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Abstract: In this paper, we aim to evaluate the efficacy of antidiabetic cardioprotective molecules
such as Sodium-Glucose Cotransporter-2 Inhibitors (SGLT-2i) and Glucagon-like Peptide 1 Receptor
Agonists (GLP-1 RAs) when used with other glucose-lowering drugs, lipid-lowering, and blood
pressure (BP)-lowering drugs in a real-life setting. A retrospective, observational study on 477 patients
admitted consecutively in 2019 to the outpatient clinic of a tertiary care unit for Diabetes Mellitus was
conducted. Body mass index (BMI), blood pressure (BP) (both systolic and diastolic), and metabolic
parameters, as well as A1c hemoglobin, fasting glycaemia and lipid profile, including total cholesterol
(C), HDL-C, LDL-C and triglycerides), were evaluated at baseline and two follow-up visits were
scheduled (6 months and 12 months) in order to assess the antidiabetic medication efficacy. Both
SGLT-2i and GLP-1 RAs were efficient in terms of weight control reflected by BMI; metabolic control
suggested by fasting glycaemia and A1c; and the diastolic component of BP control when comparing
the data from the 6 and 12-month visits to the baseline, and when comparing the 12-month visit
to the 6-month visit. Moreover, when comparing SGLT-2i and GLP-1 RAs with metformin, there
are efficacy data for SGLT-2i at baseline in terms of BMI, fasting glycaemia, and HbA1c. In this
retrospective study, both classes of cardioprotective molecules, when used in conjunction with other
glucose-lowering, antihypertensive, and lipid-lowering medications, appeared to be efficient in a
real-life setting for the management of T2DM.

Keywords: treatment; real-life; diabetes mellitus; sodium-glucose cotransporter-2 inhibitors; glucagon-
like peptide-1 receptor agonist

1. Introduction

Modern society is facing an accelerating rate of obesity and type 2 diabetes mellitus
(DM) due to changes in diet and lifestyle [1,2]. Longer lifespans and sedentary living are
leading to an increase in chronic illnesses that require multiple medications [2]. In this
context, polypharmacy is generally referred to as the use of more than five medications
per day per patient [3,4]. The high numbers of administered drugs oblige healthcare
providers to carefully choose them and, more importantly, to recommend efficient and
personalized treatments [5].
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Type 2 DM (T2DM) is a complex disease characterized by a hyperglycaemic state with
an increased risk of microvascular complications, such as retinopathy, nephropathy, or
neuropathy; macrovascular complications such as atherosclerotic disease (peripheral artery
disease, ischemic stroke, or coronary artery disease); and cognitive impairment or adverse
reactions (AR) from the antidiabetic drugs [6], which all lead to an overwhelming burden.
Given the high risk for complications, need for hospitalization, and the all-cause mortality,
the current recommendations are to personalize the treatment in order to achieve individu-
alized metabolic targets while addressing the patients’ concomitant comorbidities [6,7].

DM and especially T2DM are characterized by heterogeneity both in pathophysiologi-
cal and in clinical features, a fact that is emphasized by the recent tendency to cluster pa-
tients into subgroups based on disease progression and onset of DM-related complications,
including retinopathy, neuropathy, chronic kidney disease, cardiovascular (CV) disease,
and NAFLD. Therefore, personalized management of cases, including prevention and
treatment methods, should be pursued, but more studies in this direction are required [8].

SGLT-2i and GLP-1 RAs are antidiabetic drugs that are proven to be efficient in
achieving glycaemic, metabolic, and weight control, and in reducing the risk of a composite
of CV death, nonfatal myocardial infarction (MI), and nonfatal stroke—together referred to
as major adverse cardiovascular events (MACE) [9,10].

Randomized control trials (RCTs) represent the gold standard in providing directions
for adjusting a patient’s management. Despite their significant usefulness, they require
plentiful resources and they offer information on only a select cohort of patients in a
more or less controlled setting; therefore, real-life studies are needed in order to provide
complementary data to RCTs [11,12].

The aim of this study was to evaluate the efficacy of two classes of glucose-lowering med-
ications, namely SGLT-2i and GLP-1 RAs, for the treatment of T2DM when used in a real-life
clinical practice with other glucose, blood pressure (BP), and lipid-lowering medication.

2. Materials and Methods

This retrospective, observational study was conducted in accordance with the Dec-
laration of Helsinki and approved by the Institutional Ethics Committee of N Paulescu
National Institute for Diabetes Mellitus, Nutrition and Metabolic Disorders, Bucharest,
Romania (protocol number 5591, from 17 November 2022). From the 477 patients that were
consecutively admitted in 2019 to the “N. Paulescu” National Institute for Diabetes Mellitus,
Nutrition and Metabolic Disorders’ Outpatient Department, 16 patients discontinued their
treatment early due to AR, 56 patients refused or were unable to attend baseline visits, and
at least one of the control visits and 405 patients met the inclusion criteria. Figure 1 syn-
thetizes the analysis of those patients who was intended to receive treatment, the pre-study
drop-outs, those lost for follow-up, and those who discontinued treatment due to AR.

The inclusion criteria are extensively presented in Table 1 and comprise adult patients
with at least a 6-month duration of T2DM prior to admission, treated in a standard-of-
care regimen for 6 months prior to the baseline visit, and who received at least one of
the BP-lowering or lipid-lowering drugs of interest. The included patients had to attend
at minimum two of the three visits of interest which were, respectively, a baseline visit
(mandatory) (V0M), a plus 6-month visit (V6M) or a plus 12-month visit (V12M), or both a
plus V6M and V12M. Furthermore, patients were assigned to one of three groups depending
on their non-insulinic treatment for DM which were, respectively, metformin, metformin
plus SGLT-2i, and metformin plus GLP-1 Ra. The exclusion criteria are also presented in
Table 1 and include non-adult patients with other types of DM.
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Figure 1. Patient selection and inclusion process. AR—adverse reaction; SGLT-2i—sodium glucose
loop transporter 2 inhibitor; GLP-1 RA—glucagon-like peptide 1 receptor agonist.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Adults > 18 years old Younger than 18 years old
Duration of T2DM > 6 months Type 1 DM or secondary DM

Standard-of-care treatment for T2DM with maximum
tolerated doses > 6 months prior to inclusion

Severe/acute heart failure, renal
insufficiency or hepatic insufficiency

At least two visits from V0M, V6M and V12M
Treatment with BB and/or CCB

and/or ARB/ACEI and/or statin
DM—diabetes mellitus; T2DM—type 2 diabetes mellitus; V0M—baseline visit; V6M—6 months visit;
V12M—12 months visit; BB—beta-blockers; CCB—calcium-channel blockers; ARB—angiotensin receptor blockers;
ACEI—angiotensin converting enzyme inhibitors.

The drugs of interest from the SGLT-2i and GLP-1 RA classes are the ones that were
available and approved by the National Drug Association at the time of the study, begin-
ning with empagliflozin and dapagliflozin for SGLT-2i, and dulaglutide, lixisenatide, and
exenatide for GLP-1 RAs.

Patients’ real-life data regarding their demographic parameters (e.g., age, gender,
and settlement), clinical examination (BMI, heart rate-HR, systolic, and diastolic BP),
comorbidities (e.g., high BP and dyslipidemia, etc.), paraclinical profile (fasting glycaemia,
A1c, total-C, HDL-C, LDL-C, and TG), and data about the treatment (antidiabetic, BP-
lowering, and lipid-lowering drugs) at V0M, V6M, and V12M were collected from the
electronic database of the N. Paulescu National Institute for Diabetes Mellitus, Nutrition
and Metabolic Disorders, Bucharest, Romania. Using Excel software 2019th version and
SPSS software, 20th version, the data were statistically analyzed using the Kolmogorov–
Smirnov test for normality, ANOVA test for baseline characteristics comparison, and
student t-test for comparison between visits if the variables had normal distribution, as
well as a Wilcoxon test and Kruskal–Wallis tests for non-normal distributions.
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3. Results

Detailed data regarding the included patients’ participation, demographics, comor-
bidities, and treatment for the molecules of interest are shown in Table 2. The Romanian
standard–of-care treatment regarding the maximum tolerated dose for T2DM for the met-
formin group is represented by metformin, or metformin plus insulin; in the SGLT-2i group
by metformin plus SGLT-2i or metformin plus SGLT-2i plus insulin; in the GLP-1 RA group
by metformin plus GLP-1 RAs plus insulin, as shown in Table 2; and, alongside with CV
treatment of interest, respectively, beta-blockers (BB), calcium-channel blockers (CCB),
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEI/ARB) or
statins and, when needed, diuretics.

Table 2. Data about the patient’s participation at visits, demographic and standard-of-care treatment
for T2DM and cardiovascular (CV) treatment of interest.

Metformin SGLT-2i GLP-1Ras

No of patients (% of total) 167 (41.2%) 119 (29.4%) 119 (29.4%)
No of patients at V6M (% of group) 148 (88.62%) 109 (91.59%) 106 (89.07%)
No of patients at V12M (% of group) 155 (92.81%) 112 (94.11%) 101 (84.87%)

Insulin treatment (%) 16 (9.58%) 15 (12.6%) 61 (51.26%) p < 0.001, η2 = 0.24
Female (%) 65 (38.9%) 34 (71.4%) 57 (47.9%) p = 0.009, η2 = 0.023

Mean age (years) [mean ± SD] 57 ± 10 56 ± 10 59 ± 9 p = 0.185, η2 = 0.008
Urban settlement (%) 113 (67.66%) 98 (82.35%) 88 (73.95%) p < 0.001, η2 < 0.001

Active smoker (%) 29 (17.36%) 15 (12.6%) 27 (22.68%) p = 0.281, η2 = 0.006
Chronic kidney disease (%) 14 (8.38%) 15 (12.6%) 20 (16.80%) p = 0.097, η2 = 0.012

Heart failure (%) 10 (5.98%) 14 (11.76%) 8 (6.72%) p = 0.174, η2 = 0.009
BB (%) 94 (56.28%) 78 (65.54%) 74 (62.18%) p = 0.268, η2 = 0.007

CCB (%) 43 (25.74%) 28 (23.52%) 28 (23.52%) p = 0.818, η2 = 0.01
ACEI/ARB (%) 104 (62.27%) 84 (70.58%) 94 (78.98%) p = 0.01, η2 = 0.023

Statin (%) 135 (80.83%) 104 (87.39%) 106 (89%) p = 0.112, η2 = 0.011
Diuretics (%) 73 (43.71%) 36 (30.25%) 43 (36.13%) p = 0.181, η2 = 0.008

SGLT-2i—sodium glucose loop transporter 2 inhibitor; GLP-1 Ras—glucagon-like peptide 1 receptor ag-
onist; V6M—6-month visit; V12M—12-month visits; BB—beta-blockers; CCB—calcium channel blockers;
ACEI—angiotensin converting enzyme inhibitors; ARB—angiotensin receptor blockers; SD—standard deviation.

The baseline visit (V0M) parameters of interest are the clinical parameters—Body mass in-
dex (BMI), heart rate (HR), systolic and diastolic BP, and the metabolic parameters—fasting
glycaemia, total-cholesterol (total-C), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C)
and triglycerides (TG); these are shown in Table 3.

Table 3. The V0M parameters of interest for clinical (BMI, HR, systolic and diastolic BP) and metabolic
parameters (fasting glycaemia, total-C, HDL-C, LDL-C and TG).

Metformin
(n = 167)

SGLT-2i
(n = 119)

GLP-1Ras
(n = 119)

BMI (kg/m2)
[mean ± SD]

31.8 ± 5.8 p = 0.672 35.5 ± 6.5 p = 0.209 32.1 ± 6.1 p = 0.022 p < 0.001, η2 = 0.067

Systolic BP (mmHg)
[mean ± SD] 133.4 ± 12.8 p = 0.004 131.7 ± 13.4 p = 0.009 131.4 ± 1 p = 0.022 p = 0.377, η2 = 0.05

Diastolic BP (mmHg)
[mean ± SD] 80.4 ± 8.7 p < 0.001 79.7 ± 12.7 p < 0.001 79.3 ± 8.8 p < 0.001 p = 0.63, η2 = 0.002

HR (beat per minute)
[mean ± SD] 78 ± 11 p < 0.001 77 ± 12 p = 0.009 73 ± 8 p = 0.23 p < 0.001, η2 = 0.041

Fasting glycaemia
(mg/dL) [mean ± SD] 155.4 ± 48.4 p = 0.026 170.6 ± 66.1 p = 0.006 155.7 ± 49.5 p = 0.003 p = 0.041, η2 = 0.016

HbA1c (%)
[mean ± SD] 7.4 ± 1.2 p = 0.006 8.1 ± 1.5 p = 0.068 7.4 ± 1.4 p = 0.044 p < 0.001, η2 = 0.05
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Table 3. Cont.

Metformin
(n = 167)

SGLT-2i
(n = 119)

GLP-1Ras
(n = 119)

Total-C (mg/dL) * 172 (52) p = 0.236 161 (61) p = 0.595 168 (60) p = 0.654 p = 0.215, η2 = 0.008
HDL-C (mg/dL)

[mean ± SD] 46 ± 12 p = 0.008 43 ± 16 p < 0.001 44 ± 13 p = 0.11 p = 0.182, η2 = 0.008

LDL-C (mg/dL) * 92 (41) p = 0.232 98 (47) p = 0.168 91 (53) p = 0.403 p = 0.816, η2 = 0.001
TG (mg/dL) * 170 (103) p = 0.004 172 (115) p = 0.002 170 (82) p < 0.001 p = 0.419, η2 = 0.004

SGLT-2i—sodium glucose loop transporter 2 inhibitor; GLP-1 RA—glucagon like peptide 1 receptor agonist; total-
cholesterol—total-C; HDL-cholesterol—HDL-C; LDL-cholesterol—LDL-C; TG—triglycerides; SD—standard devi-
ation. *—where the baseline distribution was not normal, we reported the data as median and interquartile range.

The 6-month visit (V6M) parameters of interest are the clinical parameters—BMI, HR,
systolic and diastolic BP, and the metabolic parameters—fasting glycaemia, total-C, HDL-C,
LDL-C and TG; these are shown in Table 4.

Table 4. The V6M parameters of interest for clinical (BMI, HR, systolic and diastolic BP) and metabolic
parameters (fasting glycaemia, total-C, HDL-C, LDL-C, TG).

Metformin
(n = 148)

SGLT-2i
(n = 109)

GLP-1Ras
(n = 106)

BMI (kg/m2) [mean ± SD] 31.3 ± 5.9 p = 0.756 31.6 ± 5.5 p = 0.96 31.5 ± 5.8 p = 0.022
Systolic BP (mmHg) [mean ± SD] 133.1 ± 12.8 p = 0.004 133.1 ± 12.8 p = 0.017 130.7 ± 16.1 p = 0.08
Diastolic BP (mmHg) [mean ± SD] 80.8 ± 9.9 p < 0.001 81.6 ± 10.1 p < 0.001 76.9 ± 9.7 p < 0.001
HR (beat per minute) [mean ± SD] 77 ± 9 p = 0.009 76 ± 9 p = 0.015 73 ± 8 p = 0.782

Fasting glycaemia (mg/dL) [mean ± SD] 136.8 ± 36.1 p = 0.357 133.9 ± 35.3 p = 0.282 135.4 ± 35.3 p = 0.099
HbA1c (%) [mean ± SD] 7.1 ± 1.2 p = 0.002 7 ± 1.2 p = 0.027 7.1 ± 1.3 p = 0.02

Total-C (mg/dL) * 170 (60) p = 0.32 167 (61) p = 0.23 164 (55) p = 0.345
HDL-C (mg/dL) [mean ± SD] 46 ± 11 p = 0.029 47 ± 12 p = 0.117 45 ± 11 p = 0.855

LDL-C (mg/dL) * 92 (52) p = 0.425 88 (50) p = 0.266 90 (50) p = 0.081
TG (mg/dL) * 156 (120) p = 0.132 142 (123) p = 0.171 154 (91) p = 0.026

SGLT-2i—sodium glucose loop transporter 2 inhibitor; GLP-1 RA—glucagon like peptide 1 receptor agonist; total-
cholesterol—total-C; HDL-cholesterol—HDL-C; LDL-cholesterol—LDL-C; TG—triglycerides; SD—standard devi-
ation. *—where the baseline distribution was not normal, we reported the data as median and interquartile range.

The 12-month visit (V12M) parameters of interest are the clinical parameters—BMI,
HR, systolic and diastolic BP, and the metabolic parameters—fasting glycaemia, total-C,
HDL-C, LDL-C, and TG; these are shown in Table 5.

Table 5. The V12M parameters of interest for clinical (BMI, HR, systolic and diastolic BP) and
metabolic parameters (fasting glycaemia, total-C, HDL-C, LDL-C, TG).

Metformin
(n = 155)

SGLT-2i
(n = 112)

GLP-1RAs
(n = 101)

BMI (kg/m2) [mean ± SD] 31.0 ± 5.8 p = 0.582 31.2 ± 5.4 p = 0.78 31.3 ± 5.7 p = 0.05
Systolic BP (mmHg) [mean ± SD] 133.2 ± 13.0 p = 0.005 132 ± 12.7 p = 0.011 130 ± 13.6 p = 0.029
Diastolic BP (mmHg) [mean ± SD] 79.9 ± 10.7 p < 0.001 80.3 ± 11.4 p < 0.001 76.5 ± 10.3 p < 0.001
HR (beat per minute) [mean ± SD] 77 ± 9 p = 0.063 77 ± 9 p = 0.03 73 ± 9 p = 0.327

Fasting glycaemia (mg/dL) [mean ± SD] 142.9 ± 39.9 p = 0.157 139.2 ± 36.8 p = 0.262 146 ± 50.7 p = 0.007
HbA1c (%) [mean ± SD] 7.1 ± 1.1 p = 0.01 7 ± 1 p = 0.073 7.1 ± 1 p = 0.023

Total-C (mg/dL) * 173 (57) p = 0.035 165 (58) p = 0.053 166 (62) p = 0.508
HDL-C (mg/dL) [mean ± SD] 47 ± 12 p = 0.019 48 ± 12 p = 0.096 45 ± 13 p = 0.212

LDL-C (mg/dL) * 92 (43) p = 0.064 87 (39) p = 0.091 91 (50) p = 0.504
TG (mg/dL) * 162 (103) p = 0.017 140 (100) p = 0.095 152 (85) p = 0.017

SGLT-2i—sodium glucose loop transporter 2 inhibitor; GLP-1 RA—glucagon like peptide 1 receptor agonist; total-
cholesterol—total-C; HDL-cholesterol—HDL-C; LDL-cholesterol—LDL-C; TG—triglycerides; SD—standard devi-
ation. *—where the baseline distribution was not normal, we reported the data as median and interquartile range.
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The patients were evaluated both clinically (BMI, systolic and diastolic BP, and HR)
and paraclinically (fasting glycaemia, HbA1c, total-C, HDL-C, LDL-C, and TG) at V6M
and at V12M as compared to V0M, and at V12M as compared to V6M; the results are
synthetized in Table 6. They had at least one statistically significant value with p < 0.05,
while for systolic BP, HR, total-C, and HDL-C there were no significant differences.

Table 6. Clinical (BMI, diastolic BP) and paraclinical (fasting glycaemia, HbA1c, HDL-cholesterol
and tryglicerides) at V6M and at V12M as compared to V0M, and at V12M as compared to V6M.

Metformin SGLT-2i GLP-1 RAs

Mean
Difference

Mean
Difference

Mean
Difference

V6M compared to V0M
BMI (kg/m2) 0.5 ± 0.09 p < 0.001 3.9 ± 0.78 p < 0.001 0.6 ± 0.1 p < 0.001

Diastolic BP (mmHg) 0.4 ± 0.8 p = 0.380 1.9 ± 1.3 p = 0.151 2.4 ± 0.8 p = 0.013
Fasting glycaemia (mg/dL) 18.6 ± 3.8 p < 0.001 36.7 ± 7.4 p < 0.001 20.3 ± 4.6 p < 0.001

HbA1c (%) 0.3 ± 0.1 p = 0.018 1.1 ± 0.2 p < 0.001 0.3 ± 0.1 p = 0.01
HDL-cholesterol (mg/dL) 0 ± 0.6 p = 0.765 4 ± 2 p < 0.001 0 ± 0.8 p = 0.895

Triglycerides (mg/dL) 4 ± 8.3 p = 0.38 30 ± 12.5 p = 0.023 2 ± 12.2 p = 0.258
V12M compared to V0M

BMI (kg/m2) 0.3 ± 0.1 p < 0.001 4.3 ± 0.75 p < 0.001 0.8 ± 0.1 p < 0.001
Diastolic BP (mmHg) 0.9 ± 0.9 p = 0.728 0.6 ± 1.3 p = 0.314 2.8 ± 1.1 p = 0.008

Fasting glycaemia (mg/dL) 6.1 ± 4 p = 0.018 31.4 ± 7.2 p = 0.001 9.7 ± 5.2 p = 0.05
HbA1c (%) 0 ± 0.08 p = 0.195 1.1 ± 0.1 p < 0.001 0.3 ± 0.1 p = 0.075

HDL-cholesterol (mg/dL) 1 ± 0.7 p = 0.056 5 ± 2 p < 0.001 1 ± 0.6 p = 0.283
Triglycerides (mg/dL) 8 ± 8.1 p = 0.906 32 ± 7.2 p = 0.019 28 ± 12.9 p = 0.099

V12M compared to V6M
BMI (kg/m2) 0.8 ± 0.08 p = 0.04 4.3 ± 0.09 p = 0.086 0.2 ± 0.09 p = 0.083

Diastolic BP (mmHg) 0.5 ± 1 p = 0.67 1.3 ± 1.3 p = 0.759 0.4 ± 1.1 p = 0.322
Fasting glycaemia (mg/dL) 12.5 ± 3 p = 0.024 31.4 ± 3.3 p = 0.045 10.6 ± 3.5 p = 0.025

HbA1c (%) 0.3 ± 0.07 p = 0.426 0 ± 0.9 p = 0.952 0 ± 0 p = 0.24
HDL-cholesterol (mg/dL) 1 ± 0.6 p = 0.342 1 ± 0.6 p = 0.536 1 ± 0.8 p = 0.442

Triglycerides (mg/dL) 6 ± 0.1 p = 0.51 2 ± 12.5 p = 0.974 16 ± 8.1 p = 0.798

SGLT-2i—sodium glucose loop transporter 2 inhibitor; GLP-1 RAs—glucagon like peptide 1 receptor agonist;
V0M—baseline visit; V6M—6-month visit; V12M—12-month visit; BMI—body mass index; BP- blood pressure;
HR—heart rate; Chol -cholesterol; TG—triglycerides.

Moreover, a comparison of the SGLT-2i and GLP-1 RA groups with the metformin
group for efficacy, looking at BMI, HR, systolic and diastolic BP, HbA1c, fasting glycaemia,
total-C, HDL-C, LDL-C, and TG at V0M, at V6M and at V12M are statistically signifi-
cant only for BMI (3.69 ± 0.73 kg/m2, p < 0.001), fasting glycaemia (15.27 ± 6.79 mg/dL,
p = 0.025), and HbA1c (0.72 ± 0.16%, p < 0.001) at V0M when comparing SGLT-2i to met-
formin. Meanwhile, no parameter was efficient when comparing GLP-1 RAs to metformin.

To summarize our results, both SGLT-2i and GLP-1 RA are efficient in terms of weight
control, reflected by patients significantly lowering their BMIs after 6 months, with a
benefit that was maintained until 12 months. Additionally, metabolic control evaluated
by fasting glycaemia and HbA1c improved when comparing the data from V6M and
V12M to V0M, and when comparing V12M to V6M; however, only fasting glycemia had
a significant decrease after 6 months. Moreover, when comparing SGLT-2i and GLP-1
RAs with metformin, efficacy data were only found for SGLT-2i at V0M for BMI, fasting
glycaemia, and HbA1c as compared to metformin.

4. Discussion

Our real-world study confirms that, compared to metformin, the antidiabetic non-
insulin drugs SGLT-2i and GLP-1 RAs confer extra benefits when administered in standard-
of-care treatment and in association with CV drugs used for the treatment of High BP (HBP),
such as BB, CCB, ACEI, or ARB, or for the treatment of dyslipidaemia, such as statins. It is
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important to emphasize that the two classes are reported to have cardioprotective benefits,
but the complex mechanisms that lie beyond this property are still being studied.

CVOTs reported that the standard–of-care treatment that included SGLT-2i could
provide benefits such as metabolic control by reducing HbA1c [13–15], ameliorating hy-
perglycaemia [14,16], lowering body weight [13,15,16], reducing systolic and diastolic
BP [13,14,16], and ameliorating the lipid profile by reducing TG levels [13].

CVOTs that evaluated GLP-1 RAs with the standard–of-care treatment demonstrated that
this class has beneficial effects on the reduction of HbA1c [17–19], fasting glycaemia [17–20],
body weight [17–19], systolic and diastolic BP [17,19], and amelioration of the lipid pro-
file [17,19] by reducing LDL-C, total-C, and TG levels.

Metformin has been used in T2DM as a first-line standard-of-care treatment for several
decades [21]. Its benefits were not evaluated by CVOTs [22] because it was widely available
with no severe AR, and due to its easy affordability and tolerability [23]. It has beneficial
CV effects, as shown in the United Kingdom Prospective Diabetes Study (UKPDS) [23]. It
is efficacious in reducing fasting glycaemia [24,25], HbA1c [25], and body weight [25,26],
and has modest effects on the lipid profile, especially LDL-C and TG [26]. The following
is a narrative comparison of the actions of metformin versus the GLP-1RAs and SGLT-2i
agents as reported in the literature and a parallel to our study.

4.1. BMI

Metformin, one of the first-line treatment options in T2DM treatment, is reported to
reduce weight by inducing satiety and improving insulin sensitivity [25–27]. For example,
Zyrek et al. [28] reported a reduction in the BMI of patients with T2DM from baseline
(27.29 ± 2.1 kg/m2) to the 3-month visit (28.27 ± 2.71 kg/m2), p < 0.0001, which is similar
to the findings in our study when comparing BMI at V6M to V0M; V12M to V0M; and
V12M to V6M (Tables 3–5).

The GLP-1 RAs are a class of antidiabetic drugs used in the treatment of T2DM
and have multiple benefits such as increased satiety, reduced appetite and food intake
with weight loss, and concomitant gastrointestinal effects such as slowing the gastric
emptying rate and small intestinal peristalsis [17,19,20,29]. For this class, Tofé et al. [30]
reported a decrease in BMI for patients with T2DM treated with GLP-1 RAs at 6 months
(37.05 ± 6.1 kg/m2) and at 12 months (37.21 ± 6.8 kg/m2) as compared to their initial visit
(38.56 ± 6.6 kg/m2), p < 0.001, results that are similar to the ones from our study when
comparing V6M to V0M and V12M to V0M (Tables 3–5).

Another aspect is the lack of a significant decrease in BMI between V6M and V12M.
This confirms the results of previous studies [31], where the maximum decrease in BMI
under GLP-1 RAs is observed after 30 weeks and then is maintained over time.

Another class of antidiabetic drugs with cardioprotective benefits that is used in the
treatment of T2DM along with GLP-1 RAs are the SGLT-2i that block SGLT-2-mediated
glucose reabsorption in the kidneys, resulting in glycosuria and weight loss [13,15,16,32].
In a study by Sawada et al. [33], there was a decrease in the BMI of patients with T2DM
treated with SGLT-2i (without specifying the duration of treatment administration) from
30.3 ± 6.1 kg/m2 to 29.2 ± 5.7 kg/m2, p < 0.001. In our study, SGLT-2i was efficient in
terms of reducing BMI at V6M as compared to V0M and at V12M as compared to V0M
(Tables 3–5).

4.2. Blood Pressure

GLP-1 RAs in T2DM are reported to lower BP secondary to weight loss, increase in natriure-
sis, and provide better regulation of the renin–angiotensin–aldosterone system [17,19,29,34,35].
In a study by Hu et al. [35] a reduction in diastolic BP of −0.898 mmHg, p < 0.001, was
reported in patients with T2DM treated with GLP-1 RAs, consistent with our study results,
where we found a reduction at V6M as compared to V0M and V12M as compared to V0M
(Tables 3–5).



Biomedicines 2023, 11, 2455 8 of 13

BP reduction in the SGLT-2i class of patients with T2DM can be explained by decreased
sodium reabsorption in the proximal renal tubule, increase in diuresis with a reduction
in the plasma volume, improved arterial stiffness, and by the indirect effect of weight
reduction [36,37]. The data reported by Sawada et al. [33] showed a decrease in diastolic
BP in patients with T2DM treated with SGLT-2i from 74 ± 12 mmHg before initiation to
71 ± 12 mmHg afterwards, p = 0.332, but they did not state the duration of the follow-up.

4.3. Fasting Glycaemia

Metformin ameliorates fasting glycaemia in patients with T2DM by decreasing the
hepatic glucose production and the production of reactive oxygen species, resulting in
an improvement in cerebral memory and cognitive performance, along with glycaemic
control [24,25,38]. In a study by Rosenstock et al. [39], there was a reported reduction in
plasma glycaemic levels in patients with T2DM treated with metformin (191 ± 49 mg/dL) as
compared to levels during the 26-week visit (mean reduction −35 ± 3 mg/dL). Interestingly,
this is similar to our results from V6M as compared to V0M; V12M as compared to V0M;
and at V12M as compared to V6M (Tables 3–5).

SGLT-2i reduces proximal glucose reabsorption in the kidney, leading to a decrease in
blood glucose levels when used in patients with T2DM [40]. Singh et al. [41] reported that
SGLT-2i used in the treatment of T2DM has durable efficiency in reducing glycaemic levels,
which is consistent with our findings at V6M as compared to V0M; at V12M as compared
to V0M; and at V12M as compared to V6M (Tables 3–5).

GLP-1 RAs ameliorate the glycaemic profile in patients with T2DM by increasing the
secretion of insulin and synthesis of pancreatic islet cells, in parallel with a decrease in
glucagon secretion and β-cell apoptosis [17–20,34]. In a study conducted by Tofé et al. [30] in
patients with T2DM, treatment with GLP-1 RAs was efficient in reducing fasting glycaemia
at 6 months (145 ± 51 mg/dL) and at 12 months (153 ± 53 mg/dL) as compared to the
initial visit (177 ± 59 mg/dL), p < 0.0001. In our study, the differences in terms of glycaemic
control were encountered at V6M as compared to V0M; at V12M as compared to V0M; and
at V12M as compared to V6M (Tables 3–5).

4.4. HbA1c

Metformin reduces HbA1c in patients with T2DM [25]. Rosenstock et al. [39] reported
that in patients with T2DM with initial HbA1C ≥ 8%, metformin therapy led to a reduction
in HbA1c from 8.70 ± 0.033% to 7.57 ± 0.08% at 3 months, p < 0.0001, which is consistent
with our results showing HbA1c at V6M as compared to V0M (Tables 3–5).

GLP-1 RAs are credited with glucose-lowering effects and with an approximately 1%
reduction in HbA1c when used in patients with T2DM [17–19,34]. Tofé et al. [30] reported
that GLP-1 RA therapy reduced HbA1c at 6 months (7.24 ± 1.45%) and at 12 months
(7.29 ± 1.51%) as compared to the initial visit (8.18 ± 1.53%), p < 0.0001, in subjects with
T2DM—results that are similar to our study when comparing V6M to V0M (Tables 3–5).

SGLT-2is are reported to reduce HbA1c in patients with T2DM with values that range
from 0.5% to 1% [42], but the reduction can be larger as, for example, in a meta-analysis
by Masson W et al., where they reported a reduction in HbA1c of −0.94% 95% CI (−1.69,
−0.18), p = 0.002 [43], results that are similar to our study when comparing V6M with V0M
and V12M with V6M.

It is important to emphasize that a possible explanation for the lower improvement in
HbA1c between V12M and V6M as compared to V6M as compared to baseline could be
secondary to the lower HbA1c from the baseline.

4.5. SGLT-2i, GLP-1 RAs and Metformin Comparison

Optimal management of T2DM frequently requires combination therapy with several
glucose-lowering drugs. Since metformin has a long track record, it has been generally
accepted as a safe and effective first-line therapy by international consensus guidelines and
recommendations. Our study showed the efficacy of both SGLT-2i and GLP-1 RAs only for
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fasting glycaemia when compared to metformin in the treatment of T2DM as standard-of-
care in patients with T2DM. The data from the literature indicate that they are also efficient
for metabolic control (HbA1c, fasting glycaemia), body weight, BP lowering, and improving
the lipid profile. A systematic review and meta-analysis by Milder et al. [44] compared the
combination of SGLT-2i and metformin with metformin alone in the treatment of T2DM.
Differences in efficacy were observed for HbA1c, with a 95% confidence interval (95% CI)
of −0.55% (−0.67, −0.43), body weight with a 95% CI of –2 kg (−2.34, −1.66), and systolic
and diastolic BP reduction. In a meta-analysis that also compared the differences in efficacy
between SGLT-2i plus metformin with metformin alone in the treatment of T2DM, Jinfang
et al. [45] reported a reduction in HbA1c with 95% CI of −0.50% (−0.62, −0.38), weight
gain with a 95% CI of −1.72kg (−2.05, −1.39), systolic BP with a 95% CI of −4.44 mm
Hg (−5.45, −3.43), and diastolic BP with a 95% CI of −1.74 mm Hg (−2.40, −1.07), as
well as fasting plasma glucose levels of −20.16 mg/dL with a 95% CI of (−24.84, −15.66).
The DISCOVER study by Khunti et al. [46] evaluated the association of metformin with
sulphonylurea (SU), dipeptidyl peptidase-4 (DPP-4) inhibitors, SGLT-2i, or GLP-1 RAs and
reported a significantly reduction in HbA1c and body weight for the last three groups as
compared to the first one.

In a study by Hutmacher et al. [47], GLP-1 RAs plus basal insulin reduced HbA1c by
−0.7% (95% CI −1.2, −0.2) when compared with basal insulin and placebo; the effects of
long-acting GLP-1 RAs (−1.0%, 95% CI −1.2, −0.8) and of short-acting GLP-1 RAs (−0.5%,
95% CI −1.2, −0.8) were similar. However, it is generally believed that long-acting GLP-1
RAs are more efficient in terms of reduction in HbA1c, fasting plasma glycaemia, and body
weight when compared to short-acting GLP-1 RAs.

A systematic review and meta-analysis by Patoulias et al. [48] reported that GLP-1
RAs offered better HbA1c reduction with −0.38% (95% CI −0.55, −0.22) as compared to
SGLT-2i, but with similar improvements in body weight −0.29 kg (95% CI −1.24, 0.66) and
fasting plasma glycaemia in T2DM. GLP-1 RAs are not superior to SGLT-2i for systolic BP
0.98 (95% CI −1, 2.97) and for diastolic BP 1.01 (95% CI −0.25, 2.27).

4.6. Future Perspectives in Efficacy of Cardioprotective Molecules

Taking into consideration the evolution of modern medicine towards precision treat-
ment, including in the case of DM and especially in T2DM, we should not forget that
the efficacy of any treatment should be reported to the type of the patient [8]. Future
studies should analyze if the drugs provide different grades of efficacy due to their variable
curves of efficacy or due to different cut-offs until which the patients respond, or due to the
different pathophysiology of DM, different DM evolution patterns, complication onsets, or
comorbidities of the patients [49,50].

Moreover, in addition to the present real-life clinical practice results in efficacy for
cardioprotective antidiabetic drugs, we reported in a previous paper [51] data about their
safety as part of the same research project. Clinical inertia may be the main cause for low
rates of success in achieving metabolic control. However, in this project, we did not select
the included patients, but enrolled them consecutively, and clinicians tend to indirectly
select the patients that receive these drugs based on their medical judgement, despite the
guideline recommendations and the need to move the paradigm from HbA1c control to a
comprehensive metabolic control that targets weight control, lipid profile, or BP control [52],
which allow for a reduction in CV risk.

Thus, there is hope for patients with T2DM because recently, in randomized multicen-
ter, clinical studies, it was reported that the reduction in MACEs and mortality is incremen-
tally related to the number of risk factors that reached the recommended targets [53,54].

The strengths of our study rely on gaining real-life clinical practice data for molecules
that once more proves their benefits in body weight and BP control, and in helping to
achieve a lipid profile and metabolic profile closer to the recommended ones as compared
to the CVOT data, where the patients are more carefully selected, monitored, and treated.
On the other hand, the limitations of our study include that, despite a robust association,
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its observational design precludes establishing a definite causal relationship, along with
a relatively small number of subjects. The short period of follow-up of a maximum of
three visits in a one-year duration can also explain why the only discontinuation cause
was AR, while the real-life conditions brought up dietary and physical activity variation
between patients, as well as different grades of adherence, which are difficult to quantify,
but may influence the results; the baseline differences between treatment groups and
patient selection by the diabetologists may include preferential selection of patients who
are more adherent to the medical recommendations, due to the high financial burden that
the treatment represents for the national health system. However, our results are promising
and provide the basis for larger, randomized studies in this therapeutic area and in real-life
settings, which can be performed on a longer duration to evaluate the maintenance of
the effect in time or to figure out several explanations for poor efficacy, including the
segregation by clusters of T2DM patients.

5. Conclusions

The present real-life study presents two classes of noninsulin antidiabetic agents,
namely GLP-1 RAs and the SGLT-2i, which appear to be efficacious in the reduction in body
weight reflected by BMI at 6 and 12 months as compared to baseline, along with metabolic
control reflected by reducing fasting glycaemia at 6 and 12 months as compared to baseline
and at 12 months as compared to the 6-month visit, and by reducing HbA1c at 6 months
as compared to baseline visit when used in a real-life clinical practice setting for patients
with T2DM, even in combination with therapeutic agents for treating HBP (BB, CCB, ACEI,
or ARB) or for the treatment of dyslipidaemia with statins. Therefore, this study adds to
the body of literature, and is close to real-world, clinical, and translational care, showing
that the resultant multifactorial reduction in CV risk may prove to be highly beneficial in
reducing morbidity and mortality in patients with T2DM.
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