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A B S T R A C T

The limited availability of analytical solutions and the high cost associated with experimental
testing motivate the use of computational tools to assess the dynamic behavior of load-
bearing components, especially when a wide design space must be explored, as is often the
case with composite structures. In this context, a novel high-order accurate discontinuous
Galerkin formulation for transient and free-vibration analysis of multilayered plates and shells
is presented and numerical validated. The starting point of the formulation is a generalized
structural theory for multilayered shells with arbitrary curvature based on the expansion
of the displacement covariant components throughout the shell thickness. The variational
statement of three-dimensional elastodynamics allows deriving the strong form of the governing
differential equations, which form the basis to obtain the corresponding discontinuous Galerkin
weak statements. As the order of the through-the-thickness expansion and the order of the
discontinuous Galerkin basis functions are free parameters, the proposed approach allows tuning
the order of accuracy of the computed solution throughout both the shell thickness and the shell
modeling domain. Numerical results are reported and discussed for several validation test cases
in terms of ℎ- and 𝑝-convergence analyses, demonstrating the high-order accuracy, robustness,
and computational savings of the formulation.

. Introduction

Laminated composite plates and shells are today widely employed in several engineering applications, especially where it is
mportant to achieve high structural stiffness at low weight, as in the automotive and aerospace sectors [1–4].

Recent advancements in manufacturing methods allow the fabrication of structural members or components whose shape, lay-
p, and load paths may be tailored on their specific employment, thus granting the designers and engineers remarkable design
reedom [5,6]. However, the accessibility of a larger design space requires the capability of the designer of objectively assessing a
arger number of options for the intended application to select the most suitable structural configuration and/or architecture for
onsidered function.

While experimental characterization and testing play an important role in the development of novel engineering products,
specially at higher technology readiness levels, virtual testing has become a fundamental part of the earlier development process,
hen several alternative solutions need to be assessed, as typically happens in the conceptual design stage [7–11]. Indeed, the
mployment of fast, effective, and reliable computational models complements today the implementation of experimental campaigns,
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reducing their costs in terms of both time and hardware, and their availability constitutes an invaluable asset for engineers and
manufacturers [12–14].

Depending on the specific application, the set of conditions for which functional and safe operation must be demonstrated varies
rom simple, well-defined static tests, to complex dynamic scenarios under multiple loads, up to impact tests that may involve the
estruction of the component. In aircraft design, for example, where structural requirements are obviously very stringent, according
o Title 14 CFR §25.305 – Strength and deformation – at letter (a) it is stipulated that the structure must be able to support limit

loads without detrimental permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation.
Moreover, at letter (e), it is required that the airplane must be designed to withstand any vibration and buffeting that might occur in any
likely operating condition [...], and, at letter (f ), that unless shown to be extremely improbable, the airplane must be designed to withstand
any forced structural vibration resulting from any failure, malfunction or adverse condition in the flight control system[...] and, in general,
this must be shown by analysis, flight tests, or other tests found necessary by the Administrator. It is then apparent that both static and
dynamic assessments are relevant.

In this context, the present contribution proposes a novel discontinuous Galerkin (DG) formulation for the linear free-vibration
and transient analysis of isotropic and laminated plates and shells. Such structures feature inherent heterogeneity, which strongly
affect their mechanical response, rendering their study a complex engineering task — further complicated by the presence of
curvature in shells. While fully three-dimensional models are always an option, high-order structural theories built considering
the characteristic component features, for example the small thickness of the plate or shell, are able to provide high accuracy at
reduced computational costs. Plates and shells may be modeled using Equivalent Single Layer (ESL) theories, where the displacement
components are assumed to vary according to assumed high-order functions throughout the thickness [15]. The plate or shell
is thus replaced by an individual layer with equivalent mechanical properties and it is governed by a system of differential
equations depending, in general, on two curvilinear variables. Such governing equations are generally solved employing approximate
numerical schemes, as analytical solutions are only available for a limited set of problems that do not cover the whole set of
possible applications. The most widely employed numerical method for structural analysis is the Finite Element Method (FEM),
whose application to the solution of dynamic problems of plates and shells modeled by variable-order structural theories is still
an active topic of research, see, e.g., Refs. [16–19]. Other techniques have also been proposed in the literature with the aim to
improve the flexibility of numerical schemes with respect to FEM. Examples include the meshless methods, which do not require a
partition of the domain of analysis into elements and have been employed in conjunction with the First-order Shear Deformation
Theory (𝖥𝖲𝖣𝖳) [20,21] as well as higher-order structural theories [22], or the Ritz methods, which offer a variational setting where
boundary/interface conditions can be enforced either strongly by suitably modifying the set of basis functions [23–26] or weakly
by suitable penalization techniques [27,28].

DG methods have also shown to be a powerful and flexible alternative, offering adjustable high-order accuracy over conventional
and non-conventional meshes, and have been successfully employed for the static analysis of plates and shells, also in presence of
complex morphological features and boundary conditions, as in the case of presence of cut-outs [29–31]. DG methods have also
been used for eigenvalue problems (not related to shells), see, e.g., [32,33], and, more recently, for the linear buckling analysis
of plates and shells [34]. However, a thorough investigation of the performance of DG methods for free-vibration and transient
analysis of multilayered plates and shells appears lacking in the literature. It is therefore presented for the first time in this work.
The considered shells, which include plate geometries as a particular case, are assumed to have a general curvature and are modeled
using ESL kinematics in the displacement covariant components. The DG technique is then used to discretize the resulting governing
equations in space, whereas the temporal integration is performed using a standard Newmark scheme.

The paper is organized as follows. Section 2 recalls the key items of the shell structural theory, namely its geometric description,
the generalized kinematic assumption, the constitutive modeling, and retrieves the strong form of the shell dynamics equations
starting from the appropriate variational statements. The strong form of the governing equations is the starting point for the
development of the proposed DG formulation, whose derivation is presented in Section 3, where also different meshing strategies
are described, including the employment of implicitly-defined meshes. Several test cases are then considered in Section 4, where
different meshing schemes are employed and in-depth ℎ𝑝-convergence assessments for both isotropic and laminated plates and
shells are performed, proving the accuracy and robustness of the method. Some possible avenues of future developments and the
conclusions are eventually drawn.

2. Problem statement

In this section all the items entering the formulation of the structural shell theory are recalled. The geometry description is
discussed in Section 2.1, the kinematic modeling in Section 2.2, and the constitutive description in Section 2.3. Eventually, the
strong form of the shell dynamics equations, which provide the starting point for the subsequent DG formulation, is retrieved in
Section 2.4 for transient and free-vibrations analysis.

2.1. Geometry description

The formulation is developed for shells whose geometry can be described as schematically illustrated in Fig. 1 and discussed
in Refs. [31,34,35]. The shell can be analyzed identifying a reference surface, featuring general curvature, in the physical space
𝑂𝑥1𝑥2𝑥3, and adopting over such surface a suitable parametrization based on the set of curvilinear coordinates (𝜉1, 𝜉2). The shell
2

olume 𝑉 in the coordinates system 𝑂𝑥1𝑥2𝑥3 can thus be represented, and conveniently built, through a mapping 𝒙 ∶ 𝑉𝜉 → 𝑉 that
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Fig. 1. (a) The geometry of the shell in the physical space 𝑂𝑥1𝑥2𝑥3 can be described through the mapping 𝒙 = 𝒙(𝜉1 , 𝜉2 , 𝜉3), ∀(𝜉1 , 𝜉2 , 𝜉3) ∈ 𝑉𝜉 ≡ 𝛺𝜉 × 𝐼𝜉3 ; once
the mapping 𝒙 = 𝒙(𝝃) is defined, the covariant basis vectors 𝒈𝑘 can be associated with it; (b) A material orthonormal basis 𝒎𝑗 can be defined to facilitate the
description of the constitutive behavior of the different material layers, see Section 2.3.

associates the point 𝒙 ∈ 𝑉 to the natural coordinates 𝝃 = (𝜉1, 𝜉2, 𝜉3) ∈ 𝑉𝜉 ≡ 𝛺𝜉 × 𝐼𝜉3 , as shown in Fig. 1(a), where 𝛺𝜉 denotes the
reference surface of the shell spanned by (𝜉1, 𝜉2) in the curvilinear coordinates space and 𝐼𝜉3 ≡ [−𝜁∕2, 𝜁∕2] is the thickness interval
spanned by 𝜉3. Under the above assumptions, the mapping can be expressed in the form

𝒙 = 𝒙(𝜉1, 𝜉2, 𝜉3) = 𝒙0(𝜉1, 𝜉2) + 𝜉3 𝒏0(𝜉1, 𝜉2) ∀𝝃 ∈ 𝑉𝜉 (1)

where 𝒙0 is a generic point of the shell reference surface and 𝒏0 is the corresponding unit vector normal, which can be expressed
as

𝒏0 =
𝒂1 × 𝒂2

‖𝒂1 × 𝒂2‖
with 𝒂𝛼 ≡

𝜕𝒙0
𝜕𝑥𝛼

. (2)

Once the mapping in Eq. (1) has been introduced, it is possible to define, see Fig. 1(a), the covariant basis vectors as

𝒈𝑘 ≡ 𝜕𝒙
𝜕𝜉𝑘

, 𝑘 = 1, 2, 3 (3)

that will be used to express the kinematic model in Section 2.2.

2.2. Shell kinematic model

The shell formulation is built starting from the kinematic ESL representation [15], which, following the matrix notation
introduced in Ref. [30,35], is expressed as

𝒖𝜉 = 𝒁(𝜉3)𝑼 (𝜉1, 𝜉2), (4)

where 𝒖𝜉 collects the covariant components of the displacement field with respect to the contravariant basis 𝒈𝑘, 𝑘 = 1, 2, 3, defined
as 𝒈𝑘 ⋅ 𝒈𝑙 = 𝛿𝑘𝑙 , while 𝒁 is a 3 × 𝑁𝑢 matrix collecting the known thickness functions and 𝑼 is a 𝑁𝑢-dimensional vector collecting
the unknown generalized displacement components. More specifically, 𝑁𝑢 = 3 +𝑁𝑢1 +𝑁𝑢2 +𝑁𝑢3 , where 𝑁𝑢𝑖 expresses the order of
expansion of the 𝑖-th displacement component. It worth noting that 𝑁𝑢 and the expressions of the thickness functions contained in
𝒁 depend on the selected structural ESL theory [29,30,35]. Following a consolidated notation [15], the theories generated by the
kinematic model in Eq. (4) will be denoted in the remainder of the article as 𝖤𝖣𝑖𝑗𝑘, with 𝑖 = 𝑁𝑢1 , 𝑗 = 𝑁𝑢2 , 𝑘 = 𝑁𝑢3 . Note that the
present formulation allows considering the 𝖥𝖲𝖣𝖳 as an 𝖤𝖣110 theory where the plane stress hypothesis and the presence of shear
factors are introduced in the constitutive behavior.

The displacement components can be expressed in the global Cartesian coordinate system 𝑂𝑥1𝑥2𝑥3 – which simplifies the
expression of the weak statement – through the transformation

𝒖 = 𝑹𝜉𝒖𝜉 = 𝑹𝜉𝒁(𝜉3)𝑼 (𝜉1, 𝜉2), (5)

where the 𝑘th column of the matrix 𝑹𝜉 collects the Cartesian components of 𝒈𝑘. Subsequently, the derivatives with respect to the
Cartesian coordinates can be retrieved applying the chain derivation rule, which leads to

𝜕𝒖
𝜕𝑥𝑘

= 𝑫0𝑘𝑼 +𝑫𝛼𝑘
𝜕𝑼
𝜕𝜉𝛼

, (6)

where

𝑫0𝑘 ≡
𝜕𝜉𝑗 𝜕𝑹𝜉 𝒁 +

𝜕𝜉3 𝑹𝜉
d𝒁 and 𝑫𝛼𝑘 ≡

𝜕𝜉𝛼 𝑹𝜉𝒁, (7)
3

𝜕𝑥𝑘 𝜕𝜉𝑗 𝜕𝑥𝑘 d𝜉3 𝜕𝑥𝑘
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and implicit summation with respect to the repeated indexes is assumed, according to the Einstein notation, with the caveat that
Greek indexes span the set {1, 2}, while Latin indexes span the set {1, 2, 3} throughout the paper.

The Cartesian components of the small strain tensor, collected according to the Voigt notation, are retrieved from the kinematic
model in Eq. (5) through the relationships

𝜸 = 𝑰𝑘
𝜕𝒖
𝜕𝑥𝑘

= 𝑱 0𝑼 + 𝑱 𝛼
𝜕𝑼
𝜕𝜉𝛼

, (8)

where 𝑰𝑘 are matrices whose entries are either 0 or 1, see e.g. Ref. [29], and

𝑱 0 ≡ 𝑰𝑘𝑫0𝑘 and 𝑱 𝛼 ≡ 𝑰𝑘𝑫𝛼𝑘 (9)

with 𝛼 = 1, 2 and 𝑘 = 1, 2, 3.

2.3. Constitutive behavior

In composite laminated shells, the point 𝒙 spans different material layers as 𝜉3 varies. If 𝜉3 is kept constant and only (𝜉1, 𝜉2)
re varied, 𝒙 spans a surface embedded in a certain material layer, for which some specific material reference directions can be
dentified, as for example in the case of fiber reinforced composites, where a material reference system is identified by the fibers
irection and their transverse plane. At each point (𝜉1, 𝜉2, 𝜉3) of a material layer, an angle 𝜃 between the relevant material direction
nd the covariant vector 𝒈1 can be identified. A local material Cartesian reference basis 𝒎⟨𝓁⟩

𝑘 can then be attached to each point of
the generic composite layer ⟨𝓁⟩ through the relationships

𝒎⟨𝓁⟩
1 ≡ 𝑹𝒏0 (𝜃

⟨𝓁⟩)
𝒈1

‖𝒈1‖
, 𝒎⟨𝓁⟩

3 ≡ 𝒏0, and 𝒎⟨𝓁⟩
2 ≡ 𝒎⟨𝓁⟩

3 ×𝒎⟨𝓁⟩
1 . (10)

In the material reference basis 𝒎⟨𝓁⟩
𝑘 , the constitutive law is expressed in Voigt notation as

𝝈⟨𝓁⟩ = 𝑪̃
⟨𝓁⟩

𝜸̃⟨𝓁⟩ (11)

where the form of the matrix 𝑪̃ directly reflects the existing material symmetries (e.g. isotropy, orthotropy, etc.). The stress–strain
relationship linking the components of the stress and strain tensors in the global reference system 𝑂𝑥1𝑥2𝑥3 can thus be obtained
from Eq. (11) through the standard transformation rules [36,37], leading to

𝝈⟨𝓁⟩ = 𝑪⟨𝓁⟩𝜸, (12)

which simplifies the expression of the variational statement in the next sections.

2.4. Governing equations for shell dynamic analysis

The variational statement providing the weak formulation of the shell dynamic problem can be written resorting to the d’Alembert
principle and treating the inertial term as a volume force term in the classical expression of the principle of virtual displacements,
which, in the global Cartesian reference system 𝑂𝑥1𝑥2𝑥3, leads to

𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝒖⊺𝜌⟨𝓁⟩ 𝜕
2𝒖
𝜕𝑡2

d𝑉 +
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝜸⊺𝝈⟨𝓁⟩ d𝑉 =
𝑁𝓁
∑

𝓁=1
∫𝑉 ⟨𝓁⟩

𝛿𝒖⊺𝒃 d𝑉 +
𝑁𝓁
∑

𝓁=1
∫𝜕𝑉 ⟨𝓁⟩

𝛿𝒖⊺𝒕 d𝑆, (13)

where 𝛿∙ denotes the first variation operator, 𝜌⟨𝓁⟩ is the mass density of the layer 𝓁, 𝒃 is the known volume force term, 𝒕 is the
nown surface traction and the summation is extended over the 𝑁𝓁 layers of the laminated shell. Employing the kinematic model in
q. (5), the strain–displacement relationships in Eq. (8) and the constitutive relations in Eq. (12) and expanding the first variation,
he above variational statement leads to

∫𝛺𝜉

𝛿𝑼 ⊺𝑴 𝜕2𝑼
𝜕𝑡2

d𝛺𝜉 + ∫𝛺𝜉

[

𝜕𝛿𝑼 ⊺

𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼𝑼
)

+ 𝛿𝑼 ⊺
(

𝑹⊺
𝛼
𝜕𝑼
𝜕𝜉𝛼

+ 𝑺𝑼
)]

d𝛺𝜉 =

= ∫𝛺𝜉

𝛿𝑼 ⊺𝑩d𝛺𝜉 + ∫𝜕𝛺𝜉

𝛿𝑼 ⊺𝑻 d𝜕𝛺𝜉 , (14)

where

𝑴 ≡
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝒁⊺𝑹⊺
𝜉𝜌

⟨𝓁⟩𝑹𝜉𝒁
√

𝑔 d𝜉3 (15)

is a generalized mass matrix, the terms

𝑸𝛼𝛽 ≡
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑱 ⊺
𝛼𝑪⟨𝓁⟩𝑱 𝛽

√

𝑔 d𝜉3, (16a)

𝑹𝛼 ≡
𝑁𝓁
∑

∫

𝜉⟨𝓁⟩3𝑡

⟨𝓁⟩
𝑱 ⊺
𝛼𝑪⟨𝓁⟩𝑱 0

√

𝑔 d𝜉3 (16b)
4

𝓁=1 𝜉3𝑏
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𝑺 ≡
𝑁𝓁
∑

𝓁=1
∫

𝜉⟨𝓁⟩3𝑡

𝜉⟨𝓁⟩3𝑏

𝑱 ⊺
0𝑪

⟨𝓁⟩𝑱 0
√

𝑔 d𝜉3, (16c)

are generalized stiffness matrices, whereas the terms

𝑩 ≡
(

𝒁⊺𝑹⊺
𝜉𝒕
√

𝑔
√

𝑛𝑖𝑔𝑖𝑗𝑛𝑗

)

𝜉3=±𝜁∕2
+ ∫

𝜁∕2

−𝜁∕2
𝒁⊺𝑹⊺

𝜉𝒃
√

𝑔 d𝜉3 (17a)

nd

𝑻 ≡ ∫

𝜁∕2

−𝜁∕2
𝒁⊺𝑹⊺

𝜉𝒕
√

𝑔
√

𝑛𝑖𝑔𝑖𝑗𝑛𝑗 d𝜉3 (17b)

are generalized volume forces and generalized boundary tractions respectively. In Eqs. (15) to (17), 𝑔 is the determinant of the
metric tensor and 𝑔𝑖𝑗 ≡ 𝒈𝑖 ⋅ 𝒈𝑗 are its contravariant components. Additionally, in Eq. (17), the first term represents the surface
traction applied over the top and bottom surfaces of the shell, while 𝑛𝑖 is the 𝑖th component of the unit vector normal to the shell
surface.

The variational statement in Eq. (14) is used to derive the strong form of the equations for the shell dynamics, which provides
the starting point for the development of the DG formulation discussed in Section 3. In particular, performing the integration by
parts and applying the standard rules of the calculus of variations, Eq. (14) leads to the following set of generalized equilibrium
equations

𝑴 𝜕2𝑼
𝜕𝑡2

− 𝜕
𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼𝑼
)

+𝑹⊺
𝛼
𝜕𝑼
𝜕𝜉𝛼

+ 𝑺𝑼 = 𝑩, in [0, 𝑇 ] ×𝛺𝜉 , (18)

with the associated essential and natural generalized boundary conditions (GBCs) and the generalized initial conditions (GICs)
defined as

GBCs ∶

⎧

⎪

⎨

⎪

⎩

𝑼 = 𝑼 in [0, 𝑇 ] × 𝜕𝛺𝐷
𝜉

𝜈𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼𝑼
)

= 𝑻 in [0, 𝑇 ] × 𝜕𝛺𝑁
𝜉

(19a)

nd

GICs ∶

⎧

⎪

⎨

⎪

⎩

𝑼 |𝑡=0 = 𝑼 0
𝜕𝑼
𝜕𝑡
|

|

|𝑡=0
= 𝑼̇ 0

in 𝛺𝜉 , (19b)

where 𝑇 defines the width of the analyzed time window, 𝜕𝛺𝐷
𝜉 and 𝜕𝛺𝑁

𝜉 are the regions of the boundary 𝜕𝛺𝜉 of the analysis domain
𝛺𝜉 over which Dirichlet (essential) or Neumann (natural) boundary conditions are assigned, respectively, 𝜈𝛼 is the 𝛼th component
of the unit vector normal to 𝜕𝛺𝜉 , over-bars denote known boundary conditions on either generalized displacements or tractions,
which may also depend on time, and the subscript 0 denotes known initial conditions.

Eventually, free vibrations are investigated by neglecting the external loads and assuming, as customary, harmonic response with
unknown frequency 𝜔 and homogeneous kinematic boundary conditions, leading to the following eigenvalue problem

− 𝜕
𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼
𝜕𝜉𝛽

+𝑹𝛼𝑼
)

+𝑹⊺
𝛼
𝜕𝑼
𝜕𝜉𝛼

+ (𝑺 − 𝜔2𝑴)𝑼 = 𝟎, in 𝛺𝜉 . (20)

3. Discontinuous Galerkin formulation

In this section, the recently-developed DG formulation for the mechanical behavior of structural components, such as beams [38],
plates [29,30,39] and shells [31,34,35], is extended to solve the partial differential equations introduced in the preceding section
for either transient analysis, see Eqs. (18) and (19), or free-vibration analysis, see Eq. (20), of composite shells.

Similar to other domain-based numerical techniques, such as the FEM, a DG-based approach requires a suitable partition of
the domain where the governing equations are defined. Here, such a domain is 𝛺𝜉 , which is partitioned into 𝑁𝑒 non-overlapping
elements, i.e., 𝛺𝜉 ≈ 𝛺ℎ

𝜉 ≡
⋃𝑁𝑒

𝑒=1 𝛺
𝑒
𝜉 , where 𝛺𝑒

𝜉 is a generic 𝑒th element. The mesh leads to a partition of the boundary 𝜕𝛺𝐷
𝜉 ≈ 𝜕𝛺𝐷ℎ

𝜉 ≡
⋃𝑁𝑒

𝑒=1 𝜕𝛺
𝐷𝑒
𝜉 and the boundary 𝜕𝛺𝑁

𝜉 ≈ 𝜕𝛺𝑁ℎ
𝜉 ≡

⋃𝑁𝑒
𝑒=1 𝜕𝛺

𝑁𝑒
𝜉 , where 𝜕𝛺𝐷𝑒

𝜉 and 𝜕𝛺𝑁𝑒
𝜉 are the portions the 𝑒th element’s boundary where

Dirichlet and Neumann boundary conditions, respectively, are enforced; is it clear that, for some elements, these boundaries can
be empty sets. The mesh also leads to the set of inter-element interfaces 𝜕𝛺𝐼ℎ

𝜉 ≡
⋃𝑁𝑖

𝑖=1 𝜕𝛺
𝑖
𝜉 , where 𝜕𝛺𝑖

𝜉 is the 𝑖th generic interface.
Then, the so-called broken integrals are defined as follows

∫𝛺ℎ
𝜉

∙ ≡
𝑁𝑒
∑

𝑒=1
∫𝛺𝑒

𝜉

∙𝑒 d𝛺𝜉 , (21a)

∫ 𝐷ℎ
∙ ≡

𝑁𝑒
∑

∫ 𝐷𝑒
∙𝑒 d𝜕𝛺𝜉 , ∫ 𝑁ℎ

∙ ≡
𝑁𝑒
∑

∫ 𝑁𝑒
∙𝑒 d𝜕𝛺𝜉 , (21b)
5

𝜕𝛺𝜉 𝑒=1 𝜕𝛺𝜉 𝜕𝛺𝜉 𝑒=1 𝜕𝛺𝜉
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and

∫𝜕𝛺𝐼ℎ
𝜉

∙ ≡
𝑁𝑖
∑

𝑖=1
∫𝜕𝛺𝑖

𝜉

∙𝑖 d𝜕𝛺𝜉 . (21c)

Additionally, it is possible to define the average operator {∙}𝑖 and the jump operator [[∙]]𝑖𝛼 at the generic 𝑖th interface between
the 𝑒th and 𝑒′th elements as

{∙}𝑖 ≡ 1
2

(

∙𝑒 + ∙𝑒
′
)

and [[∙]]𝑖𝛼 ≡ 𝜈𝑒𝛼 ∙
𝑒 +𝜈𝑒

′
𝛼 ∙𝑒

′
, (22)

where 𝜈𝑒𝛼 is the 𝛼th component of the outer unit normal vector 𝝂𝑒 ≡ (𝜈𝑒1, 𝜈
𝑒
2) to the 𝑒th element’s boundary.

Once the domain partition has been selected, the space of discontinuous basis functions is introduced as

ℎ𝑝 ≡ {𝑣 ∶ 𝛺ℎ
𝜉 → R ∣ 𝑣(𝛺𝑒

𝜉 ) ∈ 𝑒
𝑝 ∀𝑒 = 1,… , 𝑁𝑒}, (23)

here 𝑒
𝑝 is the space of polynomials up to degree 𝑝 defined over the element 𝛺𝑒

𝜉 . The corresponding space of discontinuous 𝑁𝑢-
imensional vector basis functions is then denoted by 𝑁𝑢

ℎ𝑝 ≡ (ℎ𝑝)𝑁𝑢 . The DG formulations for transient and free-vibration analysis
f composite shells are presented in the next two sections.

.1. Transient analysis

Upon following the same steps discussed, e.g., in Refs. [31,34,35], it is possible to show that the weak DG formulation
orresponding to Eqs. (18) and (19) reads: find 𝑼ℎ ∈ 𝑁𝑢

ℎ𝑝 such that

𝐵𝖬(𝑽 ,𝑼ℎ) + 𝐵𝖪(𝑽 ,𝑼ℎ) = 𝐿(𝑽 ,𝑩,𝑻 ,𝑼 ), ∀𝑽 ∈ 𝑁𝑢
ℎ𝑝 , (24)

subjected to the approximate initial conditions

⎧

⎪

⎨

⎪

⎩

∫𝛺ℎ
𝜉
𝑽 ⊺𝑼ℎ = ∫𝛺ℎ

𝜉
𝑽 ⊺𝑼 0

∫𝛺ℎ
𝜉
𝑽 ⊺ 𝜕𝑼ℎ

𝜕𝑡 = ∫𝛺ℎ
𝜉
𝑽 ⊺𝑼̇ 0,

∀𝑽 ∈ 𝑁𝑢
ℎ𝑝 . (25)

n Eqs. (24) and (25), 𝑼ℎ denotes the approximate DG solution, the bilinear forms 𝐵𝖬(𝑽 ,𝑼ℎ) and 𝐵𝖪(𝑽 ,𝑼ℎ) are defined as

𝐵𝖬(𝑽 ,𝑼ℎ) ≡ ∫𝛺ℎ
𝜉

𝑽 ⊺𝑴 𝜕2𝑼ℎ

𝜕𝑡2
(26)

nd

𝐵𝖪(𝑽 ,𝑼ℎ) ≡ ∫𝛺ℎ
𝜉

𝜕𝑽 ⊺

𝜕𝜉𝛼

(

𝑸𝛼𝛽
𝜕𝑼ℎ

𝜕𝜉𝛽
+𝑹𝛼𝑼ℎ

)

+ 𝑽 ⊺
(

𝑹⊺
𝛼
𝜕𝑼ℎ

𝜕𝜉𝛼
+ 𝑺𝑼ℎ

)

+

−∫𝜕𝛺𝐼ℎ
𝜉

[[𝑽 ]]⊺𝛼

{

𝑸𝛼𝛽
𝜕𝑼ℎ

𝜕𝜉𝛽
+𝑹𝛼𝑼ℎ

}

+
{

𝜕𝑽 ⊺

𝜕𝜉𝛼
𝑸𝛼𝛽 + 𝑽 ⊺𝑹⊺

𝛽

}

[[𝑼ℎ]]𝛽 + ∫𝜕𝛺𝐼ℎ
𝜉

𝜇[[𝑽 ]]⊺𝛼[[𝑼ℎ]]𝛼 +

−∫𝜕𝛺𝐷ℎ
𝜉

𝜈𝛼𝑽 ⊺
(

𝑸𝛼𝛽
𝜕𝑼ℎ

𝜕𝜉𝛽
+𝑹𝛼𝑼ℎ

)

+
(

𝜕𝑽 ⊺

𝜕𝜉𝛼
𝑸𝛼𝛽 + 𝑽 ⊺𝑹⊺

𝛽

)

𝑼ℎ𝜈𝛽 + ∫𝜕𝛺𝐷ℎ
𝜉

𝜇𝑽 ⊺𝑼ℎ, (27)

nd the linear form 𝐿(𝑽 ,𝑩,𝑻 ,𝑼 ) reads

𝐿(𝑽 ,𝑩,𝑻 ,𝑼 ) ≡ ∫𝛺ℎ
𝜉

𝑽 ⊺𝑩 + ∫𝜕𝛺𝑁ℎ
𝜉

𝑽 ⊺𝑻 − ∫𝜕𝛺𝐷ℎ
𝜉

(

𝜕𝑽 ⊺

𝜕𝜉𝛼
𝑸𝛼𝛽 + 𝑽 ⊺𝑹⊺

𝛽

)

𝑼𝜈𝛽 + ∫𝜕𝛺𝐷ℎ
𝜉

𝜇𝑽 ⊺𝑼 . (28)

3.2. Free-vibration analysis

In case of free-vibration analysis, it is possible to show the weak DG formulation corresponding to Eq. (20) reads: find
(𝜔,𝑼ℎ) ∈ R × 𝑁𝑢

ℎ𝑝 such that

− 𝐵𝜔(𝑽 ,𝑼ℎ, 𝜔) + 𝐵𝖪(𝑽 ,𝑼ℎ) = 0 ∀𝑽 ∈ 𝑁𝑢
ℎ𝑝 (29)

where

𝐵𝜔(𝑽 ,𝑼ℎ, 𝜔) ≡ 𝜔2
∫ ℎ

𝑽 ⊺𝑴𝑼ℎ. (30)
6

𝛺𝜉
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Fig. 2. (a) Level set function. (b) Cell classification based on the volume fraction. (c) Implicitly-defined mesh.

3.3. Meshing

The DG formulation presented in this section is not limited to a specific domain partition strategy. In fact, it could be employed
in conjunction with both conventional partitions, such as structured or unstructured meshes, and less conventional ones, such as
polygonal or implicitly-defined meshes.

In this work, we consider both structured meshes and implicitly-defined meshes, which are briefly described in this section.
Let us assume that the curvilinear coordinates (𝜉1, 𝜉2) span a rectangle 𝑅𝜉 ≡ [𝜉𝐿1 , 𝜉

𝑈
1 ] × [𝜉𝐿2 , 𝜉

𝑈
2 ], where (𝜉𝐿1 , 𝜉

𝐿
2 ) and (𝜉𝑈1 , 𝜉𝑈2 )

are the bottom-left and top-right corners, respectively, of the rectangle. The rectangle is then partitioned using a structured
grid of 𝑛1 × 𝑛2 cells of size ℎ1 ≡ (𝜉𝑈1 − 𝜉𝐿1 )∕𝑛1 and ℎ2 ≡ (𝜉𝑈2 − 𝜉𝐿2 )∕𝑛2, such that a generic 𝑐th cell 𝑅𝑐

𝜉 may be identified by
𝑅𝑐
𝜉 ≡ [𝜉𝐿1 + 𝜄1ℎ1, 𝜉𝐿1 + (𝜄1 + 1)ℎ1] × [𝜉𝐿2 + 𝜄2ℎ2, 𝜉𝐿2 + (𝜄2 + 1)ℎ2], with 𝜄1 = 0,… , (𝑛1 − 1) and 𝜄2 = 0,… , (𝑛2 − 1).

In case of structured meshes, the domain 𝛺𝜉 simply coincides with 𝑅𝜉 , each element 𝛺𝑒
𝜉 coincides with one of the grid cell, and

the total number of elements is 𝑁𝑒 = 𝑛1𝑛2.
In case of implicitly-defined meshes, 𝑅𝜉 represents a background space containing the domain 𝛺𝜉 , which is implicitly-defined

by a level set function 𝜑 ∶ 𝑅𝜉 → R as follows

𝛺𝜉 ≡ {(𝜉1, 𝜉2) ∈ 𝑅𝜉 ∶ 𝜑(𝜉1, 𝜉2) < 0}. (31)

Similarly, the boundary 𝜕𝛺𝜉 is defined as

𝜕𝛺𝜉 ≡ {(𝜉1, 𝜉2) ∈ 𝜕𝑅𝜉 ∶ 𝜑(𝜉1, 𝜉2) < 0} ∪ {(𝜉1, 𝜉2) ∈ 𝑅𝜉 ∶ 𝜑(𝜉1, 𝜉2) = 0}, (32)

where 𝜕𝑅𝜉 is the boundary of 𝑅𝜉 . Then, the partition of 𝛺𝜉 is obtained by intersecting 𝛺𝜉 with the structured grid defined for 𝑅𝜉 .
Such an intersection leads to a classification of the grid cells. In particular, one obtains: entire cells falling entirely within 𝛺𝜉 , empty
cells falling entirely outside 𝛺𝜉 , and partial cells that are cut by the zero-contour of the level set function 𝜑. Partial cells are further
classified based on their volume fraction into large cells, which have a volume fraction above a certain user-defined threshold, and
small cells, which are the remaining partial cells. Each small cell is then merged with the one neighboring cell that has the largest
volume fraction. Such a merging procedure allows avoiding the presence of overly small elements, which would ill-condition the
algebraic system of equations. Eventually, the mesh elements are defined as the set of entire, large and merged cells.

An illustration of the construction of the implicitly-defined mesh as discussed above is reported in Fig. 2, which shows a level
set function 𝜑 defined over a square that is partitioned with an 8 × 8 grid of mesh size ℎ, see Fig. 2(a), the corresponding cell
classification, see Fig. 2(b), and the obtained implicitly-defined mesh after the cell-merging procedure, see Fig. 2(c).

Finally, it is worth noting that, the implicit definition of 𝛺𝜉 as given in Eq. (31) allows introducing curved boundaries into the
space of curvilinear coordinates, thereby extending the space of shell geometries that can be modeled within the present framework
whilst retaining the simplicity of structured mesh generation. Additionally, the discontinuous nature of DG methods combined with
the use of high-order accurate quadrature rules for implicitly-defined domains and boundaries allows obtaining a high-order accurate
solution of the governing equations also in case of implicitly-defined geometries. The interested reader is referred to Refs. [40–43]
for a more extensive discussion on the combined use of implicitly-defined meshes, including adaptive mesh refinement, and DG
methods for two- and three-dimensional problems.

4. Results

The developed formulation has been implemented in PySCo,1 a collection of python routines for scientific computing, and tested
with several test cases, whose results are reported and discussed in the present section.

1 https://gitlab.com/aeropa/pysco.
7
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Table 1
Properties of the considered materials.

Material ID Property Component Value

𝖬1 Young’s modulus 𝐸 1
Poisson’s ratios 𝜈 0.25
Density 𝜌 1

𝖬2 Young’s moduli 𝐸1 25
𝐸2, 𝐸3 1

Poisson’s ratios 𝜈23, 𝜈13, 𝜈12 0.25
Shear moduli 𝐺23 0.2

𝐺13, 𝐺12 0.5
Density 𝜌 1

Table 2
Properties of the considered plate/shell sections.

Shell ID Material Layup Layer(s) thickness

𝖯1 𝖬1 [0] 𝜁
𝖯2 𝖬2 [0∕90]2 𝜁∕4
𝖢1 𝖬1 [0] 𝜁
𝖢2 𝖬2 [0∕90]2 𝜁∕4
𝖲1 𝖬1 [0] 𝜁

Plates and shells with different material layups have been analyzed. Table 1 summarizes the mechanical properties of the
aterials 𝖬1, isotropic, and 𝖬2, transversely isotropic, used for the individual plies. Table 2 details the layups, labeled as 𝖯1, 𝖯2,
1, 𝖢2, 𝖲1, considered for the analyzed plates and shells.

For all the considered cases, relevant ℎ𝑝-convergence analyses have been performed, considering both the characteristic size ℎ
f the mesh and the order 𝑝 of the DG basis functions, which here consist of tensor-product Legendre polynomials. The obtained
esults have been presented upon introducing the following error measures:

𝑒𝜔 ≡ |𝜔ℎ − 𝜔𝗋𝖾𝖿
|

|𝜔𝗋𝖾𝖿
|

, 𝑒𝑈 ≡
‖𝑼ℎ − 𝑼 𝗋𝖾𝖿

‖𝐿∞(𝛺ℎ
𝜉 )

‖𝑼 𝗋𝖾𝖿
‖𝐿∞(𝛺ℎ

𝜉 )
and 𝑒∇𝑈 ≡

‖𝑼ℎ − 𝑼 𝗋𝖾𝖿
‖𝑊 1

∞(𝛺ℎ
𝜉 )

‖𝑼 𝗋𝖾𝖿
‖𝑊 1

∞(𝛺ℎ
𝜉 )

(33)

where the superscript ℎ refers to the scalar or vector output provided by the proposed DG-based numerical scheme, the superscript
𝗋𝖾𝖿 refers to the considered reference solution, while ‖ ∙ ‖𝐿∞(𝛺ℎ

𝜉 )
and ‖ ∙ ‖𝑊 1

∞(𝛺ℎ
𝜉 )

are the standard 𝐿∞ norm and 𝑊 1
∞ norm defined

over 𝛺ℎ
𝜉 as the maximum value among all the components of ∙ and among all the components of ∙ and its derivatives, respectively,

valuated at the domain quadrature points. In some of the convergence studies, the following non-dimensional angular frequency
s also employed

𝜔 =
𝐿2
𝑟

𝜋2

√ 𝜌𝑟
𝐸𝑟𝜁2

𝜔, (34)

where 𝐿𝑟, 𝜌𝑟 and 𝐸𝑟 are suitably specified reference values of length, density and stiffness, respectively. Eventually, for transient
nalysis, time-integration is performed via a standard second-order accurate Newmark scheme [44].

.1. Square plate

In the first set of tests, the square plate shown in Fig. 3(a), which schematically describes its geometry, boundary conditions
nd loads later considered in the transient analysis, is investigated. The geometry of the plate reference surface is described by the
arametrization

𝒙0 =
⎛

⎜

⎜

⎝

𝜉1
𝜉2
0

⎞

⎟

⎟

⎠

, ∀(𝜉1, 𝜉2) ∈ [0, 𝐿] × [0, 𝐿] ≡ 𝛺𝜉 . (35)

here 𝐿 = 1m and 𝜁∕𝐿 = 0.01. The two different layups 𝖯1 and 𝖯2 in Table 2 are considered, for isotropic and laminated plate,
espectively.

First the free-vibrations problem is considered. Fig. 4 shows the results of a ℎ𝑝-convergence analysis for the first eigenvalue and
he associated eigenvector, for the proposed numerical scheme. In each diagram, the relevant error, either 𝑒𝜔 or 𝑒𝑈 , is computed
sing the exact solution as the reference solution [37] and is plotted against ℎ∕𝐿 = 1∕𝑛, i.e. the ratio between the mesh element
dge length ℎ and the plate edge length 𝐿. Each curve corresponds to a different polynomial order 𝑝 assumed in the DG scheme –
ection 3 – as expressed through the label 𝖣𝖦𝑝. The diagrams are grouped so that each row refers to a certain structural theory,
amely 𝖥𝖲𝖣𝖳, 𝖤𝖣111 and 𝖤𝖣333. On the other hand, each column refers to the results computed for an eigenvalue or the corresponding
igenvector, with either the layup 𝖯1 or 𝖯2. It is observed that the numerical scheme features convergence of order (ℎ𝑝+1) for the

2(𝑝−1)
8

igenvector error and convergence of order (ℎ ) for the eigenvalue error. It is worth noting that, although the results have
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Fig. 3. Geometry, constraints and loads of the investigated (a) square plate and (b) cylindrical shell.

Fig. 4. ℎ𝑝-convergence analysis for the (first and third columns) first eigenvalue and the (second and fourth columns) first eigenvector for the free-vibration
response of the analyzed square plate. Each row of diagrams groups results provided by the corresponding structural theory; the first two columns refer to the
plate with layup 𝖯1, while the last two refer to the plate with layup 𝖯2.

been presented in terms of the first eigenvalue and associated eigenvector of the free-vibration problem, a convergence analysis for
higher frequency modes is reported for the geometries considered in Sections 4.3 and 4.4.

A transient analysis is then performed for the laminated plate with layup 𝖯2, considering the dynamic loading term 𝒕̄ in Fig. 3(a),
where 𝑞 is assumed as unitary, being used in the non-dimensional measures of stress, 𝐻(𝑡) is the Heaviside step function, and
𝛯 = 𝛯 = 𝐿. The related results are reported in Fig. 5. In particular, Fig. 5(a,d) investigate the ℎ-convergence of the plate dynamic
9
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Fig. 5. Convergence assessment for the dynamic transient analysis of the laminated square plate with layup 𝖯2 and constraints and loads specified in Fig. 3(a).
he transient response is computed adopting the 𝖥𝖲𝖣𝖳 kinematic model. The ℎ-convergence of the 𝖣𝖦2 scheme is investigated in terms of time history of (a)
isplacements and (d) stress components at the location (𝜉1 , 𝜉2 , 𝜉3) = (𝐿∕2, 𝐿∕2, 𝜁∕2). The 𝑝-convergence is investigated in terms of time histories of the same (b)
isplacement and (e) stress components, setting 𝑛 = 2. The ℎ𝑝-convergence of the solution computed at 𝑡 = 𝑇 ∕2 is eventually investigated for the (c) displacement
ield and (f) its derivatives.

esponse, reporting the time history for the non-dimensional displacement and stress components

𝑢̂3 ≡
𝜁3

𝐿4
𝑢3 and 𝜎̂11 ≡

𝜁2

𝐿2𝑞
𝜎11, (36)

ampled at the point (𝜉1, 𝜉2, 𝜉3) = (𝐿∕2, 𝐿∕2, 𝜁∕2), belonging to the plate’s top surface. The response of the plate for 𝑡 ∈ [0, 2𝑇 ], with
= 2𝜋∕𝜔1, is reported as computed using the 𝖥𝖲𝖣𝖳 with 𝖣𝖦2, i.e. polynomial interpolation degree 𝑝 = 2 and 𝑛 = 2, 4, 8, 16. The

computed time histories are compared with the available exact solution and it is observed that the employed scheme provides
satisfyingly accurate results when 𝑛 ≥ 4, both for the displacement and stress component. Fig. 5(b,e) show the time histories
or the same non-dimensional components at the same physical location as computed selecting 𝑛 = 2 and different orders of

polynomial interpolation 𝑝 for the 𝖣𝖦𝑝 scheme. The computed transient responses converge to the analytic exact solutions for both
the displacement and stress components. Satisfying results are provided by 𝑝 ≥ 3 for the displacement and by 𝑝 ≥ 4 for the stress
component. Eventually, Fig. 5(c) and (f) report the errors 𝑒𝑈 and 𝑒∇𝑈 of the computed solutions with respect to the exact solutions
at 𝑡 = 𝑇 ∕2, showing orders of convergence (ℎ𝑝+1) and (ℎ𝑝), respectively.

4.2. Quarter of cylinder

The second application considers the cylindrical shell whose geometry, constraints and loads for the transient analysis are
schematically depicted in Fig. 3(b). The shell geometry is described by the parametrization

𝒙0 =
⎛

⎜

⎜

⎝

𝜉2
−𝑅 sin(𝜉1)
𝑅 cos(𝜉1)

⎞

⎟

⎟

⎠

, ∀(𝜉1, 𝜉2) ∈ [0, 𝛩] × [0, 𝐿] ≡ 𝛺𝜉 (37)

where 𝑅 = 1m, 𝐿∕𝑅 = 2, 𝜁∕𝑅 = 0.01, and 𝛩 = 𝜋∕2.
First a free-vibrations analysis is performed, considering both sections 𝖢1 and 𝖢2 in Table 2, for isotropic and laminated shells

respectively. Fig. 6 reports the results of a ℎ𝑝-convergence assessment of the first eigenvalues and the corresponding eigenvectors
for the layups 𝖢1 and 𝖢2. The results are presented and grouped analogously to what has been done for previous plate analysis. Also
in this application the method features convergence of order (ℎ𝑝+1) for the eigenvectors error and convergence of order (ℎ2(𝑝−1))
or the eigenvalues error.

A transient dynamic analysis for the cylindrical shell with laminated layup 𝖢2 is then performed. The shell is subject to the
oads defined in Fig. 3(b) where, in the case of the cylindrical shell, 𝛯1 = 𝛩∕2 and 𝛯2 = 𝐿. The results are collected in Fig. 7 and

presented analogously to what has been done for the above plate transient analysis. Fig. 7(a,d) investigate the ℎ-convergence of the
shell dynamic response, reporting the time history for the non-dimensional displacement and stress components

𝑢̂𝜉 ≡ 𝜁2
𝑢𝜉 and 𝜎̂11 ≡

𝜁
𝜎11 (38)
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Fig. 6. ℎ𝑝-convergence analysis for the (first and third columns) first eigenvalue and the (second and fourth columns) first eigenvector for the free-vibration
esponse of the analyzed cylindrical shell. Each row groups diagrams provided by the indicated structural theory – 𝖥𝖲𝖣𝖳, 𝖤𝖣111, or 𝖤𝖣333; the first two columns
efer to the plate with layup 𝖢1, while the last two refer to the plate with layup 𝖢2.

ampled at the point (𝜉1, 𝜉2, 𝜉3) = (𝛩∕4, 𝐿∕2, 𝜁∕2). The shell transient response is computed for 𝑡 ∈ [0, 2𝑇 ], with 𝑇 = 2𝜋∕𝜔1, adopting a
𝖣333 structural theory coupled with a 𝖣𝖦2 scheme and 𝑛 = 2, 4, 8, 16. It is observed that the computed transient responses converge
o the available exact solutions, although more slowly than in the case of the plate, and satisfyingly accurate results are obtained
nly with the finer mesh, i.e. with 𝑛 = 16. On the other hand, Fig. 5(b,e) show the time histories for the same non-dimensional
omponents at the same physical location as computed selecting 𝑛 = 2 and different polynomial orders 𝑝 for the 𝖣𝖦𝑝 scheme. The
omputed responses converge to the analytic exact solutions for both the displacement and stress components and satisfying results
re provided by 𝑝 ≥ 3 for both the displacement and stress component. Eventually, Fig. 7(c) and (f) show the errors 𝑒𝑈 and 𝑒∇𝑈 of
he numerical versus the exact solutions at 𝑡 = 𝑇 ∕2, revealing orders of convergence (ℎ𝑝+1) and (ℎ𝑝), respectively, analogous to
hose observed in the plate analysis.

.3. Circular plate

The circular plate shown in Fig. 8 is considered for the third set of tests. In this case, the reference surface 𝛺𝜉 of the circular
late is defined using the implicit approach described in Section 3.3. In particular, upon employing the same mapping 𝒙0 = 𝒙0(𝜉1, 𝜉2)
iven in Eq. (35), where (𝜉1, 𝜉2) span the background rectangle 𝑅𝜉 ≡ [0, 2𝑅] × [0, 2𝑅], being 𝑅 = 1m, 𝛺𝜉 is implicitly defined by the
ollowing level set function

𝜑 = (𝜉1 − 𝑐1)2 + (𝜉2 − 𝑐2)2 − 𝑅2, (39)

here 𝑐1 = 𝑐2 = 𝑅. The considered circular plates have the isotropic and laminated sections denoted by 𝖯1 and 𝖯𝟤 in Table 2,
ave thickness 𝜁∕𝑅 = 0.01 and are modeled using the FSDT. The discretization of the circular plate is obtained by dividing the
ackground rectangle 𝑅𝜉 using a 𝑛 × 𝑛 structured grid and following the procedure discussed in Section 3.3.

The results obtained for free-vibration problem are considered first. Table 3 shows the eigenvalues 𝜔𝑘, with 𝑘 = 1, 2, 4, 6, 7, for the
isotropic circular plate, computed using a 𝖣𝖦4 scheme as a function of the mesh size ℎ = 2𝑅∕𝑛, with 𝑛 = 2, 3, 4, 6, 8. With reference to
Eq. (34), the non-dimensional eigenvalues are computed using 𝐿𝑟 = 𝑅, 𝐸𝑟 = 𝐸 and 𝜌𝑟 = 𝜌, where 𝐸 and 𝜌 are the Young’s modulus
and the density, respectively, of the material 𝖬1. In Table 3, the top row shows the implicitly defined mesh for each considered
value of 𝑛, the second column from the right reports the converged FEM results, while the rightmost column shows the eigenmodes
associated with each eigenvalue and computed by the present approach using the finest mesh.
11
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Fig. 7. Convergence assessment for the dynamic transient analysis of the laminated cylindrical shell with layup 𝖢2 and constraints and loads specified in
Fig. 3(b). The transient response is computed adopting the 𝖤𝖣333 kinematic model. The ℎ-convergence of the 𝖣𝖦2 scheme is investigated in terms of time history
of non-dimensional (a) displacements and (d) stress components at the location (𝜉1 , 𝜉2 , 𝜉3) = (𝛩∕4, 𝐿∕2, 𝜁∕2). The 𝑝-convergence is investigated in terms of time
histories of the same (b) displacement and (e) stress non-dimensional components, setting 𝑛 = 2. The ℎ𝑝-convergence of the solution computed at 𝑡 = 𝑇 ∕2 is
eventually investigated for the (c) displacement field and (f) its derivatives.

Fig. 8. Geometry, constraints and loads of the investigated circular plate.

Similarly, Table 4 shows some selected eigenvalues for the laminated circular plate computed using a 𝖣𝖦6 scheme and the same
mesh sizes employed for the isotropic plate. In this case, the non-dimensional eigenvalues are computed using the Young’s modulus
and the density of the material 𝖬2. The table also reports the converged FEM results and the eigenmodes associated with each
eigenvalue.

In both the isotropic and the laminated plate cases, it is possible to observe that the proposed approach is able to recover the
reference FEM solution; as expected, the higher the computed eigenvalue, the finer is the required mesh to achieve convergence. A
more detailed convergence analysis is reported in Fig. 9, which illustrates a comparison between the present DG formulation and
two FEM models in terms of computed eigenvalues versus the total number of degrees of freedom (DOF). In the plots of Fig. 9, each
colored curve corresponds to the results obtained using a specific value 𝑝 of the DG basis functions and different mesh sizes, while
the dashed gray and black lines correspond to the results obtained via Abaqus’ S4R and S8R elements, respectively. Fig. 9(a,b) refer
to the isotropic plate, while Fig. 9(c,d) refer to the laminated plate. In all cases, it is possible to observe the savings in terms of DOF
enabled by the use of higher-order basis functions, which allows the proposed formulation to achieve faster convergence than FEM.

A transient analysis is then performed considering a uniform load 𝒕 applied over the top surface of the circular plate as sketched
in Fig. 8. Similar to the square plate and cylindrical shell, the transient response is computed for 𝑡 ∈ [0, 2𝑇 ], where 𝑇 = 2𝜋∕𝜔1.
The obtained results are reported in Fig. 10 for the isotropic plate case and in Fig. 11 for the laminated plate case. Fig. 10(a,c)
and Fig. 11(a,c) illustrate the ℎ-convergence of the transient response in terms of the following non-dimensional components of
displacement and stress

𝑢̂3 ≡
𝜁2

𝑢3 and 𝜎̂11 ≡
𝜁

𝜎11, (40)
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Table 3
Effect of the mesh size on some selected eigenvalues for the isotropic circular plate computed using the 𝖣𝖦4 scheme.

Table 4
Effect of the mesh size on some selected eigenvalues for the laminated circular plate computed
using the 𝖣𝖦6 scheme.

computed using the 𝖣𝖦2 scheme. The 𝑝-convergence for the same displacement and stress components is reported in Fig. 10(b,d)
and Fig. 11(b,d), for 𝑛 = 4. The obtained results confirm the benefits of using high-order basis functions to obtain a converged
solution, in terms of both displacement and stress components, using relatively coarse meshes.

4.4. Generally-curved shell

As the last set of tests, we consider the free-vibration response of the generally-curved shell shown in Fig. 12. The shell’s reference
surface is a B-spline surface [45] defined by the mapping

𝒙0(𝜉1, 𝜉2) =
𝐾1
∑

𝐾2
∑

𝑁𝑞1
𝑘1
(𝜉1)𝑁

𝑞2
𝑘2
(𝜉2)𝑷 𝑘1 ,𝑘2 , ∀(𝜉1, 𝜉2) ∈ [0, 1] × [0, 1] ≡ 𝛺𝜉 , (41)
13
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𝖣

𝑝
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Fig. 9. Comparison between the proposed DG formulation and two FEM schemes in terms of computed eigenvalues vs number of degrees of freedom. Figures (a)
and (b) refers to the first and seventh eigenvalues, respectively, for the isotropic circular plate, while figures (c) and (d) refers to the sixth and tenth eigenvalues,
respectively, for the laminated circular plate. Light and dark gray areas denote the regions of less than 5% and 1% deviation, respectively, from the converged
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Convergence assessment for the transient analysis of the isotropic circular plate having layup 𝖯1 and modeled by the 𝖥𝖲𝖣𝖳. The ℎ-convergence of the
𝖦2 scheme is investigated in terms of time history of non-dimensional (a) displacements and (c) stress components at the location (𝜉1 , 𝜉2 , 𝜉3) = (𝑐1 , 𝑐2 , 𝜁∕2). The
-convergence is investigated for the same non-dimensional displacements and stress components in figures (b) and (d), respectively, setting 𝑛 = 4.

where 𝑷 𝑘1 ,𝑘2 , with 𝑘1 = 0,… , 𝐾1 and 𝑘2 = 0,… , 𝐾2, are the so-called control points, and 𝑁𝑞
𝑘 (𝜉) is the 𝑘th B-spline basis function of

degree 𝑞. For the shell of Fig. 12, 𝐾1 = 𝐾2 = 3 and 𝑞1 = 𝑞2 = 2, while the control points are reported in Table 5.
The shell has thickness 𝜁 = 0.01m, is made of the isotropic material 𝖬1 reported in Table 1 and is modeled by the 𝖥𝖲𝖣𝖳. A

convergence analysis in terms of some selected computed eigenvalues as functions of 𝖣𝖮𝖥 is reported in Fig. 13, which shows a
comparison between the results obtained with the proposed formulation using different DG schemes and the results obtained using
Abaqus’ S4R and S8R elements. In this case, the non-dimensional eigenvalues are evaluated setting 𝐸𝑟 = 𝐸 and 𝜌𝑟 = 𝜌 of material
𝖬1 and 𝐿𝑟 = 1m in Eq. (34). From Fig. 13, it is possible to notice that the present approach recovers the FEM results within an error
of less than 3% and, similar to the case of the circular plate, higher-order basis functions enable faster convergence. Eventually,
the computed eigenmodes associated with the eigenvalues of Fig. 13 are reported in Fig. 14 as contour plots of the magnitude of
the displacement field. The figures also show the same contour levels of the eigenmodes computed using FEM as solid black lines,
which match well with the contour levels computed using the present formulation, thus confirming its accuracy.

5. Discussion and further developments

In this study, a novel computational framework has been developed and assessed for the analysis of transient and free vibrations
14
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Fig. 11. Convergence assessment for the transient analysis of the laminated circular plate having layup 𝖯2 and modeled by the 𝖥𝖲𝖣𝖳. The ℎ-convergence of the
𝖣𝖦2 scheme is investigated in terms of time history of non-dimensional (a) displacements and (c) stress components at the location (𝜉1 , 𝜉2 , 𝜉3) = (𝑐1 , 𝑐2 , 𝜁∕2). The
𝑝-convergence is investigated for the same non-dimensional displacements and stress components in figures (b) and (d), respectively, setting 𝑛 = 4.

Fig. 12. (a) Control points and reference surface, and (b) geometry and boundary conditions of the investigated generally-curved shell.

Fig. 13. Comparison between the proposed DG formulation and two FEM schemes in terms of computed eigenvalues vs number of degrees of freedom for the
considered generally-curved shell. Light and dark gray areas denote the regions of less than 5% and 1% deviation, respectively, from the converged FEM values.
15
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Table 5
Control points defining the reference surface of the generally-curved shell of Fig. 12.
𝑷 𝑘1 ,𝑘2 [m] 𝑘1 = 0 1 2 3

𝑘2 = 0 (0.0, 0.0,+0.1831) (1∕3, 0.0,+0.0263) (2∕3, 0.0,−0.1955) (1.0, 0.0,+0.1495)
1 (0.0, 1∕3,−0.0061) (1∕3, 1∕3,−0.1650) (2∕3, 1∕3,−0.0696) (1.0, 1∕3,−0.1007)
2 (0.0, 2∕3,−0.1183) (1∕3, 2∕3,+0.0601) (2∕3, 2∕3,+0.1219) (1.0, 2∕3,+0.1659)
3 (0.0, 1.0,−0.1334) (1∕3, 1.0,−0.1146) (2∕3, 1.0,+0.1499) (1.0, 1.0,−0.0208)

Fig. 14. Comparison between the results obtained by the proposed DG formulation (the contour plots) and those obtained by FEM (the solid lines) in terms of
the computed eigenmodes for the generally-curved shell. Figures (a), (b), (c) and (d) refer to the first, fourth, seventh and tenth eigenmodes associated with the
eigenvalues of the plots (a), (b), (c) and (d) of Fig. 13, respectively.

as general geometrical curvatures, thus providing an effective tool for the design of components with potential applications in
the automotive and aerospace sectors. Owing to the combined use of variable-order ESL theories and DG methods, a key feature
of the formulation is related to the possibility of tuning independently the order of the fields interpolations throughout both the
shell thickness and the shell modeling domain, which allows tailoring the analysis to the application of interest. The high-order
of accuracy of the formulation has been thoroughly assessed through several ℎ𝑝-convergence tests involving square and circular
plates, cylindrical shells and generally-curved shells, ultimately demonstrating that a selected level of accuracy can be attained with
a comparatively reduced number of degrees of freedom with respect to other numerical techniques, such as FEM.

The framework also offers several avenues for further research. First, the considered tests involve relatively simple geometries
and material properties; therefore, a natural extension of the present study is the application of the proposed formulation to the
16
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analysis of composite structures featuring multiple cutouts [46,47], through-the-thickness cracks [48,49], assembly of shells [28],
and/or variable stiffness due to curved fiber placement [50,51]. Another interesting development could consist in moving beyond
the assumptions of small strains and linear elastic constitutive behavior, so to investigate geometrical and material non-linearity and
their effect on the free-vibration [52,53] and transient [54,55] response. Eventually, plate and shell problems involving multiple
fields coupling, such as thermo-elasticity [56], piezo-electricity [57], or magneto-electro-elasticity [58,59], are of scientific and
engineering interest in energy harvesting, morphing or structural health monitoring applications [60–62], and can benefit from the
savings in terms of degrees of freedom offered by the present formulation to reduce the computational effort associated with the
numerical analysis.

6. Conclusions

A novel high-order formulation for the dynamic analysis of general laminated shells has been developed and validated. Its
ey features can be summarized as follows: (i) the geometry of the shells can be described by a general mapping, thus allowing
he modeling of structures with general curvature; (ii) a variable-order ESL approach based on the expansion of the covariant
omponents of the displacement field allows tuning the order of approximation throughout the shell thickness; (iii) the use of

the implicitly-defined mesh allows introducing curved boundaries in the space of the curvilinear coordinates while retaining the
simplicity of generation of structured meshes; (iv) the developed DG methods allows using variable-order basis functions and solving
the governing equations associated with a chosen ESL theory with high-order accuracy; (v) the obtained results show that the method
offers high-order accuracy for the calculation of the eigenvectors, eigenfunctions and the transient response; (vi) the use of high-order
basis functions enables faster convergence with respect to using standard finite elements, which has been measured in terms of error
versus overall number of degrees of freedom.
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