
Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

© The Author(s) 2021. Published by Oxford University Press on behalf of The British Computer Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,
and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1093/comjnl/bxab161

Co-simulation and Formal Verification
of Co-operative Drone Control With

Logic-Based Specifications

Cinzia Bernardeschi1,*, Andrea Domenici1, Adriano Fagiolini2 and
Maurizio Palmieri1

1Department of Information Engineering, University of Pisa, Pisa, Italy
2Department of Engineering, University of Palermo, Palermo, Italy

∗Corresponding author: cinzia.bernardeschi@unipi.it

Unmanned aerial vehicle (UAV) co-operative systems are complex cyber-physical systems that
integrate a high-level control algorithm with pre-existing closed implementations of lower-level
vehicle kinematics. In model-driven development, simulation is one of the techniques that are usually
applied, together with testing, in the analysis of system behaviours. This work proposes a method
and tools to validate the design of UAV co-operative systems based on co-simulation and formal
verification. The method uses the Prototype Verification System, an interactive theorem prover based
on a higher-order logic language, and the Functional Mock-up Interface, a widely accepted standard
for co-simulation. In this paper, results on the co-simulation and proofs of safety requirements of a
representative co-ordination algorithm are shown and discussed in a scenario where quadcopters

are deployed and perform space-coverage operations.

Keywords: formal methods; co-operative control; co-simulation; verification; theorem prover

Received 24 November 2020; Revised 7 July 2021; Editorial Decision 9 September 2021
Handling editor: Mark Ryan

1. INTRODUCTION

Unmanned aerial vehicles (UAVs), or drones, are increasingly
being used in a wide spectrum of activities, ranging from
entertainment to building and plant inspection, archaeol-
ogy, forestry management, crop dusting and search-and-
rescue operations [50]. Such a widespread and varied usage
makes it necessary to provide guarantees of their behaviour
through robust software validation and verification processes
enabling errors to be detected and corrected during system
development. This work uses a problem in co-operative
UAV control to present an approach aimed at enhancing
dependability through the integration of simulation and formal
verification.

UAVs, and more generally cyber-physical systems (CPSs),
obey both a continuous-time physical plant dynamics and a
hybrid control dynamics having both a discrete-time (event
driven) and a continuous-time component. In particular, a

major distinction appears between the physical subsystems,
or plant, and the control subsystem.

The physical aspects of a system are usually modelled with
block-based graphical environments, e.g. Simulink1 or Sci-
coslab2 , that use blocks as graphical representations of mathe-
matical operations.

Block diagrams are used to express the physical laws gov-
erning the various subsystems, which may exhibit different
aspects, such as mechanical, electromagnetic or thermal ones.

The control part has a continuous-time and a discrete-
time component. The continuous-time component is based on
control theory, which deals with properties, such as stability,
related to the time-continuous behaviour of systems, and
relies on mathematical analysis, in particular on the theory

1 http://www.mathworks.com/products/simulink
2 http://www.scicoslab.org

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/comjnl/bxab161
http://www.mathworks.com/products/simulink
http://www.scicoslab.org

2 C. Bernardeschi et al.

of differential equations. A set of differential or differential-
algebraic equations (or their Laplace representation) consti-
tutes an abstract model that can be verified mathematically and
is usually modelled with block-based languages.

The discrete-time component arises from the intrinsically
discrete operation of digital controllers and from the need of
switching mode of operation on reception of controls or on
environmental changes. Block-based environments may also
model the discrete-time component (e.g. with the Stateflow
toolkit in Simulink). However, digital controllers may be bet-
ter modelled with other specific formalisms, such as hybrid
automata [24].

Model-based development [49] relies mainly on simulation
to assess compliance to system requirements. First, software-
in-the-loop simulation is performed to execute the designed
control algorithm within the simulated system.

Successively, the correctness of the whole system is usually
validated with hardware-in-the-loop simulation [12], or with
testing against the real plant.

In this process, a large, monolithic block-based model is sim-
ulated. Industrial-strength, general-purpose modelling and sim-
ulation environments provide extensive libraries of simulated
components from different areas of physics and technology,
but it is often the case that field specialists rely on specific
tools and languages. In this case, model-based development
can benefit from techniques of co-simulation [23] to integrate
heterogeneous sub-systems, each modelled and simulated with
specific tools.

Simulation-centred processes are essential in the valida-
tion of system design, but simulation and testing cannot be
exhaustive, and the limitations of simulation are the more
apparent if the increasing complexity of CPSs is taken into
account. Formal verification should then take a central role
in the assessment of safety requirements, but experimental
and formal methods are orthogonal both from the conceptual
and the technical standpoint, as they require quite different
modelling languages and methods. This is likely to cause
organizational problems in developments that try to use both
approaches, including communication issues between the two
teams and possible inconsistencies between the models used
for simulation and for verification.

This work aims at integrating simulation and verification,
relying on executable and verifiable formal specifications of
the control part and on co-simulation to cope with the hetero-
geneity of the control and plant subsystems.

In particular, a method to support the analysis of UAV co-
operative systems with this integrated approach is presented
in this paper. The method is based on a higher-order logic
language, and a single, logic-based specification is used both
for verification and simulation of co-operative drone control.
Using the same model for verification and simulation makes
the process of cross-checking the results of both activities more
reliable.

As a case study, a variant of a consensus protocol studied by
Olfati-Saber et al. [41] has been considered. As discussed in

Section 5, this variant is difficult to study along the lines pro-
posed in that work. Therefore, the problem has been analysed
with a higher-order logic specification of the algorithm. The
algorithm has been specified and verified with the Prototype
Verification System (PVS) [42] interactive theorem prover,
which allowed us to prove convergence of the co-ordination
protocol and collision avoidance under specific initial condi-
tions.

The same PVS specification (with minor changes explained
in Section 5) has been simulated using an interpreter for the
PVS language. The whole system has then been co-simulated
with the INTO-CPS framework, using Modelica and C to
model the behaviour of the single drones. Besides affording the
combined advantages of simulation and formal verification in
the area of CPSs, this approach allows developers to indepen-
dently replace both the physical model of drones and the co-
ordination protocol as co-simulation components. So far this
method has been applied to simple CPSs [17, 43], but it should
be noted that it is applicable to a wide range of autonomous
systems.

The main contribution of this paper is a development process
for control systems of CPSs that integrates simulation and
formal verification. A logic-based model of the control is
used for verification and also co-simulated with models of
the plant subsystems built with various simulation-oriented
languages.

The paper is organized as follows: Section 2 presents some
related work; Section 3 provides background on co-operative
UAVs and on the consensus-problem, on logic-based formal
specification and theorem proving and on co-simulation;
Section 4 introduces and discusses the proposed approach;
Section 5 introduces the case study; Section 6 reports co-
simulation results of different scenarios; Section 7 describes
how the logic model has been used to prove properties of the
system; and Section 8 concludes the paper. An example of an
interactive proof is shown in the Appendix.

2. RELATED WORK

Digital controllers may be modelled with formalisms specif-
ically developed to deal with discrete-time behaviours. One
class of such formalisms is based on state machines and in
particular on hybrid automata [24], a conceptual model that
lends itself to the integration of discrete- and continuous-time
behaviours. Another class collects the logic-based methods,
which use various forms of logic languages to model and
analyse systems. These logic languages include temporal logics
[34], normally used in conjunction with state-machine repre-
sentations, and higher-order logics [32].

UAV simulation and application development rely on frame-
works based on off-the-shelf tools, such as Gazebo [29] and
Ardupilot3 , which provide prototypes for the vehicle dynamics.

3 http://ardupilot.org

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

http://ardupilot.org

Co-simulation and Verification for Drone Swarms 3

The work of Olfati-Saber et al. [41] is a useful starting point
for the literature on coordination of autonomous vehicles and
it introduces the consensus protocol that inspired our work.
A survey of control problems was published by Ren et al.
[47]. A review on communication architectures and routing
protocols is in [13]. Among the many works on the coordination
of autonomous vehicles or agents, we may also cite Fax and
Murray [18] and Jadbabaie et al. [26]. A topic related to mobile
autonomous agents is mobile sensing networks, addressed, e.g.
by Cortés et al. [14] or Kar et al. [28].

A recent review on co-simulation has been published by
Gomes et al. [23]. Blochwitz et al. [10] present the Func-
tional Mock-up Interface (FMI), an emerging standard for co-
simulation of CPS. The INTO-CPS framework, used in this
work, is presented by Larsen et al. [30]. Another co-simulation
framework is the HybridSim tool-chain, discussed by Wang
and Baras [52], which transforms multi-domain models into
a SysML [25] model. Jalali et al. [27] propose a framework
for multisimulation based on a transaction-based approach
for synchronization and analysis of dependencies among sub-
models. Attarzadeh Niaki and Sander [2] address co-simulation
of embedded systems extending the ForSyDe [48] framework.
An extension to the FMI standard addressing the issue of
time representation is discussed by Cremona et al. [15], and
the problem of simulation stability is addressed by Gomes
et al. [22].

Proposals to apply formal methods to CPSs follow many
different approaches. For example, Dynamic Logic [11] is used
with the KeyMaeraX [45] theorem prover, which has been
integrated with the SPIRAL environment [46] as reported by
Franchetti et al. [20]. The Vienna Definition Method (VDM)
[19] family of languages and tools, in particular the Crescendo
tool [31] have also been used extensively. Another important
family of languages applied to CPSs is that of hybrid automata
[24], and in particular timed automata [1] such as those sup-
ported by the UPPAAL environment [3].

In the present work, the PVS theorem prover [42] and the
PVSio interpreter [39] have been used. PVS has been used in
many application fields, including the formal verification of
detect-and-avoid algorithms for Unmanned Aircraft Systems
[36] and the validation of code for the same systems [37]. PVS
has been used to assess properties of a simple non-linear CPS
[6] and Newell et al. [38] used it to guarantee safety in a Nuclear
Power Generating Station shutdown sub-system. PVS has been
used in the field of medical devices and e-health [7, 35]. A tool
based on PVSio for the simulation of user interfaces (PVSio-
web) has been developed by Oladimeji et al. [40].

In previous work, the PVS/PVSio environment was used to
simulate very simple single systems [17]. A first example of
the integration of a PVS specification in a co-simulation was
reported by Bernardeschi et al. [8], and the integration of PVS
with FMI has been described in [43], where a simple robotic
system, made up of a control part modelled in PVS and a
continuous part modelled in 20-sim, has been co-simulated. In

FIGURE 1. Schematic representation of a quadcopter.

[9], the role of formal verification in model-driven development
was discussed in reference to simple case studies, while in
[5] design parameters for a complex control algorithm were
studied using formal verification.

3. BACKGROUND

This section briefly introduces notions used in the rest of the
paper, concerning UAVs and UAV coordination, the PVS and
the INTO-CPS platform for co-simulation.

3.1. Modelling co-operative UAVs

A quadrotor aircraft [33], or quadcopter, schematically con-
sists, from the dynamical standpoint, in a cross-shaped frame
supporting one rotor at each arm’s end (Fig. 1). Each of the four
rotors is a propeller driven by an electric motor, and each motor
is controlled independently. The quadcopter’s movements are
determined by the resultant thrusts and torques of the rotors,
which in turn depend on their angular speeds ω1, . . . ω4.

The movement of a quadcopter can be described in terms
of the displacement and velocity of its centre of mass with
respect to a fixed inertial orthogonal reference frame F0 (i.e.
the ground), and of its attitude, i.e. the orientation of its body
with respect to the fixed reference frame. Velocity and attitude
are related, since attitude determines the direction of thrust.
For example, if the rotors lie on a horizontal plane and all
turn at the same speed, the resultant thrust is in the vertical
direction and the quadcopter can only move up and down, or
hover at constant height when the thrust equals the weight. In
order for the thrust (and thus velocity) to have a horizontal
component, the quadcopter must tilt, changing the attitude.
This is accomplished by driving the rotors at different speeds
so that the different thrusts create torques on the quadcopter.
Controlling a quadcopter therefore consists in setting the four
rotor speeds to perform the desired manoeuvres.

To define the attitude, a moving orthogonal reference frame
Fb is introduced, with unit vectors ı̂b, ĵb and k̂b. The axes
defined by ı̂b and ĵb coincide with the arms of the frame and

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

4 C. Bernardeschi et al.

FIGURE 2. Cascaded position-attitude control.

have their origin at their crossing, which is also the centre of
mass of the quadcopter. More precisely, the fixed reference
frame F0 is defined by the fixed origin p0 and axes x, y and
z, with unit vectors ı̂0, ĵ0 and k̂0. Axes x and y define the
horizontal plane. Frame Fb is defined by the origin pb =
(x, y, z)T coincident with the quadcopter’s centre of mass, and
by axes xb, yb and zb with unit vectors ı̂b, ĵb and k̂b.

The attitude can then be defined as the rotation that brings
axes xb, yb and zb to coincide with x, y and z, after hav-
ing applied a translation that brings pb to coincide with p0.
This rotation is the composition of three elementary rotations
defined by the Euler angles ψ , φ and θ , also called yaw, roll
and pitch, respectively. If R(ψ , φ, θ) is the rotation matrix,
any vector in Fb can be expressed in F0 by multiplying it by
R(ψ , φ, θ).

With the above notations, the quadcopter’s behaviour as a
function of the rotor speeds can be described by two linearized
models, one for position (equation 1) and one for attitude
(equation 2). In the models, Cφ , Cθ , Cψ and Cz are physical
constants of the quadcopter related to mass, rotational inertia,
geometry and rotor characteristics, g is the gravity acceleration
and ψd is the desired yaw angle.

⎛
⎝

ẍ
ÿ
z̈

⎞
⎠ =

⎛
⎝

g(φ sin ψd + θ cos ψd)

−g(φ cos ψd + θ sin ψd)

Cz(ω1 + ω2 + ω3 + ω4)

⎞
⎠ (1)

⎛
⎝

φ̈

θ̈

ψ̈

⎞
⎠ =

⎛
⎝

Cφ(ω2 − ω4)

Cθ (ω3 − ω1)

Cψ(ω1 − ω2 + ω3 − ω4)

⎞
⎠ . (2)

3.1.1. Control models
It is convenient to split the control in two cascaded modules,
one for position and one for attitude (Fig. 2). The reference
inputs of the position controller are the desired position (xd, yd,
zd) and yaw (ψd), while the respective actual values and speeds
are the feedback inputs. The outputs are the commanded values
of roll and pitch (φc and θc) and a value ωz depending on the
desired height above sea level (or altitude) zd. These outputs
are the reference inputs to the attitude control, which receives

the actual Euler angles and their derivatives as feedbacks,
producing the speed values for the rotors.

It may be shown [33] that a position controller can be defined
by an equation of the following form, where ex = x − xd, ey =
y − yd and ez = z − zd are the tracking errors; moreover, sd =
(sin ψd)/g and cd = (cos ψd)/g:

⎛
⎝

φc
θc

ωz

⎞
⎠=

⎛
⎜⎝

−sd(2λPẋ + λ2
Pex) + cd(2λPẏ + λ2

Pey)

−cd(2λPẋ + λ2
Pex) − sd(2λPẏ + λ2

Pey)

− 2λP
Cz

ż + λ2
P

Cz
ez)

⎞
⎟⎠

(3)

and an attitude controller can be defined by equations of the
following form:

⎛
⎝

ωφ

ωθ

ωψ

⎞
⎠ =

⎛
⎜⎜⎜⎝

− 2λA
Cφ

φ̇ − λ2
A

Cφ
(φ − φc))

− 2λA
Cθ

θ̇ − λ2
A

Cθ
(θ − θc))

− 2λA
Cψ

ψ̇ − λ2
A

Cψ
(ψ − ψd))

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

ω1
ω2
ω3
ω4

⎞
⎟⎟⎠ = 1

4

⎛
⎜⎜⎝

ωz − 2ωθ + ωψ

ωz + 2ωφ − ωψ

ωz + 2ωθ + ωψ

ωz − 2ωφ − ωψ

⎞
⎟⎟⎠ . (4)

In the equations above, λP and λA are gain parameters of
the controller, which affect the speed of tracking error conver-
gence.

3.1.2. Co-operative UAVs
The consensus problem is an important aspect of cooperation
among autonomous agents, which can be described as the prob-
lem of reaching ‘an agreement regarding a certain quantity
of interest that depends on the state of all agents [41].’ This
general concept applies to many different issues involving co-
operative agents, among which the spatial distribution of a
swarm of UAVs.

To formalize this particular problem, a graph G = (V , E) is
used, where the set V of vertices represents the set of UAVs and

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 5

the set E of edges represents the set of links among the UAVs
that communicate and interact with each other, by exchanging
information for the accomplishment of the task. For simplicity,
we assume that the links are symmetric (i.e. the graph is
undirected) and static (i.e. the topology does not change).

Each vertex i has a nonempty set Ni = {j ∈ V | (i, j) ∈ E} of
neighbours, i.e. the set of agents with whom agent i interacts.
The graph is characterized by three matrices: (i) the adjacency
matrix A, whose elements or weights aij have a value equal to
1 if (i, j) ∈ E or zero if not; (ii) the diagonal degree matrix
D, whose elements dii are equal, respectively, to the number
of links incident on vertex i; and (iii) the graph Laplacian L,
defined as D − A, whose elements lij are such that

lij =
⎧⎨
⎩

−1 if j ∈ Ni
|Ni| if j = i

0 otherwise .

Let then xi be a state variable of agent i representing the
quantity on which an agreement must be achieved, i.e. a global
state x = (x1, . . . , xn)

T must be reached where x1 = x2 = . . . =
xn. Olfati-Saber et al. [41] have shown that the law

ẋ = −Lx (5)

is a distributed consensus protocol, i.e. a group of agents
following this law will asymptotically approach an equilibrium
state satisfying the consensus condition. Further, the consensus
value will be the average of the initial values, for a connected
graph. If the state variables represent, e.g. each agent’s position,
the above equation represents a rendez-vous protocol causing
all agents to converge to the same position.

Equation (5) can be expressed in discrete time [41] by
approximating ẋ(k) according to Euler’s discretization rule, i.e.
ẋ(k) � (x(k + 1) − x(k))/ε, where ε is the discretization step
and k ranges over the nonnegative integers. The discrete-time
form of (5) is then

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k) − xi(k)) . (6)

The discrete time collective dynamics of the set of agents can
be rewritten in matrix form:

x(k + 1) = Px(k) (7)

with P = I − εL (I is the identity matrix). P is referred to as
the Perron matrix [41].
Formation control. Equation (5) can be modified to adapt the
consensus protocol to the case of formation control where the
goal is to achieve a given spatial distribution. In this case, if xi is
the position of agent i and bi is the vector sum of the distances

from agent i to its neighbours, the consensus protocol becomes

ẋ = −Lx + b. (8)

The protocol described by the above equation is called a
coverage protocol in the following, as it is often used for
area coverage applications, such as search-and-rescue or crop
dusting. We may note that the input vector b is, by construction,
orthogonal to the kernel of the Laplacian matrix, and thus it
does not prevent the existence of a steady state.

As shown in [41], asymptotic convergence is guaranteed for
systems of the above forms. Section 5 will refer to these results
to discuss the case study presented in this paper, pointing out
the differences that justify an alternative approach.

3.2. The PVS

The PVS [42] is an interactive theorem prover, enabling users
to define theories and prove theorems within them. Theories
are written in a typed higher-order language, where the user
can define complex types and express properties of higher-
order concepts, such as functions and sets. The theorem prover
provides an extensive number of inference rules based on the
sequent calculus [51], which the user can select and apply
in different proof steps. The proof is not fully automatic but
computer-assisted; the inference rules, however, are very pow-
erful and experienced users may find proofs in a short time.

An additional feature of PVS is that it can also be used as
a prototyping tool. This use is made possible by the PVSio
extension. PVSio [39] is a ground evaluator that computes the
value of ground (variable-free) expressions. The evaluator can
also compute functions with side effects, such as producing
outputs. It should be noted that the PVSio functions with side
effects do not assign values to variables, and thus are logically
equivalent to the normal (i.e. purely logical) functions of the
PVS language, so that they do not interfere with theorem
proving. The PVS theorem prover can be started in PVSio
mode, where it accepts inputs in the form of ground function
applications to evaluate. In this mode, the PVSio evaluator is
used as an interpreter for a logic programming language.

3.2.1. PVS language and sequent calculus
The PVS language provides an extensive set of base types,
including naturals, integers, reals and booleans, each defined
by mathematical axioms in theories that comprise fundamental
theorems. Therefore, these types represent the corresponding
mathematical concepts, and not the finite and discrete approxi-
mations used by imperative programming languages. Various
constructors are used to define complex types such as sets,
tuples or records. In particular, function types are declared with
type expressions of the form [domain → codomain], where
domain and codomain can be any type, including function
types. Functions with the Boolean codomain type are called
predicates. A formula is an expression composed of variables,

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

6 C. Bernardeschi et al.

constants, functions and operators, that evaluates to a Boolean
value. Formulas assumed to be valid are labelled as axioms,
whereas they are labeled as lemmas or theorems if they must
be proved.

A theory is a collection of declarations and formulas, and a
PVS specification consists in one or more theories. A theory
may refer to other theories made accessible by IMPORTING
declarations. The fundamental theories of the prelude library
are imported implicitly, and additional libraries provide a large
number of theories containing standard definitions and proved
facts, e.g. about sets, sequences and graphs. A theory can
also be defined in terms of parameters that are instantiated
by importing theories. The basic constructs of the PVS lan-
guage will be shown in examples throughout the paper. Some
constructs and conventions, however, are introduced below:
comments extend from a ‘%’ character to the end of line. A
record is a tuple whose elements are accessed through their
respective field name, i.e. a record type is a shorthand for the
Cartesian product of a number of sets. For example, given the
declarations below,

the expressions rho(p) and theta(p) denote the modulus and
argument of p. Equivalent notations are p‘rho and p‘theta.

Function declarations are in the form foo(x: T1): T2,
where foo is the function name, x is a function argument of type
T1, and T2 is the function codomain type.

The PVS proof system is based on the sequent calculus
[51]. A sequent is an expression of the form A1, A2, . . . , An �
B1, B2, . . . , Bm. The Ai’s are called antecedents and the Bi’s
consequents. The ‘�’ symbol (the turnstile) is read as ‘entails’
or ‘yields’, meaning that the disjunction of the consequents can
be deduced from the conjunction of the antecedents. Hence, in
a proved sequent, when every Ai is true at least one of the Bi’s
must be true. Each antecedent or consequent is a formula, but
not another sequent4 .

The inference rules of the sequent calculus transform
sequents. Some of the rules produce two or more new sequents
from one sequent, so that the graph of intermediate subgoals
linked by inference steps takes the form of a tree whose nodes
are sequents and whose arcs are applications of inference rules.
A proof terminates successfully when all branches terminate
with a proved sequent, i.e. one where either any formula occurs
both as an antecedent and as a consequent, or any antecedent
is false, or any consequent is true.

4 A sequent is an expression of the metalanguage of the deduction system, not a formula

of the underlying logic language.

FIGURE 3. Co-simulation framework.

3.3. Co-simulation

Co-simulation (or coupled simulation) is the co-ordinated exe-
cution of two or more simulators, each running a distinct sub-
model of an overall multi-model. This has some advantages
over monolithic simulation of a complete system: In particular,
it makes it possible to easily assemble a large simulation model
out of pre-existing and possibly independently developed mod-
els. This is especially important for the simulation of a CPS, as
it may be often built from physical components not originally
conceived for the intended application of that CPS. Further,
co-simulation gives developers the flexibility of choosing the
fittest modelling formalism or the most convenient simulator
for each sub-model, and, finally, the different simulators may
run in parallel on networked machines, with a significant gain
in performance.

An approach to co-simulation that is gaining acceptance is
based on three concepts: (i) functional mockup units (FMU), i.e.
software components packaging all that is needed to simulate
a sub-model; (ii) the standard FMI defining the interface of
the FMUs; and (iii) a master algorithm to co-ordinate the
FMUs. The interface of an FMU includes, among others,
set functions to set the values of the FMU’s input variables,
get functions to read the values of output variables, and the
doStep function to request the execution of one simulation
step.

In this work, the master algorithm developed by the INTO-
CPS project [30] is used. INTO-CPS was a European project
that developed an integrated tool-chain (Fig. 3) for model-
based design of CPSs, based on the FMI standard. A core
component of the tool-chain is the Co-simulation Orchestration
Engine (COE), a validated FMI-compliant implementation of
a master algorithm.

4. HIGHER-ORDER LOGIC FOR SPECIFICATION
AND CO-SIMULATION

UAV specification and simulation must face the complexity of
UAV systems: the intrinsic dynamical complexity of a single

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 7

drone, the complexity of interactions among members of a
drone swarm and of interaction with the environment.

This paper proposes a process of performing co-simulation
structured into four activity flows. In particular, three mod-
elling flows (PVS-based, equation-based and Modelica-based)
produce, possibly in parallel, three FMUs, each containing
the respective models and tools. The PVS-based activity is a
relevant and characterizing aspect of the proposed approach,
as it makes it possible to use the same logic specification for
simulation and formal verification. The other two modelling
flows follow standard practices. In the equation-based activity,
the model is C code implementing the controller equations
and the FMU contains the corresponding executable code. In
the Modelica-based activity, the translational and rotational
dynamics are expressed in Modelica, and the OpenModelica
environment produces the FMU.

The fourth activity is carried out by the Master algorithm,
which coordinates the execution of the FMUs (three for each
drone) and produces plots of simulation results.

The rest of this section introduces a general pattern for PVS
models of drone swarms and their integration in a co-simulation
architecture. The application of the complete process to a case
study will be described in the next section.

4.1. A pattern for the specification of co-ordination
protocols

In this section, we sketch a pattern of PVS theories for the mod-
elling and simulation of a drone swarm. Later on (Section 5.3),
actual theories for a specific case (Section 5) are shown.

Theory system (Listing 1) provides two basic definitions for
the minimal information needed to identify a single drone, i.e.,
its identifier and its location in space, and then the definitions of
record types to model the state of a single drone (state) and the
collective state of a drone swarm (systemState). This theory is
parametric in the number N of drones composing a swarm, and
the identifiers range on the interval from 0 to N−1, represented
by the PVS type below(N).

The information defining the state of a single drone includes
its identifier and location and possibly other items depending
on the chosen protocol. Also, the swarm state will generally
contain protocol-dependent items, but it can be assumed that
the communication topology, the set of drone states, and a clock
will be present. The topology is represented by field g whose
type is defined in another theory (not shown). The set of drone
states is represented by field drones whose value is a function
of type dmap mapping each drone identifier to the respective
state. The clock timesteps can be used as a counter of executed
simulation steps.

Theory system_execution (Listing 2) is a pattern for simula-
tion at swarm level. It defines a recursive function kth_step that
computes the swarm state after k steps of simulation, starting
from an initial state. Both the initial state and the protocol
function representing a protocol step are left uninterpreted.

LISTING 1. Definitions pattern for a drone swarm

LISTING 2. Execution pattern for a drone swarm.

In the theory, protocol is a function that transforms the state
of the swarm and depends on the identity of the single drone
executing the protocol, thus allowing the execution of dis-
tributed protocols with possibly different behaviours of nodes.

Note that the MEASURE annotation in the theory enables the
PVS type checker to control if recursion on k is well founded.

4.2. A Co-simulation architecture

The co-simulation architecture adopted in this experiment uses
three specialized interacting FMUs for each drone (Fig. 4): a
plant FMU for the drone dynamics, a control one to control
attitude and velocity and a coordination one implementing the
consensus protocol. The latter FMU receives the positions xi of
the neighbouring drones and computes the next desired position
xd, which is fed to the control FMU and transmitted to the
neighbours’ co-ordination FMUs. The control FMU reads the
feedback from the plant, consisting in the current position x
and attitude (φ, θ , ψ) and the respective time derivatives. The
output is the quadruple of rotor speeds (ω1, ω2, ω3, ω4), fed to
the plant FMU.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

8 C. Bernardeschi et al.

FIGURE 4. Logical connections between FMUs of a drone.

FIGURE 5. Co-simulation schema of a drone swarm.

The architecture of a co-simulation in a scenario of five
quadcopters is shown in Fig. 5, where the variables without an
index refer to drone 3. All the FMUs are connected through the
INTO-CPS co-simulation engine.

4.3. Synchronization

In the simulation of co-operative UAV systems, drones com-
municate with each other through the Coordination FMU to
execute the co-ordination protocol. Moreover, the Coordination
FMU of a drone periodically sends the new target position to
the Controller FMU of the drone. Then, given a target position,
the two other FMUs of the drone (Controller FMU and Plant
FMU) communicate with each other to steer the drone to the
target position.

Generally, the rate of communication in the two cases above
is different. We distinguish between the following:

• the time discretization interval ε at which the target
position of each drone is updated in the coordination
algorithm, and

• a smaller step τ that is the numeric integration step used
by the drone dynamics simulator for communications
with the low level controller of the drone.

In terms of the co-simulation architecture, ε is the interval at
which the coordination FMUs of each drone compute the new
target position and send it to the immediate neighbours and to
the Control FMU of the drone and τ is the interval at which
the simulator for the drone dynamics (part of the plant FMU)
and the simulator of the attitude/position controller (part of the
control FMU) exchange data.

5. APPLICATION TO A SPECIFIC CASE

Theories for a specific protocol can be developed after the
pattern of the theories introduced in Section 4.

As an application example, we consider a special case of
formation control, namely the uniform placement of a number
of drones along a straight line segment. This placement could
be, for example, the starting position in a search-and-rescue
operation where the drones must explore parallel strips of
terrain or in agricultural settings such as sowing operations.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 9

FIGURE 6. Initial and final positions of the drones.

With reference to Fig. 6, the following assumptions are
made, with N, i and k ranging over the natural numbers:

• There are N drones, with N ≥ 3, numbered consecutively
from 0 to N − 1;

• the segment is described by the interval [min, max];
• the segment is divided in N − 1 subsegments of equal

length
 = (max − min)/(N − 1);
• in the initial position,

– drones 0 and N − 1 (represented as squares in the
picture) are placed at min and max, respectively;

– the other drones (represented as circles) are aligned
between min and
, in the order of the respective
indices;

• each drone can reliably communicate with its preceding
and following immediate adjacent drone, with drones 0
and N −1 having only one neighbour (communication is
represented by arcs in the picture).

In the final position, each drone i must be at position min+i
.
This is a problem of formation control that can be dealt with

along the lines exposed by Olfati-Saber et al. in [41], but with a
significant difference: The protocols in [41] are assumed to be
executed by all drones, but in the present case the two extreme
drones are fixed at their initial positions, therefore the protocol
examined in the present paper takes a different form.

Equation (8) in Section 3.1.2 applies to formation control
problems, but in our case we want the second term of the right
member to vanish, since in the final position each drone is
equidistant from its two neighbours, so that (8) reduces to

ẋ = −L x, (9)

where each component xi of vector x is the position of the i-th
drone along the line segment.

However, equation (7), the discrete-time form of (5), does
not apply; since the first and last drones are fixed, this is

violating the basic assumption of the consensus protocol, i.e.
that all drones have the same behaviour. Hence, the graph
Laplacian and Perron matrices take the following forms:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0

. . .
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0
ε 1 − 2ε ε 0 . . . 0 0
0 ε 1 − 2ε ε . . . 0 0
0 0 ε 1 − 2ε . . . 0 0

. . .
0 0 0 . . . ε 1 − 2ε ε

0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

With the above matrices L and P, we have ẋ1 = ẋN = 0
in the continuous-time model, and x1(k + 1) = x1(k), xN(k +
1) = xN(k) in the discrete-time model. The explicit form of the
protocol is thus:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1(k + 1) = x1(k)
xi(k + 1) = εxi−1(k) + (1 − 2ε)xi(k)

+εxi+1(k) ,
i ∈ [2 .. N − 1]

xN(k + 1) = xN(k) .

(10)

Since the above protocol involves matrices L and P that
have a different structure from the ones in [41], the results on
protocol convergence from that paper do not apply. The rest
of this section will show how the protocol can be specified
with a higher-order theory, validated through co-simulation and
verified by theorem proving.

The following subsections describe the different FMUs for
the specific case study. The plant FMU is exported from Open-
Modelica, the controller FMU is a C program and the coor-
dination FMU packages a PVSio interpreter executing the
coordination algorithm.

5.1. The plant FMU

The linearized equations of a quadcopter have been imple-
mented in an OpenModelica program, which simply expresses
the equations for position and attitude in Section 3.1 in the
Modelica language as shown in Fig. 7. More precisely, the
translational dynamics are expressed as follows, where psid is
the desired yaw angle ψd, der is the time derivative operator, g
is the gravitational acceleration, Kf is a characteristic constant

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

10 C. Bernardeschi et al.

FIGURE 7. Plant model in the OpenModelica editor.

of the rotor and m is the mass of the drone. Factor 2 · sqrt(Kf ·
g/m) is the Cz constant in equation (1).

The rotational dynamics are expressed as

where l is the distance of each rotor from the centre of mass, Ixx,
Iyy and Izz are the axial moments of inertia and Km is another
characteristic constant of the rotor. Factors l·sqrt(Kf·m·g)/Ixx,
l·sqrt(Kf·m·g)/Iyy and Km·sqrt(Kf·m·g)/Izz are the constants
Cφ , Cθ and Cψ , respectively, in the attitude equation.

The FMU is automatically generated from OpenModelica
and allows the values of the parameters to be set before
simulation.

5.2. The control FMU

For reasons of efficiency, the equations for the control
(Section 3.1.1) have been implemented in a C function wrapped
in a FMU. The FMU implements the FMI doStep function
updating the values of ω1, . . . ω4 according to (3) and (4).

For example, the code shown below computes the value of
θc, according to equation (3), i.e. θc = −cd(2λPẋ + λ2

Pex) −
sd(2λPẏ + λ2

Pey), with cd = (cos ψd)/g and sd = (sin ψd)/g.

In the code, st is a data structure storing variables and
parameters, Lp stands for λP, vel_x and vel_y stand for ẋ and ẏ,
(st->current_x - st->x_d) and (st->current_y - st->y_d) stand
for ex and ey, and st->G stands for g.

Since the controller on board of a drone is able to convert
its dynamics into those of a single integrator, the solutions of
equation (9) can be feasibly tracked by drones. The feedback
control law compensates the non-linear terms of the dynamics
and introduces those of the interaction with neighbours.

Moreover, when the numeric integration step τ is chosen
small enough, and the controller output has a sufficient ampli-
tude, the complete response of the drone, including the transient
phase, is that of a first-order system.

5.3. The coordination FMU

LISTING 3. Type definitions for the coverage protocol.

The coverage protocol (10) has been expressed in two
swarm-level PVS theories. Theory coverage (Listing 3) is
based on system from Section 4.1. Type location is redefined
as a single x coordinate, since the drones are assumed to be
aligned. In the system state, the field for the communication
topology has been dropped, since in this case each drone has
only two communication links, assumed to be reliable and
unchanging.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 11

LISTING 4. Coverage protocol in PVS.

Field timestep is a counter that is reset every ε seconds, and
counts the current number of co-simulation steps after the last
reset. Its value ranges on the interval [0..n] (upto(n)), where n,
a parameter of the theory, equals ε/τ .

Theory coverage_execution (Listing 4) is patterned after
system_execution from Section 4.1, and implements the
function kth_step for the execution of the protocol. Function
exec_cvg is the PVS form of (10), where a, b and c are the
coordinates of the preceding, current and following drone,
respectively. Function getx accesses the x-coordinate of the
i-th drone in the system state. Function exec_coverage models
the execution of the coverage protocol at every drone, updating
the system map drones with the new positions of drones. The
drones field is an anonymous function (a λ-expression) of a

drone identifier. This function extracts the coordinates of drone
i and of its neighbours from the swarm state (using function
getx), and computes the new state of drone i according to the
protocol.

Function tick is needed to synchronize the different Coordi-
nation FMUs, as explained in Section 4.3.

Function kth_step matches the function of the same name
in Section 4.1, except that it does not call the protocol sec-
tion directly, but through function tick. Definitions for global
parameters and for the initial swarm state are contained in an
additional theory, initial (not shown).

In the initial theory, constant n is defined as the ratio
eps/stepsize, i.e. ε/τ . Every n timesteps, the new desired
position of the drone is computed by a step of the algorithm
(exec_coverage).

The above swarm-level theories provide a global view of the
swarm state, assuming complete knowledge of each drone’s
state. A real drone, however, has no knowledge of the other
drones, except for the information it receives from its neigh-
bours. In order to perform a realistic co-simulation, a simpler
theory, based on the state of a single drone, is needed.

Theory fmu_coverage (Listing 5) is a simplification of the-
ory coverage above. In Theory fmu_coverage, the simulation
state in the FMU is a projection of the swarm state to a
single drone. The state of the drone is therefore implicit in
the FMU, and it does not appear anymore as an argument
of functions (see, for example, function fmu_kth_step). Fields
prec and foll hold the location of the preceding and following
drone, respectively, and their values are provided by the master
algorithm of the co-simulation.

LISTING 5. Type definitions for the executable coverage
protocol.

Accordingly, Theory fmu_exec_coverage (Listing 6) is a
simplification of exec_coverage. Equation (10) is expressed
by function fmu_exec_cvg with the same algorithm as
function exec_cvg above, whereas fmu_tick merges functions
exec_coverage and tick above.

Function fmu_kth_step reproduces kth_step, replacing tick
with fmu_tick.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

12 C. Bernardeschi et al.

LISTING 6. Executable theory for the coverage protocol.

The FMUS involved in the co-simulation reported in
Section 6 contain the simplified theories; the verifications
performed in Section 7 rely on the swarm-level theories with a
global view of the swarm state.

6. CO-SIMULATION RESULTS

In this section, the PVS theories introduced above are validated
by simulation, i.e. they are used as an executable code that is
packed in an FMU and integrated with other executable code (in
C and Modelica) in a co-simulation environment. Simulation
experiments corroborate confidence that the theories correctly
model the behaviour of a drone swarm following the coverage
protocol. The experiments consist in choosing a deployment
scenario with a given initial placement of the swarm and
observing if and how the swarm achieves the desired place-
ment, with the drones uniformly spaced along the assigned line.

The coverage protocol has been simulated in a scenario of
five quadcopters. Therefore, the co-simulation uses 15 FMUs,
connected through the INTO-CPS COE as shown in Fig. 5. In
the coordination algorithm, a fixed value has been chosen for
the time discretization interval ε at which the desired position

FIGURE 8. Plot of the desired position of drones with ε = 0.2.

of each drone is updated, and a fixed value has been chosen for
the co-simulation step size τ , corresponding to the frequency
of communications between the low level control and the plant.
Each drone has been tagged with an identifier number and the
identifiers are ordered according to the initial position of the
drones.

In the simulation two parameters are traced: the desired posi-
tion and the actual position. The different behaviour between
the desired positions, computed by the coordination algorithm,
and the actual ones, reached by the drones, is due to the
fact that the latter are the result of having included the drone
dynamics and the control laws (3) in the co-simulation. This is
the reason why a completely analytic approach is not viable.
Co-simulation provides useful feedback for protocol analysis
and validation.

The protocol in (10), expressed in PVS in Listings 5 and 6,
has been simulated with the following initial positions: x1 = 0,
x2 = 10, x3 = 20, x4 = 30 and x5 = 100. The simulation
parameters are ε = 0.2 and τ = 0.05.

As anticipated, parameter ε determines how often the desired
position of each drone is updated. In the figures, ε is repre-
sented by the spacing between the vertical lines in the grid, i.e.
each vertical line marks the completion of a simulation step.
With ε = 0.1, the desired position is constant for two co-
simulation steps. With ε = 0.2, the desired position is updated
every four co-simulation steps (0.2 sec). With ε = 0.5, the
desired position is constant for ten co-simulation steps (0.5 s).

Figure 8 shows the evolution of the desired x for each drone.
It can be seen that, at the first simulation step, the desired
position of drone 4 increases, since that drone is farther from
drone 5 than from drone 3, so it should get closer to drone 5, as
per coordination protocol. In the initial configuration, drone 1
is instead equidistant from its neighbours, therefore its desired
position in unchanged—similarly for drone 2.

After ε seconds, both drone 3 and drone 2 change their
desired position: drone 2 is now farther from drone 3 than from
drone 2.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 13

FIGURE 9. Plot of the actual position of the drones with ε = 0.2.

Finally, after 3ε seconds (0.3 s), also drone 1 increases its
desired position.

The desired positions asymptotically converge to the target
positions i
 after four simulated seconds of co-simulation.

The actual positions of the drones for the same experiment
is shown in Fig. 9. After five simulated seconds, the desired
positions computed by the coordination algorithm (10) have
reached the reference points (25, 50 and 75 for the moving
drones with identifiers 1, 2 and 3, respectively) and at the
end of the simulation the three moving drones reached their
reference position. It can be seen that the drones follow the
desired position and reach it after a delay.

Figure 10 shows the desired position of the central drone
in the first 8 seconds of co-simulation, for different values
of ε (ε ∈ {0.1, 0.3, 0.5}). For higher values of ε, the co-
ordination FMU updates the target positions less frequently and
the difference between neighbours desired position increases.
For this reason, the system does not converge for high values
of ε.

A co-simulation was run using the same configuration of
the previous examples, but choosing a higher value of ε than
allowed by the verification results, namely ε = 0.7. The result
(Fig. 11) confirms that the algorithm does not converge.

The desired positions are recomputed every 12 co-simulation
steps, they take very high values, and they may increase or
decrease at successive steps. The values on the ordinates axis
are one order of magnitude larger than in the previous cases. For
example, the desired position of drone 3 after ε seconds is very
close to 100 and it decreases at 2ε seconds. At that time, the
desired position of drone 2 almost equals that of drone 3, and
it decreases at the next synchronization point. As a result, the
desired positions oscillate and after 3 seconds they may become
negative.

Considering the physical system, in Fig. 12 we observe how
the drones oscillate along the x axis. The oscillations become
very large since the fifth second and, with the considered

dynamics, drones 2 and 3 collide after 12 seconds. The oscil-
lation of the actual position becomes noticeable later than the
one of the desired positions. Again, this delay is determined by
the drone dynamics.

Using the framework proposed in [44], a simple interface
has been built, providing graphic feedback on the evolution
of the co-simulation. The interface is an additional FMU that
gathers the actual x and z positions of all the drones, showing
them on the graphic interface. The desired z co-ordinate has a
fixed value, and represents the final height for all the drones.
This new FMU does not influence the behaviour of the drones.
The graphic interface is shown in Fig. 13, with the drones in the
initial positions. Figure 14 shows the position of drones at time
9.65 seconds. Video recordings of two simulation runs can be
found in the github repository (https://github.com/mapalmieri/
Drones). One video shows that the drone trajectories are unsta-
ble if the step size ε is outside the range specified in the
hypotheses of Theorem 7.2 in Section 7.2 below.

As expected, the stability of the coordination protocol de-
pends on the value of ε. As discussed in Section 7, a formal
approach was used to find constraints on ε: First, a proof
was attempted of a conjecture on system stability that took no
assumptions on the value of ε; then, in the course of the proof it
turned out that the conjecture could be proved only by adding
constraints on ε.

Finally, we note that one of the advantages of co-simulation
is the reusability of models. The control FMU and the plant
FMU can be used in conjunction with different co-ordination
protocols. For example, the co-simulation multi-model was val-
idated with an implementation of the original consensus proto-
col from [41], where all the drones converge toward a single tar-
get, i.e. the average of their initial positions (Section 3.1.2). The
PVS theory for the consensus protocol can be easily derived
by rewriting the exec_cvg function in theory exec_coverage,
according to Equation (5). This PVS specification was used to
build the new FMU that was plugged back into the multi-model.

A co-simulation was then run with initial positions x0 = 0,
x1 = 10, x2 = 20, x3 = 30 and x4 = 100, and simulation
parameters ε = 0.3 and τ = 0.05. After 10 simulated seconds,
all the drones had the desired x coordinate of 32, equal to the
average of the initial positions, in accordance with the theory
in [41]. The co-simulation results are shown in Figs 15 and 16.

7. FORMAL VERIFICATION

While the previous section deals with the validation of the PVS
theories for the coverage protocol by simulation of a particular
scenario, this section shows how properties of the protocol
can be proved in a formal and general way. More precisely,
this section presents results on the formal verification of the
coverage protocol (10) in Section 5, using the abstract theory
exec_coverage introduced in Section 5.3.

The main result is that the positions of the drones asymp-
totically approach the desired configuration (Theorem 7.8),

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

https://github.com/mapalmieri/Drones
https://github.com/mapalmieri/Drones

14 C. Bernardeschi et al.

FIGURE 10. Desired position of the central drone, for different values of ε: 0.1, 0.3 and 0.5seconds.

FIGURE 11. Plot of the desired x of the drones with ε = 0.7, coverage protocol.

FIGURE 12. Plot of the actual x of the drones with ε = 0.7, coverage
protocol.

under the assumptions stated in the following and an additional
condition on epsilon. Fundamental in the proof of convergence
are the following properties: the trajectories of drones do not
cross (Theorem 7.2); the target position of each drone is an
upper bound for the position at each step (Theorem 7.3); the
sums of the coordinates of drones at each step are a non

decreasing sequence (Theorem 7.5); the sum of the coordinates
of drones may remain constant for some number of steps, but
will eventually increase unless all drones have reached their
target position (Theorem 7.6, Theorem 7.7).

For better readability, a standard mathematical notation is
used in Section 7.1 and part of Section 7.2. The PVS syntax
is used in Section 7.2 to show parts of a proof, and in the
Appendix to show a more exhaustive example of actual inter-
active theorem proving.

7.1. Definitions and assumptions

For simplicity, it is assumed that the segment to be spanned by
the drones starts at the origin of the x axis, i.e. min = 0 and
max = d, where d the length of the segment. In the following,
h, i, j and k denote natural numbers. Moreover, from now on, X
refers to the position of drones, and its usage is defined more
clearly in the definition below.

The following definitions will be used:

1. N ≥ 3 is the total number of drones, numbered starting
from 0;

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 15

FIGURE 13. Screenshot of the simulation interface (t = 2.2 seconds).

FIGURE 14. Screenshot of the simulation interface (t = 9.65 seconds).

FIGURE 15. Plot of the desired position of drones with ε = 0.3 for
the original consensus protocol.

2.
 = d/(N − 1) is the desired distance between adjacent
drones;

3. X̄i = i
 is the target position of drone i;

FIGURE 16. Plot of the actual position of the drones with ε = 0.3
for the original consensus protocol.

4. Xk = (Xk
0, · · · , Xk

N−1) is the placement of the drones at
step k, with Xk

i the position of drone i at step k;
5. the initial placement is X0;

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

16 C. Bernardeschi et al.

6. ε ∈ [0, 1] is the step size;
7. ck = ∑N−1

i=0 Xk
i is the sum of the drone coordinates at

step k.

With the above definitions, we make the following assump-
tions:

1. the first and last drones maintain a fixed position at X0 =
0 and XN−1 = d, respectively;

2. the drones are numbered in order of increasing distance
from X0, i.e. ∀i<N−1X0

i < X0
i+1, and the drones with

index i ∈ [1 .. N − 2] will be called internal;
3. initially, each internal drone is placed within the first

subsegment: ∀i∈[1 .. N−2]X0
i <
. This is a simplifying

assumption for Theorem 7.6.
4. at each step k + 1, the position of each internal drone i

is related to the positions of drone i and its neighbours
at the previous step by the recurrence relation: Xk+1

i =
εXk

i−1 + (1 − 2ε)Xk
i + εXk

i+1

For this specific problem, it is necessary to assume that all the
drones are initially placed in the first subsegment and arranged
in order by their indices. In the course of the proof, the user
finds that further assumptions are needed. In the specific case,
a constraint on ε is suggested by the unprovability of certain
subgoals.

The position of the i-th drone at the k-th step is then Xk
i ,

which is expressed in the PVS theory as the composition of
kth_step and exec_coverage, respectively, abstracting from
details related to synchronization and record-based data
representation.

7.2. Proofs and results

This section collects results from formal verification of the
theories developed to model the coverage protocol, and shows
how the process of interactive proof can lead to the formulation
of constraints on design parameters. An example of how an
interactive proof is carried out in practice is shown in the
Appendix.

With the previously introduced assumptions points from 1
to 4 above, we want to prove that the drones maintain their
relative spatial ordering, i.e. their trajectories do not cross. We
start by attempting to prove the following conjecture, where no
assumption on parameter ε is made:

Conjecture 7.1. (invariant spatial ordering)
∀k≥0∀i∈[0 .. N−2]Xk

i < Xk
i+1.

Excerpts from the proof trace for Conjecture 7.1 are shown
below. The trace is a linearized display of a proof tree where
each node is a sequent, with a horizontal dashed line separating
antecedents (above) and consequents (below). Each formula in
the sequent is labelled with a number, negative for antecedents
and positive for consequents. Each sequent (except for the

first one and those at the beginning of a branch) is preceded
by the PVS rule applied by the user to the previous sequent,
a synthetic description of the rule, and by a sequent label.
The label is the name of the formula (goal) to be proved,
and the same name adorned with numbers identifies derived
subgoals. In the following trace, no_cross is the label of the
initial goal, no_cross.1 and no_cross.2 are the labels of the first
two subgoals.

The PVS code for the axiom on the drones’ initial position
and for Conjecture 7.1 is shown in Listing 7.

LISTING 7. Theorem 7.2 (no_cross) in PVS.

The first step is the induct command that causes the theorem
prover to start a proof by induction on k, generating the base
case no_cross.1 and the induction step no_cross.2:

The base case is proved in few steps using the axiom init_ax
corresponding to Definition 5 and Assumption 2, added to the
antecedents with the lemma rule.

Expanding kth_step and importing the axiom init_ax lead to:

which is automatically proved after instantiating the top quan-
tifier in {-1} with the term i. This completes the proof of
no_cross.1.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 17

The induction step is as follows:

Applying a simple rearrangement of the goal (with skolem
and flatten):

After some manipulations and expanding kth_step, the
following sequent is obtained:

Repeated applications of the split command, together with
sequent rearrangement and simplifications, yield four subgoals
corresponding to the following cases:

• i = 0 and i + 1 = N − 1: this implies that there are only
two drones, which contradicts the hypothesis N ≥ 3;

• i = 1 and i + 1 �= N − 1, the second drone;
• i �= 0 and i + 1 = N − 1, the second-but-last drone.
• i �= 0, i �= 1, and (i + 1 < N − 1), the other internal

drones.

The first three are special cases that are proved by manipulat-
ing expressions. In the fourth case, mathematical manipulations
lead to:

Dividing by (1 − 3 ∗ eps) leads to:

Consequent {2} is false because it contradicts the antecedent
{−3}. Therefore, in order to continue the proof it is necessary
to prove that the consequent {1} is true. This requires the
assumption that ε < 1

3 .
With the newly found constraint on ε, the following proper-

ties are proved.

Theorem 7.2. (invariant spatial ordering). Drones main-
tain their relative spatial ordering, i.e. their trajectories do not
cross:

If ε < 1/3, then ∀k≥0∀i∈[0 .. N−2]Xk
i < Xk

i+1.

Theorem 7.3. (reference position upper bound) At each
step, the target position of each drone is an upper bound for its
current position:

If ε < 1/2, then ∀k≥0∀i∈[1 .. N−2]Xk
i ≤ i
.

A corollary of the above theorem states properties of ck (the
sum of drone co-ordinates at step k). The properties of the sum
of drone positions at each step are used in further proofs.

Corollary 7.4. (i) ck is bounded: ∀k≥0 ck ≤ N(N−1)
2

(ii) ck equals N(N−1)
2
 if and only if all drones are at their target

position: ∀k≥0(ck = N(N−1)
2
 ⇐⇒ ∀iXk

i = i
)

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

18 C. Bernardeschi et al.

Theorem 7.5 (non-decreasing). The sums of the drone
coordinates at each step (i) are a nondecreasing sequence, and
(ii) if all drones are at their target position, then ck+1 = ck:

(i) If ε < 1/2, then ∀k≥0ck+1 ≥ ck;
(ii) ∀iXk

i = i
 ⇒ ck+1 = ck.

The following theorem establishes a relationship between
the sequence in time (i.e. wrt simulation steps) of the sums of
drone coordinates and the drone positions at each step. This
relationship is used in further theorems.

Theorem 7.6 (convergence). Under assumption 3 and the
constraint ε < 1

3 , we have that (i) for any step k, if all drones
are at their target position, then the sum of their co-ordinates
does not change at any further step, and (ii) if the sum of
drone coordinates remains constant after a given step k, then
all drones are at their target positions at step k:

(i) ∀k((∀iXk
i = i
) ⇒ ∀h≥1ck+h = ck),

(ii) ∀k(∀h≥1ck+h = ck) ⇒ ∀iXk
i = i
).

The following Theorem 7.7 states that the sum of the drone
coordinates may remain constant for some number of steps, but
will eventually increase unless all drones have reached their
target position.

Theorem 7.7 (globally increasing). If there is a step k such
that ck+1 = ck and one or more drones are not at the target
position, then there is a number h > 1 such that ck+h+1 >

ck+h:
(∃k(ck+1 = ck ∧ ∃j≥3(Xk

j < i
 ∧ ∀i<jXk
i = i
))) ⇒

∃h≥1ck+h+1 > ck+h

We can finally prove that the position of each drone
approaches monotonically the drone’s target position as k
increases.

Theorem 7.8 (limit). ∀i∈[0 .. N−1],k∈Nlimk→∞Xk
i = i
.

The PVS proof of the invariant spatial ordering theorem
(Theorem 7.2) is shown in the Appendix.

8. DISCUSSION AND CONCLUSIONS

The approach to co-simulation and verification proposed in this
paper consists essentially in modelling the control parts of a
CPS with one or more PVS theories and the physical parts (the
plant) with a domain-specific language. The same PVS model
is used both for simulation (i.e. validation) and formal proof
(i.e. verification).

In the case at hand, this general principle has been applied as
follows: (i) the distributed consensus protocol is modelled as a
PVS theory; (ii) the control part in charge of steering a single

drone is implemented in C; and (iii) the plant of a single drone
is modelled in Modelica.

The choice of using two different languages (a higher-order
logic language and an imperative one) for the control part
is motivated by the fact that the goal of this case study is
validating and verifying the consensus protocol, whereas the
control of a single drone is a well-known problem and the
correctness of the adopted algorithm has been proved. Alterna-
tively, the control part of a single drone could be done in PVS
and lumped with the distributed consensus protocol, or it could
be integrated in the Modelica model. The adopted architecture,
using three distinct models, is arguably more modular.

In this way, the OpenModelica simulator and the C imple-
mentation of the drone control afford an efficient execution of
the computation-intensive simulation of drone dynamics, while
the PVSio interpreter uses the same model of the consensus
protocol as the one used for verification, thus enabling a cross-
check between simulation and verification.

A further advantage of the co-simulation approach is that
it makes it possible to simulate models produced by different
tools (e.g. OpenModelica and 20-sim) possibly acquired off-
the-shelf from different providers, requiring only the genera-
tion of the appropriate FMUs.

This approach is quite general and its application to the case
study shows some advantages of combining formal verification
and co-simulation in the analysis of CPSs. FMI-based co-
simulation facilitates the decomposition of a large, complex
model into submodels along natural lines, i.e. according to
their function or physical model, and developers are free to
choose how to apply formal verification to each submodel. For
example, higher-order logic could be used for the control part
and dynamic logic for the physical plant. It is also possible to
focus formal verification on a single, more critical submodel,
as in this case study. Using a co-simulation standard such as
FMI also simplifies communication among the different teams
involved in the design phase.

The approach discussed in this paper is applicable to a large
class of systems, including cyber-physical ones, thanks to the
expressiveness of higher-order logic, the deductive power of
sequent calculus and the cumulative expertise of the theorem-
proving community, which is concretely available in the form
of published literature and verified theories. The latter, in
particular, span many areas of mathematics, from basic ones
such as real analysis, trigonometry and linear algebra, to more
specialized topics such as various classes of polynomials or
interval arithmetic.

It would be naïve to claim that higher-order logic theorem
proving could dramatically ease the effort of control system
design for CPS. Such an endeavour poses hard and evolv-
ing challenges requiring hard work and ingenuity, but it is
safe to expect theorem proving to make a solid foundation to
deal effectively with them (no silver bullet, but well-honed
tools). For example, available NASALIB theories on mul-
tivariate polynomials can be used in optimization problems

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 19

arising in model-predictive control design. Theories on inter-
val and affine arithmetic can be used to verify that a given
numerical method guarantees the precision needed in sys-
tems subject to bifurcation and other numerical instability
problems.

As examples of application to simple non-linear control prob
lems, PVS has been used to verify safety properties in a non-
linear hybrid system [6] using over- and under-approximations,
and to compute an upper bound to the maximum distance from
a target line for a line seeking robot [4].

Further, generally applicable theories or theory patterns are
being developed in the area of linearized control systems [16].

Finally, it would be convenient to apply this approach to
the co-operative systems represented by the linear time-varying
models typical of opinion dynamics systems [21]. Indeed, since
in these systems the neighbourhood changes discontinuously
with time, an analytic direct analysis is known to be a hard task.

8. APPENDIX

In the following, the PVS proof of invariant spatial ordering
theorem (Theorem 7.2) is shown.

LISTING 8. Theorem 7.1 (spatial order invariant) in PVS.

The proof started by the theorem shown in Listing 8. The
first step is a simple rearrangement (flattening) of the goal:
no_cross:

Then, the induct command causes the theorem prover to start
a proof by induction on k, generating the base case no_cross.1
and the induction step no_cross.2:

The base case is proved in few steps (not shown) using
two axioms (not shown) corresponding to Definition 5 and
Assumption 2, added to the antecedents with the lemma rule.

The induction step is:

The outermost quantifier is eliminated by the skolem com-
mand, which replaces the occurrences of the induction variable
j in formula {1} with the new constant j, which has been chosen
to have the same name of the variable it replaces (another name
could have been chosen, or generated by the theorem prover):

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

20 C. Bernardeschi et al.

After flattening and skolemizing again, we obtain:

where j is a constant in formulas [-1] and {1}, while the symbol i
represents a variable in [-1] and a constant in {1}. The definition
of kth_step is expanded in {1}, and then the one of tick:

The first argument of getx is a conditional expression. The
lift-if command lifts the conditional to the outermost level:

The split command expands the conditional in two comple-
mentary implications, i.e.,

and

thus yielding two subgoals. The first one has the more complex
subproof, since it represents the case when the system state is
updated:

The complexity of the proof is mainly due to the structure of
the functions involved, but the proof strategy is quite simple.
First, the sequent is reduced to the form

Then, the inequality in {1} is transformed by repeated expan-
sions of x_coverage and tick. This produces many branches
due to the conditional expressions in the functions. In each
branch, the resulting inequalities are solved by instantiating the
induction hypothesis [1] and doing algebraic manipulations.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 21

For example, the following sequent:

is on the branch corresponding to the conditions kth_step(j)
‘timesteps = n, i > 0, and i < N − 2. Expanding exec_cvg
yields, with a couple of transformations,

The induction hypothesis {4} is then instantiated succes-
sively with i − 1, i, and i + 1, obtaining a sequent with the

three inequalities [-5], [-6], and [-7] in the antecedent:

Further manipulations and some utility lemmas (not shown)
make it possible to assemble an antecedent formula matching
the consequent, thus solving the subgoal:

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

22 C. Bernardeschi et al.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their useful comments and suggestions. The authors would also
like to thank the INTO-CPS association for providing the co-
simulation environment.

FUNDING

Ministero dell’Istruzione, dell’Università e della Ricerca, Italy,
in the framework of the CrossLab project (Departments of
Excellence).

DATA AVAILABILITY

The data underlying this article will be shared on reasonable
request to the corresponding author.

REFERENCES

[1] Alur, R. and Dill, D.L. (1994) A theory of timed automata. Theor.
Comput. Sci., 126, 183–235.

[2] Attarzadeh Niaki, S.H. and Sander, I. (2011) Co-simulation of
Embedded Systems in a Heterogeneous MoC-Based Modeling
Framework. In The 6th IEEE Int. Symposium on Industrial and
Embedded Systems, NW Washington, DC, USA, June 15–17,
2011, pp. 238–247. IEEE Computer Society, Västerås, Sweden.

[3] Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Petter-
son, P., Wang, Y. and Hendriks, M. (2006) UPPAAL 4.0. In
The 3rd Int. Conf. on Quantitative Evaluation of Systems (QEST
2006), NW Washington, DC, USA, Sept. 11–14, 2006, pp. 125–
126. IEEE Computer Society, Riverside, CA, USA.

[4] Bernardeschi, C., Domenici, A., Fagiolini, A. and Palmieri, M.
(2020) Block-Based Models and Theorem Proving in Model-
Based Development. In The 2nd Interactive Workshop on the
Industrial Application of Verification and Testing, ETAPS 2020
Workshop (InterAVT 2020), Virtual event, 25 April, 2020,
pp. 1–8.

[5] Bernardeschi, C., Dini, P., Domenici, A., Palmieri, M. and
Saponara, S. (2020) Formal verification and co-simulation in the
design of a synchronous motor control algorithm. Energies, 13,
1–23.

[6] Bernardeschi, C. and Domenici, A. (2016) Verifying safety
properties of a nonlinear control by interactive theorem proving
with the prototype verification system. Inf. Process. Lett., 116,
409–415.

[7] Bernardeschi, C., Domenici, A. and Masci, P. (2016) Model-
ing Communication Network Requirements for an Integrated
Clinical Environment in the Prototype Verification System. In
The 2016 IEEE Symposium on Computers and Communication
(ISCC), NW Washington, DC, USA, June 27–30, 2016, pp. 135–
140. IEEE Computer Society, Messina, Italy.

[8] Bernardeschi, C., Domenici, A. and Masci, P. (2018) A PVS-
Simulink integrated environment for model-based analysis of
cyber-physical systems. IEEE Trans. Softw. Eng., 44, 512–533.

[9] Bernardeschi, C., Domenici, A. and Saponara, S. (2019) For-
mal verification in the loop to enhance verification of safety-
critical cyber-physical systems. Electronic Communications of

the EASST, Interactive Workshop on the Industrial Appli-
cation of Verification and Testing, ETAPS 2019 Workshop,
77, 1–9.

[10] Blochwitz, T.et al. (2011) The Functional Mockup Interface for
Tool independent Exchange of Simulation Models. In Proc. of
the 8th Int. Modelica Conf., Linköping, Sweden, March 20th–
22nd, 2011, pp. 105–114. Linköping University Electronic Press,
Dresden, Germany.

[11] Bohrer, B., Rahli, V., Vukotic, I., Völp, M. and Platzer, A. (2017)
Formally Verified Differential Dynamic Logic. In Proc. of the 6th
ACM SIGPLAN Conf. on Certified Programs and Proofs, CPP
2017, New York, NY, USA, January 16–17, 2017, pp. 208–221.
ACM, Paris, France.

[12] Bullock, D., Johnson, B., Wells, R.B., Kyte, M. and Li, Z. (2004)
Hardware-in-the-loop simulation. Transport. Res. Part C Emerg.
Technol., 12, 73–89.

[13] Chen, X., Tang, J. and Lao, S. (2020) Review of unmanned
aerial vehicle swarm communication architectures and routing
protocols. Appl. Sci., 10, 1–23.

[14] Cortés, J., Martínez, S., Karatas, T. and Bullo, F. (April 2004)
Coverage control for mobile sensing networks. IEEE Trans.
Robotics Automation, 20, 243–255.

[15] Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M.
and Tripakis, S. (Nov 2019) Hybrid co-simulation: it’s about
time. Softw. Syst. Model., 18, 1655–1679.

[16] Domenici, A. and Bernardeschi, C. (2021) A Logic Theory
Pattern for Linearized Control Systems. In The 6th Workshop
on Formal Integrated Development Environment (F-IDE 2021)
– Affiliated to NASA Formal Methods 2021, Virtual event, Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS),
May 24-25, 2021, in press.

[17] Domenici, A., Fagiolini, A. and Palmieri, M. (2018) Integrated
Simulation and Formal Verification of a Simple Autonomous
Vehicle. In Software Engineering and Formal Methods (SEFM
2017), volume 10729 of LNCS, Trento, Italy, September 4–5,
2017, pp. 300–314. Springer, Cham.

[18] Fax, J.A. and Murray, R.M. (Sept 2004) Information flow and
cooperative control of vehicle formations. IEEE Trans. Automat.
Contr., 49, 1465–1476.

[19] Fitzgerald, J.S., Larsen, P.G. and Verhoef, M. (2007) Vienna
Development Method, pp. 1–11. John Wiley & Sons, Inc, Hobo-
ken, NJ, USA.

[20] Franchetti, F.et al. (April 2017) High-assurance SPIRAL: end-
to-end guarantees for robot and car control. IEEE Contr. Syst.,
37, 82–103.

[21] Gasparri, A. and Oliva, G. (2012) Fuzzy Opinion Dynamics.
In The 2012 American Control Conference (ACC), NW Wash-
ington, DC, USA, June 27–29, 2012, pp. 5640–5645. IEEE
Computer Society, Montréal, Canada.

[22] Gomes, C., Legat, B., Jungers, R.M. and Vangheluwe, H. (2017)
Stable Adaptive Co-simulation: A Switched Systems Approach.
In IUTAM Symposium on Co-Simulation and Solver Coupling,
number 35 in IUTAM Bookseries, September 18–20, 2017,
pp. 81–97. Springer, Cham, Darmstadt, Germany.

[23] Gomes, C., Thule, C., Broman, D., Larsen, P.G. and Vangheluwe,
H. (May 2018) Co-simulation: a survey. ACM Comput. Surv, 51,
49:1–49:33.

[24] Henzinger, T.A. (1996) The Theory of Hybrid Automata. In
Proc. of the 11th Annual IEEE Symposium on Logic in Com-

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

Co-simulation and Verification for Drone Swarms 23

puter Science, NW Washington, DC, USA, July 27–30, 1996,
pp. 278–292. IEEE Computer Society, New Brunswick, NJ,
USA.

[25] Holt, J. and Perry, S. (2008) SysML for Systems Engineering.
Institution of Engineering and Technology, Stevenage, UK.

[26] Jadbabaie, A., Lin, J. and Morse, A.S. (June 2003) Coordination
of groups of mobile autonomous agents using nearest neighbor
rules. IEEE Trans. Automat. Control, 48, 988–1001.

[27] Jalali, L., Mehrotra, S. and Venkatasubramanian, N. (Nov 2014)
Simulation integration: Using multidatabase systems concepts.
Simulation, 90, 1268–1289.

[28] Kar, S., Moura, J.M.F. and Ramanan, K. (June 2012) Distributed
parameter estimation in sensor networks: nonlinear observation
models and imperfect communication. IEEE Trans. Inf. Theory,
58, 3575–3605.

[29] Koenig, N. and Howard, A. (2004) Design and Use Paradigms
for Gazebo, An Open-Source Multi-robot Simulator. In The 2004
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
NW Washington, DC, USA, 28 September – 2 October, 2004,
pp. 2149–2154. IEEE Computer Society, Sendai, Japan.

[30] Larsen, P.G.et al. (2016) Integrated Tool Chain for Model-Based
Design of Cyber-Physical Systems: The INTO-CPS Project. In
The 2nd Int. Workshop on Modelling, Analysis, and Control of
Complex CPS (CPS Data), NW Washington, DC, USA, April
11, 2016, pp. 1–6. IEEE Computer Society, Vienna, Austria.

[31] Larsen, P.G., Gamble, C., Pierce, K., Ribeiro, A. and Lausdahl,
K. (2014) Support for Co-modelling and Co-simulation: The
Crescendo Tool, pp. 97–114. Springer, Berlin Heidelberg.

[32] Leivant, D. (1994) Higher order logic. In Gabbay, D.M., Hogger,
C.J., Robinson, J.A. (eds) Handbook of Logic in Artificial Intelli-
gence and Logic Programming, pp. 229–321. Oxford University
Press, Oxford, UK.

[33] Mahony, R., Kumar, V. and Corke, P. (2012) Multirotor aerial
vehicles: Modeling, estimation, and control of quadrotor. IEEE
Robot. Autom. Mag., 19, 20–32.

[34] Manna, Z. and Pnueli, A. (1995) The Temporal Logic of Reactive
Systems: Safety. Springer, New York.

[35] Masci, P., Curzon, P., Harrison, M., Ayoub, A., Lee, I. and
Thimbleby, H. (2013) Verification of Interactive Software for
Medical Devices: PCA Infusion Pumps and FDA Regulation as
an Example. In The EICS2013, 5th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, New York, NY,
USA, June 24–27, 2013, pp. 81–90. ACM, London, UK.

[36] Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A.
and Consiglio, M. (Sept 2015) DAIDALUS: Detect and Avoid
Alerting Logic for Unmanned Systems. In Proc. of the 34th
Digital Avionics Systems Conf. (DASC 2015), NW Washington,
DC, USA, Sept. 13–17. 2015. IEEE Computer Society, Prague,
Czech Republic.

[37] Narkawicz, A., Munoz, C., and Dutle, A. (2018) The Minerva
Software Development Process. In Natarajan Shankar and
Bruno Dutertre (eds.), Automated Formal Methods, volume 5
of Kalpa Publications in Computing, May 19–20, 2017, pp. 93–
108. Moffett, CA, USA. EasyChair.

[38] Newell, J., Pang, L., Tremaine, D., Wassyng, A. and Lawford, M.
(Jan 2018) Translation of IEC 61131-3 function block diagrams
to PVS for formal verification with real-time nuclear application.
J. Autom. Reason., 60, 63–84.

[39] NIA 2003–03, NASA/CR-2003-212418 (2003) Rapid prototyp-
ing in PVS. Technical report. National Institute of Aerospace,
Hampton, VA, USA.

[40] Oladimeji, P., Masci, P., Curzon, P. and Thimbleby, H. (2013)
PVSio-web: a tool for rapid prototyping device user interfaces
in PVS. Electron. Commun. EASST , 69, 1–8.

[41] Olfati-Saber, R., Fax, J.A. and Murray, R.M. (Jan 2007) Consen-
sus and Cooperation in Networked Multi-agent Systems. Proc. of
the IEEE, 95, 215–233.

[42] Owre, S., Rajan, S., Rushby, J., Shankar, N. and Srivas, M.
(1996) PVS: Combining Specification, Proof Checking, and
Model Checking. In Alur, R., Henzinger, T.A. (eds), Computer-
Aided Verification, CAV ‘96, number 1102 in LNCS, pp. 411–
414. Springer, Berlin, Heidelberg.

[43] Palmieri, M., Bernardeschi, C. and Masci, P. (2018) Co-
simulation of semi-autonomous systems: the Line Follower
Robot case study. In Software Engineering and Formal Methods
(SEFM 2017), volume 10729 of LNCS, Trento, Italy, September
4–8, 2017, pp. 423–437. Springer, Cham.

[44] Palmieri, M., Bernardeschi, C. and Masci, P. (2020) A frame-
work for FMI-based co-simulation of human–machine inter-
faces. Softw. Syst. Model., 19, 601–623.

[45] Platzer, A. and Quesel, J.-D. (2008) KeYmaera: A Hybrid
Theorem Prover for Hybrid Systems (System Description). In
Armando, A., Baumgartner, P., Dowek, G. (eds), Automated Rea-
soning, volume 5195 of LNCS, pp. 171–178. Springer, Berlin
Heidelberg.

[46] Püschel, M.et al. (Feb 2005) SPIRAL: code generation for DSP
transforms. Proc. of the IEEE, 93, 232–275.

[47] Wei, R., Beard, R.W. and Atkins, E.M. (2005) A Survey of
Consensus Problems in Multi-agent Coordination. In Proc. of the
2005 American Control Conf., NW Washington, DC, USA, June
8–10, 2005, pp. 1859–1864. IEEE Computer Society, Portland,
OR, USA.

[48] Sander, I. and Jantsch, A. (Jan 2004) System modeling and
transformational design refinement in ForSyDe. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 23, 17–32.

[49] Selic, B. (Sept 2003) The pragmatics of model-driven develop-
ment. IEEE Software, 20, 19–25.

[50] Skorobogatov, G., Barrado, C. and Salami, E. (2020)
Multiple UAV systems: a survey. Unmanned Systems, 8,
149–169.

[51] Smullyan, R.M. (1995) First-Order Logic. Dover Publications,
Mineola, NY, USA.

[52] Wang, B. and Baras, J.S. (Oct 2013) HybridSim: A Modeling
and Co-simulation Toolchain for Cyber-Physical Systems. In
The 2013 IEEE/ACM 17th Int. Symposium on Distributed Simu-
lation and Real Time Applications (DS-RT), NW Washington,
DC, USA, October 30–November 1, 2013, pp. 33–40. IEEE
Computer Society, Delft, Netherlands.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 00 No. 0, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article/doi/10.1093/com
jnl/bxab161/6408792 by guest on 04 August 2022

	Co-simulation and Formal Verification of Co-operative Drone Control With Logic-Based Specifications
	Introduction
	Related work
	Background
	Higher-Order Logic for Specification and Co-simulation
	Application to a specific case
	Co-simulation results
	Formal verification
	Discussion and conclusions
	Appendix

