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Coastal zones are dynamic interfaces shaped by the interplay of Land Cover (LC) and Land Use (LU), 
influenced by both natural processes and anthropogenic activities. Grasping the historical shifts in land 
is essential for safeguarding coastal benefits such as defense mechanisms, biodiversity conservation, 
and recreational spaces, alongside enhancing their management. LC and LU products offer a valuable 
option for monitoring urban development, vegetation coverage, and dry-beach areas. Herein, we 
present the first study of the spatiotemporal evolution of LC specifically tailored for coastal zones, 
using the coast of Sicily as an illustration. We used classified satellite imagery from Landsat and 
Sentinel missions as input for a semantic segmentation model based on deep neural networks. We 
trained the model with an extensive dataset of coastal images. Our classification and analysis of 
coastal LC dynamics from 1988 to 2022 provide insights at a high spatiotemporal resolution. We 
identified key factors driving urban transformation, underscoring the impact of urban expansion on 
vegetated areas, and explored its correlation with economic and demographic growth. This study 
includes a multiscale analysis of coastal changes, encompassing long-term trends and seasonal 
fluctuations across Sicilian beaches. Our findings can contribute to preserve coastal areas by informing 
policymaking aimed at sustainable management.

Knowledge of Land Use (LU) and Land Cover (LC) changes is key information for effective management of 
agricultural production, natural resource use, and understanding of various environmental drivers such as local 
and global temperature regimes, precipitation, and shifts in biodiversity and ecosystem health1,2. These changes 
in LU are driven by many factors, including climatic variations on land3,4 due to changes in rainfall patterns 
and vegetation, and rising temperatures. Additionally, human activities5,6 can significantly affect LU through 
urbanization, deforestation, intensive agriculture, and infrastructure construction. Such practices can lead to a 
rapid transformation of the environment, thereby influencing LU trends. In coastal zones, these changes occur 
more rapidly due to the dynamic nature of these areas, which undergo changes at different temporal scales7–9. 
Coastal landscapes and shorelines are modified by erosion and sedimentation caused by waves and water levels 
and by anthropogenic interventions that have been deployed to protect communities from erosion and flood 
risks10,11 and provide them with recreational services.

Historically, humans have settled along the coast where they have developed ports and commercial centers. 
Industrialization catalyzed the expansion and transformation of coastal cities, fostering infrastructure growth. 
Over the past six decades, there has been a significant shift of the population and economic activities towards 
the coast12,13, which in turn has increased environmental degradation through deforestation, pollution, and 
habitat destruction. Degradation of dune vegetation can increase beach erosion, amplify coastal flooding and 
pose risks to both the tourism sector and the safety of coastal population14,15. Likewise, human-induced loss of 
coastal habitats can negatively affect both marine and terrestrial biodiversity16,17. The historical evolution of LU 
and LC reflects many of these dynamics and analyzing them can help understand the origin of changes, the pace 
at which they have occurred, and even what might happen in a few years18–20. This information can help improve 
resource and land planning21,22, especially in coastal areas, with all indications pointing towards their continued 
growth in the future.

LC mapping has evolved considerably over the last 30 years. Initially this was done through visual analysis of 
aerial imagery23,24, and then moved to automatic categorization of multispectral satellite imagery25 using non-
supervised26,27 or fully supervised28,29 approaches. In recent years, it has become increasingly common to use 
neural networks techniques30 (especially CNN, convolutional neural networks) for of LULC maps detection31–35. 
Most of the LULC products available to date, which are not obtained from photo-interpreted datasets, have low 
spatial resolutions (1 km and 300 m for GLCC and ESA Land Cover - CCI respectively). In contrast, products 
obtained by state-of-the-art methods, such as Artificial Neural Networks, and with higher spatial resolution 
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(10 m) are still tested and validated through the use of visual photo-interpretation images (ESRI Land Cover36,37) 
without including datasets specific to coastal areas. Since the quality of the dataset is crucial to the classification 
process, complex environments such as the coast require a tailor-made solution. This is something that has not 
yet been fully developed to date. Although several LULC products have already been developed and used for the 
analysis of changes at different spatial scales, the real gap lies in coastal-specific LULC maps. The Coastal Zone38 
is the only LULC product specific to coastal environments but also obtained through visual interpretation and 
thus only available for two reporting years. While the ESRI 2020 Global Land Use Land Cover is obtained by 
employing artificial intelligence but being a global product and trained mainly with images of the hinterland, 
it is not specific and has gaps especially in coastal environments. Classifying coastal LC is a challenging task in 
remote sensing because of the complex and fragmented nature of coastal landscapes. Starting from the work of 
Liu et al.,39, in which global-scale urbanization maps are provided for each year from 1985 to 2015, it can be 
seen that while from an urban perspective one map per year of coastal LULC is acceptable for coastal LULC, an 
annual map is not sufficient to capture both short- and long-term changes in, for example, beaches (the case of 
Coastal Zone product). On the opposite side40 introduced a methodology for obtaining a high resolution (10 m) 
LULC map for Vietnam, using a CNN approach based on temporal rather than spatial features. Due to the 
aforementioned coastal dynamism and the complex nature-human interactions in coastal environments, it is of 
particular interest to obtain LC classifications specific to coastal environments. Especially at appropriate spatial 
and temporal scales and sampling intervals to capture their dynamism. A summary of the discussed LULC 
products and their acquisition methodologies, spatial and temporal scales (time sampling) is given in Table 1. All 
the LULC products reported in Table 1 are characterized by one map per reported years (e.g. ESA Land Cover – 
CCI, 1 image per year from 1992 to 2015).

A key novelty of our work is the use of a semantic segmentation model trained with an extensive dataset 
specific for coastal environments, the Coast Train41. We rely on state-of-the-art artificial intelligence techniques 
to recognize the characteristics of coastal environments and classify large coastal regions in short computational 
times and with high accuracy. Here, we showcased the methodology and its potential along the coast of Sicily 
(Italy). We developed an extensive hindcast of classified images for each month from 1988 to 2022, contributing 
significantly to the understanding of LC dynamics in this area over three decades. We acquired Landsat and 
Sentinel − 2b images and processed them using semantic segmentation techniques based on CNN. We correlated 
the LULC complex spatial model with scalar indicators such as socio-economic development. We conducted a 
historical analysis of the evolution of socioeconomic indicators of Sicilian coastal cities (population and income) 
in relation to coastal urbanization trends. We also investigated the evolution of the extent of Sicilian beaches, on 
an annual and seasonal basis, highlighting erosion and accretion over the three decades under study.

The main objective of this study is therefore to obtain coastal maps over time classified using a specifically 
trained model and to analyze the resulting coastal dynamics by exploring trends in variations of land cover 
classes and the main sources of conversion, providing information relevant for coastal management policies.

Table 1. Collection and comparative analysis of LC data products across varied spatial scales.
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Study area
Sicily, the largest island in Italy and the Mediterranean, boasts a topography dominated by hills and mountains, 
with a coastline that serves as a major attraction. From the coastal perspective, Sicily, has a coastline stretching 
approximately 1600 km, characterized by diverse coastal settings varying in geology, shapes, marine climates, 
human influence, and more. Approximately 30% of this coast is rocky, transitioning between shallow carbonate 
platforms and elevated rocky cliffs. The remaining 70% primarily consists of sandy or pebbly shores, which are 
often long and subject to erosion, prompting demands for local government intervention. As already suggested 
in42 in this research we will refer to the Sicilian coast into three significant segments: firstly, the Tyrrhenian 
segment from Boeo Cape to Peloro Cape (Thyrrenihan sea); secondly, the Ionian segment from Peloro Cape to 
Passero Cape (Ionian sea) and thirdly, the Central Mediterranean stretch from Passero Cape back to Boeo Cape 
(Mediterranean sea). We will refer hereinafter to these three macro-regions. A concise representation of Sicily 
and its geographical location is shown in Fig.  1. Considering this territorial complexity and transformation 
trough years, is surprising that there is still a lack of a complete picture regarding LC changes in coastal Sicilian 
areas, which are certainly characterized by areas with complex and heterogeneous coastal landscapes. The 2020 
Regional Plan Against Coastal Erosion (PRCEC) is currently the only cognitive tool for coastal land in Sicily.

The communities of Sicily’s coastal centers show considerable variation in size and demographic composition. 
Large coastal cities such as Palermo, Trapani and Catania have hosted dense populations due to their strategic 
location and sea-related economic opportunities. However, in recent years, there has been a considerable 
exodus from these cities to neighboring towns, probably due to declining quality of life in the main cities. In 
addition, Sicily has suffered protracted depopulation, mainly due to the migration of young people seeking 
work or educational opportunities elsewhere. Socioeconomically, Sicily’s coastal centers present a diverse range 
of situations. Some benefit from prosperous economies related to tourism and maritime activities, particularly 
those with private marinas (e.g., Marina di Ragusa), while others face more significant economic challenges 
due to a dearth of job opportunities, especially in smaller communities. These conditions have contributed to a 

Fig. 1. Representation of Sicily, depicting Coastal Municipalities (CMs) in shaded blue areas, LICELs (LCs) 
segments in red, and highlighted locations (yellow points) referenced in the study (Reference System: WGS84-
UTM33N-EPSG: 32633).
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steady decline in Sicily’s overall population in recent years, influenced mainly by residents of inland cities and 
towns.

Results
Validation of the model
To assess the CNN model’s ability in segmenting various LC types and validate its performance, we implemented 
the methodology outlined in the ”Methods” section across four distinct sites in Sicily. Each manually generated 
Ground Truth image covered an area of 10 km2, totaling 40 km2.

Figure 2 shows a graphical comparison between the reference satellite images (Capo Granitola, 2006, beach 
in panel A, the Catania airport area, 2013, in panel B, the Porto Palo coastal area, 2009, in panel C and the 
urban coastal center of Palermo, 2019, in panel D) and the ground truth by hand classified images (second 
line, respectively from E to H panel) with the images classified by the semantic segmentation model (third line, 
from I to L panel). As can be seen, the semantic segmentation provides the classification value predicted by the 
model at pixel scale. This comparison visually demonstrates the similarities and differences between the GT and 
model-generated LC classifications. The significant dissimilarities primarily arise from the nature of semantic 
segmentation, which delivers, as already reported, a pixel-level classification outcome, with each pixel classified 
based on the model’s prediction. In this scenario, classes may exhibit greater fragmentation compared to GT 
images. However, semantic segmentation can yield more precise results in areas with elevated LC variability.

To validate the model results quantitatively as well as qualitatively, we estimated the degree of accuracy and 
coefficient k (see “Methods”). The results are shown in Table 2.

The image validation results of four locations (Capo Granitola, Catania, Porto Palo, Palermo) are shown in 
Table 2. Each sub-table links the ground image to the model output, showing the number of correctly classified 
pixels for each LC class. The diagonals in bold indicate the correct detections, i.e. the pixels classified in the 
same way in the reference map and in the survey result (TPi). As can be observed, the detection of water pixels, 
for all images, is always above 98%. This is because the model used was extensively trained with coastal images. 
The results also show that no category (for any of the four images) has a Class Accuracy that is less than 50%. 
The lowest Class Accuracy values are for the Vegetation and Beach classes in the Capo Granitola map, for the 
Vegetation class in the Porto Palo map, and for the Vegetation and Bare Land classes for the Palermo map. 
The classes that show lower Class Accuracy than the others each time are the least frequent in each image. 
Conversely, the classes with a higher occurrence of pixels (e.g. Bare Land for Capo Granitola, Builtup for Catania 
and Palermo, and bare Land for Porto Palo) are always recognized by the model with an accuracy degree higher 
than 80%. For three out of four comparisons the class related to Beach always has a degree of accuracy greater 
than 60%. Only Capo Granitola shows a rate of 56%, but again the total number of pixels is significantly lower 
than those of the other classes. Overall, the comparison on Cape Grantiola shows an OA of 87.9%, Catania 
88.2%, Porto Palo 82.3%, and Palermo 76.6%.

Fig. 2. Visual validation of the image segmentation algorithm at four coastal sites. Panels (A–D) (first row), 
(E–H) (second row) and (I–L) (third row) shows the reference satellite images, the ground-truth detection, 
and the model classification, respectively.
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Table 2 also shows the values of the k coefficient for each comparison, again obtaining Substantial Agreement 
(SA) or Almost Perfect Agreement (APA)43 for each image analyzed. Specifically 0.79 (SA), 0.83 (APA), 0.7 (SA) 
and 0.67 (SA) for Capo Granitola, Catania, Porto Palo and Palermo, respectively.

Further validation, of a qualitative nature, of the classified images obtained is shown in the Supplementary 
Information (Fig. S1).

Built-up area evolution
Figure  3 shows the time series of built-up areas for the localities of Salemi, Mazara del Vallo, Modica, Tre 
Fontane/Triscina, Marsala-Lido Signorino and Caltagirone, with a classified image (second column) showing 
the trend of the built environment in the years from 1988 (light blue) to 2022 (red) for the areas within the grey 
boxes in the satellite images of the first column.

In general, for all selected locations, the pixels (green to red) of new urbanization (post-1988) represent 
the majority of built-up pixels. The urbanization rates in relative terms were 380, 88, 435, 63, 142 and 485% of 
increase respect to 1988 builtup areas from Salemi to Caltagirone, respectively. For all of the locations analyzed, 
therefore, urban expansion occurred mainly in suburban areas, particularly for Salemi, Modica and Caltagirone. 
For Salemi it is possible to note one of the largest and “necessary” urban expansion that occurred in the years 
after 1968 (and thus included in the scale of visualization of this work) following the “Belice Earthquake” 
of magnitude 6.4 that affected the area in 1968. Similarly, for Caltagirone where we note the 485% building 
expansion (compared to 1988) that led to the construction of the new town and the growth of services and 
commercial activities and Modica with 435% due to the expansion of the city into the suburbs (also as a result 
of increased tourism).

Spatial distribution of land cover changes
Figure 4 shows the spatio-temporal variation of the Vegetation class (subplot A), Bare Land (subplot B) and 
Built-up land (subplot C and D) from 1988 to 2022. For each class type, we provide the LC gains, losses and 
stable areas and the evolution of the builtup area, which has increased by 47.3% from 1988 to 2022. This 
graphical representation offers a comprehensive look into the evolving nature of Sicily’s terrains over a span of 
35 years. The northeast part of the Sicilian coastal area is characterized by a very dense presence of vegetation 
(top right area of panel A), which has remained largely stable over the years (except for losses near urban areas). 
In contrast, the southern area shows an almost complete absence of vegetation. This can be attributed to the 
fact that this latter part of Sicily is densely populated with greenhouses. The western region, on the other hand, 
has experienced the most significant loss of vegetation, 77% of the total vegetation loss on the entire island. A 

Table 2. Quantitative validation at four coastal sites using confusion matrices where the pixels classified by the 
segmentation algorithm are confronted with the ground-truth detection.
Each diagonal (in bold) represents the correct detections. The classification accuracy, the overall accuracy and 
the kappa coefficients are displayed for each class.
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behavior almost opposite to that of vegetation is displayed by the bare land map (panel B). In this instance, where 
vegetation increases, there is a corresponding loss in bare land (50% of the entire bare land loss). Conversely, 
where vegetation decreases not due to human causes, a form of desertification might occur, leaving the ground 
as bare soil.

More details on trends over the years for LC classes are in the Supplementary Information (Figure S2).

Changes in conversion sources for urban areas
Figure  5 shows the impacts of urban growth on major LCs (Vegetation and Bare Land) for each coastal 
municipality in absolute and relative terms over the period 1988–2022. The spatial representation of Sicily in the 
same figure shows the primary source of conversion of built-up area expansion in each CM. As can be observed, 
all the coastal municipalities in the north/northeastern part of Sicily have experienced expansion at the expense 
of the vegetation class. The opposite holds true for bare land. As described in Fig. 4, the spatial subdivision of 
the two classes is apparent. During the period considered, the trend is always increasing for both vegetation 

Fig. 3. Built up land expansion over the 1988–2022 period at six different cities: Salemi, Mazara del Vallo, 
Modica, Tre Fontane/Triscina, Marsala and Caltagirone. The second column shows the zooms (grey boxes in 
first column) temporal evolution of the builtup area overlaid with satellite images while the time series of built-
up areas for all the localities is reported on the third column.
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Fig. 5. Impacts of urban growth on the main LUs (vegetation and bare land) for each coastal municipality in 
absolute (a) and relative terms (b) over the 1988–2022 period. In panel (c) the primary conversion source of 
built-up area expansion is highlighted in each coastal municipality.

 

Fig. 4. Spatial distribution of stability, gains and losses in vegetated (subplot (A)), bare-land (subplot (B)) and 
built-up area (subplots (C) and (D)) in Sicily between 1988 and 2022. Each subplot illustrates the variations 
in LC types, accompanied by a summary bar plot indicating gain, loss, and stable area values (subplot (A–C)). 
The time trend and relative bar plot of the built up on regional scale is shown in subplot (D).
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and bare land. In particular, there was an increase of about 20 times the 1988 urbanized area conversion value 
for the bare land class and about 7 times for the vegetation class. In the recent years (2017–2022), a growth 
trend has been observed in the built-up class, which is mirrored by a similar trend in the vegetation class. 
This suggests that the limited urbanization that occurred during this period had a more pronounced impact 
on the bare land class. In the early years, vegetation and soil values are similar or close in percentage terms, 
suggesting that there is a balance between the two. However, over time, a significant change is noted. The fact 
that the percentage of vegetation decreases relative to bare land indicates that building expansion has had a 
greater impact on vegetation than on bare land. In fact, while the vegetation class has a decrease from 54 to 34%, 
the bare land class shows the mirror-like trend. This means that as urbanization has progressed, green areas, 
such as forests or cultivated areas, have been converted into built-up areas. This has resulted in a significant 
reduction in vegetation. The rapid decrease in vegetation until 1992 (from 54 to 39%) suggests that there were 
very intense land transformations during that period, which led to a rapid loss of vegetation. After 1992, the 
decrease in the percentage of vegetation continued, but at a slower, almost constant rate. This could indicate 
that soil transformations have stabilized, with fewer vegetation conversions to unvegetated land, or that the 
remaining vegetation areas have been more effectively conserved.

Changes in urban areas and correlation with socioeconomics
Figure  6 shows the correlation between these LU shifts and their relationships with various socio-economic 
indicators. The trend tests, all statistically consistent according to the Mann-Kendall test (p-value always less 
than 0.05), reveal distinct patterns. Coastal areas between the Mediterranean and Ionian stretches show a 
predominant population increase (first subplot to the left of the first row), while Tyrrhenian CMs generally 
experience depopulation, with some reversal west of Palermo (Gulf of Castellammare). In terms of income 
trends (second subplot from the left of the first row), negative patterns are observed in most Mediterranean 
municipalities, while the Tyrrhenian and Ionian CMs are more heterogeneous. The Mediterranean coastal area 
shows the highest urbanization trends, followed by the Ionian area, whereas the Tyrrhenian CMs, especially in 
the eastern part, exhibit fewer positive trends. In the second row of Fig. 6, contrasting trends are evident between 
built-up evolution and population. Sciacca experiences population growth of 3.9%, while other CMs show 
population decreases of 12.3% for Palermo, 25.5% for Caronia, 16.7% for Catania, 18.6% (a smaller decrease of 
7.1% until 2017 and then a steep decrease) for Trapani and 5.3% for Gela. Caronia and Sciacca record the largest 
relative percentage increases in built-up areas (78% and 79.6%, respectively), which can be attributed to civil 
infrastructure development. Conversely, Palermo, Catania, Trapani, and Gela exhibit more moderate increases 
in built-up areas (8.4%, 22.1%, 43.5%, and 33.8%, respectively). Trapani, despite a decreasing population since 
1988, shows a recent slowdown in population loss.

Fig. 6. Urbanization and LC dynamics in Sicilian coastal cities: correlating builtup area, population, and 
income trends from 1988–2022. In the figure’s first column, for each CM, population, income, and built-up 
area trends are shown. The second row presents trends in built-up areas (red) and population (blue) for six 
CM, with respective variance bands for each timeseries. Axis annotations indicate specific category values.
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Also in Fig. 6, it can be seen how, over time, the urbanization of the large Scillian cities (e.g. Catania or 
Palermo) has grown at a high rate and a decline in the city’s population. In fact, incomes have also fallen in 
these areas, probably due to unrestrained building in the periphery that may not have contributed significantly 
to the growth of the local economy. It is necessary, however, to point out how the trend scales, which while also 
showing positive values, are predominantly unbalanced for both population and income. In fact, the color graded 
scales in the first row of Fig. 6, show a significant imbalance between negative and positive trends. We obtained 
negative maxima of -2124 res/year and − 834 €/res year, while positive ones stop at + 676 res/year and + 143 €/
res year for population and income, respectively. Finally, we found no clear correlations between population 
and urbanization. In fact, observation of decreasing population, increasing urbanization and variable, but often 
decreasing trends within LC areas reveals a complex picture of socioeconomic and environmental dynamics in 
Sicilian coastal communities.

For a greater understanding of the correlations between the built environment and the socioeconomic 
indicators analyzed, we created a map of the correlations between builtup, income and population (Figure S3 in 
the Supplementary Information).

Changes in beach area dynamics
Figure 7 provides a visualization of beach erosion and accretion trends at the LICEL scale and the loss/gain 
conversion sources for beach areas. The figure also highlights year-on-year erosion, stability, or accretion 
trends (second row). Distinct behaviors of LICELs, such as LICEL 4.2, LICEL 5.2, LICEL 7.1 and LICEL 9.3, 
are showcased, underscoring the diverse coastal processes influencing each cell. As can be seen, the region 
showing strongly negative trends (ranging from 4 to 8.5% of beach eroded in 2022 compared to the initial beach 
values) is primarily in southern Sicily’s coast (Strait of Sicily. In contrast, the beaches of the Tyrrhenian area of 
Sicily (North) have shown much lower decreasing trend values and even positive in some areas (LICEL 11.1 
and LICEL 1.1 with percentage of increasing around 1–2% respect 1988 beach area values). Lastly, the Ionian 
area of Sicily (East) shows predominantly negative trends, especially in the south closer to the Strait of Sicily. 
Moving from Catania (in the middle) to the north of the Ionian stretch we reached mostly positive (accretion) 
trends (from 2 to 3.5% of beach increased in 2022 compared to the initial beach values). The observed erosion/
accretion patterns align with wave energy variations in Sicily, consistent with findings reported by 44–47. The 
comparison between these results and the values reported in PRCEC (2020) (see “Methods”) are in Table S1 of 
the Supplementary Information.

Fig. 7. Illustration of the LICELs temporal dynamics. The top left plot showcases the accretion and erosion 
trends expressed in km2/year. Dark blue indicates maximum positive trends, while dark red signifies maximum 
negative trends. In the top right plot, beach conversion sources for both loss and gain are represented for each 
CM, using triangles for loss conversion and dots for gain conversion. Colors represent conversion sources: red 
for Builtup, light blue for water, green for vegetation, and brown for bare land. The second row displays average 
annual trends in red for summer months (May to September) and in blue for winter months (November to 
March), explaining erosion, stability, or accretion trends for specific LICELs (in particular LICEL 4.2, LICEL 
5.2, LICEL 7.2, and LICEL 9.3).
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In the Mediterranean section (upper right panel), almost all of the beach conversion sources are of loss in 
favor of water. From the 109 cm studied, 36 belong to the Gain class while the remaining 76 to the Loss class. Thus, 
only 33% of Sicilian CMs show a predominance of gain beach conversion sources while 67% of loss conversion 
sources. In the western Tyrrhenian zone, there is greater heterogeneity in beach conversion sources with a few 
beaches showing gains on the vegetation (probably due to loss of dune vegetation) and bare land (beach advance 
due to sediment deposition) classes. The central-western zone of the Tyrrhenian section is the one most affected 
by beach loss conversion sources in favor of the builtup, while the eastern part shows losses and gains mainly on 
the vegetation class. The northern Ionian zone continues with the neighboring behavior of the Tyrrhenian zone 
while also showing losses due to builtup. In these areas the beach loss is very small (percentage) so the major 
conversions are caused by the fact that parts of these beaches are affected by the construction of bathing lidos. 
The southern zone of the Ionian section in turn fits to the neighboring Mediterranean zone showing a prevalence 
of loss conversion sources of water. Finally, in the second row of Fig. 7, LICEL 5.2, along with LICEL 9.3, displays 
the steepest erosion trend values, while 4.2, and especially 7.2, showcase less pronounced declining patterns. In 
relative terms of erosion or accretion, all the LICELs in the second row of Fig. 7 experienced (negative) erosion 
percentages. In particular 8.3%, 5.1%, 4.1% and 2.8% of beach erosion in 2022 relative to the initial beach values 
for LICEL 7.1, LICEL 4.2, LICEL 5.2 and LICEL 9.3 respectively. Furthermore, although the absolute values of 
loss for LICEL 8.2 and 2.1 were among the lowest of the sand losses in relative terms the beach loss was 15.8% 
and 5.6% respectively.

We computed, only 0.14 km2 (0.2%) of beach in Sicily was converted to urbanized land between 1988 and 
2022. This decrease can be attributable to the presence of many illegal properties along the coast, which represent 
40–60% of the coastline48,49. Built in the 1970s without an approved plan, many of these summer residences 
have remained illegal despite amnesties and demolition orders. This persistent situation has caused lasting 
environmental impacts, including erosion, loss of biodiversity, and pollution of coastal and groundwater50,51. 
For further information, refer to the Figure S4 in Supplementary Information.

Discussion
In our study, we conducted an extensive retrospective analysis of classified imagery of the entire Sicilian coastal 
region for each month from 1988 to 2022. This analysis used images from Landsat-5, Landsat-7, Landsat-8, 
Landsat-9 and Sentinel-2b. These images were processed with semantic segmentation techniques based on 
CNN. Our primary goal was to fill the gap in high-resolution LICEL data by employing an advanced artificial 
intelligence model trained with a large database specifically designed for coastal areas41. Furthermore, this 
research contributed to generating an extensive dataset that was previously nonexistent, enhancing the scope 
and specificity of coastal LC analysis.

The presented classification method resulted in coastal classifications with a high degree of accuracies (as 
described in the validation process) compared to the products available to date (seventh column of Table 1), 
which present overall accuracy in the range of 605,52, 7153 and 7554 percent for GLCC, ESA Land Cover - CCI and 
ESRI Global Land Use Land Cover, respectively. We also point out that products obtained purely for coastal areas 
(Coastal Zones LC/LU, Feng et al.37) show higher accuracy percentages, 8555 and 90% respectively confirming 
the need for specific maps for these types of environments. The use of specific, appropriate and accurate datasets 
processed through machine learning algorithms, as in Witjes et al.56, also achieves good overall accuracy values 
in the classifications (83%) confirming again how crucial the quality of the training data is. In our work we 
combined these concepts using a purely coastal dataset and obtained 35 years of monthly classified maps of 
maximum overall accuracies of 88%.

By obtaining this accurate classificated data we were able to explore the socioeconomic evolution of Sicilian 
coastal municipalities in relation to coastal urbanization dynamics. The analysis represents a first step towards 
the understanding of land-use dynamics in this region over three decades, focusing on urban expansion, land-
use changes, and changes in Sicilian beaches over the period under consideration. Our approach sheds light on 
the intricate relationship between socio-economic development and coastal land use changes and underscores 
the utility of cutting-edge AI techniques in enhancing our understanding of environmental dynamics in coastal 
areas.

The "Results" section, as well as validating the methodology adopted, delves into the LC dynamics in Sicily. 
The temporal evolution of built-up areas reveals urban sprawl in coastal municipalities, emphasizing variations 
in growth rates. Spatial distribution analysis highlights distinct patterns in Vegetation, Bare Land, and Builtup 
Areas, offering insights into environmental dynamics along the Sicilian coast. The sources of change in LC 
indicate direct influences of urban growth on vegetation conversion. An in-depth overview of erosion and 
accretion dynamics along Sicilian beaches, emphasizing LICELs is provided. Urbanization contributes modestly 
to beach loss, with illegal ownership being a significant factor, causing lasting environmental impacts. With 
the available data, we did not find a direct correlation between urban sprawl and socio-economic indicators. 
This fact highlights the complexity of linking LC changes with socio-economic dynamics such as income and 
population. The analysis of potential correlations of LC with met-oceanic data can also benefit future research.

Integrated management strategies are crucial to preserve the coast of Sicily and any other coast worldwide 
amid the complex interactions between natural and anthropogenic factors. Understanding LC dynamics can 
contribute to improving current and future land planning by informing decision-making processes aimed at 
promoting sustainable coastal development and resilience. This research sets a foundation for further studies 
in coastal LC dynamics and highlights the need for continued monitoring and analysis of coastal environments 
in the face of ongoing and future challenges, including climate change and need for adaptation, using specific 
coastal datasets and with appropriate sampling intervals for short-term and long-term analysis.

Our study has some limitations that may be potential areas for improvement. The first limitation is related 
to the training dataset. Despite Coast Train is specific for coastal regions its representativeness may not be 
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exhaustive in fully covering the variability of the Sicilian coast, since the selection of images may not include 
all possible variations in the island’s coastal features. With that in mind, we manually selected images reflecting 
similar color characteristics, beach sizes, and urbanized contexts to those in Sicily. This careful selection provided 
the model with a diverse range of examples, ensuring a good level of generalization during the classification 
phase. In addition, we reviewed the results and made the required corrections. For example, greenhouses were 
misclassified by the model as built-up areas. The absence of these features in the training dataset meant the model 
struggled to classify them correctly. To address this issue, we created a mask to eliminate the false information 
caused by the greenhouses.

The second limitation is the statistical methods used, such as the Mann-Kendall test and correlation analysis, 
which may not account for the complex interactions between socioeconomic factors and changes in land cover, 
suggesting the need to consider more sophisticated nonlinear multivariate approaches in future studies.

The last limitation could be represented by the limited number of classes used in the semantic segmentation 
model, which includes 5 categories. Although this approach is suitable for regional scale analyses, it may not be 
sufficiently detailed for local studies that require higher precision on high-resolution images and thus a larger 
number of classes to represent. Improving the ability of the semantic segmentation model to distinguish a wider 
range of classes may therefore be useful to enable a more accurate interpretation of coastal landscape features in 
high spatial resolution contexts.

Methods
This section describes the all the materials and methods used in the work.

Methodology architecture
In order to analyze LC changes in Sicily from 1988 to 2022 we developed the methodology presented in Fig. 8. 
We employed a semantic segmentation model to process satellite images from Landsat and Sentinel datasets. 
This allowed us to create classified images of the entire Sicily for each month within the specified time frame. 
These images helped us identify different LC classes, including Water, Vegetation, Beaches, Bare Land, and Built-
up areas. To ensure the accuracy of our results, we validated our model by comparing its classified images with 
ground truth images. Once we achieved a satisfactory level of accuracy, we conducted a comprehensive data 
analysis to understand the nature of the changes.

The research focused on the transition of LC to urban areas, quantifying growth rates, loss and stability 
in vegetation, bare land and built-up areas. The analyses we have conducted were devoted to the impacts of 
increasing urbanization, considering the complex relationship with urban expansion, population growth and 
income patterns, which are fundamental to interpreting social, economic, and environmental consequences. In 
addition, the analysis of LICELs in Sicily assessed trends in beach areas, highlighting the regions that are most 
susceptible to change and revealing whether they were accreting or receding.

Satellite images used
The core of our methodology is based on the acquisition and processing of satellite imagery, covering the period 
from 1988 to 2022, to obtain a monthly, detailed view of Sicily’s changing landscape. The imagery was sourced 
from various satellite platforms, including Landsat 5, 7, 8, and the more recent Landsat 9, as well as Sentinel 2. 
The satellite images were acquired with a spatial resolution of 30 m (Sentinel products with 10 m resolution but 
upscaled to 30 m resolution in order to work with a single resolution) using the Google Earth Engine (GEE) 
shell. We used a bilinear interpolation method for downsampling. This method was chosen to maintain a 
smooth transition between pixels and minimize information loss57,58, visually examining the images to identify 
any artifacts or loss of significant detail.

We primarily focused on the RGB bands of satellite images to capture a vivid representation of the Earth’s 
surface.

Central to our satellite image acquisition methodology was the stringent requirement of cloud cover, which 
we set at or below 20%. This criterion was essential to ensure that the images we used for our analysis were as 
clear and free from atmospheric distortions caused by cloud cover as possible. Our objective was to provide the 
subsequent semantic segmentation model (as detailed in the following section) with high-quality, clear input 
images. To achieve this, we meticulously selected images that met this specific criterion. Subsequently, each 
image underwent a cropping process, via QGIS raster tools, to obtain an identical extent of 512 × 512 pixels for 
each resulting image. In total, therefore, we obtained for each monthly image 280 images of 512 × 512 pixels 
resolution (so as to cover the entire extent of Sicily). Considering 12 images per year (one per month), over 35 
years, the total number of images acquired was 117,600.

Littoral cells, coastal municipalities, and socio-economic indicators
For the study of coastal dynamics and erosion/accretion movements, we divided the Sicilian coastline into 22 
secondary-level shoreline segments (LICELs). Each segment, or sediment cell, has distinct sources of sediment, 
transportation routes, and deposition areas, making it an individual unit for management purposes42.

In this paper, we defined “Coastal Area” as that portion of land that extends from one LICEL boundary to 
the other with landward extension delimited by areas with elevation less than or equal to 15 m. Coastal zones 
are usually considered to be the areas between 0 and 10 m59. In this case, we have extended the 10 m limit to 
15 m. This choice is justified considering that Sicilian beaches are predominantly sandy and characterized by a 
low slope (1–3%), with an average width of about 60 m. The mask thus defined proved to effectively include all 
beaches, ensuring an accurate representation of the areas of interest. The 15-meter threshold made it possible 
to exclude headlands, focusing attention on beaches, which by their nature have greater dynamism. In addition, 
this extension also made it possible to include the urbanizations closest to the beaches, which are essential for 
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a comprehensive analysis of the interaction between the coastal environment and human settlements that press 
directly on the beaches. We obtained the mask for the definition of these areas through the use of the Digital 
Elevation Model of the terrain (DEM) with 2 × 2 m resolution of the Sicilian Region.

We conducted the analysis of the correlation between changes in built-up area and changes in socio-economic 
indicators by defining the extent of each CM, 109 in total, through the shape file provided by the Istituto Nazionale 
di Statistica (ISTAT) regarding all the Italian municipal administrative boundaries. We chose as socio-economic 
indicators the population and income data provided by the ISTAT and the Ministry of Economy and Finance, 

Fig. 8. Constructed methodology for analyzing changes in Land Cover.
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respectively. These data allowed us to examine demographic and economic trends over three decades and better 
understand the development dynamics at the scale of Sicilian CMs.

Images segmentation process
In order to obtain the segmented images with respect to the following classes: (i) Builtup, (ii) Water, (iii) 
Vegetation, (iv) Beach and (v) Bare Land, we used a convolutional neural network (CNN)-based approach, 
which specifically adopts the U-Net architecture60, for the critical detection task by semantic segmentation. 
This semantic segmentation model is a CNN model carefully trained using a rich image dataset al.ready labeled, 
known as the Coast Train dataset, consisting of numerous different season coastal imagery with 1.2 billion pixels 
labeled over 3.6 million hectares. The images, from sources such as NAIP, Sentinel-2, Landsat-8, USGS, and 
UAS, vary in resolution and cover coastlines other than the United States.

To ensure that the training dataset adequately represented the variability of the Sicilian coastline, we selected 
images that reflected similar color characteristics, beach sizes, and urbanized settings as Sicily. This selection 
was made by hand in order to provide the model with a variety of examples sufficiently diverse to ensure a good 
level of generalization during the classification phase. Although not all possible variants of the Sicilian coast 
were included, we focused on the most representative ones to effectively train the model. To avoid overfitting, 
the original dataset of 134 images was augmented using data augmentation techniques (e.g., cropping, rotation, 
brightness and contrast adjustment) with the Python Albumentations library61.

The accuracy performance during the model training phase was around 85% while the Intersection over 
Union metrics around 75–80%. Therefore, in the present work we validated the segmentation capabilities of the 
model in consideration of the above metrics.

Once all the satellite images were processed through the semantic segmentation model, we reassembled them 
to obtain month by month a unique image of Sicily segmented through the classes mentioned above. In this way 
we obtained 420 classified images representing a huge dataset of satellite images with their respective LC masks, 
for a previously nonexistent observation period for the entire area of Sicily.

Regarding resampling and cropping effects, we point out that in the context of satellite image processing, 
each image can be represented as a three-dimensional matrix in which the three dimensions correspond to the 
red (R), green (G), and blue (B) color channels. Given a large initial image size, we can proceed to its cropping 
into sub-images of more manageable size while keeping the original resolution intact (e.g., 512 × 512 pixels for 
each sub-image). This subdivision process does not alter the original matrix: each pixel in the sub-images retains 
the same RGB color values it had in the global image. Therefore, if the classified sub-images are reassembled 
in their original positions, the source image is reconstructed without loss of information or distortion due to 
cropping, in order to obtain a coherent and continuous map of the entire island. This process ensures spatial 
continuity and consistency of the segmented classes, reconstructing an overall image that preserves the 
resolution and accuracy of pixel-level analysis. Semantic segmentation applied uniformly on each sub-image 
ensures that the classification is consistent over the entire study area. This pixel-wise approach ensures that the 
results are equivalent, regardless of whether the model operates on sub-images or the whole image. Therefore, 
the methodology adopted in our study preserves the integrity of the analysis even during the process of image 
cropping and reassembly.

Segmentation validation
We used several indicators to determine the accuracy of the semantic segmentation model. Class accuracy, 
overall accuracy and Kappa coefficient were the main indicators used for this evaluation.

• Class accuracy62,63, denoted as ACi, measures the accuracy of the predictions of individual LC classes. The 
equation for class Accuracy is defined as (Eq. (1)):

 
ACi =

TPi

TPi + FNi
, (1)

Where TPi represents True Positives (correctly classified pixels) for class I and FNi denotes False Negatives 
(pixels misclassified as not belonging to class i).

• Overall accuracy, often referred to as OA, provides a comprehensive assessment of model performance over 
all LC classes. It is calculated using the following equation (Eq. (2)):

 
OA =

∑ ACi

n
, (2)

Where 
∑

ACi represents the sum of class accuracies for all LC classes and n indicates the total number of 
classes.

• The Kappa coefficient (κ)43,64 evaluates the performance of the model considering the agreement between the 
predicted and reference classifications (Ground Truth, GT). It is calculated as (Eq. (3)):

 
k =

(Po − Pe)

1− Pe
, (3)

Where Po is the observed agreement while Pe is the expected agreement by chance.
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Po represents the fraction of cases in which the two image classifications (between GT and detection) agree. 
Po is calculated using the following equation (Eq. (4)):

 
Po =

Number of obesrvation in agreement

Total EquationNumber of observation
. (4)

Pe represents the agreement that would be expected by chance. Pe is calculated using the following equation 
(Eq. (5)):

 
Pe =

∑
n
i=1

∑
rowi

∑
columni

(Total number of samples)2
, (5)

Where n is the number of classes, 
∑

rowi  and 
∑

columnirepresents the sum of the values of the i-th row and 
i-th column respectively.

k coefficient measures the agreement between predictions and Ground Truth, taking into account random 
matches; it is used to assess how much better the agreement is than would be expected by chance. In fact, note 
that the subscript i is not present in this case since the metric refers to the overall classification.

We conducted an accuracy analysis by comparing model predictions with reference images (GT) generated 
by manual classification. To provide additional qualitative perspective, further visual comparison was conducted 
with other existing LULC classification maps in the area of interest, including the based LUCAS dataset56, 
Copernicus Coastal Zones maps and ESRI’s Sentinel-2 10-meter LU and LC time series maps. These comparative 
assessments improve understanding of the effectiveness of the model in relation to existing methods and datasets 
and are presented in the Supplementary Information.

Segmented images postprocessing
For the temporal analysis of each LC class areas, the classified images of the whole Sicily were cropped (for each 
month and year), using the CM and LC masks. Area values for each LC class were extracted. These area values 
represented the areas covered by each class in terms of the number of pixels (at a resolution of 30 × 30 m). In 
this way, the monthly area values (for each year) for each segmentation class were computed. Through this 
methodology, we conducted a temporal analysis of urban expansion in coastal municipalities and for other LU 
classes at both CMs and LICELs scales.

For the analysis of the Builtup class at the level of CMs, we considered an annual time scale, aggregating 
the monthly Builtup area data on an annual basis by averaging, since the monthly variations for this class 
were insignificant. On the other hand, for LICELs, the analysis was conducted at the monthly level, as we were 
interested in the month-to-month changes in beach areas, (as well as for the remaining coverage classes). To 
examine the correlations between socioeconomic indicators and built-up areas in each CM, we employed the 
correlation analysis approach. This method made it possible to evaluate the relationships between different 
time series, such as the trend in urban expansion and the population of each CM. This evaluation was based 
on Pearson’s correlation coefficient65, an index that measures the degree of linear relationship between two 
variables. Using this approach, it was possible to quantify the link between urban sprawl and population growth 
over the years for each CM. In addition, we conducted a correlation analysis between income and built-up area 
and between income and population.

Further, the Mann Kendall Test66 was used to analyze trends related to changes in beach areas in each LICEL. 
This test made it possible to examine the temporal trends of coastal areas, providing important information on 
the trend of accretion or erosion of beaches in each LICEL area.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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