
Chapter 2 
Analysis of Autonomous Many-Body 
Particle Models from Geometric 
Perspective and Its Applications 

Satoshi Tsujimoto, Tsuyoshi Kato, Ryosuke Kojima, Kazuki Maeda, 
and Francesco Zanlungo 

2.1 Introduction 

Autonomous many-body particle systems, such as traffic flow models, pedestrian 

flow models, and molecular biology models, are very important targets that appear 

in various fields. Since the behavior of these systems is essentially nonlinear and is 

rich in variety and flexibility, it is important to grasp the whole picture of the system 

not only numerically, but also through theoretical analysis. 

For interacting systems of many-body particles, we have been studying 

A. the development of analytical methods, 

B. the investigation and extension of fundamental models. 

For A., we have mainly worked on the following analytical methods from the 

viewpoint of geometry: (i) derivation and analysis of the Burgers cellular automaton 
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(BCA) and the box-ball system (BBS) by the methods of tropical geometry and ultra-

discrete systems, (ii) various studies on many-body particle interaction systems based 

on discrete Morse theory from a phase-geometric approach, and (iii) development 

of a fundamental model for B., which is a model of many-body particle interaction 

systems. As primary models to be treated in B., there are various models such as traffic 
flow, pedestrian flow, and molecular biology models. In this paper, we will mainly 

focus on BCA, BBS, and the totally asymmetric simple exclusion process (TASEP), 

which will be briefly introduced in this paper. The method of tropical geometry is 

effective not only in analytical methods but also in the derivation of new models. In 

the modeling of particle systems, there are examples of successful extraction of the 

skeletal part in particular, and the BBS obtained from the Korteweg-de Vries (KdV) 

equation and its ultra-discretization of the nonlinear partial differential equation is 

well known. Although research results from this perspective are not yet at the level 

of basic theory, it is possible to investigate various extensions of cellular automata 

and analytical solutions to their initial value problems. As an unexpected byproduct 

of the above research, we were also able to clarify the relationship between the BBS 

and a computational procedure for invariant factors of integer matrices. 

In Sect. 2.2, we outline the discrete Morse theory methods used. Section 2.3 

gives an example of the application of the discrete Morse theory method to traffic 
flow model analysis. In Sect. 2.4, we derive a model with more general degrees of 

freedom by adding internal degrees of freedom, such as explicit and implicit degrees 

of freedom, to the particle system, and we also derive a quantum version of TASEP 

and discuss its results. Finally, in Sect. 2.5, we will discuss pedestrian flow models 

as the next subject and summarize the current status and future prospects. 

2.2 Discrete Morse Theory 

In this section, we give a brief introduction to topology, especially homology, Morse 

theory, and discrete Morse theory. 

2.2.1 Homology 

The homology theory is a fundamental tool to study differentiable manifolds viewed 

as topological spaces. Homology groups .Hk(M), .k = 0, 1, 2, . . . , of a manifold . M
are abelian groups that represent topological invariants of . M ; i.e. two manifolds 

have the isomorphic homology groups if they can be continuously deformed into 

each other (homotopy equivalent; note that the reverse is not always true). In the 

simplest case, the . kth homology group .Hk(M) becomes .Zn that means 

• the case of .k = 0: the number of connected components in .M is . n; 
• the case of .k ≥ 1: roughly, the number of .k-dimensional holes in .M is . n,
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Fig. 2.1 Examples of homology groups. a A disk has no hole. b A circle has a 1-dimensional hole. 

c An annulus also has a 1-dimensional hole. A circle and an annulus are homotopy equivalent. d A 
sphere has a 2-dimensional hole 

where . n is called the Betti number. Figure 2.1 gives several examples. In more 

complicated cases, the homology groups may have finite subgroups called torsion 
subgroups, but we do not explain them here. 

If two manifolds have different homology, then they cannot be homotopy equiv-

alent. Hence, the computation of the homology groups of differentiable manifolds 

is a first step to study topology of manifolds (see, e.g. [ 15]). There is Morse theory 

that is useful for the construction of homology groups. 

2.2.2 Morse Theory 

Let us consider two differentiable functions on a manifold . f, g : M → R, where . f
and. g do not have any degenerate critical points. The Morse theory is able to construct 

the isomorphic homology groups of.M from both different functions. f and. g; i.e. any 
generic functions on a manifold .M reflect the topology of .M directly. A “simpler” 

function that has as few critical points as possible makes it easy to compute homology 

groups. 

We introduce gradient vector fields here. Consider a situation that a local coordi-
nate system with variables .x1, x2, . . . , xn is given on .U ⊂ M . A map. ϕU : U → Rn

represents this coordinate. Then, the tangent space at a point.p ∈ U denoted by. TpM
is defined as a linear space formally spanned by the differential operators . ∂

∂x1
, . ∂

∂x2
, 

.. . . , . ∂
∂xn

. The tangent bundle of .M is defined by .T M := ⊔p∈MTpM . For the tan-

gent space .TpM , we can consider a dual space .T ∗
p M , which is called the cotangent 

space. The cotangent bundle .T ∗M := ⊔p∈MT ∗
p M is also defined. There is a basis 

.{dx1, dx2, . . . , dxn} of .T ∗
p M satisfying
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. dxi

(
∂

∂x j

)
= δi j , i, j = 1, 2, . . . , n,

where .δi j is the Kronecker delta. 

For a function . f : M → R, the differential 1-form of . f at .p ∈ U is defined by 

. d f p :=
n∑

i=1

∂( f ◦ ϕ−1
U )

∂xi
dxi ∈ T ∗

p M.

If a Riemannian metric .gp ∈ T ∗
p M ⊗ T ∗

p M is given at each point .p ∈ M , then the 

gradient of. f denoted by.∇ f : M → T M; p |→ ∇ f (p) ∈ TpM is uniquely defined 
by the equation 

. gp(∇ f (p), vp) = d f p(vp)

for all .p ∈ M and .vp ∈ TpM . Although this definition may look a bit complicated, 

this is exactly a generalization of the gradient on the Euclidean space. (Consider the 

case.gp = ∑n
i=1 dxi ⊗ dxi for all.p ∈ M . That may be helpful for understanding the 

meaning.) 

A point.p ∈ M is called a critical point of. f if.∇ f (p) = 0. For the Hessian matrix 

of . f at a point . p defined by 

. Hf (p) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2( f ◦ϕ−1
U )

∂x21

∂2( f ◦ϕ−1
U )

∂x1∂x2
. . .

∂2( f ◦ϕ−1
U )

∂x1∂xn
∂2( f ◦ϕ−1

U )

∂x2∂x1

∂2( f ◦ϕ−1
U )

∂x22
. . .

∂2( f ◦ϕ−1
U )

∂x2∂xn
...

...
. . .

...
∂2( f ◦ϕ−1

U )

∂xn∂x1

∂2( f ◦ϕ−1
U )

∂xn∂x2
. . .

∂2( f ◦ϕ−1
U )

∂x2n

⎞
⎟⎟⎟⎟⎟⎟⎠

(ϕU (p)),

if .det Hf (p) /= 0 then . p is called a non-degenerate critical point. If all the critical 

points of . f are non-degenerate then . f is called a Morse function. It is known that 

Morse functions are generic in the set of smooth functions. The index of a critical 

point . p of . f , denoted by . λ in this section, is defined as the number of the negative 

eigenvalues of the Hessian matrix.Hf (p). Table 2.1 shows examples of critical points 

and their indices. We can see that critical points of index 0, 1, and 2 in the two-

dimensional Euclidean space correspond to local minimum points, saddle points, 

and local maximum points, respectively. In the examples, we consider critical points 

on the Euclidean space, but we also can consider critical points on any manifolds in 

general. See Fig. 2.2. 

From critical points and a gradient vector field, we can compute homology groups 

(called Morse homology) of . M . Let  .p and . q be critical points and .M(p, q) be 

the set of all the integral curves of .−∇ f from .p to . q; i.e. .γ ∈ M(p, q) means 

.
dγ

dt (t) = −∇ f (γ (t)), .limt→−∞ = p and .limt→+∞ = q. For example, in Fig. 2.2, 

.M(p3, p2) has two integral curves .γ1 and. γ2, and.γ1 − γ2 makes a cycle. We give a
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Table 2.1 Examples of critical points (the origin in these cases) and their indices . λ on the two-

dimensional Euclidean space 

Fig. 2.2 An example of critical points on a two-dimensional manifold called a torus. T 2 = S1 × S1

embedded in the three-dimensional Euclidean space. The Morse function is defined by the height 
function. f (p) = x3

sign of integral curves .∈ : M(p, q) → {±1} according to cycles if they exist. In the 
example, if we set .∈(γ1) = 1, then another should have opposite sign .∈(γ2) = −1. 

Let us define the Morse complex of index . λ by the free .Z-module generated by 

all the critical points of index . λ

.Cλ :=
⨁

λi=λ

Zpi ,
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Fig. 2.3 Integral curves on 
the torus.T 2 from critical 

points of index. λ to ones of 

index.λ − 1. There  exist two  

curves from.p2 to.p0 that are 
not drawn 

where.λi denotes the index of the critical point. pi , and boundary operators. dλ : Cλ →
Cλ−1, which are homomorphisms, by 

. dλ(pi ) :=
∑

λ j=λ−1
γ∈M(pi ,p j )

∈(γ )p j for all critical points pi ∈ Cλ.

Since we can see that .dλ−1 ◦ dλ = 0, .(C•, d•) is a chain complex. The . kth Morse 

homology group is defined by 

. Hk(M) := Ker dk/Im dk+1, k = 0, 1, 2, . . . .

For example, the Morse homology groups of the torus.T 2 (Fig. 2.2) are computed as 

follows (see also Fig. 2.3): the Morse complexes are .C0 = Zp0, .C1 = Zp1 ⊕ Zp2, 
.C2 = Zp3, and boundary operators are defined as .d0(p0) = 0, . d1(p1) = (+1 −
1)p0 = 0, .d1(p2) = (+1 − 1)p0 = 0, .d2(p3) = (+1 − 1)p1 + (+1 − 1)p2 = 0. 

Note that .Ck = 0 for .k ≥ 3 and .k = −1, and .dk = 0 for .k ≥ 3 and .k = 0. Hence, 

.Ker dk = Ck and .Im dk = 0 for all . k, then we obtain .H0(M) = C0
∼= Z, . H1(M) =

C1
∼= Z2, and .H2(M) = C2

∼= Z. This example shows that the fewer critical points 

the Morse function has, the easier it is to compute the Morse homology. 

One can find more details in, for example, Milnor’s book [ 17]. 

2.2.3 Discrete Morse Theory 

The discrete Morse theory is a combinatorial analog of the Morse theory developed 

by Forman [ 11, 12]. Although the discrete Morse theory is constructed on CW 

complexes abstractly in general, we explain the theory more concretely for simplicity.
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We call the following .k-dimensional cells, or simply .k-cells: 

• .0-cell: a point; 

• .1-cell: a curve whose boundaries are points (.0-cells); 

• .2-cell: a surface whose boundaries are curves (.1-cells); 

• .3-cell: a solid whose boundaries are surfaces (.2-cells); 

• ... 

A set of cells .K is called a cell complex if a .k-cell . α is included in .K implies that 

all the boundaries of . α are included in . K. A cell . α is called a face of . β if .α ⊂ β, 

where we consider a cell as a set of vertices. A face . α of . β is called maximal if 

.dim α = dim β − 1. 

A function. f : K → R is called a discrete Morse function if the following condi-

tions are satisfied: for all .α ∈ K, 

1. .#{β ∈ K : α is a maximal face ofβ and f (α) ≥ f (β) } ≤ 1; 

2. .#{ γ ∈ K : γ is a maxima face ofα and f (γ ) ≥ f (α) } ≤ 1. 

A cell .α ∈ K is called a critical cell if the following strict conditions are satisfied: 

1. .#{β ∈ K : α is a maximal face ofβ and f (α) ≥ f (β) } = 0; 

2. .#{ γ ∈ K : γ is a maximal face ofα and f (γ ) ≥ f (α) } = 0. 

For a non-critical cell.α ∈ K, there exists a cell.β ∈ K, where. α is a maximal face of 

. β and . f (α) ≥ f (β), or  .γ ∈ K, where . γ is a maximal face of . α and . f (γ ) ≥ f (α). 

For these pairs of cells, we draw arrows from. α to. β or from. γ to. α. The set of these 

arrows is called a gradient vector field. For example, see Fig. 2.4. 

Given a gradient vector field of a discrete Morse function . f on . K, we call a 

sequence of.k-cells.αi and (.k + 1)-cells.βi alternately.(α1,β1,α2,β2, . . . ,βr ,αr+1) a 

gradient path of. f if, for each.i = 1, 2, . . . , r , a pair.(αi ,βi ) is a vector of the gradient 

vector field,.αi+1 is a face of.βi and.αi+1 /= αi . By the definition, one can readily derive 
the relation. f (α1) ≥ f (β1) > f (α2) ≥ f (β2) > · · · ≥ f (βr ) > f (αr+1). Then, we 

can obtain a way to compute the homology groups of .K in a similar manner to the 

continuous Morse theory. Let .Cλ be the Morse complex of dimension . λ; i.e. . Cλ

Fig. 2.4 Examples of cell complexes and discrete Morse functions. There are 0-cells (points), 1-

cells (curves), and a 2-cell (surface; only in c), and numbers written next to each cell are the values 

of the discrete Morse functions. The function on a is not a discrete Morse function because blue 

cells do not satisfy the conditions. The functions on b and c are discrete Morse functions and red 

cells are critical cells. The orange arrows in b and c indicate a gradient vector fields
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Fig. 2.5 An example of gradient paths and Morse homology groups. a indicates the names of the 

cells. b indicates the values of the discrete Morse function, the critical cells, and the gradient vector 

field 

is the free .Z-module generated by all the critical .λ-cells. Let .dλ : Cλ → Cλ−1 be a 

boundary operator defined by 

. dλ(βi ) :=
∑

α j : critical (λ−1)−cell
γ∈M(βi ,α j )

∈(γ )α j for all critical cellsβi ∈ Cλ,

where .M(βi ,α j ) is the set of all the gradient paths from a maximal face of . βi

to the cell . α j , and .∈(γ ) ∈ {±1} is determined depending on whether the chosen 

orientation on.βi induces the same orientation of the gradient path on.α j or the oppo-

site orientation. Then, the Morse homology is defined by.Hk(K) = Ker dk/Im dk+1, 

.k = 0, 1, 2, . . . . 

For example, consider the cell complex and the discrete Morse function in Fig. 2.5. 

There are a critical 0-cell .α2 and a critical 1-cell . β4, and gradient paths .(α4, . β5, 

.α2) whose sign is .+1 and .(α3, . β3, . α1, . β1, .α2) whose sign is  .−1. There are the 

complexes .C0 = Zα2, .C1 = Zβ4, .C2 = 0, and the boundary operators .d0(α2) = 0, 

.d1(β4) = (+1 − 1)α2 = 0,.d2 = 0. Hence,.Ker dk = Ck and.Im dk = 0 for all. k, then 
we obtain .H0(K) = C0

∼= Z, .H1(K) = C1
∼= Z, and .H2(K) = 0. 

2.3 Application of Discrete Morse Theory to Traffic Flow 
Models 

In this section, we consider an application of the discrete Morse theory, which was 

introduced in Sect. 2.2, to a simple traffic flow model called the Burgers cellular 

automaton.
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2.3.1 Algorithms for Constructing Discrete Morse Functions 
on Cubical Complexes 

To apply the discrete Morse theory, we first have to construct a complex and a discrete 

Morse function that possesses topological information of the data to be analyzed. We 

adapt the algorithms for constructing discrete Morse functions on cubical complexes 

to analyze 2D and 3D grayscale digital images proposed by Robins, Wood, and 

Sheppard [ 21]. The following is a brief exposition of the algorithm for 2D lattice. 

The algorithm for 3D lattice can be also described in the same manner. 

Let us consider a discrete lattice 

. D = { (i, j) ∈ Z2 : 0 ≤ i ≤ I, 0 ≤ j ≤ J }.

We can derive a cubical complex .K from the lattice .D as follows: the vertices 

.(i, j) ∈ D are 0-cells of the complex . K. The unit edges between the vertices, and 

the unit squares are 1-cells and 2-cells of the complex . K, respectively. 

Let .g : D → R be a function that represents a given numerical data on the lattice 

. D. We assume that the vertices in. D can be strictly totally ordered as. g(x0) < g(x1) <

· · · < g(xN ). Note that this requirement is always satisfied by adding perturbation 
to . g without giving adverse effects to the results of the algorithm. Then, subsets of 

the neighboring cells of .x ∈ D, called the lower stars of . x , 

. L(x) = {α ∈ K : x ∈ α and g(x) = max
y∈α

g(y) }

give a disjoint partition of . K: 

. K =
⊓

x∈D
L(x).

The following algorithm works on each lower star.L(x) in parallel. As a prepara-
tion, for each .k-cell .α = {x, y1, . . . , y2k−1} ∈ L(x), define 

. G(α) = (
g(x), g(yi1), . . . , g(yi2k−1

)
) ∈ R2k ,

where .g(x) > g(yi1) > · · · > g(yi2k−1
), and list these vectors lexicographically. 

1. If.L(x) = {x}, then the 0-cell. x is marked as critical and end. Otherwise, the 0-cell 

. x is paired with the 1-cell .δ ∈ L(x) that is minimal with respect to .G ordering. 

2. Add all other 1-cells in .L(x) to the priority queue PQzero, whose elements are 

ordered by . G. 

3. Add all cells .α ∈ L(x) such that . α is a face of . δ and the number of its unpaired 

faces is exactly one to the priority queue PQone, whose elements are ordered by 

. G. 

4. Iterate the following procedure while the queue PQone is not empty: 

• Pop the top cell . α in PQone.
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• If there are no unpaired faces of. α, then add. α to the queue PQzero. Otherwise, 

the .k-cell . α is paired with a .(k + 1)-cell . β that is a single available unpaired 

face for the cell. α. Remove the cell. β from the queue PQzero and add all cells 

.γ ∈ L(x) such that. γ is the face of both. α and. β and the number of its unpaired 

faces is exactly one to the queue PQone. 

5. If the queue PQzero is empty, then end. Otherwise, pop the top cell. γ in PQzero 

and mark . γ as critical, add all cells .α ∈ L(x) such that . α is a face of . γ and the 

number of its unpaired faces is exactly one to the queue PQone. Go to the step 4. 

After executing the algorithm above for all the lower stars .L(x), all the cells in 
.K are either marked as critical or paired with another cell. We can then define a 
discrete Morse function corresponding to . g as follows. For each .x ∈ D, if .L(x) has 
more than one cell, let . δ be the 1-cell that is minimal with respect to .G ordering. If 

.L(x) has .k > 2 cells, let .α1,α2, . . . , αk−2 be the remaining cells in .L(x), which are 
ordered by when they are marked or paired, where if the cells. α and. β are paired and 

. β is a face of. α then. β will immediately precede. α. Let.∈ = minx /=y{|g(x) − g(y)|}, 
then a discrete Morse function .m : K → R is defined by 

.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

m(δ) = g(x) − ∈

10
,

m(x) = g(x),

m(αi ) = g(x) + i∈

10
, i = 1, 2, . . . , k − 2.

(2.1) 

For this discrete Morse function, the pairings of cells yield its gradient vector field 
and the cells marked as critical become its critical cells. 

Figure 2.6 illustrates examples of constructed discrete Morse functions and critical 

cells. 

2.3.2 Application to Analysis of the Burgers Cellular 
Automaton 

The Burgers cellular automaton [ 20] is a simple traffic flow model. Its time evolution 

equation is given by 

. U (t+1)
n = U (t)

n + min
(
C −U (t)

n ,U (t)
n−1

)
− min

(
C −U (t)

n+1,U
(t)
n

)
,

where .n ∈ Z denotes the site number, .t ∈ Z is the discrete-time variable, and a 

positive constant.C ∈ Z denotes the capacity of each site, i.e..U (t)
n ∈ {0, 1, 2, . . . ,C}. 

First, let us consider the case of .C = 1: 

.U (t+1)
n = U (t)

n + min
(
1 −U (t)

n ,U (t)
n−1

)
− min

(
1 −U (t)

n+1,U
(t)
n

)
,
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Fig. 2.6 Examples of constructed discrete Morse functions and critical cells. In each subfigure, 
numbers indicate the values of the original given functions or the constructed discrete Morse func-

tions, orange arrows indicate the pairings of the cells in the algorithm or the gradient vector field, 
and red cells are critical, i.e. they have no paired cell. a The algorithm works on each lower star 

.L(x) in parallel. After pairing and marking, the values of a discrete Morse function are defined as 
equation (2.1). b An example of detecting a critical 0-cell, which is an analogue of a local minimum 

point in the continuous case. c An example of detecting a critical 1-cell, which is an analogue of a 

saddle point in the continuous case. d An example of detecting a critical 2-cell, which is an analogue 

of a local maximum point in the continuous case 

which is also known as the elementary cellular automaton of rule 184 [ 27]. The value 

.U (t+1)
n is determined by the values of 3-neighborhood .U (t)

n−1, .U
(t)
n , and .U (t)

n+1: 

.

U (t)
n−1U

(t)
n U (t)

n+1

U (t+1)
n

= 111

1
,
110

0
,
101

1
,
100

1
,
011

1
,
010

0
,
001

0
,
000

0
. (2.2) 

Note that.101110002 = 18410. We impose the periodic boundary condition. U (t)
n+K =

U (t)
n for all . n and a positive constant .K ∈ Z. Let us define the particle density . ρ by 

. ρ = 1

CK

K−1∑

n=0

U (t)
n .

Note that . ρ is a conserved quantity of the Burgers cellular automaton. Figure 2.7a 

and b show examples of the time evolution of the Burgers cellular automaton with 

.ρ > 0.5 and .ρ < 0.5, respectively. 

. 

For the data .{U (t)
n }T−1

t=0 , we consider the function . g defined by 

.g(n, t) = U (t)
n + (K − n) + Kt

20K (T − t)
, (2.3)
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Fig. 2.7 Examples of the time evolution of the Burgers cellular automaton in the case of.C = 1 and 

.K = 20. White and black cells indicate.U (t)
n = 0 and. 1, respectively. a In the case of .ρ > 0.5, the  

steady state is a congested flow state. b In the case of.ρ < 0.5, the steady state is a free flow state. c 
An example of applications of the discrete Morse theory to the states b. Blue, yellow, and red cells 
indicate that the lower star of the cell contains a critical 0-cell, a critical 1-cell, and a critical 2-cell, 

respectively 

where the second term of the right-hand side is perturbation. Figure 2.7c shows an 

example of the result of the algorithm in the previous subsection for this function 

. g. We can observe that critical 2-cells are detected at the points where a traffic jam 

disappears. This can be explained as follows. It is readily shown that the algorithm 

detects a critical 2-cell in a lower star.L(n, t) iff the value.g(n, t) is maximum in the 

Moore neighborhood of the point .(n, t). In addition, under the definition (2.3), 

• .g(ν, τ ) < g(n, t) for. (ν, τ ) = (n, t − 1), (n + 1, t − 1), (n + 1, t), (n + 1, t + 1)

iff .U (τ )
ν ≤ U (t)

n . 

• .g(ν, τ ) < g(n, t) for. (ν, τ ) = (n − 1, t − 1), (n − 1, t), (n − 1, t + 1), (n, t + 1)

iff .U (τ )
ν < U (t)

n . 

Since .U (t)
n ∈ {0, 1}, the condition above implies that the lower star .L(n, t) contains 

a critical 2-cell iff 

. 

⎛
⎝
U (t−1)

n−1 U (t−1)
n U (t−1)

n+1

U (t)
n−1 U (t)

n U (t)
n+1

U (t+1)
n−1 U (t+1)

n U (t+1)
n+1

⎞
⎠ =

⎛
⎝
0 ∗ ∗
0 1 ∗
0 0 ∗

⎞
⎠ ,

where . ∗ allows either . 0 or . 1. However, from the time evolution rule of the Burgers 

cellular automaton (2.2), the . ∗s above are uniquely determined as 
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⎠ .
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Fig. 2.8 a An example of the time evolution of the Burgers cellular automaton in the case of. C = 2

and.K = 20. White, gray, and black cells indicate .U (t)
n = 0, . 1, and . 2, respectively. b An example 

of applications of the discrete Morse theory to the states a using the function defined by (2.3). Blue, 
yellow, and red cells indicate that the lower star of the cell contains a critical 0-cell, a critical 1-cell, 

and a critical 2-cell, respectively. c An example using the function defined by (2.4) instead of (2.3). 
The meaning of color cells are same as in b 

Therefore, a traffic jam disappears at the point.(n, t) iff the lower star.L(n, t) contains 
a critical 2-cell. 

For the case of .C = 2, we can also show almost the same result in the same 

manner. See Fig. 2.8b. As another application, if we consider 

.g(n, t) = U (t)
n + n + Kt

20KT
(2.4) 

instead of (2.3), we can show in a similar manner that critical 2-cells are detected at 

the points where a free flow disappears. See Fig. 2.8c. 

2.3.3 Application to Analysis of Pedestrian Flow 

As a more practical application, we tried to apply the algorithm to the states of a 

pedestrian simulator developed by one of the authors, Zanlungo (see also Sect. 2.5). 

In the simulator, pedestrians are walking in a 2D map that has a crisscross corridor. 

Therefore the simulator generates (.2 + 1)-dimensional (3D) data. From the data, 

we define a simple density function, pick its values on a lattice, construct the input 

function . g with perturbation, and apply the algorithm for 3D lattice. Figure 2.9 

shows an example of the result. At present, since this method detects a large number
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Fig. 2.9 An example of 

applications of the discrete 

Morse theory to the states of 

the pedestrian simulator by 

Zanlungo. Yellow, blue, 

green, and red cells indicate 

that the lower star of the cell 

contains a critical 0-cell, a 

critical 1-cell, a critical 

2-cell, and a critical 3-cell, 

respectively 

of critical cells, we are not able to interpret the result. It is left for future research to 

apply the discrete Morse theory not only to artificial simple data but also to practical 

data. 

2.4 A Traffic Flow Model Using Quantum Walks 

Quantum walk (QW), a quantum version of classical random walk, is widely applied 

to fast search algorithms by using quantum computers and modeling quantum sys-

tems [ 24]. Taking advantage of the flexibility of QWs, many extended QW models 

such as lattice models and many-particle models have been proposed [ 2, 24]. 

As discussed in the previous chapters, classical (non-quantum) particle models 

including cell automata have the potential to represent phenomena of traffic flow, 
and their properties have been studied for a long time. In real-world traffic flows, 
featured phenomena such as free running and congested phases and traffic vibration 
caused by repeated low-speed and high-speed states are known [ 16]. 

Although quantum computing has been widely applied to computational accel-

eration and modeling, quantum models have limited modeling of traffic flows. To 
investigate the applicability of quantum models to traffic flows, this section dis-
cusses how to construct a quantum model of traffic flows using QW, named one-way 

multi-particle quantum walks (OMQW). Also, by simulation, this section presents 

the behaviors of OMQW and displays the basic diagram of OMQW by using the 

“quantity of flow”.
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2.4.1 A Definition of One-Way Multi-particle Quantum Walks 

In this part, we introduce .n-particle discrete-time OMQW to discuss the quantum 

traffic flow model. Intuitively speaking, OMQW has two differences from standard 

discrete-time quantum walks. One is that it is composed of multiple particles (. n
particles), and the other is to introduce unidirectionality to express the flow. Sev-
eral quantum models composed of many particles have already been reported, and 

OMQW now adopts the same approach as Costa et al to handle multiple particles 

[ 8]. They defined the interaction between particles by collision to consider the quan-
tum version of gas model, i.e. collisions between particles occur if multiple particles 

arrive at the same coordinates as a result of movement. Their collision formulation 

is suitable for quantum models because it is unitary. Next, to realize unidirection-

ality, OMQW is a model which expands a quantum walk with two internal degrees 

of freedom, “move forward” and “stay”. These two internal degrees of freedom are 

inspired by TASEP, where these two actions are selected stochastically. Contrast-

ingly, OMQW treats them as states (of the coin) by means of quantum. 

Before defining OMQW, we describe the definition of symbols related to OMQW. 

Let .Hp be a Hilbert space and .Hc be a finite dimensional Hilbert space. Let us 

denote an orthonormal basis in .Hp by .{|x⟩}x∈Z, and an orthonormal basis in . Hc

by .{|c⟩}c∈{0,1}. Then, an orthonormal basis of .Hp ⊗ Hc can be written as . {|x, c⟩ :=
|x⟩ ⊗ |c⟩}x∈Z,c∈{0,1}. By expanding these notation to .n-particle, orthonormal set in 

.Ĥ :=
n⨁

i=1

(Hp ⊗ Hc) can be written as .{|x, c⟩}x=(x1,...,xn)∈Zn ,c=(c1,...,cn)∈{0,1}n . 

OMQW is represented by operators on. Ĥ, because the state transition of OMQW 

is identified by behaviors of . n particles and . n coins. More concretely, one step 

of OMQW consists of three operators: an .n-particle collision operator . T̂ , a shift  

operator . Ŝ, and coin operators .Ĉd . The exact definitions of these three operators are 
a bit complicated, so the overall OMQW definition is described first, and then define 
these operators. 

Definition 2.1 (One-Way Multi-particle Quantum Walks) If any states .|ψt ⟩ ∈ Ĥ at 

time .t ∈ Z≥1 satisfy the following conditions, we say that a dynamics of .|ψt ⟩ is 

one-way multi-particle quantum walk (OMQW). 

1. (Initial condition) The initial state .|ψ0⟩ is given. 
2. (Deterministic initial position) Let .s ∈ Zn be initial position. For any .x ∈ Zn , 

.c ∈ {0, 1}n , if .x /= s, then .||⟨x, c|ψ0⟩||2 = 0 holds. 

3. (State transition) The state transition is given by 

.|ψt ⟩ =
∑

d∈{0,1}n
T̂ ŜĈd |ψt−1⟩ (2.5) 

In the rest of this section, we define these three operators consisting of OMQW 

and describe their properties.
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2.4.1.1 Coin Operator 

First of all, let us introduce a coin matrix for one particle.D ∈ U (2), where.U means 

unitary group. We denote the .i-th row . j-th column element in .D by .αi, j ∈ C. Note  

that the index of this matrix starts at zero, i.e. .i, j ∈ 0, 1. 

Let .d ∈ {0, 1} be an index representing the next state of a coin. A coin operator 
for a single particle .Cd : Hp ⊗ Hc → Hp ⊗ Hc is defined as: . Cd := ∑

x∈Z
c∈{0,1}

αd,c

|x, d⟩⟨x, c|. Intuitively, this operation represents the change of the coin state from 

the current state . c to the next state . d. 
The next definition describes the coin operator for multiple particles by extending 

the above coin operator for a single particle. 

Definition 2.2 (Coin operator) For any .d ∈ {0, 1}n , .n-particle coin operator . Ĉd :
Ĥ → Ĥ is defined as: 

.Ĉd :=
∑

x1,...,xn∈Z
c1,...,cn∈{0,1}

n⨁

i=1

(Cdi |xi , ci ⟩⟨xi , ci |) (2.6) 

The following properties of the one-/.n-particle coin operator hold. 

• For any .d ∈ {0, 1}n , .x ∈ Z, and .c ∈ {0, 1}, the following equation holds: 

.Cd |x, c⟩ = αd,c|x, d⟩ (2.7) 

• For any .d ∈ {0, 1}n , .x ∈ Zn , and .c ∈ {0, 1}n , the following equation holds: 

.Ĉd |x, c⟩ =
n⨁

i=1

(Cdi |xi , ci ⟩) = (

n∏

i=1

αdi ,ci )|x, c⟩ (2.8) 

2.4.1.2 Shift Operator 

The shift operator represents the one-time step movement of particles depending on 

the state of the coin. 

Definition 2.3 (Shift operator) A one-particle shift operator. S : Hp ⊗ Hc → Hp ⊗
Hc is defined as: . S := ∑

x∈Z
c∈{0,1}

|x + c, c⟩⟨x, c|
An.n-particle shift operator .Ŝ : Ĥ → Ĥ is defined as: 

.Ŝ :=
∑

x1,...,xn∈Z
c1,...,cn∈{0,1}

n⨁

i=1

(S|xi , ci ⟩⟨xi , ci |) (2.9)
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Then, the one-particle/.n-particle shift operator satisfies the following two state-
ments. 

• For any .x ∈ Z and .c ∈ {0, 1}, the following equation holds: . S|x, c⟩ = |x + c, c⟩
• For any.x = (x1, . . . , xn) ∈ Zn and.c = (c1, . . . , cn) ∈ {0, 1}n , the following equa-
tion holds: 

.Ŝ|x, c⟩ =
n⨁

i=1

(S|xi , ci ⟩) = |x + c, c⟩ (2.10) 

2.4.1.3 Collision Operator 

Before defining the collision operator, we introduce a collision function that repre-
sents whether a particle collides with another particle. Let.i ∈ {1, . . . , n} be an index 
of particle. Collision function .ri : Zn × {0, 1} → {0, 1} is defined as 

.ri (x, c) :=
⎛
1 − c (

∑n
j=1 δxi ,x j i s even)

c (
∑n

j=1 δxi ,x j i s odd)
(2.11) 

where .δ·,· is Kronecker delta. By extending this function to n-particles, a collision 
function for n-particles .r̂ : Zn × {0, 1}n → {0, 1}n is defined as 

.r̂(x, c)i := ri (x, ci ) (2.12) 

where .r̂(x, c)i is .i-th element of .r̂(x, c). 

Definition 2.4 (Collision operator) .n-particle collision operator .T̂ : Ĥ → Ĥ is 

defined as 

.T̂ :=
∑

x1,...,xn∈Z
c1,...,cn∈{0,1}

n⨁

i=1

(|xi , ri (x, ci )⟩⟨xi , ci |) (2.13) 

The collision operator describes the change of internal states (“move forward” 

and “stay”) when particles collide. Typically, when two particles are at the same 

coordinates, the state of the particles is flipped. 
The collision operator and function have the following properties: 

• For .i ∈ {1, . . . , n} and .x ∈ Zn , .ri (x, ·) is bijective. 
• For .x ∈ Zn , .r̂(x, ·) is bijective. 
• For .x ∈ Zn , .c ∈ {0, 1}n , applying a collision operator is represented as form: 

.T̂ |x, c⟩ = |x, r̂(x, c)⟩ (2.14)
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• For .x ∈ Zn , and .c ∈ {0, 1}n , the following equation holds: 

.r̂(x, r̂(x, c)) = c (2.15) 

2.4.2 Probability Distribution of OMQW 

When the positions of particles in OMQW are observed after .t-step time evolution, 

the observation behaves stochastically due to their quantum nature. This quantum 

property of OMQW is derived from the standard single-particle one-dimensional 

QW. The standard QW does not have a property called locality, where probabilities 

concentrate at constant points as time goes to infinity, unlike classical random walks. 

In this section, to confirm the behavior related to the non-locality of OMQW exper-

imentally, we describe the formulation of the probability distribution of positions of 

particles and a computational method of such a probability. 

From the quantum nature, positions .x and internal states . c of particles are 

stochastically observed, and their joint probability at time . t is described as follows: 
.||⟨x, c|ψt ⟩||2. Note that, by the definition related to deterministic initial positions of 

OMQW, observation at .t = 0 should be observed at position . s. 

2.4.2.1 Computation of Probability 

In this section, we derive a recursive formula to compute the probabilities of states 

of OMQW. To express the state on the computer specifically, coefficients of the 
state .at,x,c ∈ C are introduced as .at,x,c := ⟨x, c|ψt ⟩. Since .{|x, c⟩}x∈Zn ,c∈{0,1}n is an 
orthonormal set on . Ĥ, a state .|ψt ⟩ can be represented as follows: 

.|ψt ⟩ =
∑

x∈Zn

c∈{0,1}n
at,x,c|x, c⟩ (2.16) 

By combining these coefficients with the definitions in the previous section, the 
following recursive formula with respect to .at,x,c can be deduced. 

Theorem 2.1 (Recursive expression for .at,x,c) For any .t ∈ Z≥1, x ∈ Zn, and . c ∈
{0, 1}n, the following equation holds: 

.at,x,c =
∑

c̃∈{0,1}n
at−1,x−r̂(x,c),c̃(

n∏

i=1

αri (x,ci ),c̃i ) (2.17) 

Note that, the reachable area from the initial position in . t steps is limited by . t . 
Let the reachable area be .R(t) ⊂ Zn. If .x ∈ Zn \ R(t), then .at,x,c = 0.
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Fig. 2.10 This figure shows the time evolution of TASEP (left) and OMQW (center) where x-

axis is position and y-axis is time step. Color intensity indicates the expected number of particles 

present at the position. The right figure shows the distributions of particles after 32 steps, these are 
corresponding with the bottom line of left and center figures 

Fig. 2.11 Fundamental diagrams: quantity of flow related to the number of particles and time 

evolution for TASEP and OMQW (OMQW-1). OMQW-2 is experiments for an under periodic 

boundary conditions 

This theorem can be proven by mathematical induction. By using this theorem, 

we can computationally simulate the state after any steps by performing recursively 

calculating with the above formula. 

2.4.3 Simulation 

This section carried out computer simulations on OMQW and TASEP using the 

definition until previous section (Fig. 2.10). These figures show the distributions 
of OMQW and TASEP, which are computed by simulation at 1000 times for each 

time step. The TASEP result shows a unimodal distribution related to the particle 

positions, whose center moves to the right. Contrastingly, the distribution of OMQW 

dividing into two modalities: slow and fast modal. A normal quantum walk is known 

to have two distribution peaks, which are the same as OMQW. A difference point is 

that OMQW constitutes a flow due to the introduction of unidirectionality.
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Next, we introduce “quantity of flow” to discuss its properties as traffic flow. Let 
be position . x and be time . t . Quantity of flow.Qt is defined as 

Qt = 1/N 
N−1∑

0 

max(Ex,t − Ex,t−1, 0) 

where .Ex,t is expectation of the number of particles at time step . t in OMQW, the 

initial position is set at random. 

Figure 2.11 shows the relationship between this quantity, . x , and . t . Comparing 

the results of TASEP and those of OMQW, it can be seen that the quantity of flow 
of OMQW is oscillates related to time . t . These properties, unlike classical models, 

might be used for modeling phenomena in traffic flow. 

2.4.3.1 Summary 

In this section, we discussed applicability of quantum walk to a traffic model. We 

introduced an OMQW model, which is an extension of QW to a traffic flow model. 

In the first experiment, we visualized the flow rate and clarified the basic properties 
of OMQW. In the future, we plan to take advantage of this property and extend it to 

a more realistic and applied model. 

2.5 Pedestrian Flow and Future Perspectives 

Understanding the dynamics of pedestrian crowds is of fundamental importance in a 

plethora of practical applications related to modern life, in particular in large urban 

areas, such as the planning of large-scale events, buildings, transportation hubs [ 14], 

or whole urban areas [ 3], both in normal and emergency situations (e.g. during natural 

disasters, fires, or even during pandemics [ 7]). While most of these applications focus 

on the macroscopic (large-scale) aspects of crowd dynamics, also the understanding 

of how pedestrians behave at the microscopic (individual) level has considerable 

practical relevance, in particular to the field of automatic navigation of cars, robots, 

and other vehicles in urban areas where pedestrians may be present or even dominant 

[ 23, 36], and to safety and surveillance [ 25]. Furthermore, improved understanding of 

microscopic behavior may reflect on the ability of reproducing macroscopic dynam-

ics, as the latter may be strongly influenced by individual dynamics such as those 

determined by belonging to a social group [ 28, 30, 34, 35]. 

Along with the aforementioned practical relevance, crowd dynamics is also of 

extreme theoretical importance, as it may be described as a many-particle system 

(and, in the continuum limit, as a fluid) whose fundamental components are human 

beings, and thus represents a natural arena to try to apply the mathematical methods 

of statistical physics to social systems. Namely, while the relevant observables of
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the problems are the same as in a classical physics system (density, fluid velocity, 
pressure at the macroscopic level, position velocity, acceleration, orientation at the 

microscopic level), the laws determining the dynamics are related to human behavior, 

with all the related challenges that this implies [ 13]. 

The understanding of crowd dynamics relies mainly on three related, but concep-

tually different, scientific challenges: (1) data collection, (2) modeling, and (3) data 

analysis. All three fields have seen considerable improvements in recent years. It is 

nowadays possible to detect and track pedestrian positions in real time, allowing to 

collect a large amount of information concerning pedestrian behavior in controlled 

[ 5] and “ecological” [ 26, 29] settings. These data have obviously inspired mathe-

matical and computational models of pedestrian and crowd behavior, and allowed to 

calibrate such models [ 13]. 

In this project we are mainly interested in the third challenge, data analysis. 

Pedestrian flow presents obviously many common points with the vehicular flow, 
analyzed in Sect. 2.3, but it is inherently more complex than the former. By being 

less strictly regulated than vehicular traffic, and composed of basic units (pedestrians) 

whose motion is less dynamically constrained than that of cars, pedestrian flow is 
a completely 2-dimensional phenomenon, while vehicular flow presents strong 1-
dimensional features, and thus its topological properties are more complex. 

As a result, practical and theoretical applications of discrete Morse theory to 

pedestrian flows are expected to be developed only after the relevant vehicular ones, 
and for this reason in the present section, we necessarily report a research plan more 

than actual accomplishments. Nevertheless, we believe that the contribution of the 

proposed framework to the study of crowd dynamics and pedestrian behavior may 

be extremely relevant and promising. 

While as stated above the pedestrian flow problem is inherently 2-dimensional, 

most literature works focus on simplified settings that basically reduce it to a 1-
dimensional one, such as corridors or bottlenecks [ 1, 9, 10, 19, 22, 37], and as a 

result also the related analysis tools are based on observables that do not rely on the 

2-dimensional structure of space, such as pedestrian density and average speed. 

On the other hand, a recent work [ 31] has introduced a novel metric, congestion 

number .CN , to assess the state of a pedestrian crowd. This metric, being based on 

the magnitude of the gradient of the only non-zero component (i.e. normal to the 

floor) of the rotor of the pedestrian velocity 

.||∇(∇ × v)z|| (2.18) 

(divided by a theoretical reference value to obtain a pure number), is more apt to study 

actual 2-dimensional phenomena, and has proved to provide additional information 

with respect to the traditional 1-dimensional tools. 

The aforementioned theoretical tool has been applied also to a geometrical setting 

that, although being still extremely simple if compared to the complexity of the real 

world, is fully two-dimensional, namely the cross-flow problem, i.e. the dynamics 

of two different pedestrian streams crossing at a non-trivial angle .θ /= nπ (. θ = nπ

corresponding to the well-studied corridor case).
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This problem, and in particular the related formation of self-organized patterns 

(stripes) in the crossing area, has been the object of a few recent contributions, 

focusing on how the dynamics are affected by the angle . θ [ 18] and by pedestrian 

density [ 32], on the ability of different collision avoidance models to reproduce 

the observed dynamics [ 33], and on a mathematical model of the self-organization 

phenomenon [ 4]. 

We believe the cross-flow scenario to be a benchmark to test the potential of 

the discrete Morse theory in studying flow properties that go beyond the vehicular 
applications analyzed in Sect. 2.3. We first of all aim to develop a way to use the 

discrete Morse theory to identify criticalities in the cross-flow scenario that may go 

beyond an analysis based only on density and speed, in a way similar to the results 

achieved by [ 31]. 

After this first goal is achieved, the method may be applied to still poorly under-

stood phenomena. The ultimate challenge is to apply the method to the study of 

real-world data, possibly to understand which geometrical settings and crowd con-

ditions may lead to dangerous circumstances and possibly to casualties. 

While this is an extremely difficult task, an intermediate goal may be to study more 

complex versions of the basic cross-flow scenario, i.e. by increasing the number of 

flows or introducing obstacles [ 6]. 
While, as stated above, this project is aimed at tackling the challenge of “data 

analysis”, such a task cannot be independent of data collection and modeling. We 

will use and further develop the computational models of [ 33] to obtain artificial 
data that may be used to test the proposed discrete Morse theory-based analysis on 

different crowd settings. 

Obviously, while artificial data have the merit of being easily and safely pro-

duced and analyzed, data concerning actual pedestrian behavior are indispensable to 

develop an analysis tool that aims to describe the real world. While in this project 

we will mainly rely on the increasing number of freely available data concerning 

controlled experiments and real-world behavior, we do not discard the possibility 

of performing some simple experiments with human participants explicitly aimed at 

the development of the proposed analysis methods. 
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