
lable at ScienceDirect

Animal Behaviour 207 (2024) 147e156
Contents lists avai
Animal Behaviour

journal homepage: www.elsevier .com/locate/anbehav
Ritual displays by a parasitic cuckoo: nuptial gifts or territorial
warnings?

Simone Ciaralli a, * , Martina Esposito a, Stefano Francesconi b, Daniela Muzzicato c,
Marco Gamba a, Matteo Dal Zotto b, Daniela Campobello d

a Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
b Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
c Department of Biology, University of Firenze, Sesto Fiorentino, Italy
d Department of Animal Biology, University of Palermo, Palermo, Italy
a r t i c l e i n f o

Article history:
Received 8 May 2023
Initial acceptance 14 June 2023
Final acceptance 4 September 2023

MS. number: 23-00228R

Keywords:
brood parasite
common cuckoo
communication
courtship
Cuculus canorus
display
information transfer
social learning
visual signal
* Corresponding author.
E-mail address: simone.ciaralli@unito.it (S. Ciaral

https://doi.org/10.1016/j.anbehav.2023.11.003
0003-3472/© 2023 The Author(s). Published by Elsev
license (http://creativecommons.org/licenses/by/4.0/)
In the sexual selection framework, nuptial gifts arematerials a donor provides to a receiver that can increase
the donor's fitness. In specific cases, sharing crucial information may be a nonmaterial nuptial gift. To
investigate this hypothesis, we focused on the common cuckoo, Cuculus canorus, an obligate avian brood
parasite whose reproduction costs of females are mainly related to finding host nests needed to lay their
eggs. Nest searching is assumed to be conducted only by females. We hypothesized that males could
contribute by transferring information on nest locations to females as a nonmaterial nuptial gift. Here, we
show the results of a first step in this direction, inwhich we identified any behaviour potentially conveying
information on nest abundance in the surrounding area, that is, behaviours whose frequency varied with
host nest density. We conducted our investigation in amarshland areawithin the Po Plain (Italy), wherewe
recorded both visual displays of cuckoos at perching sites, by using camera traps, and nest abundance of two
of the most parasitized cuckoo host species, the reed warbler, Acrocephalus scirpaceus, and great reed
warbler, Acrocephalus arundinaceus, by systematic nest monitoring. We found that male cuckoos adopted a
certain posture, wing drooping, and tended to keep their tails up more frequently in areas with the highest
versus lowest host nest densities. This is consistent with these behaviours acting as potential signals codi-
fying information on nest abundance in the area. We finally discuss the implications of our findings for the
mating choices of female cuckoos and the study directions warranted to reveal whether these displays and
information transfer may be included as new elements of the sexual selection framework.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of The Association for the Study of Animal

Behaviour. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
Darwin (1859, p. 88) first introduced the concept of sexual se-
lection to account for phenomena not directly explainable by nat-
ural selection in a narrow sense. More than 100 years later, sexual
selection is still one of the main research areas in biology and
evolution, leading to an active debate on its definitions and
observable effects (Alonzo & Servedio, 2019; Andersson, 1994;
Clutton-Brock, 2017; Lindsay et al., 2019; Payne, 1984; Shuker &
Kvarnemo, 2021). Brood parasites are one of the most challenging
study models for sexual selection. Despite examples of brood
parasitism found in insects and fishes, considerable scientific
attention is focused on birds (Thorogood et al., 2019). By laying eggs
in nests of other species, avian brood parasites do not suffer from a
li).
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plethora of reproduction-related costs, such as those directly
attributed to parental care (Feeney & Riehl, 2019; Kennerley et al.,
2022; Krüger & Pauli, 2017). Accordingly, the criteria for female
choice for a partner must rely on signals of male condition/genetic
quality (i.e. indirect benefits, Andersson, 1994; Mitoyen et al., 2019)
rather than male parenting skills. One such signal at the disposal of
parasitic females might be nuptial gifts. According to Lewis et al.
(2014, p. 2), nuptial gifts are ‘materials (beyond the obligatory
gametes) provided by a donor to a recipient during courtship or
copulation in order to improve donor fitness’. Despite the definition
focusing on the material nature of the items, evidence of birds
providing inedible gifts (Pizzari, 2003; Stokes, 1971) suggests that
under specific circumstances, the material composing the gift can
be less relevant than the act of providing the gift itself.

Here, we investigated the potential presence of nonmaterial
nuptial gifts in the common cuckoo, Cuculus canorus, a widespread
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avian broodparasite (hereafter, cuckoo). Cuckoos canparasitize over
100 host species, typically songbirds, with different populations
targeting different hosts (Campobello& Sealy, 2009; Schulze-Hagen
et al., 2009). During the reproductive period, cuckoo females are
found, sometimeswith overlapping ranges (Taborskyet al., 2004), in
areas where their host species breed, whereas males seem to
actively establish territories using vocalizations (Mosk�at et al., 2017;
Mosk�at & Hauber, 2019; Xia et al., 2019). In avian brood parasites,
fitness is strongly connected to their ability to deceive other species
in raising their offspring, a process that starts with finding a large
number of suitable nests, a task often attributed to females only
(Feeney & Riehl, 2019; Honza et al., 2002; Krüger & Pauli, 2017).
However, playback experiments showed that both male and female
cuckoos pay attention to host alarm calls (Marton et al., 2019),
supporting hypotheses on maleefemale cooperation in nest
searching (Feeney& Riehl, 2019;Mikulica et al., 2017). Furthermore,
anecdotal observations state that male cuckoos can distract host
species, allowing females to lay their eggs, althoughvideo-recording
studies failed to find evidence supporting this hypothesis in related
parasitic species (Feeney & Riehl, 2019).

Accordingly, we hypothesized a role for male cuckoos in nest
searching. They may facilitate females' nest finding by sharing in-
formation on host nest positions or abundance in the area. Doing
so, they may improve female nest-finding success, or reduce the
time females spend searching, thus resulting in a benefit for fe-
males. If females preferentially select males that provide this
benefit, the transfer of information would increase the male's
chances of being selected as a partner, increasing male fitness. This
mechanism would fit the wider definition of nuptial gifts as infor-
mation provided by a donor to a receiver that effectively increases
the donor's fitness (Lewis et al., 2014).

The only available studies linking cuckoo behaviour to host nest
attributes concern the rate of nest parasitism, thus focusing more
on the host species than on the parasite itself (Clarke et al., 2001;
Jelínek et al., 2014; Mosk�at & Honza, 2000; Stokke et al., 2007).
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Figure 1. Study area map. Black polygons (AeP) are basins, while red points are the trees
Esposito et al. (2021) provided the first insight into cuckoo
behaviour at perches, finding that males are either vocal and
motionless or silent and active. While several previous studies have
investigated the role of cuckoo vocalizations (Davies et al., 1998;
Mosk�at et al., 2017; Mosk�at & Hauber, 2019, 2021; Tryjanowski
et al., 2018; Xia et al., 2019), the function of visual displays re-
mains poorly explored. We verified whether the information on
host nests is conveyed by specific postures or active motor displays
acting as visual signals. Given its complexity, to assess whether a
display may act as a nonmaterial gift, several aspects of cuckoo
communication and patterns of evolution at the population level
must be verified by multiple lines of research. Given the scant
number of previous investigations, we addressed the first question
along this path, whether visual signals convey information on host
nests. If they do, we hypothesized that male cuckoos' ritual displays
should be more concentrated in areas with a high host nest density.
Accordingly, we first verified whether cuckoo abundance is related
to host nest abundance, and second, whether the occurrence of
specific behaviours depended on (1) the sex of the individual, (2)
the presence of other cuckoos (i.e. an audience) and (3) the number
of host nests in the area.
METHODS

We collected data in MayeJune 2022, in the ‘Valli Mirandolesi’
Special Protection Area (SPAeIT4040014). In particular, fieldwork
focused on 16 partially flooded artificial basins in the wetlands
surroundingModena Ornithological Station (‘SOMe il Pettazzurro’,
Mirandola, Italy; Fig. 1). This area has long been the study site for
extensive research on individually and socially learned anti-
parasitism responses of cuckoo hosts (Campobello & Sealy, 2010,
2011, 2018). Reed warbler, Acrocephalus scirpaceus, and great reed
warbler, A. arundinaceus, are among the most commonly parasit-
ized species (Campobello & Sealy, 2009).
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Behavioural Observations

We conducted behavioural observations of perched cuckoos
through videos realized by camera traps (Ziboni IDS Pro 4k 32MP)
placed on 3 m metallic poles fixed on the ground at 3e10 m from
selected vantage points (VPs, i.e. trees usually used by cuckoos to
perch). We adjusted the camera trap orientation, exposure and field
of view during the first few days of fieldwork and then we kept the
settings consistent throughout the data collection. We set each
camera trap to record 30 s videos (16 MP, 1920 � 1080) starting
from any movement detected by the passive infrared sensor (PIR
sensitivity: ‘middle’; PIR interval: 5 s). We equipped camera traps
with external SDs (SanDisk 128 GB) and rechargeable batteries
(Melasta NieZn, 1.6 V). We downloaded videos and charged bat-
teries every 3e5 days. We monitored 13 VPs by 10 camera traps,
from 23 May to 25 June 2022 (Table A1). We analysed videos with
BORIS, an open-source event-logging software (Friard & Gamba,
2016), using a focal animal sampling approach (Altmann, 1974).
We logged behavioural occurrences (binomial variables: 1 behav-
iour present; 0 behaviour absent) following the ethogram shown in
Table 1. If the video showed the presence of two different cuckoos,
we conducted two observation sessions, one per individual. We
also recorded date, time, sex of the focal individual (M: male, if it
performed the cu-coo call; U: undetermined, if it did not), number
of individuals (number of cuckoos at the perch during the obser-
vation: 1: single; 2: dyad) and cuckoo orientation (the direction in
which the cuckoo's head pointed for more than half of the video
length, expressed through cardinal points: N, NE, E, SE, S, SW, W,
NW).

Nest Searching and Densities

Six operators searched the reed beds across random transects
and recorded the position of any reed warbler or great reed warbler
nest, by using smartphone GPS receivers. To standardize nest
searching, all operators searched all basins, thus keeping the
sampling design as balanced as possible. Nest searching occurred
from 10 May to 27 June 2022, at 0600e1000 and 1800e2100 hours
(CET). We estimated basin nest densities by dividing the number of
nests found in the basin by the product of the basin surface and the
Table 1
Common cuckoo ethogram

Category Behaviour Description

Postures Wing drooping Keeping wings lower than
Perched Either moving or perching
Tail up Keeping the tail up. The tai

Movements Arriving Entering the video frame a
Fly away Exiting the video frame by
Self-grooming Preening own feathers
Head movement Moving head in any directi
Tail swing UD Moving tail up and down
Tail swing LR Moving tail left and right
Moving Moving on the branch or fl
Still Completely motionless

Vocalizations Cu-coo Two-note repeated syllable
Cu-cu-coo Three-syllable call uttered
Gowk Hoarse cough-like call
Gowk series 3e5 gowk-like calls uttered
Guo Similar to gowk, but lower
Bubbling Long vocalization compose
Silent Completely soundless

Interaction Touch Any conspecific interaction

Descriptions of postures and movements are adapted from Esposito et al. (2021). Vocali
number of searching hours (no. of nests/km2 � h). Basin surfaces
were estimated by manually drawing polygons in QGIS 3.16.4,
following basin borders on images from Google Satellite (‘Quick-
MapServices’ plugin, see Tables A1 and A2).

Statistical Analyses

All statistical analyses were conducted in R (version 4.2.1) on
RStudio 2022.07.1 (R Core Team, 2020). To explore potential links
between cuckoo abundance at VPs and basin nest density we
computed an estimate of cuckoo abundance per basin, as the
number of cuckoo observations divided by the number of days of
camera trap activity, aggregating data from different VPs associated
with the same basin (see Tables A1 and A2). We used Kendall rank
correlation (Kendall, 1975) to investigate the null hypothesis of no
monotonic association between cuckoo abundance and nest den-
sity at the basin level (using the cor.test function), although the
small sample size (N ¼ 9) probably caused a low detecting power
(Puth et al., 2015).

To determine whether sex, number of individuals and basin nest
density were predictors of specific behaviours, we ran a series of
generalized linear mixed models (GLMMs, maximum likelihood
with Laplace approximation) with the function glmer (‘lme4’
package, Bates et al., 2015). Models were fitted on 388 of 397
cuckoo observations, to exclude missing values and obtain a more
balanced data set (Mundry, 2014). In particular, we had no cuckoo
observations from basins M and K, while we excluded basin O since
we had only nine cuckoo observations and a low number of
searching hours, leading to an uncertain nest density determina-
tion (see Table A2). The 388 observations refer to nine VPs (VP01,
VP05, VP09, VP10, VP12, VP13, VP17, VP18, VP30), distributed over
six basins (A, B, C, D, H, L). We used the occurrences of wing
drooping, perched, tail up, tail swing and still as binomial response
variables of five different GLMMs (logit link function), testing the
effects of three predictors: sex (M or U), number of individuals
(single or dyad) and nest density (covariate, range 0e32.46). We
also included two random factors: orientation (eight levels) and
time slot (131 levels). The latter is a unique identifier of every 2 h
time slot at each VP across our study period, accounting for po-
tential autocorrelation of subsequent observations at the same VP.
Type

the tail. The wingtips point down State
with wings above the tail, which is kept in a resting position State
l tip is higher than the head. Not swinging tail State
nd perching Event
flying away Event

State
on State

State
State

ying to another area of the perch, still in sight State
State

s uttered by males State
by males Event

Event
continuously Event
and harsher Event
d of a rapid sequence of high notes. Uttered by females State

State
involving physical contact State

zations are defined according to Mosk�at and Hauber (2022) and Lei et al. (2005).
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Time slot derives from the interaction of VP (nine levels), date (29
levels, from 23 May to 24 June) and time (nine levels, 2 h slots from
0500 to 2300). We excluded orientation from random factors in
wing drooping, tail up and still models, to prevent singularities. The
absence of collinearity among predictors was checked by exam-
ining the variance inflation factor (VIF, ‘car’ package, Fox &
Weisberg, 2019), checking VIF < 2 for all predictors in all models
(Mundry, 2014). We verified model assumptions by looking at a
simulated residual qqplot and a simulated residual versus fitted
values plot (‘DHARMa’ package, Hartig, 2022). To test model sig-
nificance, we used a likelihood ratio test (LRT, Anovawith argument
test ‘Chisq’) comparing the full models (structured as stated above)
to null models including only random factors (Dobson, 2002;
Mundry, 2014). We also computed marginal and conditional R2

values for full models (mR2 and cR2, respectively), following
Nakagawa et al. (2017). We used the function r.squaredGLMM from
package ‘MuMIn’ (Barto�n, 2023), reporting values associated with
‘theoretical’ method. Lastly, the function glmer shows P values
based on the Wald Z test (Bates et al., 2015), but to obtain more
conservative estimates of overall effects we again computed P
values using LRTs, through the function drop1 (Luke, 2017). Several
previous studies adopted similar statistical approaches (Gamba
et al., 2016; Lacerte et al., 2021; Schlicht et al., 2023). We plotted
results using packages ‘ggeffects’ (Lüdecke, 2018) and ‘ggplot2’
(Wickham, 2016).
Ethical Note

Our study design follows the ASAB/ABS Guidelines for the
treatment of animals in behavioural research and teaching and
meets the Italian legal requirements (Permits number 24537/2022
fromnational ISPRA and number 10741/2022 from Emilia-Romagna
Region). The use of camera traps greatly reduced the disturbance
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Figure 2. Cuckoo abundance at vantage points (VPs; dimensional scale, number o
related to behavioural observations and we were extremely careful
in nest searching, reducing to aminimum the time spent at the nest
acquiring its position, to prevent any disturbance.

RESULTS

The camera traps recorded 22376 videos, of which 5390 showed
perched birds, including 397 with common cuckoos. We found 75
nests (eight great reed warblers and 67 reed warblers), of which 11
(14.6%, all reed warblers) were parasitized, distributed over 14 (of
16) basins (see Tables A1 and A2). Fig. 2 shows that cuckoos were
not always concentrated in basins with higher nest densities
(Kendall rank correlation: t ¼ e0.228, N ¼ 9, P ¼ 0.399).

Table 2 shows the results of the full models. Among postures,
wing drooping was more common in males and in areas with
higher nest densities, while a perched posture showed the opposite
tendencies, as expected. The probability of observing a perched
posture was also higher for solitary individuals, whereas tail up,
like wing drooping, was more frequent at higher nest densities
(Fig. 3). Concerning movements, tail swing was more common in
the presence of other individuals; however, the full model barely
failed to explain the data better than the null one. Accordingly,
being still was more frequent for solitary individuals and more
common for birds of undetermined sex.

DISCUSSION

Our results showed that cuckoo males adopted a posture that
was potentially able to convey information about a high host nest
density: when perched within those areas, they drooped their
wings and kept their tails up. In the presence of abundant host
nests, they also tended to swing their tail when more than one
individual perched on the same vantage point.
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Table 2
Model results showing whether sex, number of individuals and nest density were significant predictors of specific behaviours performed by cuckoos at vantage points

Estimate SE df c2 P

Wing drooping
Full model (mr2 ¼ 0.10; cr2 ¼ 0.29; full vs null: c2

3 ¼ 17.992, P < 0.001)
(Intercept) 0.434 0.269
Sex (male) 0.795 0.308 1 6.433 0.011
No. of individuals (dyad) 0.680 0.465 1 2.121 0.145
Nest density 0.080 0.026 1 11.817 0.001
Perched
Full model (mr2 ¼ 0.10; cr2 ¼ 0.27; full vs null: c2

3 ¼ 20.355, P < 0.001)
(Intercept) 0.123 0.283
Sex (male) ¡0.780 0.293 1 7.025 0.008
No. of individuals (dyad) ¡1.078 0.420 1 6.616 0.010
Nest density ¡0.066 0.023 1 10.065 0.002
Tail up
Full model (mr2 ¼ 0.06; cr2 ¼ 0.26; full vs null: c2

3 ¼ 9.332, P ¼ 0.025)
(Intercept) �2.213 0.385
Sex (male) 0.509 0.371 1 1.924 0.165
No. of individuals (dyad) 0.676 0.452 1 2.104 0.147
Nest density 0.062 0.025 1 6.585 0.010
Tail swing
Full model (mr2 ¼ 0.04; cr2 ¼ 0.26; full vs null: c2

3 ¼ 7.586, P ¼ 0.055)
(Intercept) �2.277 0.361
Sex (male) �0.078 0.358 1 0.047 0.828
No. of individuals (dyad) 0.938 0.438 1 4.330 0.037
Nest density 0.047 0.025 1 3.675 0.055
Still
Full model (mr2 ¼ 0.18; cr2 ¼ 0.28; full vs null: c2

3 ¼ 23.662, P < 0.001)
(Intercept) 1.373 0.280
Sex (male) ¡1.461 0.408 1 15.458 < 0.001
No. of individuals (dyad) ¡1.227 0.430 1 7.246 0.007
Nest density 0.032 0.030 1 1.227 0.268

Significant effects are in bold. Factors are dummy coded, ‘number of individuals (single)’ and ‘sex (undetermined)’ being the reference levels. mr2 and cr2 are marginal and
conditional r2 values, respectively.
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Potential Visual Signals

Esposito et al. (2021) provided the first insight into common
cuckoo motor displays, assessing that cuckoos are either vocal and
motionless or silent and active, thus suggesting different
communicative functions for the acoustic and visual components.
The only studies focusing on cuckoo visual signals have investi-
gated the role of female coloration (Krüger et al., 2007; Lee et al.,
2019; York, 2021) or of chick begging displays (Grim, 2008; Rojas
Ripari et al., 2021) in intra- and interspecific communication.
Thus, this is the first work focusing specifically on displays of adult
cuckoos potentially acting as visual signals. Specific postures or
active motor displays are known to be effective as signals in the
sexual selection dynamics of several bird species, including brood
parasites (Barnard, 1990; Barske et al., 2011; Hamilton & Zuk,
1982; Rubenstein & Alcock, 2019). For example, O'Loghlen and
Rothstein (2010) assessed the role of the wing-spread display of
male brown-headed cowbirds, Molothrus ater, in eliciting a
copulation solicitation response by females, when combined with
vocalizations. Furthermore, the same display with a higher in-
tensity is usually directed towards males, in situations that can
escalate into physical fights, thus suggesting a role also in intra-
male competition (O'Loghlen & Rothstein, 2012). Similar behav-
iours involving certain wing positions may have a role in intra-
and intersexual communication in other brood parasites, as well
as common cuckoos.

Verifying the presence of a signal also entails investigating its
origin, in terms of both behavioural evolution and communicative
functions (Scott-Phillips, 2008; Smith & Harper, 1995). The peculiar
wing droopingmay derive from a posture effective in extending the
body surface for thermoregulation or improving stability when
perching, which could have been coopted in a signal conveying
information, namely an exaptation (see Gould & Vrba, 1982). Brood
parasitism in Cuculinae probably appeared around 10 million years
ago (Krüger & Pauli, 2017; Sorenson & Payne, 2002), but because of
the absence of information on the phylogenetic distribution of
similar visual displays in sister taxa, we are not able to infer the
posture's evolutionary history. We need further investigation to
clarify whether wing drooping is a signal, that is, whether it in-
fluences the behaviour of other individuals. Results from our study
are limited but consistent with a communicative function, although
we could not disentangle whether wing drooping might have
either intra- or intersexual communication roles.

Previous studies investigated the potential link between cuckoo
behaviour and host nests but focused more on factors affecting the
rate of nest parasitism (Clarke et al., 2001; Jelínek et al., 2014;
Mosk�at & Honza, 2000; Stokke et al., 2007). One of the stronger
predictors of parasitism is the nest distance from the closest VP
(Clarke et al., 2001; Mosk�at & Honza, 2000). This evidence is
consistent with both females using VPs to find suitable nests and
males transferring nest information to females. Furthermore,
Jelínek et al. (2014) suggested that cuckoos could adjust their nest-
searching strategy depending on the number of available nests and,
although we cannot exclude other factors, such plasticity could be
the result of maleefemale cooperation mediated by male signals. A
clue in this directionwas provided byMarton et al. (2019), showing
that both male and female cuckoos pay attention to host alarm
calls, suggesting the presence of maleefemale cooperation in nest
searching. Pair cooperation in nest finding has also been suggested
for some socially monogamous avian brood parasites (Feeney &
Riehl, 2019). In particular, according to opportunistic observa-
tions, males and females seems to search for host nests together in
the black-headed duck, Heteronetta atricapilla (Lyon & Eadie, 2013)
and in the screaming cowbird,Molothrus rufoaxillaris (Mason,1987;
Scardamaglia & Reboreda, 2014).
Nonmaterial Nuptial Gifts

We found specific cuckoo behaviours were more often per-
formed in high nest density areas; thus, they could be potential
signals conveying information on nest abundance to females or
males. In the first case, the transfer of nest information might be a
nuptial gift if donor males improve both their chances of mating
and the female's fecundity. Indeed, a female that spends less time
nest searching, after acquiring information from a male, may invest
more energy in laying more eggs. An increase in male fitness
related to enhanced female fecundity was reported by Lewis and
South (2012) as one of the mechanisms by which a nuptial gift
could increase donor fitness. Nuptial gifts usually come with a cost
for the donor (Lewis & South, 2012), however, and, in this case,
there are costs associated with nest searching and with performing
a display, in addition to the time spent staying at the perch.

Under these circumstances, the information carried by potential
signals could meet the requirements stated by Lewis et al.'s (2014)
definition of nuptial gifts, that is, gifts that are (1) provided by a
donor to a recipient during courtship or copulation and (2) effective
at improving the donor's fitness. Despite the original definition
focusingon thematerial nature of gifts, usually food items, examples
of inedible gifts can be found in both arthropods (LeBas&Hockham,
2005; Martínez Villar et al., 2020, 2021) and birds (Pizzari, 2003;
Stokes,1971). In addition, the value of edible gifts in terms of energy
intake is still debated (Morehouse et al., 2020, p. 42). Hence, it seems
that the material composing the gift can be less relevant under
specific circumstances than the act of providing the gift itself. On the
other hand, the transfer of information is known to have a role in
increasing fitness in other contexts (Galef & Laland, 2005), for
example in patterns of social learning associated with bird infor-
mation centres (Campobello& Hare, 2007;Ward& Zahavi, 1973) or
foraging competence acquired by young through parental training
(Galef & Laland, 2005; Lynch et al., 2020). The benefits of informa-
tion transfer in the common cuckoo parasitic system have been
extensively investigated, although limited to the host species. Spe-
cifically, hosts socially learn fromconspecifics and heterospecifics to
improve their efficiency in the frontline nest defence against para-
sitism (Campobello & Sealy, 2011; Thorogood & Davies, 2016;
Tolman et al., 2021). Accordingly, signals providing informationmay
also be associated with fitness benefits in cuckoos, playing similar
roles to those of material items in the nuptial gift framework.

To our knowledge, there is no clear evidence of the presence of
nonmaterial nuptial gifts, defined as such, in nature. Some findings,
however, suggest similar mechanisms in other parasitic species. For
example, male yellow-rumped honeyguides, Indicator xanthonotus,
establish territories that include bee nests, giving access to females
that select such males for reproduction (Cronin & Sherman, 1976;
Payne, 1984, p. 27). Thus, male displays may indicate the presence
of an accessible resource for females. Furthermore, Woolfenden
et al. (2002), to explain their finding of a positive sexual selection
gradient in brown-headed cowbird,M. ater, females, suggested that
they may benefit from multiple mating by gaining access to host
nests in several male territories. This stimulating hypothesis,
however, still warrants specific investigation.

Alternative hypotheses might also explain our results. We can
exclude that behaviour occurrence probabilities may be biased by
having more cuckoo observations in some areas, because we did
not find a correlation between cuckoo abundance and basin nest
density. However, the correlation between a particular display and
the basin nest density could derive from individual differences in
behaviour associated with individual preferences for particular
VPs/basins. Without the means to identify cuckoos individually, we
cannot exclude such a scenario. However, the preference for a
particular VP/basin could be associated with some forms of active
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defence (i.e. territoriality) suggested by several previous studies
(Mosk�at et al., 2017, 2019; Mosk�at & Hauber, 2019). In such cases,
intramale territoriality would not be mutualistically exclusive with
nonmaterial nuptial gifts. Indeed, if females select males by signals
correlated with a proxy of male quality, and high-quality males
establish territories richer in host nests, the link between displays
and nest density would persist, making it possible to consider the
signal itself as a nonmaterial gift. A similar situation occurs in the
brown-headed cowbird, with females potentially selecting males
by specific acoustic or visual displays (O'Loghlen & Rothstein, 2010,
2012) that may be correlated with male quality or physical condi-
tion (Cooper & Goller, 2004; Merrill et al., 2013; O'Loghlen &
Rothstein, 1995). Unfortunately, evidence of high-quality males
establishing territories in areas richer in host nests is still missing
(Darley, 1982; Dufty, 1982; Yokel & Rothstein, 1991).

To properly verify the existence of nonmaterial gifts, we need to
take at least two further steps. First, we need to assess whether the
occurrence/frequency of male displays biases the female's mate
choice. Second, we need to verify that female preferences for
actively displaying males would eventually cause a net fitness
benefit for some males, resulting in an observable sexual selection
dynamic at the population level. In other words, we need evidence
to broaden the definition of nuptial gifts into one that includes its
possible nonmaterial nature, and thereby facilitates the receiver's
access to a resource that cannot be directly provided by the donor
itself, but not other signals or cues correlated with the donor's
quality or general condition.

Conclusions and Perspectives

To conclude, we found two postures, wing drooping and tail up,
more often performed in basins richer in host nests, potentially
conveying information of higher parasitism opportunities. Since
wing drooping is more common in males, this behaviour is a good
candidate to be a signal to females, potentially acting as a
nonmaterial nuptial gift. The tendency for males to preferentially
perform tail swing in the presence of conspecifics needs to be
verified with a larger sample size, but our findings suggest this
behaviour has a role in some aspect of cuckoo communication.
Further studies are needed to verify potential variations in displays
under changing environmental conditions and during different
stages of the breeding season. Also, combining camera trap obser-
vations with GPS-tagged individuals may help in revealing patterns
of social association and territoriality, allowing us to verify whether
they are consistent with our hypothesis. Further, using tagged in-
dividuals may enable us to identify potential individual variation in
displays, and better assess the contribution of environmental fac-
tors in display occurrence, allowing us also to handle pseudor-
eplication issues. Lastly, a parentage analysis based on blood
samples taken from chicks and focal adults would allow us to un-
cover an ongoing sexual selection process. While further in-
vestigations are required to assess the potential role of information
acting as a nuptial gift, we obtained results consistent with our
hypothesis. Working in this direction could help shed light on
brood parasite communication and evolution processes, directly
contributing to a better understanding of parasiteehost interaction
in hundreds of complex systems worldwide.
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Table A2
Nest density and cuckoo abundance per basin

Basin Area (km2) No. of nests Searching time (h) Nest density (no. of nests/km2h) Cuckoo abundance
(no. of individuals/day)

A 0.070 9 25 5.11 1.39
B 0.151 7 29 1.60 1.90
C 0.122 0 9 0 1.17
D 0.112 5 13 3.42 10.78
E 0.135 2 7 2.12
F 0.129 1 5 1.54
G 0.132 2 12 1.26
H 0.036 7 6 32.46 1.25
I 0.143 11 9 8.54
J 0.057 16 15 18.60
K 0.102 3 8 3.68 0
L 0.066 5 5 15.26 1.18
M 0.073 1 1 13.77 0
N 0.069 3 3 14.42
O 0.101 0 2 0 3.00
P 0.016 3 2 93.15

Abundance was derived by dividing the number of cuckoo observations by the days of camera trap activity at the vantage point, aggregating data per basin. This was not
assessable in basins without sampled vantage points. Nest density was estimated by dividing the number of nests found in the basin by the product of the basin surface and the
number of searching hours.
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