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Abstract

Variable Angle Tow (VAT) composite plates are characterized by in-plane variable stiffness properties,

which opens to new concepts of stiffness tailoring and optimization to achieve higher structural perfor-

mance for advanced lightweight structures where damage tolerance consideration are often mandatory.

In this paper, a single-domain eXtended Ritz formulation is proposed to study the buckling behaviour

of variable stiffness laminated cracked plates. The plate behavior is described by the first order shear

deformation theory whose generalized displacements, namely reference plane translations and rota-

tions, are expressed via suitable admissible trial functions.These consist of a set regular terms, built

using orthogonal polynomials, augmented with special functions able to describe the crack opening

and the singular behaviour at the crack tips; boundary functions are used to ensure the required ho-

mogeneous essential boundary conditions. Governing equations are inferred via the principle of virtual

displacements an solved to carry out an extensive study on the buckling behaviour of variable angle

tow homogeneous and layered composite plates. The results obtained for homogeneous plates evidence

that the crack presence strongly influences the buckling behaviour depending on its length and incli-

nation and plate boundary conditions with a meaningful variability with respect to the fibre paths

configuration, which can arrange for better performances with respect to the straight fiber case. Also

for cracked laminates the results show that there are several fibre path able to provide higher buckling

loads and higher overall axial stiffness with respect to the straight fibre case. In the framework of dam-

age tolerant engineering applications, this allows to select fibre paths that guarantee predefined design

levels of buckling load and axial stiffness even in presence of cracks. Finally, this study highlights the

potential of the proposed approach for the analysis of the buckling behaviour of cracked composite

variable stiffness plates, which provides an efficient analysis tool for the damage tolerant design and
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optimization of advanced VAT structures.
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1. Introduction

Structural performances and efficiency have been meaningfully improved by the introduction

of fiber-reinforced composite materials. Their high strength-to weight and stiffness-to-weight ratios,

combined with the constituent material selection and the application in the form of optimized layup

laminate configurations, made possible to achieve structural design tailored to the application. The

first generation of composite structures for aerospace, automotive and naval engineering applications

has been based on the available production technologies and was implemented using laminates built

with straight fibres plies; this leads to build plate and shell structures exhibiting constant stiffness

across their reference surface. Indeed, the concept of variable stiffness added a further dimension to

the structural design space providing an increased freedom to tailor the structural behaviour. In this

context, the growth of a reliable industrial automation and the availability of automated fiber place-

ment manufacturing methods led towards the introduction of in-plane variable stiffness composites,

generally known as variable angle tow (VAT) composites [1, 2]. In these composites the fiber orientation

is point-wise varied by actively steering individual fibre tows rather than place them along constant

directions. By doing so, two dimensional structures (plates and shells) with continuously varying in-

plane properties and discretely varying through-thickness properties are obtained. It is worth noting

that this class of structures conceptually differs from usually defined functionally graded composites,

which exhibit only continuously varying through-thickness properties and constant stiffnesses across

the structural reference surface. The employment of variable stiffness structures in engineering ap-

plications, especially in the form of high performance VAT components, requires accurate analyses

for assessing their static, dynamic, fatigue and damage tolerance behaviour and for carrying out the

ensuing optimized design. Considering the involved complexity (variable anisotropy and heterogene-

ity), the variable stiffness composites models should simultaneously be able to accurately capture the

structural responses and do this efficiently in order to be acknowledged as tools for a reliable, effective

and safe design.

With this background in mind, the Ritz method has proven to be a successful and accurate

approach for the analysis of composite plates with high computational efficiency [3–7]. Ritz solutions

for linear static, free vibrations, buckling and postbuckling analysis of straight fibers composite plates,
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frequently implementing the classical laminated plate theory (CLPT) (e.g. [8–13]), have been proposed.

As transverse shear strains can play an important role in composite structures, the first-order shear

deformation theory (FSDT) is advised as adequate for the engineering analysis and design of most thin

to moderately thick composite laminates [5] and it is appealing when compared with more sophisticated

higher order plate theories due to its simplicity and low computational costs. Focusing on FSDT

modelling of straight fibers plates solved by the Ritz method, formulation based on different kinds of

trial function have been proposed, showing reliable results for static [14, 15], free vibrations [16–21],

buckling [16, 14] and postbuckling [22–24] analysis. Regarding variable stiffness composite structures

and VAT composites, attention has been devoted to both CLPT [25–36] and FSDT [37–41] modelling

of plates and shells.

In high performance lightweight structures the presence of cracks can severely affect the load

carrying capability and such damages together with their related effects need to be accounted for fail

safe or damage tolerant design. Attention should be also devoted to the buckling and post-buckling

behaviour of cracked plates as unexpected critical safety issues could manifest [42]. The Ritz method

has been used to analyze cracked plates and approaches based on the decomposition technique [43–48]

have been implemented providing sound results that however does not explicitly consider the crack

tip singular behaviour. To cope this issue, single-domain Ritz formulations have been introduced that

employ special trial functions able to describe the discontinuous behaviour across the crack as well

as the crack tip singular stresses [49–62]. The literature survey reveals that no solution for cracked

variable stiffness plate has been yet presented and that no results are available to show the crack effects

on the behaviour of such structures.

With the intent of filling this gap and grounding on their previous works [60–62], in the present

paper the authors extend to the analysis of variable stiffness plates a single-domain Ritz formulation,

named X-Ritz, which inherently accounts for embedded or edge crack presence. The plate model is

based on a first-order shear deformation theory where the primary variables are expressed as combina-

tion of orthogonal polynomials and set of suitable trial functions able to represent crack discontinuity

and singular behaviour. The aim of this work is (i) to verify the applicability of the approach to

variable stiffness structures, and (ii) to study the effects of cracks on the behaviour of VAT plates,

focussing the attention on their influence on the plates’ buckling behaviour. To the best of the authors’

knowledge this is the first study proposed in the literature that accounts for crack damages in VAT

plates and the presented original results can serve as benchmark for future works.
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The work is organised as follow: the cracked plate formulation and details of the X-Ritz approx-

imation procedure are presented in Sec.2. Next, the validation of the proposed method and original

results are discussed in Sec.3, followed by concluding remarks in Sec.4.

2. Formulation

Consider a general quadrilateral plate containing a straight embedded or edge through-the-

thickness crack. As shown in Fig.1, the plate is referred to a Cartesian coordinate system O{x1, x2, x3}
with the x3 axis directed along the thickness and the x1 and x2 axes lying in the plate reference plane

Ω whose boundary is denoted by ∂Ω. A natural coordinate system O{ξ, η} is also introduced, which

maps the square domain [−1, 1]×[−1, 1] into the plate reference plane coordinates via standard bilinear

shape functions [46]. The plate can be either homogeneous or layered and it generally exhibits stiff-

nesses variable across the reference plane related to the distribution of material properties (e.g. variable

angle tow composites) or thickness. For layered plates, perfect bonding is assumed between contiguous

plies. The plate is loaded by a system of loadings that determine an equilibrated pre-buckling state.

x2
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4
3
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2

β

r2 φ2

r1

φ1

Q ≡ (x1, x2)
4 ≡ (−1.0, 1.0)

1 ≡ (−1.0,−1.0) 2 ≡ (1.0,−1.0)

3 ≡ (1.0, 1.0)

η

ξ

Q ≡ (ξ, η)

Figure 1: Plate geometry and reference systems.

According to the first order shear deformation theory [46], assuming that homogeneous essential

boundary conditions on ∂Ω are satisfied, the plate buckling governing equations are obtained from the
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stationarity conditions of the following functional

Π =

∫
Ω

1

2

[
(DDDpu)

T
A DDDpu+ (DDDpu)

T
B DDDp LLL θ + (DDDpLLL θ)

T
B DDDpu+

(DDDpLLL θ)
T
D DDDpLLL θ + (DDDnu+ LLL θ)

T
S (DDDnu+ LLL θ)

]
dΩ + λ

∫
Ω

1

2
(DDDnu)

T
Ñ DDDnudΩ

(1)

where u= {u1 u2 u3}T is the translational displacements vector of the reference surface points, θ=

{θ1 θ2}T is the vector containing the rotations of the transverse sections and the operators DDDp, DDDn

and LLL are defined as

DDDp =


∂

∂x1
0 0

0
∂

∂x2
0

∂

∂x2

∂

∂x1
0

 , DDDn =


0 0

∂

∂x1

0 0
∂

∂x2

0 0 0

 LLL =


1 0

0 1

0 0

 (2)

In Eq. (1), λ is a load multiplier applied to the pre-buckling membrane forces per unit length ‹Nij
arranged in the matrix Ñ as follows

Ñ =


‹N11

‹N12 0‹N12
‹N22 0

0 0 0

 (3)

Also, A, B, D and S are the plate extensional, bending–extensional, bending and shear stiffness

matrices, respectively, whose definition is given in Appendix A. Note, the stiffness matrices and the

pre-buckling membrane forces per unit length are in general function of the position, namely of the x1

and x2 coordinates, due to the material and fibre angle distribution and the crack presence.

2.1. Ritz solution

The Ritz solution is based on the approximate representation of the unknown fields in terms of

a finite series expansion of known trial functions satisfying the essential boundary condition weighted
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by unknown coefficients [63]. For the problem at hand this writes as



u1

u2

u3

θ1

θ2


=



Ψu 0 0 0 0

0 Ψv 0 0 0

0 0 Ψw 0 0

0 0 0 Ψθ1 0

0 0 0 0 Ψθ2





Xu

Xv

Xw

Xθ1

Xθ2


=

 Φu 0

0 Φθ

X = ΦX (4)

where Ψχ, χ∈{u1, u2, u3, θ1, θ2}, is a row matrix collecting the trial functions used for the variable χ

and Xχ is the column vector collecting the corresponding unknown Ritz coefficients;

Substituting Eq. (4) into Eq. (1) and invoking the stationarity condition with respect to the

unknowns X, the discrete governing equations for the buckling problem are obtained as

(K + λKG)X = 0 (5)

which configures a linear eigenvalue problem, being the eigenvalue λ the buckling load multiplier and

X the associated eigenvector describing the buckling mode. The matrices involved in Eq. (5) are

defined as (see Refs. [62, 60] for more details on their derivation)

K =

∫
Ω

BT
puABpu+BT

nuSBnu BT
puBBpθ+BT

nuSBiθ

BT
pθBBpu + BT

iθ SBnu BT
pθDBpθ+BT

iθSBiθ

 dΩ (6a)

KG =

∫
Ω

BT
nÑBnu 0

0 0

 dΩ (6b)

where the discrete strain operators are given by

Bpu =DDDpΦu (7a)

Bpθ =DDDpLLL Φθ (7b)

Bnu =DDDnΦu (7c)

Biθ =LLL Φθ (7d)
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2.2. X-Ritz generalized displacement approximation

In the proposed Ritz approach, the admissible functions employed to approximate the plate

generalized displacements χ∈{u1, u2, u3, θ1, θ2} are composed of two part. The first, denoted by

χb and referred as basic trial functions, satisfies the geometric and boundary condition of the plate

without crack; the second, denoted by χc and referred as crack trial functions, accounts for the crack

discontinuity and singular behaviour. Thus one writes

χ=χb + χc (8)

The basic trial function contribution is expressed in terms of one-dimensional Legendre orthogonal

polynomials ψκ(ζ) of order κ as

χb = fχ(ξ, η)

Mχ∑
m=0

Nχ∑
n=0

ψm(ξ)ψn(η)C(0)
χmn (9)

where C(0)
χmn are the unknown Ritz coefficients and fχ is a suitable function chosen to ensure the

fulfillment of the homogeneous essential boundary conditions. It is defined as

fχ(ξ, η) = (1 + ξ)a1(1− ξ)a2(1 + η)a3(1− η)a4 (10)

where the exponents ai take the values listed in Table 1 accordingly to the case of constrained or

unconstrained edge; note that in Eq.(10) it is assumed that 00 = 1.

Unconstrained Constrained
Edge a1 a2 a3 a4 a1 a2 a3 a4

ξ=−1 0 0 0 0 1 0 0 0
ξ= 1 0 0 0 0 0 1 0 0
η=−1 0 0 0 0 0 0 1 0
η= 1 0 0 0 0 0 0 0 1

Table 1: Possible combination of the exponents in Eq.(10).

It is remarked that the χb contribution consists of continuous and regular functions that satisfy

the plate kinematical boundary conditions and thus it is able to represent the solution of uncracked

plates but unable to describe the crack effects.

The crack trial functions contribution is built using terms able to represent the displacement
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jump along the crack as well as the singular behaviour of the crack tips fields. Under the assumption

of first order shear deformation theory, for constant stiffness plates, the asymptotic crack tip fields

can be assumed behaving as r−
1
2 when the distance r from the crack tip goes to zero [64–68]. This

behaviour can be extended to the case of variable stiffness plate [69–72].

In the present work, for the case of an embedded crack having two crack tips, the crack trial

functions are chosen as

χc = gχ(ξ, η)

{ P (11)
χ∑
p=1

p∑
q=0

C(11)
χpq r

2p−1
2

1 cos
2q + 1

2
φ1+

P (21)
χ∑
p=1

p∑
q=0

C(21)
χpq r

2p−1
2

2 cos
2q + 1

2
φ2+

rα2
2 sin2 θ2

2

P (12)
χ∑
p=1

p∑
q=0

C(12)
χpq r

2p−1
2

1 sin
2q + 1

2
φ1+

rα1
1 sin2 θ1

2

P (22)
χ∑
p=1

p∑
q=0

C(22)
χpq r

2p−1
2

2 sin
2q + 1

2
φ2

}
(11)

where ri and φi are the polar coordinates of the point with coordinates x(ξ, η) and y(ξ, η) as defined

in Fig. 1, the C(ij)
χpq are the unknown Ritz coefficients and α1 =α2 = 3/2. The integer values P (ij)

χ

determine the number of terms used in the approximation and might be chosen independently, though

they are usually set to a common value. The function gχ enforces homogeneous essentials boundary

conditions on the plate edges and it is defined as

gχ(ξ, η) = (1− ξ2)(1− η2) (12)

Detail on the properties of the functions employed Eq. (11) can be found in Ref. [57].

For edge cracks, to account for the presence of a single tip, the crack trial functions assume a

different expression that is obtained from Eq. (11) by setting P (21)
χ =P (22)

χ = 0, α2 = 0 and θ2 =π; in

this case, to allow possible crack opening at the edge, the function gχ is chosen as in Eq. (10) setting

to 0 the exponent associated with the edge intersected by the crack and to 1 all of the others.

The proposed Ritz approximations for the generalised displacements can be compactly expressed
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in matricial form as follows

χ=
{

Ψ(0)
χ Ψ(11)

χ Ψ(12)
χ Ψ(21)

χ Ψ(22)
χ

}


C(0)
χ

C(11)
χ

C(12)
χ

C(21)
χ

C(22)
χ


= ΨχXχ (13)

In Eq. (13) the 1 × (Mχ + 1)(Nχ + 1) vector Ψ(0)
χ contains the basic trial function terms and the

(Mχ + 1)(Nχ + 1) × 1 vector C(0)
χ collects the corresponding unknown coefficients; analogously the

1 × [(P (αβ)
χ + 1)(P (αβ)

χ + 2) − 2]/2 vectors Ψ(αβ)
χ (α, β= 1, 2) collect the crack trial function terms

and the [(P (αβ)
χ + 1)(P (αβ)

χ + 2)− 2]/2× 1 vectors C(αβ)
χ the corresponding coefficients. This way the

approximation form presented in Eq. (4) is recast an the resolving system matrices properly defined.

The computation of the integrals involved in the stiffness matrices definition need to be carried

out numerically and, considering that integrand functions can exhibit high gradients near the crack tips,

appropriate numerical integration schemes need to be implemented for accurate evaluation. Details

on applicable integration schemes can be found in Ref. [62].

3. Validation and results

3.1. Validation

As no solution for cracked variable stiffness plates are available in the literature, analyses for

classical isotropic and anisotropic plates have been carried out to validate the approach and the im-

plemented computer code.

To this aim, referring to the geometrical sketch of Fig. 2, rectangular plates having edge length

w= 0.24m and exhibiting different edge aspect ratios b/w, crack length ratios a/w and crack in-

clinations β have been considered. The plates are loaded in compression by a constant force per

unit length N22 . They are subjected to different edge boundary conditions defined via the acronym

BC1BC2BC3BC4 where for the i-th edge BCi reads as C, S or F for clamped, simply-supported and

free boundary condition, respectively (see Fig. 2).

9



N22

N22

a

w

b x1

x2

BC3

BC1

BC4

BC2

ϑ
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Figure 2: Cracked plate configuration.

Table 2 lists the buckling loads obtained for the case of isotropic isotropic aluminum plates with

Young’s modulus E= 70.0GPa, Poisson’s coefficient ν= 0.3 and plate thickness h= 1.2mm. They

have been computed by setting the X-Ritz approximation to Mχ =Nχ = 12 and P (11)
χ =P (12)

χ =P (21)
χ =

P (22)
χ = 5 (see Eqs. (9) and (11)). This approximation scheme provides converged results according to

convergence studies not reported here for the sake of conciseness; these convergence studies replicate

the method features demonstrated in Ref. [61, 60, 62] for the present variable stiffness implementation.

Table 2: Buckling loads for aluminum plates with edge length w= 0.24 [m] and thickness h= 1.2mmm

w/b a/w Edge BCs β◦ N22w FEM [73] X-FEM[74] Exper.[73]

1 0.1 CFCF 0 1782.1 1765.8 1682.3 1627
1 0.3 CFCF 0 1614.0 1602.5 1560.8 1531
1 0.3 CFCF 30 1681.3 1669.7 1630.1 1551
1 0.5 CFCF 60 1703.3 1701.3 1694.9 1636
1 0.5 CFCF 90 1767.6 1765.8 1738.3 1665

1.33 0.3 CFCF 0 1227.4 1217.7 1191.6 1158
2 0.5 CFCF 0 795.5 792.7 754.0 725
1 0.3 SFCF 0 841.7 835.7 833.8 815
1 0.3 SFSF 0 388.9 384.9 406.3 404
1 0.5 SFSF 30 359.6 359.2 390.5 387
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An anisotropic, centrally cracked, square plate with b=w= 0.24m and thickness h= 1mm has

been analyzed assuming CFCF edges boundary conditions. The plate consists of a composite lamina

with straight fibres layered at an angle ϑ measured with respect to the x1-axis (see Fig.2). The

lamina material properties are given as E1 = 206.84GPa, E2 =E3 = 20.684GPa, G13 = 4.1368GPa,

G12 =G23 = 6.8947GPa, ν12 = 0.3 and ν13 = ν23 = 0.25. Analyses have been carried out and converged

results are presented for the approximation scheme with Mχ =Nχ = 15 and P (11)
χ =P (12)

χ =P (21)
χ =

P (22)
χ = 5. Fig.3 shows the adimensional first buckling load N̄ =

12N22b
2(1− ν2

12)

π2E2h3
for the plate with

a central horizontal crack (β= 0◦) of different lengths a/w and various lamina’s fibres orientations ϑ.

Fig.4 shows the adimensional buckling loads for the first three modes when a central crack with length

a/w= 0.5 and different inclination β is present in the plate with fibre orientation ϑ= 0◦.

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
0

10

20

30

40

N22

N22

a

w

b x1

x2

C

C

F

F

ϑ

β

ϑ

N̄

Present a/w = 0

Present a/w = 0.3

Present a/w = 0.5

Present a/w = 0.7

FEM a/w = 0

FEM a/w = 0.3

FEM a/w = 0.5

FEM a/w = 0.7

Figure 3: Compression buckling load for the anisotropic CFCF plate with an horizontal crack (β= 0◦) of variable length
a/w.
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FEM Mode #1

FEM Mode #2
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Figure 4: Compression buckling loads (first three modes) for the CFCF plate with fibre angle θ= 0◦ and an inclined
central crack of length a/w= 0.5.

For validation, the present results are checked against those obtained via finite element models

solved by Abaqusr . The finite elements results used for comparison have been obtained employing fine

mesh models (e.g. 421842 dofs for the a/w= 0.5 and β= 45◦ crack case) verified for both displacement

and stress resultants accuracy by carrying out convergence studies; this standard convergence studies

are not reported here for the sake of coinciseness.The comparison between the present and finite element

results shows a very good agreement demonstrating the accuracy and potentiality of the proposed

approach. The results obtained for this plate configuration show that the relative angle between the

crack orientation and the applied load direction influence the buckling load (see Fig.4). This is due to

a redistribution of the pre-buckling stresses caused by the presence of the crack. Furthermore, being

the stress components strongly affected by the fiber direction, a value of the relative angle between

the crack direction and the fiber direction greater than 15◦ significantly influence the plate stability.

This effect is even more pronounced for longer cracks (see Fig.3).

3.2. Cracked VAT lamina

Let us consider a square plate with b=w= 0.24m thickness h= 1mm. The plate has variable

stiffness obtained by using a fiber-reinforced composite with fibres laid at a variable angle ϑ (see Fig.
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5a). Referring to Fig.5b, the angle ϑ varies according to the following law holding along the baseline r

ϑ=ϑ0 +
ϑArB − ϑBrA
rB − rA

+ |r| ϑB − ϑA
rB − rA

(14)

where ϑ0 is the inclination of the the baseline with respect to the x1 axis, ϑA and ϑB are the fibre

angles with respect to the baseline at the distances rA and rB from the projection O′ of the plate

center on the baseline (see Fig.5b). According to Gurdal [25], assuming that the point A corresponds

to the origin of r, namely rA = 0, and fixing rB−rA = rB = d, such a fiber path can be briefly indicated

as ϑ0 + 〈ϑA|ϑB〉.

0〈0/45〉 0〈0/75〉

0〈0/90〉 0〈45/0〉

(a) Examples of VAT laminas.

ϑA

ϑB

r

O′ rB

rA

x1

ϑ0

r θ

A

B

(b) VAT parameter definitions.

Figure 5: VAT laminas examples and VAT parameters definitions.

Buckling analyses have been carried out for cracked plates loaded in compression by a constant force per

unit length N22 (see Fig. 2). Assuming r parallel to the x1 axis, rA = 0 and rB = d=w/2, plates with

lamination 0+〈ϑA|ϑB〉 and different boundary conditions have been analysed considering the presence

of a crack at the plate centre. The material properties are given as E1 = 206.84GPa, E2 =E3 =

20.684GPa, G13 = 4.1368GPa, G12 =G23 = 6.8947GPa, ν12 = 0.3 and ν13 = ν23 = 0.25. Regarding to

the selected plate’s configurations, it is worth nothing that VAT composites allow for a very wide range

of possible lamina configurations. Therefore, parametric studies about their behaviour are difficult to

present in a comprehensive and clear form; in this sense restricting the investigation to 0 + 〈ϑA|ϑB〉
plates aims to show the potentiality of the proposed approach and to evidence the peculiarity and

versatility of variable stiffness composites for plate’s structural design. Figs 6, 7, 8 and 9 report

the adimensional buckling load N̄ =
12N22b

2(1− ν2
12)

π2E2h3
of plates with CFCF, CSCS, SSSS and CCCC
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boundary conditions, respectively, as function of the ϑB parameter for different values of ϑA, different

crack lengths a/w and crack’s inclination β. For comparison purposes, the plots also report with a

circle mark the buckling loads for the case of straight fibres as obtained by finite elements in Abaqusr.

The data evidence that the crack presence strongly influences the pre-buckling stress distribution

and, depending on the kind of assumed boundary conditions, its presence can determine reductions

or increments in the buckling loads. This influence is less or more pronounced depending on the

crack length and inclination. In particular, results shows that cracks with a length a> 0.5w strongly

influence both the buckling load and the buckling mode, triggering a shift of the first buckling mode

towards higher modes or more complex buckled configuration. On the other hand, smaller cracks

shows to have more influence on the buckling load only, with an effect that vary with fiber path and

crack inclination. Note that some configurations, generally associated with long horizontal cracks,

also admit traction buckling loads as a consequence of complex pre-buckling stress distributions (see

Figs 7d, 7g, 8d, 8g, 9a, 9d, 9g). From the damage tolerant design point of view, this circumstance

should be adequately addressed in the design. However, the most meaningful feature illustrated by

the presented results consists in the variability of the buckling load with respect to the fibre paths for

a given crack configuration. As expected, the buckling behaviour of the center-cracked VAT plates is

strongly influenced by the value of the fiber angle at the plate center, thus confirming that the value of

the relative angle between the crack direction and the fiber direction plays and important role for the

plate stability. This means that an appropriate selection of the fibre path can afford a redistribution of

the pre-buckling stresses within the plate providing a desired level of buckling load (within a suitable

range) even in presence of a crack, opening to interesting possibility in the framework of damage

tolerant design approach. To complete the picture, Figs 10, 11, 12 and 13 show the buckling mode

for analysed plates with with CFCF, CSCS, SSSS and CCCC boundary conditions, respectively. Note

both the buckling mode shape variation with respect to the fibre path and the different modal shapes

between compression and traction buckling.
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Figure 6: Buckling loads for the center-cracked CFCF square VAT plate loaded in compression

15



a/w = 0 a/w = 0.3 a/w = 0.5 a/w = 0.7

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
0

10

20

30

ϑB

N̄

(a) ϑA = 0◦ and β= 0◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
0

5

10

15

20

25

30

ϑB
N̄

(b) ϑA = 0◦ and β= 45◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
0

5

10

15

20

25

30

ϑB

N̄

(c) ϑA = 0◦ and β= 90◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
−40

−20

0

20

40

60

ϑB

N̄

(d) ϑA = 45◦ and β= 0◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
10

15

20

25

ϑB

N̄

(e) ϑA = 45◦ and β= 45◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
0

5

10

15

20

25

ϑB
N̄

(f) ϑA = 45◦ and β= 90◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
−40

−20

0

20

40

60

ϑB

N̄

(g) ϑA = 90◦ and β= 0◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
0

10

20

30

40

ϑB

N̄

(h) ϑA = 90◦ and β= 45◦

−90◦ −60◦ −30◦ 0◦ 30◦ 60◦ 90◦
0

10

20

30

40

ϑB

N̄

(i) ϑA = 90◦ and β= 90◦

Figure 7: Buckling loads for the center-cracked CSCS square VAT plate loaded in compression
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Figure 8: Buckling loads for the center-cracked SSSS square VAT plate loaded in compression
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Figure 9: Buckling loads for the center-cracked CCCC square VAT plate loaded in compression
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Figure 10: CFCF VAT lamina buckling first mode with a 45◦ inclined crack
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Figure 11: CSCS VAT lamina buckling first mode horizontal crack
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Figure 12: SSSS VAT lamina compression buckling first mode 45 inclined crack
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Figure 13: CCCC VAT lamina compression buckling first mode 0 inclined crack

3.3. VAT laminates

As observed in the preceding section, a rigorous and comprehensive parametric study of buckling

for variable stiffness composite cracked, one layer plates is not feasible due to the huge number of

possible different configurations with a change of the involved parameters. This is even more evident

for VAT laminates where the stacking sequence plays the role of a massive multiplier of achievable

configurations. Thus, in the present paper, to investigate the effects of cracks on the buckling behaviour

of VAT laminates, the analyzed configurations are restricted to those proposed in Ref [25], which are

considered sufficiently representative to illustrate features and potentialities of VAT laminates. These

consists of twelve layers [0± 〈ϑA/ϑB〉]3S and [90± 〈ϑA/ϑB〉]3S square laminated plates undergoing to

uniform end shortening u0 along the x1 axis. The plates are simply-supported with the transverse edge

restrained in the direction orthogonal to the applied end shortening for the [0± 〈ϑA/ϑB〉]3S laminate

and free to deform for the [90 ± 〈ϑA/ϑB〉]3S case, respectively. The material properties are assumed

as E1 = 181.0GPa, E2 = 10.3GPa, G31 = 7.0GPa, G32 = 3.0GPa, G12 = 7.17GPa, ν12 = 0.28 and the
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ply thickness is 0.127mm corresponding to a laminate thickness h= 1.524mm. Note, non uniform

distributions of stresses generally arise in the pre-buckling state of variable stiffness laminates, which

suggests the introduction of an average critical buckling load Nav
cr and a plate overall axial stiffness

Eeq1 defined as [25]

Nav
cr =

1

b

∫ b/2

−b/2
N11 (w/2, x2) dx2 (15a)

Eeq1 =
w
∫ b/2
−b/2N11 (w/2, x2) dx2

2 h b u0
(15b)

where the involved quantities are defined with reference to the geometrical scheme of Fig.1. It is

worth to mention that both Nav
cr and Eeq1 depend on the values of ϑA and ϑB ; their adimensional

counterparts
Nav
cr w

2

E1h3
and Eeq1 /E1, respectively, are used to present and discuss the results obtained

for the buckling of VAT laminates. These have been obtained considering an approximation scheme

with Mχ =Nχ = 24 and P (11)
χ =P (12)

χ =P (21)
χ =P (22)

χ = 5 (see Eqs. (9) and (11)), which was proven to

provide converged result.

Figs. 14 and 15 show the buckling results for the [0±〈ϑA/ϑB〉]3S and [90±〈ϑA/ϑB〉]3S undamaged

plates, respectively. The present results can be considered in good agreement with those reported in

Ref. [25] where the classical lamination theory (CLT) is employed, being the differences related to the

use of the first order shear theory (FSDT) in the present approach. This circumstance is depicted in

Fig 16 where representative results from the present approach in the framework of CLT, obtained by

penalizing the shear energy terms, are also presented.
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Figure 14: Buckling of the simply-supported, square VAT [0 ± 〈ϑA/ϑB〉]3S laminate without crack under uniform end
shortening along x1.
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Figure 15: Buckling of the simply-supported, square VAT [90± 〈ϑA/ϑB〉]3S laminate without crack under uniform end
shortening along x1.
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Figure 16: Buckling of the simply-supported, square VAT [0 ± 〈ϑA/ϑB〉]3S laminate without crack under uniform end
shortening along x1: comparison of different plate theories

In the framework of the first order shear deformation theory, as expected, the present results confirm

previous findings about the option to improve the buckling performances of uncracked laminates by

selecting suitable fiber paths. Figs. 17, 18 and 19 show the buckling results for the [0 ± 〈ϑA/ϑB〉]3S
laminate configuration when an horizontal (β= 0◦), inclined (β= 45◦) and vertical (β= 90◦) crack of

length a/w= 0.5 is present, respectively. Analogously, Figs. 20, 21 and 22 show the same kind of

results for the [90± 〈ϑA/ϑB〉]3S laminate.
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Figure 17: Buckling of the simply-supported, square VAT [0±〈θA/ϑB〉]3S laminate with a a/w= 0.5 horizontal (β= 0◦)
crack under uniform end shortening along x1.
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Figure 18: Buckling of the simply-supported, square VAT [0±〈ϑA/ϑB〉]3S laminate with a a/w= 0.5 inclined (β= 45◦)
crack under uniform end shortening along x1.
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Figure 19: Buckling of the simply-supported, square VAT [0± 〈ϑA/ϑB〉]3S laminate with a a/w= 0.5 vertical (β= 90◦)
crack under uniform end shortening along x1.
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Figure 20: Buckling of the simply-supported, square VAT [90±〈ϑA/ϑB〉]3S laminate with a a/w= 0.5 horizontal (β= 0◦)
crack under uniform end shortening along x1.
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Figure 21: Buckling of the simply-supported, square VAT [90±〈ϑA/ϑB〉]3S laminate with a a/w= 0.5 inclined (β= 45◦)
crack under uniform end shortening along x1.
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Figure 22: Buckling of the simply-supported, square VAT [90±〈ϑA/ϑB〉]3S laminate with a a/w= 0.5 vertical (β= 90◦)
crack under uniform end shortening along x1.

A preliminary analysis of the results shows that both the buckling load and the overall axial stiffness

for cracked plates are lower than those of the corresponding uncracked plate. This effect is due to a

loss of stiffness along the the direction orthogonal to the crack and, as expected, is more pronounced
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for inclined and vertical crack, being the compressive displacement applied along the horizontal direc-

tion. The presented results (see Figs 17–22) evidence for both the analyzed configuration the design

opportunities offered by the VAT concept also for buckling of cracked laminates; for a laminate with a

given crack there are several fibre path able to provide higher buckling loads and higher overall axial

stiffness with respect to the straight fibre case. In the framework of damage tolerant approaches, this

allows to select fibre paths that, through an appropriate nonuniform pre-buckling stress distribution,

allows an improvement of the buckling performance and also guarantee predefined design levels of

buckling load and axial stiffness even in presence of cracks.

It is worth to note that the presented results are obtained under the usual equivalent single layer

assumptions of constant thickness and perfectly bonded layers, whereas the manufacturing process of

VAT can introduce thickness variation and imperfect interfaces (e.g. [75, 76]), both potentially affecting

the plate response. Additionally, no constraints have been introduced to avoid interpenetration of the

crack faces [47], whose contact can influence the modal shape and buckling loading. In the present

work these effects are not considered and their consideration establishes possible future improvements

of the approach with the aim of gaining higher fidelity in modeling and more insight in the buckling

behaviour of cracked VAT laminates. However, pursuing the aims of this work, the proposed parametric

studies allowed to highlight the fundamental features related to the buckling behaviour of cracked

VAT composite plates, proving the capabilities of the proposed approach to carry out such a kind of

investigations. The developed tool allows different crack position and VAT plate configurations to be

efficiently analyzed in order to optimize the plate configuration in a damage tolerant design framework

typically required in aeronautical structural certification procedures.

4. Conclusions

In this work, an X-Ritz method for buckling analysis of variable stiffness cracked composite plates

has been presented. Within the framework of the first order shear deformation theory, a combination of

standard orthogonal polynomials and crack enrichment special functions are used to approximate the

problem primary variables. With the benefits of a robust, single-domain meshless method, the proposed

approach allows to inherently account for crack tip singular fields and displacement discontinuity,

reducing data preparation efforts and required degrees of freedom. Representative case studies for

variable angle tow homogeneous and laminated plates, with different crack lengths, inclinations and

plate boundary conditions, have been presented and discussed. Although, to the best of the authors’

29



knowledge, this is the first study proposed in the literature that accounts for crack damages in VAT

laminated plates, this work demonstrated the potentiality of the proposed formulation and allowed

to highlight the advantages offered by variable angle tow composites for the buckling performances

of cracked laminated plates. The work has shown that the presence of the crack alter the plate

buckling behaviour depending on the kind of boundary conditions, with an influence that is less

or more pronounced depending on the crack length and inclination. Also, this study has shown that

some configurations, generally associated with long horizontal cracks, admit traction buckling loads as a

consequence of complex pre-buckling stress distributions triggered by the crack presence. Moreover, for

variable angle tow laminated plates, the variability of the buckling load with respect to the fibre paths

for a given crack configuration suggests that desired levels (within suitable ranges) of plate buckling

load and axial overall stiffness can be simultaneously attained by suitably choosing the curvilinear

fibre path. These results open to interesting possibilities in the framework of damage tolerant design

of variable stiffness laminated structures.
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Appendix A. VAT laminates stiffness matrices

Assuming a plane stress state, the material behaviour at a composite lamina point with fibre

orientation angle ϑ is described by the linear elastic constitutive law expressed in the x1x2x3 reference

frame. Thus, denoting by the superscript 〈k〉 quantities referring to the k-th ply of a laminate one

writes [77]

σ〈k〉=
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where, σij and εij are the stress and strain components and
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In the Eq. (A.2), the Q̄ij are the ply stiffness coefficients in the material reference system that are

given by

Q̄
〈k〉
11 =

E
〈k〉
1

1− ν〈k〉12 ν
〈k〉
21

(A.3a)

Q̄
〈k〉
22 =

E
〈k〉
2

1− ν〈k〉12 ν
〈k〉
21

(A.3b)

Q̄
〈k〉
12 =

ν
〈k〉
12 E

〈k〉
2

1− ν〈k〉12 ν
〈k〉
21

(A.3c)

Q̄33
〈k〉=G

〈k〉
12 (A.3d)

Q̄
〈k〉
44 =G

〈k〉
13 (A.3e)

Q̄55
〈k〉=G

〈k〉
23 (A.3f)

where E
〈k〉
1 ed E

〈k〉
2 are the Young moduli, G

〈k〉
ij are the shear moduli and ν

〈k〉
ij are the Poisson’s

coefficients.

For a laminate consisting of NL layers, the extensional, bending–extensional, bending and shear

stiffness matrices are respectively defined as [63]

A=
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x2
3Q
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S=

NL∑
k=1

∫ hk

hk−1

Q〈k〉n dx3 (A.4d)

being hk−1 and hk the x3 coordinate of the k-th ply bottom and top faces, respectively.

For VAT composite, the fibre orientation angle varies within each layer as a function of the

in-plane coordinates, namely ϑ=ϑ(x1, x2). Consequently, in VAT laminates the extensional stiffness

matrix A, the bending–extensional stiffness matrix B, the bending stiffness matrix D and the shear

stiffness matrix S are function of the plate in-plane coordinates x1 and x2
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