-morphology, which may exhibit involved shapes.

The potential presence of complex morphological features has a direct effect on the complexity of

the numerical grid, or mesh, used to discretise the considered boundary value problem. The quality

of the mesh, in turn, may have an important effect on the accuracy of the numerical reconstruction40

of the mechanical fields. Indeed, the preparation of high-quality meshes is today one of the steps

requiring more attention, and time, from the analyst [21, 22].

The Virtual Element Method (VEM) was recently introduced [23, 24] as generalisation of the

FEM and applied to general linear elasticity [25, 26, 27], inelastic materials at small strains [28, 29],

hyper-elastic materials at finite strains [30, 31], contact mechanics [32], topology optimization [33,45

34], magneto-static problems [35, 36], geomechanical simulations of reservoir models [37], fracture

analysis [38, 39] and plate bending problems [40, 41] and materials homogenization of heterogeneous

materials [42, 43, 44, 45, 46].

Some remarkable features of the VEM are related to its ability to deal with mesh elements of

very general polygonal/polyhedral shape and to naturally address the presence of hanging nodes,50

providing accurate and consistent analysis results even with heavily distorted meshes. Such flexi-

bility makes the VEM an ideal candidate tool for computational homogenization studies, where the

structure-property link is investigated homogenising the micro-fields over several statistical reali-

sations of the material microstructure; in other words, being computational homogenization based

on the analysis carried out over many micro representative volume elements, often generated and55

meshed automatically, the possibility to relieve the need of carefully assessing the quality of each

mesh, makes the VEM a suitable method for such analysis.

In this paper, the application of the VEM to the computational homogenization of polycrys-

talline and fibre-reinforced materials is reported. Emphasis is given to the flexibility given by the

method in the analysis of randomly generated and meshed microstructures. The paper is organised60

as follows. Section 2 briefly reviews the fundamentals of VEM. Section 3 details some computational

aspects implemented to deal with generic polycrystalline and fibre-reinforced micro-morphologies
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and their meshing, describing the suitability of the method in dealing with specific features. Section

4 illustrates the application of the method to the computational homogenization of the considered

materials and concludes the study.65

2. VEM for 2D linear elastostatics

The Virtual Element Method is a generalization of the Finite Element Method to general

polygonal/polyhedral meshes and, in this respect, it shows some similarities with other polygo-

nal/polyhedral finite element methods [47]. In the VEM the trial and test functions over each

mesh element belong to a space containing all the polynomials up to a certain previously selected70

order k plus other additional functions that, in general, are not polynomials and are solutions,

within the element, of a suitably defined boundary value problem. Such additional functions are

explicitly known only over the element edges while, within each element, they are not explicitly

known and never computed, which justifies the adjective virtual referred to the method. Once such

a local functional basis is selected, the discrete counterpart of the local bilinear form and of the75

linear functionals in the variational formulation can be computed by expressing the virtual trial and

test functions through their polynomial projections. Through a particular choice of the element

degrees of freedom, such projections are exactly computed as a function of the degrees of freedom

themselves, without actually solving the local boundary value problem.

2.1. Weak form for 2D linear elasticity80

Two-dimensional elasticity problems at small strains are considered in this work. An elastic

body lying within the polygonal domain Ω ⊂ R2 bounded by the curve Γ = ∂Ω is considered.

In general, the body is subjected to a distributed volume load f(x), where x ∈ R2 denotes the

coordinates of a generic point in the two-dimensional space. Without loss of generality and for a

more concise explanation, homogeneous boundary conditions are assumed; however other types of85

boundary conditions can be enforced following the same procedures as those used for the standard

finite element method.

The strong formulation of the 2D elasto-static problem is based on the use of the strain-

displacement equations

ε(u) = Su, (1)
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the linear elastic constitutive laws90

σ = Cε, (2)

and the indefinite equilibrium equations

STσ + f = 0, (3)

where u(x) represents the displacement vector field, ε(u) is the strain tensor field in Voigt notation,

σ is the stress tensor field in Voigt notation, C = C(x) represents the stiffness tensor in Voigt

notation and

S =


∂x 0

0 ∂y

∂y ∂x

 (4)

represents the small-strains linear differential matrix operator, with ∂x = ∂(·)/∂x and ∂y = ∂(·)/∂y.95

The weak formulation of the considered problem, derived from the principle of virtual displace-

ments, consists in searching the solution displacements field u(x) ∈ V :=
[
H1

0 (Ω)
]2

such that

a(u,v) = L (v) ∀v(x) ∈ V , (5)

where V is the space of kinematically admissible displacements and H1
0 (Ω) is the first order Sobolev

space, defined on Ω, consisting of square integrable scalar functions with square integrable first100

derivatives and vanishing on Γ. In Eq.(5), the symmetric bilinear form a(·, ·) can be associated to

the strain energy stored in the body and it is defined as

a(u,v) :=

∫
Ω

ε(v)TCε(u) dΩ (6)

while the linear functional L(·) can be associated to the the virtual work of the volume load and it

is defined as

L (v) :=

∫
Ω

vTf dΩ (7)

To obtain an approximate solution to the boundary-value problem based upon the weak formu-105

lation in Eq.(5), the domain Ω is sub-divided into a collection Ωh of finite non-overlapping elements

E ∈ Ωh, interconnected at nodal points on the boundary of each element. Once the domain dis-

cretization Ωh is established, a function space Vh ⊂ V , which is a finite-dimensional approximation
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of V , is associated to it. The Galerkin formulation of the problem in hand consists in finding an

approximate weak solution uh ∈ Vh such that110

a(uh,vh) = L (vh) ∀vh ∈ Vh (8)

Both sides of Eq.(8) can be split into elemental contributions aE(·, ·) and LE(·), i.e.

a(uh,vh) =
∑

E∈Ωh

aE(uh,vh) =
∑

E∈Ωh

∫
E

ε(vh)TCε(uh) dE (9)

and

L (vh) =
∑

E∈Ωh

LE (vh) =
∑

E∈Ωh

∫
E

vT
h f dE (10)

2.2. Virtual Element formulation

In this section, the first-order virtual element formulation used to find an approximate solution

to the problem presented in Eq.(8) is reviewed. The discretization Ωh of the two-dimensional115

domain Ω consists in a collection of non-overlapping polygonal elements interconnected at nodal

points on the elements boundaries. The VEM allows to choose elements with very general shapes,

including non-convex polygons, and with an arbitrary number of edges. In the following, for each

element E, xE , hE and |E| denote the centroid, the diameter and the area of E, respectively. The

element boundary is denoted by ∂E and nE is the unit normal vector to ∂E. Finally, the symbols120

vi (i = 1, 2...,m) will indicate the counter-clockwise ordered vertices of E and ei (i = 1, 2...,m) will

refer to the edge having vi as its first vertex (see Fig.(1)).

For each element E, the local discrete virtual space of admissible displacements is defined as in

Ref.[25], i.e.

Vh(E) :=
{
vh ∈

[
H1(E) ∩ C0(E)

]2
: vh|∂E ∈

[
C0(∂E)

]2
,

vh|e ∈ [P1(E)]
2
, ∀e ∈ ∂E, STCε(vh) = 0 in E

} (11)

where Pk(E) is the space of polynomials of degree k on E. The global discrete virtual space is125

obtained by assembling all the local spaces Vh(E)

Vh :=
{
vh ∈ V : vh|E ∈ Vh(E) ∀E ∈ Ωh

}
. (12)

For the first-order VEM here considered, the degrees of freedom are the point-wise values of vh at

each vertex vi of E. It should be observed that, differently from the classical FEM, the explicit
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Fig. 1. Example of a non-convex VEM element with hanging nodes.

knowledge of the functions vh of the space Vh(E) is not required over the whole element domain,

thus explaining the adjective virtual. In fact, Vh(E) is made of vector-valued functions vh that are130

explicitly known only on the element boundary ∂E, where they are globally continuous and, in the

case of the first order VEM, they are linear polynomials on each edge ei of E. Due to the fact

that the functions of Vh are not explicitly known within the domain of the element E, the local

discrete bilinear form aE(·, ·) cannot be computed by standard numerical integration, as usually

done in classical FEM. In order to overcome this issue, the VEM approach is based on the use of a135

projector operator Π, defined on each element E by the following orthogonality condition∫
E

pT [Π(vh)− ε(vh)] dE = 0 ∀p ∈ [P0(E)]
3

(13)

where Π(vh) are the approximated strains associated with the displacements field, assumed to

be constant in each element E in the case of first-order approximation. Since p has constant

components as well, Eq.(13) may be written as

Π(vh) =
1

|E|

∫
E

ε(vh) dE. (14)

Analogously to what done in FEM, each function vh ∈ Vh(E) can be expressed as140

vh = N ṽ (15)
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where

N =

N1 0 N2 0 ... Nm 0

0 N1 0 N2 0 ... Nm

 (16)

is the matrix containing the virtual shape functions Ni(ξ, η) (never explicitly represented within

the element domain) associated with each node i of the element E and

ṽ =
[
ṽx1 ṽy1 ṽx2 ṽy2 ... ṽxm ṽym

]T
(17)

is the vector collecting the nodal values of vh. The projected strains can be expressed in terms of

the nodal values of vh as145

Π(vh) = Π ṽ (18)

where Π ∈ R3×2m is the discrete representation of the local projector.

Taking into account Eq.(1), Eq.(14) and Eq.(15), Eq.(18) may be rewritten as

Π ṽ =
1

|E|

∫
E

SNṽ dE (19)

By applying the Green’s theorem to the right-hand side of Eq.(19), one gets

Π =
1

|E|

∫
∂E

NNds =
1

|E|

m∑
i=1

∫
ei

N iNds (20)

where

N =


nx 0

0 ny

ny nx

 (21)

is the matrix containing the components nx and ny of the outward unit vector n =
[
nx ny

]T
150

normal to the element boundary ∂E and N i is the matrix associated to the edge ei. It should be

noted that the boundary integrals on the right-hand side of Eq.(20) are exactly computable, since

the restriction of the shape functions Ni to the element boundary edges are known piece-wise linear

polynomials.

The VEM uses an approximation of the local symmetric bilinear form aE(·, ·) that satisfies the155

consistency and stability properties (see Ref.[23]), defined, for all E ∈ Ωh and for all uh,vh ∈ Vh,

as

ah,E (uh,vh) =

∫
E

[Π(vh)]
T
C Π(uh) dE + sE (uh,vh) . (22)
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The first term on the right-hand side of Eq.(22), referred to as the consistency term, ensures that

if the solution of the original problem is, globally, a linear polynomial, then the solution of the

discrete problem coincides with the exact solution. Using Eq.(18), it can be expressed as160 ∫
E

[Π(vh)]
T
C Π(uh) dE =

∫
E

[Π ṽ]
T
CΠ ũ dE = ṽT

(∫
E

ΠTCΠ dE

)
ũ = ṽTKc

E ũ (23)

where

Kc
E = |E|ΠTCΠ (24)

is the consistency contribution to the element stiffness matrix KE .

The second term on the right-hand side of Eq.(22) is referred to as the stability term and it

is a symmetric bilinear form that ensures the proper rank of the element stiffness matrix KE .

Following Ref.[27], to which the interested reader is referred for further details, the stability term165

may be written in matrix form as

sE (uh,vh) = ṽTKs
E ũ (25)

where Ks
E is the stability contribution to the element stiffness matrix, which can be expressed as

Ks
E = [I −Πs]

T
µ [I −Πs] , (26)

where I ∈ R2m×2m is the identity matrix and Πs is a matrix projector operator that may be written

as

Πs = D
(
DTD

)−1
DT (27)

where170

D =



1 0 ξ1 0 η1 0

0 1 0 ξ1 0 η1

...
...

...
...

...
...

1 0 ξm 0 ηm 0

0 1 0 ξm 0 ηm


(28)

and ξi and ηi, with i = 1, ...,m, are the local scaled coordinates of the vertices of element E, defined

according to

ξi =
xi − xE
hE

, ηi =
yi − yE
hE

, (29)

where it is recalled that (xE , yE) and hE are the centroid coordinates and diameter, respectively, of

the considered element. The coefficient µ = τ tr (Kc
E) is a constant parameter that is used to ensure

9



the correct scaling of the stability term with respect to the element size and material constants.175

For linear elasticity problems, τ can be set equal to 0.5 (see Ref.[25]).

Eventually, for the lowest order VEM, the local contribution LE(·) to the virtual work of the

volume load f that appears in the right-hand side of Eq.(8) can be approximated as in Ref.[23],

i.e.

LE (vh) ≈ Lh,E (vh) =

∫
E

v̄T
h fh dE (30)

where v̄h denotes the average value of vh at the vertices of E, defined by180

v̄h =
1

m

m∑
i=1

vh(x̃i) =
1

m

m∑
i=1

N(x̃i)ṽ, (31)

and fh is defined on each element E as the L2(E) projection onto constants of the load f , i.e.

fh = Π0 (f) :=
1

|E|

∫
E

f dE. (32)

It is worth noting that, since the shape functions Ni are explicitly known on the element boundaries,

the enforcement of non-homogeneous boundary conditions can be done exactly as in standard FEM.

The element stiffness matrix KE is obtained by summing the consistency term and the stability

term defined in Eq.(24) and Eq.(26), respectively, thus giving185

KE = Kc
E +Ks

E . (33)

Eq.(32) and Eq.(33) provide the means to compute the local discrete equilibrium equations for the

elasto-static problem within the framework of the lowest-order VEM, which can be written as

KEũ = fh. (34)

Once the elemental matrices are built, the numbering, assembly and solution of the overall

structural problem can be performed following standard FE procedures, which motivates the appeal

of the VEM as a versatile method requiring minimum re-coding in existing software packages.190

In the previous sections, the main advantages of VEM over standard FEM have been extensively

stressed. However, it is worth underlining some differences in the computational implementation

between the lowest-order VEM, adopted here, and the standard FEM. With respect to standard

FEM elements of comparable numerical accuracy (e.g. Constant Strain Triangle - CST), the popu-

lation of the VEM elemental stiffness matrix requires performing additional operations, due to the195

10



computation of the stabilization term. More specifically, the construction of the stability projector

Πs requires the computation of the inverse of matrix DTD in Eq.(27). However, given that the

size of matrix D is proportional to the usually limited number of element edges, this operation is

not per se computationally expensive, but it may increase the overall computational cost when the

analysed model contains a large number of elements. It is stressed that such observations hold for200

the lowest-order VEM, employed here; the formulation and implementation of arbitrary order VEM

involves more sophisticated considerations that go beyond the scope of the present study and form

the object of much current research [24].

3. Multi-domain implementation for computational material homogenization

In this section, the multi-region implementation for computational material homogenization205

is described with reference to two classes of materials, namely polycrystalline and unidirectional

fibre-reinforced composites, widely employed in engineering applications.

Some applications of the VEM to material homogenization of composites [42, 43, 45] and poly-

crystalline materials [46] have very recently appeared in the literature. Refs.[42, 43] consider unit

cells with a single circular or elliptical inclusion, considered as the basic building block of composite210

materials with regular fibres distributions. Ref.[45] considers domains with a statistical distribu-

tion of fibres, but a single polygonal VEM element is used to model the individual fibres. Ref.[46]

uses single polygonal or polyhedral VEM elements to model individual crystals in 2D and 3D, for

homogenization purposes. In the present study, the focus is slightly different. Multi-domain mi-

crostructures obtained from random processes are considered and no a priori assumption is made215

about the number of VEM elements used to model individual fibres or crystals. Emphasis is given

to the flexibility offered by the features of VEM in meshing such general morphologies, which make

it a convenient method for the analysis of complex random material microstructures.

The first step toward materials computational micro-mechanics is the adoption of an accurate

representation of the material microstructure. This can be based either on experimental reconstruc-220

tion of real microstructures or on computer generation of artificial models embodying the relevant

statistical features of the microstructural aggregate. Experimental techniques provide fundamen-

tal information, but they require suitable and generally expensive equipment and complicated and

time-consuming post-processing. On the other hand, the use of reliable computer models offers
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the opportunity of simulating large numbers of microstructures, helping reduce the cost of the225

experimental effort [2].

In the context of the analysis of heterogeneous materials, the concepts of Representative Volume

Element (RVE ) and Statistical Volume Element (SVE) are notions of primary importance, see e.g.

Refs.[48, 49, 50, 51]. If a single microstructural realization1 is considered, then it is important

to determine the minimum size of the unit cell needed to attain material representativity. For230

polycrystalline materials, the size of the RVE can be expressed in terms of the number of grains

Ng contained in the artificial microstructure. For unidirectional (UD) fibre-reinforced composites

the size of the RVE is measured by the parameter δ, defined as the ratio between the length L of

the side of a square unit cell and the radius r of the inclusion, typically a fibre, i.e.

δ =
L

r
. (35)

A definition of RVE can also be provided considering not only volume averages over individual235

realizations of different sizes, but also ensemble averages over a set of realizations of the same

size, provided that a sufficient number of samples is considered [52], which suggests the concept of

SVE. With this approach, the estimation of the effective properties is obtained by computing the

ensemble average of the apparent properties over a collection of realizations having the same size.

In the subsequent sections, the multi-region VEM strategy adopted for computational homoge-240

nization of heterogeneous materials is described, highlighting the features of the VEM that result

particularly convenient for the meshing of irregular geometries, namely the VEM ability of natu-

rally dealing with hanging nodes and non-convex or heavily distorted mesh elements. The method

has been implemented for both polycrystalline and unidirectional (UD) fibre-reinforced composite

materials, which are treated separately in the next sections to better highlight the specific modelling245

requirements and the adopted solutions.

1The term realization is used in this work to denote the specific morphology associated to a set of randomly

scattered seed points, which can identify the centroids of polycrystals generated through Voronoi tessellations or the

position of the fibres in fibre-reinforced composites; in this sense, the specific morphology has a role analogous to the

value assumed by a random variable.
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3.1. Polycrystalline materials

The modelling strategy employed for the analysis of polycrystalline materials at the micro-scale

is described in this section, starting from the method adopted for the construction of the artificial

microstructure.250

3.1.1. Generation of artificial polycrystalline micro-morphologies

A reliable computer representation of the polycrystalline microstructure must retain the main

topological, morphological and crystallographic features of the aggregate such as number of vertices,

edges and faces per grain, grain size distribution, grain shape and crystallographic orientation.

Voronoi tessellations, which are analytically well defined and relatively simple to generate, have255

been successfully used to reproduce the main statistical features of real polycrystalline morphologies

[8, 9, 22, 53] (see Fig.(2)).

Fig. 2. Example of two-dimensional Voronoi tessellation on a square domain.

Given a bounded domain Ω ∈ R2, its Voronoi tessellation is constructed starting from a set of

n seed points S = {xi ∈ Ω : i ∈ In}, with In = {1, 2, ..., n}. A Voronoi cell Gi having the seed xi as

its generator is defined as the set of points which are closer to xi than to any other seed point, i.e.260

Gi = {x : ‖x− xi‖ < ‖x− xj‖ ∀j 6= i, j ∈ In} (36)

Each seed is the generator of its own Voronoi cell and all cells form a Voronoi diagram, which

divides the two-dimensional space into the union of convex, non-overlapping polygons with straight

edges.
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The topology and morphology of the tessellation depend on the distribution of the seeds within

the domain Ω. It has been shown that a Voronoi tessellation, built on a set of randomly dis-265

tributed seeds, referred to as Poisson-Voronoi tessellation, possesses statistical features that make

it topologically close to real polycrystalline aggregates [54]. However, randomly distributed seed

points tend to generate Voronoi tessellations with a high number of highly irregular or excessively

distorted grains, that are particularly challenging from the point of view of mesh preparation for

subsequent numerical analysis. Various techniques have been used to produce tessellations with270

non-pathological grain shapes or edges, e.g. enforcing a hardcore condition on the initial distri-

bution of seed points or by employing more sophisticated regularization procedures, addressed at

avoiding an excessively refined mesh induced by the presence of small edges in the mathematically

exact built tessellation [4, 22].

In the present study, two-dimensional Voronoi tessellations are used to generate artificial poly-275

crystalline microstructures, where each Voronoi cell represents an individual grain. In order to

demonstrate the ability of the Virtual Element Method to deal with mesh elements of very general

polygonal shape, also generated over irregular geometries, no regularization scheme is adopted and

instead a pure Poisson-Voronoi tessellation, with uniform random grain distribution and size, is

used.280

The tessellations have been generated using the Qhull [55] algorithm included in MATLAB to

generate a uniform distribution inside the square domain representing the boundary of the unit

cell. Since the edge length of the square domain is fixed, the only input required is the number of

seed points, equal to the number of grains. Fig.(3) shows different microstructural morphologies

corresponding to different numbers of grains Ng.285

3.1.2. Micro-mechanical polycrystalline modelling

A linear elastic orthotropic model is used to describe the mechanical behaviour of individual

crystals. The hypothesis of orthotropic material is not restrictive, since the majority of single

crystal metallic and ceramic materials present a general orthotropic behaviour. For an orthotropic

material in a three-dimensional framework, the linear elastic constitutive laws introduced in Eq.(2)290
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(a) (b) (c) (d)

Fig. 3. Polycrystalline morphologies with different numbers of grains: a) Ng = 10; b) Ng = 50; c) Ng = 100; d)

Ng = 200.

may be written as 

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ13

γ12


(37)

where γij = 2εij for i = 1, ...3 and i 6= j.

Each grain of the microstructure is assumed to have a random spatial orientation of the principal

material directions {1, 2, 3}. Although two-dimensional problems are considered in the present

study, the possibility of investigating the effect of randomness of the spatial orientation of each295

grain on the overall behaviour of the microstructure is preserved, as explained next. Following [9],

each generated grain has, randomly, one of three principal material directions that coincides with

the z-axis (normal to the analysis plane). Moreover, for each grain, the angle θ ∈ [0, 2π) between

the global axes x and y and the axes of the two principal material directions lying in the plane x−y

is also randomly generated, Fig.(4).300

The artificial polycrystalline morphology generated according to the procedure explained in

Sec. 3.1.1 can be considered as a multi-domain problem, in which different elastic properties and

orientations are assigned to each grain. In the context of the FEM, several strategies have been

used, in the literature, for the automatic generation of meshes for polycrystalline microstructures

and both structured and unstructured meshes have been used [22, 56, 57].305
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Fig. 4. Example distribution of the principal material directions within each grain. The three different colours

specify which principal direction coincides with the global z-axis. The orientations in the x − y plane of the other

two principal material directions is represented by two black vectors.

Structured mesh are generally unable to resolve the grain boundaries, while unstructured meshes

overcome this issue. However, given the morphological properties of random Voronoi tessellations,

the generation of high quality conforming meshes requires a high degree of refinement that signifi-

cantly increases the number of degrees of freedom.

In the present study, a multi-domain conforming meshing strategy is adopted, which takes310

advantage of the particular capability of the VEM of dealing with polygonal mesh elements with

arbitrary number of edges as well as with hanging nodes. Each grain of the microstructure has

been independently meshed using a Centroidal Voronoi Tessellation (CVT; not to be confused with

the tessellation used to generate the morphology), which allows subdividing the often very irregular

grain geometry into quite regular polygonal elements (see Fig.(5)). For this purpose, a modified315

version of Polymesher [58] is used; Polymesher is a mesh generator for polygonal elements written

in MATLAB. The number of elements per grain is given as input, defined as the ratio between the

grain area and the requested global mesh size.

Once all the grains have been independently meshed, in general, at the grain boundaries, there

will be sets of collinear nodes belonging to different grains, which would induce a non-conformal320

mesh of the microstructure. However, since the VEM is able to deal with general polygonal ele-

ments, also presenting aligned consecutive edges, the creation of conformal meshes is conceptually

straightforward and it can be attained by just adding nodes on edges shared between different
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(a) (b) (c) (d)

Fig. 5. Polygonal meshes of different polycrystalline aggregates with increasing numbers of grains: a) Ng = 10; b)

Ng = 50; c) Ng = 100; d) Ng = 200.

grains. Fig.(6) shows the creation of conforming meshes between adjacent grains: the presence of

nodes initially hanging between contiguous grains is dealt with by transforming such nodes into325

vertices shared between the contiguous elements belonging to two adjacent grains. For the generic

boundary polygonal element, such vertices are located between aligned consecutive edges, which are

naturally dealt with by the VEM. In other words, the nodes that would be hanging in a common

FEM implementations, are here treated as regular nodes, leveraging on the ability of the VEM of

dealing with polygonal elements with arbitrary number of edges and also with collinear consecutive330

edges.

Polycrystalline microstructures generated using the described strategies have been used to per-

form the computational material homogenization reported in Section 4.

3.2. Unidirectional fibre-reinforced composite materials

The modelling methodology adopted for the homogenization of composite fibre-reinforced mate-335

rials is described in this section. In general, reinforcing fibres may be randomly distributed within

the matrix, and this can induce irregular and complex meshes. The versatility of the VEM in deal-

ing with general polygonal elements, including non-convex or distorted elements, allows noticeable

simplification of the pre-processing effort.

3.2.1. Generation of artificial composite micro-morphologies340

Several algorithms have been proposed in the literature to generate microstructures of UD

fibre-reinforced composite materials, see e.g. [59, 60, 61] and references therein. In the present

study, artificial periodic microstructures of fibre-reinforced composites are generated as square unit
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Fig. 6. Creation of conforming meshes between adjacent grains: the nodes initially hanging between contiguous

grains are transformed into vertices shared between the contiguous elements belonging to two adjacent grains.

cells with random circular disk-shaped inclusions representing the fibres’ transversal sections. An

individual morphology is generated starting from two input parameters: the target volume fraction345

Vf and the size parameter δ (see Eq.(35)). The number of fibre inclusions Nf in the unit cell is

given by

Nf =
Vfδ

2

π
. (38)

A non-overlapping condition is enforced by setting a minimum allowed distance d between the

centers of the circular disk-shaped inclusions, with d > 2r, where r is given by Eq.(35). In order

to generate a valid periodic microstructure with random fibre distribution, the following iterative350

procedure is adopted:

1. A random uniform set of Nf seed points is initially scattered within the squared bounding

box representing the boundary of the unit cell;

2. To attain microstructural periodicity, the set of seed points is replicated within eight copies

of the original box created around the original unit cell; each one of the surrounding boxes355

has the same size as that of the original one, so that a total of 9Nf points are created overall

(the process is similar to the one adopted e.g. in Ref.[62]);
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3. A Delaunay triangulation of the extended domain is generated starting from the 9Nf points;

4. For each edge of the triangulation, the distance between the end vertices is computed; if such

length is ≤ 2r, the vertices are moved apart along the direction identified by the edge itself360

of distance proportional to the original edge length;

5. The new coordinates of the original Nf points are the extracted. If in step 3, any point has

been translated, the set of Nf points with the new coordinates is sent to step 2 for a new

iteration; otherwise, the process is terminated.

Once a set of points respecting the non-overlapping condition is obtained, a disk-shaped inclusion365

can be associated to each seed; the desired periodic microstructure is then extracted by trimming

the original bounding box, with circular inclusions, out of the extended domain. Some realizations

obtained for different values of δ and Vf = 0.29 are shown in Fig.(7).

(a) (b) (c) (d)

Fig. 7. Different realizations of fibre-reinforced composite unit cells for Vf = 0.29 and different values of the

parameter δ = L/r: a) δ = 10; b) δ = 20; c) δ = 35; d) δ = 50.

3.2.2. Micro-mechanical composites modelling

Unidirectional fibre-reinforced composites can be macroscopically considered as transversely370

isotropic materials, whose properties emerge from the features and interplay of their constituents,

i.e. from the properties of fibres, matrix, fibre-matrix interface and the ratio Vf between the volume

of fibres and the total volume of the composite.

For representing the composite microstructure, a multi-domain meshing strategy is adopted that

is slightly different from the one used for the polycrystalline microstructure. Still, the ability of375
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VEM to handle elements of very general shape is exploited. The adopted meshing strategy is based

on the three following steps:

1. A conforming triangular mesh of the considered artificial micro-morphology is generated using

the software DistMesh [63];

2. A polygonal mesh is built from the bounded Voronoi diagram generated using the centroids380

of the triangular mesh elements as seed points;

3. The polygonal element of the mesh obtained which intersect the fibre inclusions boundaries

are trimmed so to conform to such boundaries.

The above process allows the generation of a regular polygonal discretization over the whole com-

putational domain with the exception of the areas close to the fibre boundaries, where the ability385

of VEM to handle elements of arbitrary shapes, including non-convex shapes is exploited. Fig.(8)

shows an example of polygonal mesh generated for a composite unit cell sample and the detail in the

inset on the right shows how irregular polygonal elements may appear in proximity of the inclusions

boundaries; the capability of the VEM to address irregular, distorted or non-convex elements allows

to retain meshes that would require regularization or further treatment otherwise.

Fig. 8. Generation of a polygonal mesh for a composite unit cell morphology with Vf = 0.44 and δ = 40 (left).
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390

Indeed, the use of VEM may also simplify the implementation of straightforward regularization

schemes. An example is provided in Fig.(9): the meshing of a fibre-reinforced composite through the

operations summarised above may induce the presence of polygonal elements of size comparatively

too small with respect to the average mesh size, represented as the blue elements in Fig.(9a);

in this case, it may be useful to absorb such small entities within contiguous elements, the red395

ones in Fig.(9a-9b). While such ”absorption” operation would require nodes/edges shifting in

standard FEM, it can be performed using VEM by just retaining the external polygonal edges of

the absorbing/absorbed element couples, as shown in (9b). This simple strategy, discussed here as

an example of the flexibility allowed by the VEM in dealing with meshing, noticeably reduces the

number of small elements in general composite unit cells, also reducing the possibility of artefacts400

in the local fields; however, the cost of the subsequent computational analysis is generally little

affected, unless very large numbers of such small elements are present.

4. Computational homogenization tests

This section describes the numerical tests performed to validate the developed homogenization

procedure and the reliability of the Virtual Element Method with respect to such application. The405

purpose of the numerical tests is the estimation of the effective transverse elastic properties of

polycrystalline and unidirectional fibre-reinforced composite materials. The obtained numerical

results are compared with available analytical bounds.

For each microstructural sample, assuming plane strain conditions, the apparent transverse

elastic properties are calculated from the solution of three different boundary value problems, dif-410

fering only in the prescribed set of boundary conditions. Kinematic uniform boundary conditions,

i.e. linear displacements boundary conditions are enforced at all external nodes of the considered

microstructure. Such enforced boundary displacements correspond to a macro-strain Γ̄. More

specifically, if a reference system x − y with the axes aligned with the external edges of the unite

cell is adopted, the three different sets of displacement boundary conditions correspond to: a) a415

uniaxial direct macro-strain along the x direction; b) a uniaxial direct macro-strain along the y di-

rection; c) a pure shear macro-strain acting to modify the angle between the axes xy. The enforced

displacement micro-BCs are related to the macroscopic strain by the relation

ūi = Γ̄ijxj ∀x ∈ ∂Ω. (39)
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(a) (b)

(c) (d)

Fig. 9. A simple VEM-based regularization scheme: a) elements considerably smaller than the average mesh size

may be present in the mesh of the composite fibre-reinforced unit cell (blue in the online version of the paper); b) the

small elements can be absorbed within contiguous elements of larger size (red in the online version of the manuscript);

with VEM such operation is performed by simply creating larger polygonal elements bounded by the external edges

of the absorbing/absorbed element couple. In unit cells with large numbers of fibres, e.g. the one shown in (c) with

477 fibres, δ = 50 and Vf = 0.44, the regularization scheme noticeably reduces the presence of small elements, as

shown by the histogram in (d).
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The relation between macro-stress and macro-strain is given by:

Σij = ĈijklΓkl (40)

where Ĉ is the apparent macroscopic fourth-order elastic tensor, while Σij are the components of420

the macroscopic stress tensor, which can be computed upon solution of the micro baoundary value

problem by the volume average of the local micro stress tensor over the domain of the RVE, i.e.

Σij =
1

|Ω|

∫
Ω

σij(x)dΩ. (41)

In Voigt notation, the apparent macroscopic elastic tensor Ĉ is expressed through the apparent

stiffness matrix Ĉ whose components can be determined column-wise from the solution of the three

linearly independent boundary value problems mentioned above. Once an estimate of the apparent425

stiffness matrix is available, the apparent elastic modula can be readily estimated.

4.1. Computational homogenization of FCC polycrystals

The determination of the macroscopic properties of materials presenting microscopic cubic sym-

metry has been previously addressed in the literature, see e.g. Ref.[64]. Numerical simulations are

performed in order to estimate the effective transverse elastic properties, namely the macroscopic430

isotropic Young’s modulus Ê and shear modulus Ĝ, for three different polycrystalline materials

presenting cubic symmetry at crystal level: copper, gold and nickel. In the case of materials with

cubic symmetry, such as FCC metals, the specification about the grains orientation, as mentioned

in Section 3.1.1, is unnecessary and the three principal axes are equivalent. Grains with cubic

symmetry present only three distinct elastic constants C11, C12 and C44 and the reduced stiffness435

matrix for plain strain C reads

C =


C11 C12 0

C12 C11 0

0 0 C44

 . (42)

The elastic constants for the three selected materials are summarized in Table(1), as taken from

Ref.[64].

For each material, aggregates with Ng = 10, 20, 50, 100, 200 grains have been tested. For given

material and number of grains, 50 different realizations have been generated and analyzed. Each440

realization differs from the others in terms of both geometry and grains orientation. Table(2)

23



reports the minimum, the average and the maximum number of degrees of freedoms, related to the

number of grains, in the analyzed polycrystalline microstructures.

The homogenization is performed following the procedure employed in Ref.[64]. For a macro-

scopically isotropic aggregate, the range of the Young and shear effective moduli is bounded by a445

lower (Reuss) bound and an upper (Voigt) bound. Such limits are also referred in the literature as

first order bounds. The Reuss [65] lower bound is obtained by assuming that all the grains undergo

uniform stress, while the Voigt [66] upper bound is obtained by assuming that all the grains undergo

uniform strain. Since a two-dimensional model is being considered, the bounds are computed by

averaging the single crystal plain strain reduced stiffness matrix over all possible orientations of450

the random angle θ formed between the material direction 1 and the lower horizontal edge of the

square unit cell, as shown e.g. in Ref.[67].

The obtained numerical results, in terms of the effective Young’s modulus Ê and shear modulus

Ĝ, are shown in Fig.(10). The Reuss and Voigt bounds are also shown for comparison purpose.

The effective properties are estimated as the ensemble average over realizations containing the same455

number of grains. It is noticed how, as the number of grains per realization increases, the scatter

of the apparent properties reduces. When realizations with Ng = 200 are considered, the apparent

moduli always fall within the first order bounds.

4.2. Computational homogenization of fibre-reinforced composites

Two of the unidirectional fibre-reinforced composite materials considered in Ref.[68] are selected460

for the numerical tests on composite unit cells. The first composite, here labeled COMP1, is made

of AS4 carbon fibres embedded in 3501 − 6 epoxy matrix. The second composite, here labeled

COMP2, is made of Silenka E-glass 1200 tex fibres embedded in MY750/HY917/DY063 epoxy

matrix. The fibre volume fractions considered in the performed tests are Vf = 0.22, Vf = 0.29,

Vf = 0.36 and Vf = 0.44.465

C11 C12 C44

Copper 168 121 75

Gold 185 158 40

Nickel 251 150 124

Table 1: Single crystal elastic constants used for the analysed materials from Ref.[64]; the values are given in [GPa].
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Ng 10 20 50 100 200

ndof

Min 9982 9976 9966 9938 9886

Average 9995 9994 9988 9975 9942

Max 10006 10012 10020 10022 9986

Table 2: Minimum, average and maximum number of DOFs for the analyzed polycrystalline aggregates.

The axis (1) is parallel to the fibres and it is normal to the (2-3) plane, in which the 2D unit

cell lies. The mechanical properties of the constituents, themselves isotropic in the (2-3) plane, are

given in Table(3) in terms of transverse Young modulus E22 and transverse shear modulus G23.

Table 3: Mechanical properties for the matrix and fibres of COMP1 and COMP2, as taken from Ref.[68].

Mechanical Properties E22 [GPa] G23 [GPa]

AS4 carbon fibres 15 7

3501-6 epoxy matrix 4.2 1.567

Silenka E-Glass 1200 tex fibres 74 30.8

MY750/HY917/DY063 epoxy matrix 3.35 1.24

A unidirectional fibre-reinforced composite lamina is macroscopically transversely isotropic, so

that only two elastic modula are needed to completely characterize the transverse behaviour in the470

plane of isotropy (2-3). In this study, the results of the numerical tests are given in terms of the

plain strain bulk modulus K23 and the shear modulus G23.

The minimal RVE size for unidirectional fibre-reinforced composites similar to those considered

here has been investigated in Ref.[69], where it was found that, when the purpose of the analysis is

the estimation of the effective properties, a minimum size parameter of δ ≥ 30 is required. In this475

study, the convergence of the effective properties is assessed in the range 10 ≤ δ ≤ 50.

Figs.(11-12) show, for both composite materials and for each considered value of the volume

fraction Vf , the average and the scatter range of the computed elastic properties as a function of

the unit cell size, as expressed by δ. The average is computed over ensembles of 50 realizations

for each value of δ. It can be observed that, for both considered materials and for δ ≥ 30, there480

is no appreciable variation in the values of either the average elastic modula or the scatter, which
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confirms convergence of the effective properties (please note the tight scale used in the graphs).

Figs.(13-14) show the numerical predictions about the computed transverse mechanical prop-

erties K23 and G23 versus the fibre-volume fraction Vf at δ = 50. The Voigt and Reuss bounds

and the Hashin-Hill bounds [48, 70] for the effective elastic modula are also shown for comparison485

purpose. The obtained numerical estimates are in agreement with the theoretical predictions.

Table (4) shows the minimum, average and maximum number of degrees of freedoms, in the

analyzed composite microstructures, for Vf = 0.22 and at different values of the size parameter δ.

5. Conclusions

A lowest-order Virtual Element framework for computational materials homogenization has490

been developed and it has been applied to both polycrystalline materials and unidirectional fibre-

reinforced composites. General polycrystalline Voronoi microstructures have been analysed ad-

dressing the occurrence of hanging nodes at the interface between independently meshed contiguous

grains through the ability of VEM of dealing with elements with aligned edges. The ability of VEM

of addressing non-convex polygonal element, on the other hand, has been employed in the analysis495

of general composite fibre-reinforced morphologies, obtained from the random scattering of fibres

with circular sections. In summary, the study shows how the capability of the Virtual Element

Method to deal with very general polygonal mesh elements, including non-convex and highly dis-

torted elements, can be profitably exploited to relax the requirements on the mesh quality that

may hinder the automatic analysis of micro-morphologies presenting complex or highly statistically500

varying features, commonly met in computational materials micro-mechanics and homogenization,

where materials microstructures are often generated resorting to stochastic algorithms.

Table 4: Minimum, average and maximum number of DOFs for the analyzed composite microstructures for Vf = 0.22.

Ng 10 15 20 25 30 35 40 45 50

ndof

Min 1836 3700 6604 10328 14670 19750 25828 32438 39842

Average 1932 3772 6711 10349 14838 19906 26018 32651 40117

Max 1984 3856 6810 10470 15022 20098 26174 32868 40354
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Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due

to technical or time limitations.505
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[57] F. Fritzen, T. Böhlke, E. Schnack, Periodic three-dimensional mesh generation for crystalline

aggregates based on voronoi tessellations, Computational Mechanics 43 (5) (2009) 701–713.

[58] C. Talischi, G. H. Paulino, A. Pereira, I. F. M. Menezes, Polymesher: a general-purpose

mesh generator for polygonal elements written in matlab, Structural and Multidisciplinary700

Optimization 45 (3) (2012) 309–328. doi:10.1007/s00158-011-0706-z.

URL https://doi.org/10.1007/s00158-011-0706-z

[59] A. Melro, P. Camanho, S. Pinho, Generation of random distribution of fibres in long-fibre

reinforced composites, Composites Science and Technology 68 (9) (2008) 2092 – 2102. doi:

https://doi.org/10.1016/j.compscitech.2008.03.013.705

URL http://www.sciencedirect.com/science/article/pii/S0266353808001048

[60] G. Catalanotti, On the generation of rve-based models of composites reinforced with long fibres

or spherical particles, Composite Structures 138 (2016) 84 – 95. doi:https://doi.org/10.

1016/j.compstruct.2015.11.039.

URL http://www.sciencedirect.com/science/article/pii/S0263822315010429710

[61] M. Pathan, V. Tagarielli, S. Patsias, P. Baiz-Villafranca, A new algorithm to generate repre-

sentative volume elements of composites with cylindrical or spherical fillers, Composites Part

B: Engineering 110 (2017) 267 – 278. doi:https://doi.org/10.1016/j.compositesb.2016.

10.078.

URL http://www.sciencedirect.com/science/article/pii/S1359836816313725715

[62] I. Benedetti, M. Aliabadi, Multiscale modeling of polycrystalline materials: A boundary ele-

ment approach to material degradation and fracture, Computer Methods in Applied Mechanics

and Engineering 289 (2015) 429 – 453. doi:https://doi.org/10.1016/j.cma.2015.02.018.

URL http://www.sciencedirect.com/science/article/pii/S0045782515000675

[63] P. Persson, G. Strang, A simple mesh generator in matlab, SIAM Review 46 (2) (2004) 329–345.720

arXiv:https://doi.org/10.1137/S0036144503429121, doi:10.1137/S0036144503429121.

URL https://doi.org/10.1137/S0036144503429121

34



[64] I. Benedetti, M. H. Aliabadi, A three-dimensional grain boundary formulation for microstruc-

tural modeling of polycrystalline materials, Computational Materials Science 67 (2013) 249–

260.725

[65] A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung

für einkristalle., ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-

wandte Mathematik und Mechanik 9 (1) (1929) 49–58.

[66] W. Voigt, Lehrbuch der kristallphysik, Vol. 962, Teubner Leipzig, 1928.

[67] R. Mullen, R. Ballarini, Y. Yin, A. Heuer, Monte carlo simulation of effective elastic constants730

of polycrystalline thin films, Acta Materialia 45 (6) (1997) 2247 – 2255. doi:https://doi.

org/10.1016/S1359-6454(96)00366-7.

URL http://www.sciencedirect.com/science/article/pii/S1359645496003667

[68] P. Soden, M. Hinton, A. Kaddour, Lamina properties, lay-up configurations and loading condi-

tions for a range of fibre-reinforced composite laminates, Composites Science and Technology735

58 (7) (1998) 1011 – 1022. doi:https://doi.org/10.1016/S0266-3538(98)00078-5.

URL http://www.sciencedirect.com/science/article/pii/S0266353898000785

[69] D. Trias, J. Costa, A. Turon, J. Hurtado, Determination of the critical size of a statistical

representative volume element (srve) for carbon reinforced polymers, Acta Materialia 54 (13)

(2006) 3471 – 3484, selected Papers from the Meeting “Micromechanics and Microstructure740

Evolution: Modeling, Simulation and Experiments” held in Madrid/Spain, 11–16 September

2005. doi:https://doi.org/10.1016/j.actamat.2006.03.042.

URL http://www.sciencedirect.com/science/article/pii/S1359645406002497

[70] Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary transverse phase

geometry, Journal of the Mechanics and Physics of Solids 13 (3) (1965) 119 – 134. doi:https:745

//doi.org/10.1016/0022-5096(65)90015-3.

URL http://www.sciencedirect.com/science/article/pii/0022509665900153

35



(a) (b)

(c) (d)

(e) (f )

Fig. 10. Computed effective Young’s modulus E and shear modulus G for polycrystalline aggregates of copper

(a-b), gold (c-d), nickel (e-f ).
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Fig. 11. Computed effective transverse elastic properties as a function of δ for different values of Vf for COMP1:

Vf = 0.22 (a-b); Vf = 0.29 (c-d); Vf = 0.36 (e-f ); Vf = 0.44 (g-h).
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Fig. 12. Computed effective transverse elastic properties as a function of δ for different values of Vf for COMP2:

Vf = 0.22 (a-b); Vf = 0.29 (c-d); Vf = 0.36 (e-f ); Vf = 0.44 (g-h).
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(a) (b)

Fig. 13. Computed transverse elastic properties and Hashin-Hill bounds as a function of the volume fraction Vf for

COMP1 and δ = 50.

(a) (b)

Fig. 14. Computed transverse elastic properties and Hashin-Hill bounds as a function of the volume fraction Vf for

COMP2 and δ = 50.
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