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Abstract
In a clickstream analysis setting, Mixture Hidden Markov Models (MHMMs) can be
used to examine categorical sequences assuming they evolve according to a mixture
of latent Markov processes, each related to a different subpopulation. These mod-
els involve identifying both the number of subpopulations and hidden states. This
study proposes a model selection criterion based on an integrated completed likeli-
hood approach that accounts for the two latent classes in the model. We implemented
a Monte Carlo simulation study to compare selection criteria performance. In sce-
narios characterised by categorical short length sequences, our proposed measure
outperforms the most commonly used model selection criteria in identifying compo-
nents and states. The paper presents a case study on clickstream data collected from
the website of a company operating in the hospitality industry and modelled by an
MHMM selected by the proposed score.
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1 Introduction

Nowadays, clickstream data are an essential source of information businesses employ
to explore user behaviour on the web and determine prompt and effective business
strategies (Cooley and Srivastava 2000; Liu and Kešelj 2007; Das and Turkoglu 2009).
Clickstream data, collected in log files, enable us to track users’ activity as they explore
a website. A log file usually contains information on the pages visited, such as time
spent on each page and additional web resources on that page, e.g. images and links.
The user path can be obtained as a sequence whose elements correspond to a web
page visited by the user at time t (a click). A severe limitation in using clickstream
data is the lack of information about browsing behaviour. The data, for example, do
not explain why users navigate from one page to another or precisely what they are
looking for. Therefore, sequences that are similar in their order may represent different
subpopulations of units. To extract this type of information from the data, allowing
dissimilarities in browsing behaviour and subpopulations to be identified would be
extremely useful in determining suitable online business strategies.

Mixture HiddenMarkovModels (MHMMs) could be used to this end as they allow
similarities to emerge among sequences of different sets of pages that satisfy similar
user needs. Here, similarities refer to different unknown mental states governing the
user’s browsing behaviour; these are hidden states. MHMMs enable us to account for
the evolution of a latent process, that is, why a user moves from one page to another
and for a hidden variable related to the presence of clusters representing behaviour
profiles. However, there are few applications of mixture hidden Markov models to
identify subpopulations in clickstream data. One interesting study was that of Smyth
(1997), who used these models as a clustering technique to classify generic sequences
of observations. Smyth (1999) indicated web browsing behaviour as an interesting
application. Later, Scott and Hann (2006) presented an application to multiple web
sequences related to different web sessions for each user. Another application for
clickstream data is that of Ypma and Heskes (2002), who classify users assuming
prior information on the hidden states.

Our study applies time-discrete first-order mixture hidden Markov models to anal-
yse clickstream data collected from the website of a company operating in the
hospitality industry.Additionally, the paper aims to enrich the literature fromamethod-
ological perspective by proposing a model selection criterion based on an integrated
completed likelihood approach that accounts for the two latent classes in the model:
subpopulations (i.e. the mixture components) and hidden states.

Indeed, one of themain issues in applyingMHMMs concerns selecting an unknown
number of mixture components and states in grouping sequences. This selection is
generally based on a priori information about the problem under analysis. However,
when this is not known, model selection criteria are generally based on scores derived
from Information Criteria (ICs), such as the Bayesian Information Criterion (BIC,
Schwarz et al. 1978), the Akaike Information Criterion (AIC, Akaike 1974), and their
variations, like the sample size adjusted BIC or ssBIC (Rissanen 1978). Although
identifying the correct number of components and states is not a simple task, ICs have
been widely employed for mixture models or (hidden) Markov models; their use has
also been extended to MHMMs, although the limitations of their application have
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received little attention in the literature (see e.g. Dias 2006; Celeux and Durand 2008;
Helske et al. 2018).

ICs should be used carefully when we deal with a mixture of hidden Markov
models, and their behaviour needs to be explored. The BIC is commonly used on the
assumption that either the number of hidden states or clusters is known (Dias et al.
2009). However, it is also used in cases where both these numbers are unknown, even
though its performance is not satisfactory and it is outperformed by other criteria if the
target is to identify clusters in Mixture Markov models (e.g. Dias (2007)). In single-
sequence HMMs, the BIC is proven to be consistent as the sequence length increases
(see Boucheron and Gassiat 2007), but its performance in the MHMM context with
multiple sequences of different (short) lengths has not been explored. It is worth noting
that, ICs do not consider the degree of separation between latent classes, which may
lead to selecting a model that identifies a low-quality data partition, thus making
interpretation more difficult. For this reason, another approach to model selection,
based on Classification Criteria (CCs), has been developed. These refer to complete-
data log-likelihood and produce a model selection that accounts for the classification
quality of the latent classes through a measure of entropy. This approach has received
little attention in the literature on mixture hiddenMarkov models, although it has been
used for Mixture Models (MMs) and Hidden Markov Models (HMMs).

As far asMMs are concerned, the IntegratedClassificationLikelihood criteria (ICL)
(Biernacki and Govaert 1997), and an approximation of the integrated completed
likelihood based on BIC (Biernacki et al. 2000) are used. Regarding HMMs, Celeux
and Durand (2008) showed that AIC, BIC and the ICL behave similarly as they do in
MMs (McLachlan and Peel 2004). AIC did show a tendency to select more complex
models, while BIC and ICL behave similarly when sequence length increases. BIC
performs better mainly if states are poorly separated. In the context of MHMMs, an
interesting proposal along this line is the study presented by Volant et al. (2014). They
suggested an HMM, presenting mixture components in the emission probabilities of
the chain, which are added to a classic HMM for a continuous-valued sequence. The
authors identified groups of observations by combining the components in the emission
probabilities and, to determine the number of groups, they proposed an ICL based on
BIC that involves only a measure of entropy related to the hidden states.1

Our study aims to enrich this stream of literature on ICL by defining a model
selection criterion for discrete-time first-order MHMMs, called BICH , adapting the
entropy-based information criterion defined by Biernacki and Govaert (1999). The
criterion allows us to group similar categorical sequences (in our case, web sessions)
in order and time, assuming that they have been generated by a hidden Markov model
(HMM) having a specific number of states. Therefore, we assume that sequences
related to different HMMs (i.e., the mixture components) define well-separated clus-
ters of sequences with high dissimilarities. In our study, we refer to time-constant
categorical covariates, single-channel and single categorical response discrete-time
first-order MHMMs (see Vermunt et al. 2008) because they are particularly appro-
priate in managing clickstream data. We assumed that the HMM components are

1 Following Baudry et al. (2010), the authors outlined a procedure for combining components of a mixture
model into clusters, measuring the classification quality through an entropy index.
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first-order hidden Markov processes to simplify the structure of the model in this first
phase of model selection analysis. We also consider a single web page sequence for
each user, with the only available covariates being features related to IP addresses.

To summarize, the aim of this paper is twofold. First, it proposes an integrated
completed likelihood based on BIC for MHMMs that simultaneously identifies com-
ponents and states. Second, the study enriches the empirical literature on clickstream
data by applying MHMMs to identify user profiles with similar browsing behaviour.
Clickstreamdata fromLovePanormus,2 a Sicilian company operating in the hospitality
sector, were used in the empirical analysis.

The paper is structured as follows: Sect. 2 introducesMHMMs for categorical obser-
vations with time-constant covariates. In Sect. 3, we present our proposal for model
selection. Section4 contains a simulation study. Finally, a case study is illustrated
in Sect. 5, and the proposed criterion is used to identify profiles in clickstream data
collected from the website of LovePanormus.

2 Statistical models

This section briefly introduces hiddenMarkovmodels and thenmoves on to their exten-
sion to MHMMs. Specifically, we focused on mixture of first-order hidden Markov
models with mixture weights that depend on time-constant covariates and observed
sequences generated by a discrete random variable. In these models, a discrete latent
variable reflects different longitudinal patterns in the sequences. These patterns depend
on the presence of unknown subpopulations in the data, i.e. latent classes, which,
in turn, are obtained through sequences assigned to them with specific probabilities
(Van de Pol and Langeheine 1990).

2.1 HiddenMarkovmodels

Let Y = (Y1,Y2, . . . ,YT ) be a discrete random vector of length T , and each element
Yt , t = 1, 2, . . . , T , assumes values in the discrete set R = {1, . . . , R}, i.e. the
observed states. A discrete first-order HMM comprises a Markov chain denoted by
U = (U1,U2, . . . ,UT ), with state space of the chain S = {1, . . . , S}; as a first-
order Markov chain, the probability of the state at time t depends only on the state at
previous time t −1. The parameters that characterize a discrete-time first-order HMM
are the probability of initial hidden state π = {πs}s∈S = {Pr(U1 = s)}s∈S ; the
S× S transition probability matrix A = {ahj }h, j∈S = {Pr(Ut = h|Ut−1 = j)}h, j∈S ,
whose element ahj indicates the probability of making a transition from state h at time
t − 1 to state j at time t . Finally, the S × R emission matrix B = {bsr }s∈S ,r∈R =
{Pr(Yt = r |Ut = s)}s∈S ,r∈R connects the hidden states and the observed states,
where bsr = bs(r) is the probability of hidden state s emitting observed state r .

Let yi be the i-th realization of Y , assume we collect n independent and identically
distributed sequences y = (y1, . . . , yi , . . . , yn), with yi = (yi1, yi2, . . . , yiT ), gen-
erated by the same hidden Markov model. Let us assume, without loss of generality,

2 The company’s name is a pseudonym.
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that the n sequences have the same length T . The model parameters � = {π, A, B}
are estimated by maximising the log-likelihood

�(�; y) =
n∑

i=1

log P(yi |�)

=
n∑

i=1

log

( ∑

s, f ∈S
P(U1 = s|�)P(yi1|U1 = s,�)

T∏

t=2

P(Ut = s|Ut−1

= f ,�)P(yit |Ut = s,�)

)

=
n∑

i=1

log

( ∑

s, f ∈S
πsbs(yi1)

T∏

t=2

as, f bs(yit )

)
,

where the hidden sequence U = (U1,U2, . . . ,UT ) take all possible combinations of
values in the hidden state spaceS and where yit is the element observed at time t of
the i-th sequence yi .

HMMs are particularly suitable for analysing the evolution of sequences. They are
ideal for analysing behaviour (e.g., selecting products from a basket, animal move-
ments, etc.) where the sequences identify a series of choices. They account for both
the choices made from a set of alternatives (i.e. the observations) and the hidden goals
and motivations (i.e. the hidden states) behind the observed phenomenon.3

If the heterogeneity related to the distribution of the observed sequences is con-
sidered, mixture of HMMs should be considered. There are several definitions of
MHMM, which, in the context of continuous data, can be defined by introducing
individual-specific random effects (see Humphreys 1998; Altman 2007). MHMMs
used to cluster categorical sequences rely on the definition of mixture models and are
also called mixture latent Markov models. A general model can be found in Vermunt
et al. (2008).
In this paper, we refer to the model proposed in Helske and Helske (2019) which
was first presented by Van de Pol and Langeheine (1990) as mixture Latent Markov
models. The R package seqHMM (Helske and Helske 2019) was used to perform the
simulation study and the empirical analysis.

2.2 Mixture hiddenMarkovmodels

In addition to the observed variable Y , MHMM contains two different latent variables
M and U . M = {Mk} for k ∈ K = {1, . . . , K} is a time-constant latent variable,
where Mk refers to the k-th cluster of the mixture. U = {Uk} is a time-varying
latent variable, where Uk = {Uk

1 , . . . ,Uk
T } refers to a HMM whose state space is

S k = {1, . . . , Sk}. Thus, each cluster k is characterized by a specific HMM.
The set of parameters that characterize the MHMM is � = (�1,�2, . . . , �K , ω)

where �k = {πk, Ak, Bk} and ω = {ωk} for k ∈ K = {1, . . . , K }. Moreover,

3 For a more in-depth illustration of hidden Markov models, see Zucchini et al. (2017).
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Fig. 1 Directed Acyclic Graph
(DAG) of a mixture of hidden
Markov models with covariates.
The variables Yt and the
time-constant covariates X are
observable, the Ut and Mk are
hidden variables, k is the
component label and Mk

identifies the k-th component i.e.
the k-th hidden Markov model,
ωk are the mixture coefficients,
�k = {πk , Ak , Bk } are model
parameters representing πk

initial probabilities, Ak

transition matrix and Bk

emission matrix for each
component k

X

for each observed sequence yi , given a set of Q time-constant covariates Xi =
(Xi1, . . . , XiQ), we can define the prior cluster probabilities as ωk

i = Pr(Mk |Xi ),
and ωk = {ωk

i }i=1,...,n .
Fig. 1 schematizes themixture of hiddenMarkovmodelswith time-constant covariates.

The log-likelihood for a mixture of HMMs is

�(�; y, X) =
n∑

i=1

log P(yi |�, Xi ) =
n∑

i=1

log

( K∑

k=1

P(yi , M
k |�k, ω, Xi )

)

=
n∑

i=1

log

( K∑

k=1

ωk
i P(yi |�k)

)

=
n∑

i=1

log

( K∑

k=1

ωk
i

∑

s, f ∈S k

πk
s b

k
s (yi1)

T∏

t=2

aks, f b
k
s (yit )

)
,

(1)

were ω = {ω1, . . . , ωk} and � = {�1,�2, . . . , �K , ω}. The cluster memberships
ωk
i of each sequence i are modelled according to the following multinomial logistic

regression model:

ωk
i = P(Mk |Xi ) = eγk Xi

1 + �K
j=2e

γ j Xi
, (2)

where γk is the set of coefficients associated with the vector of covariates Xi for
observation i and the k-th class,

∑K
k=1 ωk

i = 1, and γ1 = {0, . . . , 0}.
According to Helske and Helske (2019), we can use standard HMM algorithms

with a slight modification to estimate model parameters. The modification concerns
the initial state probabilities π , which now vary between subjects, i.e., for subject i we
haveπi = (ωi1π

1, . . . , ωi KπK ), and the transition and emissionmatrices transformed
into block diagonal matrices by considering a K -components MHMM as an HMM
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with S = ∑K
k=1 S

k hidden states. Then, parameters are estimated by adapting the
EM algorithm for hidden Markov models and considering a K -components MHMM
as an HMM with S = ∑K

k=1 S
k hidden states and block diagonal transition and

emission matrices (transition between components is not allowed). Vermunt et al.
(2008) presented a forward-backward algorithm to estimate the parameters accounting
for multiple categorical response variables, cluster probabilities depending on time-
constant covariates and initial and transition probabilities depending on time-varying
covariates. This algorithm can be adopted to estimate the model parameters used in
this work since we are dealing with a more straightforward case with only time-
constant covariates and a single categorical response. Indeed, we also need to estimate
the regression coefficients γ = (γ2, . . . , γQ). In the M-step of the EM algorithm, to
estimate the γ parameter, the package seqHMM uses the iterative Newton’s method
with analytic gradients and Hessian, which can be computed given all other model
parameters (Helske and Helske 2019).4 The estimation process starts with some initial
guesses on the parameters. As noted byHelske andHelske (2019), good starting values
are needed to find the optimal solution in a reasonable time. Moreover, without good
starting points, there is a high risk of being trapped in local maxima.5 Finally, the
cluster posterior probabilities P(Mk |yi , Xi ) are obtained as

P(Mk |yi , Xi ) = P(yi |Mk, Xi )P(Mk |Xi )

P(yi |�, Xi )
,

where P(Mk |Xi ) are the cluster memberships defined in Eq. (2) and P(yi |Mk, Xi )

are conditional probabilities of the observed sequences in cluster k.
Although several studies have been done on parameter estimation followed by

different implementations in general statistical software, the essential task of model
selection has received little attention.

Two directions can be followed in model selection for MHMMs. One focuses on
estimating the chain order, i.e., the number of previous time steps in the chain required
to predict the next state. The other infers the number of clusters and the states for each
cluster. The latter direction has been followed in this work, which derives a score,
the BICH , whose theoretical foundation is related to approximating the Integrated
Completed Likelihood (ICL) by a Bayesian information criterion.

3 Model selection

As highlighted in the previous section, MHMMs can detect underlying latent struc-
tures and allow clustering sequences to be arranged into homogeneous subpopulations
whose evolution follows the same hidden Markov process having specific parameters
and some states. Therefore, model selection for MHMMs requires identifying the
number of clusters and states related to each cluster. A model selection criterion based

4 The package seqHMM also implements global and local optimization routines such as the Stochastic
Global Optimization method, Nelder-Mead or the Multilevel Single-linkage method and the L-BFGS.
5 Aswe note in the simulation study, the problem of localmaximum also affects themodel selection criteria.
See Sect. 4 for more insights.
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on a separability measure (i.e., an entropy measure) is the preferred choice to simulta-
neously identify the number of components and hidden states. Using an entropy-based
criterion enables us to identify latent states so that the distribution of the observations—
i.e. the elements in the sequences—conditionally to the latent states, will have a high
degree of separability. Consequently, each latent state will be identified in groups of
observations, seizing the unknown similarities among observations.

3.1 Proposedmodel selection criterion

From a model-based clustering perspective, the separability among possible clus-
ters should be considered for selecting the correct model. In this regard, Biernacki
et al. (2000) proposed an Integrated Completed Likelihood (ICL), approximated by
a Bayesian information criterion, for selecting a mixture model in a cluster analysis
setting. Following Biernacki et al. (2000), we define an ICL criterion in the context of
MHMMs by maximizing the integrated completed likelihood instead of the observed
one, to account for the degree of separation between latent classes. Specifically, the
ICL criterion can be approximated as an entropy-penalized BIC (McLachlan and Peel
2004). This derivation was obtained by approximating the complete log-likelihood
as the sum of two elements, the observed log-likelihood and the data entropy.6 To
the best of our knowledge the only other similar proposal was made by Volant et al.
(2014). However, they considered a different model structure characterized by a singu-
lar hidden Markov process with a mixture of the conditional distribution of emission
probabilities.

Generally, in a Bayesian context, given a model w ∈ W where W is the set of
possible models, we select w by maximizing the posterior probability defined as

P(w|y) = P(y|w)P(w)

P(y)
,

where y identifies the data and P(w) themodel prior distribution.Under the assumption
of a non-informative prior for w, we can identify the model by directly maximizing
the integrated likelihood P(y|w). As pointed out by Biernacki, when the target is
to identify an unknown number of latent classes, we should consider the integrated
completed likelihood instead, related to complete data.
In the MHMM context, for each observation i , complete data are represented by three
discrete random variables: (Yi , Mi ,Ui ). Specifically, the first one can be observed, and
the observed sequence is denoted as yi = (yi1, yi2, . . . , yiT ). The second one is not
observable and represents the i-th observation’s membership to one of the K clusters.
Therefore, we define a set of binary variablesmi = (m1

i ,m
2
i , . . . ,m

K
i ) wheremk

i = 1
if sequence i was generated by the k-th HMM and mk

i = 0 otherwise. The third one,
denoted by ui , is also not observable. It represents the hidden sequence for yi , where
for each time step t , ui = (ui1, ui2, . . . , uiT ) and uit = (uit1, uit2, . . . , uit S) is a
vector of binary variables such that uits = 1 if the i-th observation at time t takes the
hidden state s and uits = 0 otherwise.

6 For its derivation, see Biernacki et al. (2000).
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The ICL for MHMMs is defined as

P(y,m, u|w) =
∫

P(y,m, u|w,�)P(�|w)d�, (3)

where P(�|w) is the parameter prior distribution and w is a MHMM, y = {yi },
m = {mi } and u = {ui } with i ∈ {1, 2, . . . , n}. Following Biernacki et al. (2000), to
define our selection criterion, we consider a BIC-like approximation for the integral
in Eq. (3). Thus, the quantity −2 log P(y,m, u|w) can be approximated as

−2 log P(y, m̂, û|w, �̂) + (log N )df, (3.1)

where N = n×T with n number of sequences and T the sequence length, m̂ and û are
posterior modes given observations y and parameter estimates �̂ and df the model’s
degrees of freedom.

The definition of ICLwas obtained in a Bayesian context; that is not our case. Thus,
m̂ and û are replaced by considering the conditional expectation for latent variables
(M,U ) (see McLachlan and Peel (2004)). We define the BICH as

BICH = −2EM,U [log P(y,m, u|X ,w, �̂)] + (log N )df. (4)

The model assumes that the hidden sequences depend on the clusters, the observed
sequences depend on the hidden sequences, and the observed sequences are indepen-
dent by the clusters given the hidden sequences, i.e.,Ui �⊥ Mi , Yi �⊥ Ui , Yi ⊥ Mi |Ui .
The joint probability of y, m and u can be decomposed as follows

P(y,m, u|X ,w, �̂) = P(y|u,m, X ,w, �̂)P(u|m, X ,w, �̂)P(m|X ,w, �̂). (4.1)

Referring to i-th item, since the observed sequences yi , i = 1, 2, . . . , n, are indepen-
dent and identically distributed given u andm; the hidden sequences ui are independent
and identically distributed given cluster membership m and cluster memberships mi

are independent and identically distributed given covariates X . Thus, the expression
on the right side of equation (4.1) can be written as follows:

P(y|u,m, X ,w, �̂)P(u|m, X ,w, �̂)P(m|X ,w, �̂)

=
∏

i

{P(yi |mi , ui , Xi ,w, �̂)P(ui |mi , Xi ,w, �̂)P(mi |Xi ,w, �̂)},
(4.2)

It is worth noting that, each yi is identified by its cluster membership mi and its
hidden sequence ui . The hidden sequence ui is identified by its clustermembershipmi ,
and the cluster membership mi is identified by its covariates’ values Xi . On the basis
of the multiplication rule, Eq. (4.2) can be written as product of joint probabilities:

∏

i

{P(yi |mi , ui , Xi ,w, �̂)P(ui |mi , Xi ,w, �̂)P(mi |Xi ,w, �̂)} (4.3)
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=
n∏

i

P(yi ,mi , ui |Xi ,w, �̂),

That said, on the basis of Eq. (4.3), we can rewrite Eq. (4)

BICH = −2EM,U [log
n∏

i

P(yi ,mi , ui |Xi ,w, �̂)] + (log N )df.

then, by decomposing each joint probability, we obtain

BICH = −2EM,U [log
n∏

i

P(yi ,mi , ui |Xi ,w, �̂)] + (log N )df

= −2EM,U

[
n∑

i

log
{
P(yi ,mi , ui |Xi ,w, �̂)

}]
+ (log N )df

= −2EM,U

[
n∑

i

log{P(yi |Xi ,w, �̂)P(mi , ui |yi , Xi ,w, �̂)}
]

+ (log N )df

(5)

= −2EM,U

[
n∑

i

log{P(yi |Xi ,w, �̂)}
]

− 2EM,U

[
n∑

i

log{P(mi , ui |yi , Xi ,w, �̂)}
]

+ (log N )df

= −2
n∑

i

log P(yi |Xi ,w, �̂) − 2
n∑

i

EM,U

[
log P(mi , ui |yi , Xi ,w, �̂)

]

+ (log N )df

= −2�(�; y, X) + 2
n∑

i

H(mi , ui |yi , Xi ,w, �̂) + (log N )df.

The BICH comprises three quantities, namely the log-likelihood (see Eq. (1)), a
sum of entropies and the degrees of freedom.
The joint entropy for a single sequence H(mi , ui |yi , Xi ,w, �̂),7 which comprises two
levels of entropies, is

H(mi , ui |yi , Xi , �̂) = H(mi |yi , Xi , �̂) + H(ui |mi , yi , Xi , �̂).

H(mi |yi , Xi , �̂) is the entropy measure related to the number of components, and
H(ui |mi , yi , Xi , �̂) is the entropy related to the sequence of hidden states. The first-

7 Hereafter, we will omit the model term w to simplify the notation, e.g. we will write H(mi , ui |yi , Xi , �̂)

instead of H(mi , ui |yi , Xi ,w, �̂).
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level entropy measure, related to the cluster, is given by

H(mi |yi , Xi , �̂) = −
K∑

k=1

P(mk
i |yi , Xi , �̂) log P(mk

i |yi , Xi , �̂), (6)

where P(mk
i |yi , Xi , �̂) are component posterior probabilities, i.e. the probability that

given the i-th observed sequence, the latter was generated by the k-th hidden Markov
model.

The entropy related to the sequence of hidden states is given by

H(ui |mi , yi , Xi , �̂)

= −
K∑

k=1

P(mk
i |yi , Xi , �̂)H(ui |mk

i , yi , �̂)

= −
K∑

k=1

P(mk
i |yi , Xi , �̂)

[
H(ui1|yi ,mk

i , �̂) +
T∑

t=2

H(uit |ui,t−1, yi ,m
k
i , �̂)

]
,

(7)

where H(ui1|yi ,mk
i , �̂) for t = 1, and H(uit |ui,t−1, yi ,mk

i , �̂) for t = 2, . . . , T , i.e.
the conditional entropy profiles, are computed as proposed by (Durand and Guédon
2016) based on the Hernando et al. (2005) conditional entropy definition for HMM.
Specifically, for each i , given the k-th HMM

H(ui1|yi ,mk
i , �̂) =

∑

s∈S k

P(ui1s |yi ,mk
i , �̂) log P(ui1s |yi ,mk

i , �̂),

and

H(uit |ui,t−1, yi ,m
k
i , �̂)

=
∑

s, f ∈S k

P(uits, ui,t−1, f |yi ,mk
i , �̂) log P(uits |ui,t−1, f , yi ,m

k
i , �̂),

where

P(uits, ui,t−1, f |yi ,mk
i , �̂) = Lk

it (s)a
k
f s α̂

k
i,t−1( f )/G

k
it (s),

and

P(uits |ui,t−1, f , yi ,m
k
i , �̂) = Lk

it (s)a
k
f s α̂

k
i,t−1( f )/{Gk

it (s)L
k
i,t−1( f )}.

Here, akf s are transition probabilities from state f to state s in cluster k, αk
i t (s) are

the forward probabilities, the posterior state probabilities Lk
it (s) = P(uits |yi ,mk

i , �̂)
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being obtained in the forward-backward algorithm. The Gk
it (s) are called predicted

probabilities and are computed from the forward probabilities as

Gk
i,t+1(s) = P(ui,t+1,s |yi1, yi2, . . . , yit ,mk

i , �̂) =
Sk∑

f =1

akf s α̂
k
i t ( f ).

Finally, the number of free parameters in Eq. (5), df, depend on a set of time-static
covariates through a logistic regression model, and is computed as

df =
K∑

k=1

[
Sk (R − 1) + Sk − 1 + Sk(Sk − 1)

]
+

(K − 1)

⎧
⎨

⎩1 +
[
2Q

c − 1
]

+
⎡

⎣
Qd∏

q=1

xdq − 1

⎤

⎦

⎫
⎬

⎭ .

(8)

Here, K is the number of components, Sk is the number of hidden states in component
k, R is the number of observed states, Qc is the number of continuous covariates, Qd

is the number of categorical covariates and xdq is the number of values of categorical
covariates q. Specifically, we considered the model as having interactions among
either continuous or categorical covariates. The product in the computation between
braces is the total number of coefficients in the multinomial regression model in Eq.
(2) considering Qd categorical covariates and all the possible interactions between
these covariates. For more details, see Appendix A.

4 Simulation study

The performance of our proposed model selection criterion (see Eq. (5)) was assessed
and compared with the most widely used IC for MHMMs, i.e. the AIC, BIC and the
ssBIC (see Table 9), through a Monte Carlo study. We used the R package seqHMM
(Helske and Helske 2019) to carry out the simulation study. Specifically, we simulated
datasets from six differentMHMMswith a known number of components K and latent
states (S1, S2, . . . , SK ). For details on the parameters generating the MHMMs, see
Appendix B.1.

We investigated 24 scenarios by varying the number of sequences n ∈ {300, 500},
and the length of the sequences T ∈ {10, 20}. An element of the sequence can take one
of four observed states.Wegenerated 70datasets for each scenario and evaluatedwhich
information and classification criteria performed better in identifying the numbers of
states and components.

We considered the success rate—i.e. the rate of identifying the correct number of
clusters and states—for BIC, AIC, ssBIC and the BICH for MHMM to assess criteria
performance. Preliminary simulations, not reported here, show how difficult it is to
identify the correct number of components and hidden states. Indeed, the success rate
was very low or close to zero. So, we investigated whether the criteria could identify
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Table 1 The six MHMMs used
in the Monte Carlo are denoted
by O j

Model K (S1, S2, . . . , SK )

O2 2 (3,4)

O3 3 (2,3,4)

O4 4 (2,3,4,2)

O5 5 (2,3,4,2,4)

O6 6 (2,3,4,2,4,3)

O7 7 (2,3,4,2,4,3,4)

K represents the number of components, and (S1, S2, . . . , SK ) the
number of hidden states within each component

the correct number of components K and the numbers of hidden states equal or close
enough to the correct ones. We refer to this measure as an approximate success rate.
To further investigate the performance of the criteria, we considered the failure rate
related to under and overestimating the number of components. For details on the
measures see Appendix B.3.8

The results, which report the approximate success rate, are displayed in Tables 2
and 4. Tables 3 and 5 show the failure rates. Each row in Tables 2 and 4 refers to one
of the six data generation models illustrated in Table 1, the best among the selection
criteria is indicated in bold.
For T = 10 and n = 300, the proposed BICH outperforms the other information
criteriawithAICbeing its closest competitor,whileBIC and ssBIC struggle themost to
identify even an approximation of the model (Table 2). The ICs seem to systematically
underestimate the number of componentswhen themodel is O2 and selectmodelswith
no mixtures if that option is available. When the number of components increases, all
criteria struggle to identify the numbers of subpopulations and states. Still, the BICH

performs best with short length sequences (Table 3).
For T = 20 and n = 300, we note that AIC and BICH have similar results. ICs
perform better (Table 2), but still tend to underestimate the number of components
(Table 3).
For T = 20 and n = 500, the ICs do not appear to have improved overall, as reported
in Table 4. Again, the ICs seem to systematically underestimate the number of com-
ponents when the model is O2 and select models with no mixtures if that option is
available (Table 5).

Furthermore, the results of the Z-tests presented in Appendix B.5 comparing the
performance of the BICH criterion against AIC, BIC, and ssBIC provide interesting
insights into its effectiveness across different scenarios. When considering a shorter
time series length (T = 10), the evidence suggests a significant advantage for the
BICH criterion over the other information criteria. However, when the time series
length is increased to T = 20, the evidence becomes less conclusive. While the BICH

8 Note that we assumed a certain amount of a priori knowledge of the number of components and a range
of hidden states. Specifically, we defined alternatives by considering {K − 1, K , K + 1} for the number of
components and S j ∈ [2; 6], for j = 1, . . . , K , for the hidden states. For details on the investigated models
see Appendix B.4.
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Table 2 Results of the Monte Carlo study for n = 300, T = (10, 20)

n = 300 AIC BIC ssBIC BICH

T = 10 O2 0.10 (0.030) 0.03 (0.017) 0.03 (0.017) 0.39 (0.049)

O3 0.29 (0.045) 0.18 (0.038) 0.18 (0.038) 0.50 (0.050)

O4 0.51 (0.050) 0.50 (0.050) 0.51 (0.050) 0.69 (0.046)

O5 0.42 (0.049) 0.40 (0.049) 0.40 (0.049) 0.68 (0.047)

O6 0.62 (0.049) 0.60 (0.049) 0.61 (0.049) 0.80 (0.040)

O7 0.42 (0.049) 0.40 (0.049) 0.40 (0.049) 0.56 (0.050)

T = 20 O2 0.29 (0.045) 0.02 (0.014) 0.05 (0.022) 0.36 (0.048)

O3 0.42 (0.049) 0.23 (0.042) 0.28 (0.045) 0.56 (0.050)

O4 0.58 (0.049) 0.49 (0.050) 0.49 (0.050) 0.77 (0.042)

O5 0.52 (0.050) 0.47 (0.050) 0.48 (0.050) 0.67 (0.047)

O6 0.50 (0.050) 0.52 (0.050) 0.52 (0.050) 0.60 (0.049)

O7 0.52 (0.050) 0.49 (0.050) 0.51 (0.050) 0.58 (0.049)

The approximate success rates of identifying the generating models are reported. Standard errors are shown
in parentheses. See Appendix B.3 for the definition of the approximate success rate, and Appendix B.5
Table 11 for the Z-tests

criterion still has some advantages over the other criteria, the Z-tests yield higher p
values, suggesting a reduced level of statistical significance.

It should be pointed out that one of the challenges of model selection in mixture
hidden Markov models is related to parameter estimation via the EM algorithm. The
inherent complexity of the likelihood, characterized by multiple local maxima, poses
a risk of the EM algorithm getting trapped in suboptimal solutions, particularly when
random starting points are used as initial parameter values. Thus, the error of the
estimates will remain even when increasing sample sizes and sequence length. To
address this issue, we repeated the simulation study employing initial values for the
EM algorithm near the true parameters (reported in Appendix B.1). We introduced
a disturbance term ε = 0.05 to generate these initial values to one element of each
initial probability vector πk , with k = 1, 2, . . . , K . The vectors were normalized to
ensure that their elements sum to one. This transformation was applied to each row
of the transition and emission probability matrices Ak and Bk . Thus, initial values
close to the correct parameters served as starting points for the EM algorithm in the
model with the correct number of clusters and states. For competitor models (with the
number of clusters and states as defined in the main text), we generated starting values
from a flat Dirichlet distribution with the concentration parameter α = 1. The results
indicated a substantial improvement in parameter estimation and, consequently, the
performance of all selection criteria as n and T increased (Table 6).

It is noteworthy that increasing the number of sequences and sequence length,
assuming initial values close to the correct ones, ensures criteria consistency. However,
it is essential to acknowledge that these results were obtained explicitly by fixing the
initial values close to the correct ones. Therefore, the simulation results reported
earlier (Tables 2, 3, 4 and 5) should be interpreted in light of these considerations, as

123



Model selection for mixture hidden Markov...

Table 3 Results of the Monte Carlo study for n = 300, T = (10, 20)

n = 300 AIC BIC ssBIC BICH

T = 10 O2 U 0.90 (0.030) 0.97 (0.017) 0.97 (0.017) 0.40 (0.049)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.21 (0.041)

O3 U 0.66 (0.047) 0.80 (0.040) 0.80 (0.040) 0.31 (0.046)

O 0.05 (0.022) 0.02 (0.014) 0.02 (0.014) 0.29 (0.045)

O4 U 0.49 (0.050) 0.50 (0.050) 0.49 (0.050) 0.23 (0.042)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.08 (0.027)

O5 U 0.58 (0.049) 0.60 (0.049) 0.60 (0.049) 0.30 (0.046)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.02 (0.014)

O6 U 0.38 (0.049) 0.40 (0.049) 0.39 (0.049) 0.17 (0.038)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.03 (0.017)

O7 U 0.58 (0.049) 0.60 (0.049) 0.60 (0.049) 0.43 (0.050)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.01 (0.010)

T = 20 O2 U 0.65 (0.048) 0.98 (0.014) 0.95 (0.022) 0.00 (0.000)

O 0.06 (0.024) 0.00 (0.000) 0.00 (0.000) 0.64 (0.048)

O3 U 0.53 (0.050) 0.75 (0.043) 0.69 (0.046) 0.00 (0.000)

O 0.05 (0.022) 0.02 (0.014) 0.03 (0.017) 0.07 (0.026)

O4 U 0.42 (0.049) 0.51 (0.050) 0.51 (0.050) 0.20 (0.040)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.03 (0.017)

O5 U 0.48 (0.050) 0.53 (0.050) 0.52 (0.050) 0.31 (0.046)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.02 (0.014)

O6 U 0.50 (0.050) 0.48 (0.050) 0.48 (0.050) 0.32 (0.047)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.08 (0.027)

O7 U 0.48 (0.050) 0.51 (0.050) 0.49 (0.050) 0.36 (0.048)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.06 (0.024)

Failure rate related to underestimate (U) and overestimate (O) the number of components. Standard errors
are shown in parentheses. See Appendix B.3 for the definition of failure rate

consistency may not be achievable even with an increase in the length and number of
sequences.

5 Case study

5.1 Dataset

We applied the proposed BICH to analyse the clickstream data collected from the
website of a firm called LovePanormus, which operates in the hospitality sector.9

The company provides tourism services such as accommodation, the booking of an
experiential holiday and information on cultural events.

9 The dataset is not publicly available due to confidential company data. However, it is available from the
authors upon reasonable request and with the permission of LovePanormus.
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Table 4 Results of the Monte Carlo study for n = 500, T = (10, 20)

n = 500 AIC BIC ssBIC BICH

T = 10 O2 0.25 (0.043) 0.06 (0.024) 0.08 (0.027) 0.42 (0.049)

O3 0.30 (0.046) 0.17 (0.038) 0.18 (0.038) 0.58 (0.049)

O4 0.49 (0.050) 0.40 (0.049) 0.41 (0.049) 0.72 (0.045)

O5 0.43 (0.050) 0.42 (0.049) 0.43 (0.050) 0.61 (0.049)

O6 0.52 (0.050) 0.50 (0.050) 0.51 (0.050) 0.69 (0.046)

O7 0.47 (0.050) 0.47 (0.050) 0.46 (0.050) 0.67 (0.047)

T = 20 O2 0.38 (0.049) 0.06 (0.024) 0.13 (0.034) 0.45 (0.050)

O3 0.47 (0.050) 0.25 (0.043) 0.29 (0.045) 0.57 (0.050)

O4 0.46 (0.050) 0.42 (0.049) 0.45 (0.050) 0.60 (0.049)

O5 0.45 (0.050) 0.47 (0.050) 0.49 (0.050) 0.54 (0.050)

O6 0.54 (0.050) 0.55 (0.050) 0.56 (0.050) 0.60 (0.049)

O7 0.48 (0.050) 0.50 (0.050) 0.51 (0.050) 0.53 (0.050)

Approximate success rate of identifying the generating models. Standard errors are shown in parentheses.
See Appendix B.3 for the definition of the approximate success rate, and Appendix B.5 Table 11 for the
Z-tests

The original data consisted of 2,487,802 observations (i.e. web resources)10 arranged
in chronological order. The analysis was carried out on data collected from September
toDecember 2017. Datawere cleaned and pre-processed by removing all the irrelevant
log lines and suspected bots. The new dataset presented only the resources with html
extension (i.e. the pages viewed) and comprised 95,201 lines identifying web pages
accessed by users. We also extracted information about user browsers, software and
devices using the uaparserjs R package.
The clickstream data refer to anonymous access to the site. Therefore, it was not
possible to recognize whether two different accesses to the site were by the same
person. In this case, it is common practice to make some assumptions and identify
an individual user’s activity by performing a session identification procedure. This
approach is necessary as IP addresses are assigned by the server to different users
and we need to recognize when the same IP is assigned to a new user by considering
additional information in clickstream data and criteria based on time (e.g. average
reading time for pages). Specifically, clickstream data may record for each IP both the
current accessed page and the previous step in the same line, enabling us to recognise if
the same IP was assigned to different users as the path is not connected. Unfortunately,
since this information was not present in our dataset, we decided to differentiate the
navigation path of each IP address into sessions according to the time spent on each
individual page. Taking into consideration the structure of the site and the content of
the individual pages, a time threshold of 10min was chosen. Thus, if an IP-address
remained on the same page for more than 10min the current session y1 was considered
concluded and the pages visited by the IP-address in subsequent clicks were attributed
to a new session y2 representing a potential new user. In other words, a statistical unit

10 Web resources consist of every element of a web page such as image files, java codes, links etc.
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Table 5 Results of the Monte Carlo study for n = 500, T = (10, 20)

n = 500 AIC BIC ssBIC BICH

T = 10 O2 U 0.74 (0.044) 0.94 (0.024) 0.92 (0.027) 0.27 (0.044)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.33 (0.047)

O3 U 0.66 (0.047) 0.83 (0.038) 0.82 (0.038) 0.10 (0.030)

O 0.04 (0.020) 0.00 (0.000) 0.00 (0.000) 0.32 (0.047)

O4 U 0.51 (0.050) 0.60 (0.049) 0.59 (0.049) 0.07 (0.026)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.21 (0.041)

O5 U 0.57 (0.050) 0.58 (0.049) 0.57 (0.050) 0.13 (0.034)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.26 (0.044)

O6 U 0.48 (0.050) 0.50 (0.050) 0.49 (0.050) 0.27 (0.044)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.04 (0.020)

O7 U 0.53 (0.050) 0.53 (0.050) 0.54 (0.050) 0.30 (0.046)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.03 (0.017)

T = 20 O2 U 0.62 (0.049) 0.94 (0.024) 0.87 (0.034) 0.00 (0.000)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.55 (0.050)

O3 U 0.23 (0.042) 0.73 (0.044) 0.68 (0.047) 0.34 (0.047)

O 0.30 (0.046) 0.02 (0.014) 0.03 (0.017) 0.09 (0.029)

O4 U 0.54 (0.050) 0.58 (0.049) 0.55 (0.050) 0.17 (0.038)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.23 (0.042)

O5 U 0.55 (0.050) 0.53 (0.050) 0.51 (0.050) 0.35 (0.048)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.11 (0.031)

O6 U 0.46 (0.050) 0.45 (0.050) 0.44 (0.050) 0.32 (0.047)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.08 (0.027)

O7 U 0.52 (0.050) 0.50 (0.050) 0.49 (0.050) 0.40 (0.049)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.07 (0.026)

Rates related to under (U) and overestimating (O) the number of components. See Appendix B.3 for the
definition of failure rate

Table 6 Results of the Monte Carlo study for n = (500, 5000), T = (20, 50), assuming that the initial
values used in the EM algorithm are close to the correct one by adding a disturbance term ε = 0.05 as
illustrated in Sect. 4

AIC BIC ssBIC BICH

n = 500 T = 20 O4 S 0.70 (0.046) 0.48 (0.050) 0.50 (0.050) 0.78 (0.041)

U 0.30 (0.046) 0.52 (0.050) 0.50 (0.050) 0.07 (0.026)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.15 (0.036)

n = 5000 T = 50 O4 S 1.00 (0.000) 0.95 (0.022) 0.97 (0.017) 0.88 (0.032)

U 0.00 (0.000) 0.05 (0.022) 0.03 (0.017) 0.02 (0.014)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.10 (0.030)

Approximate success rate (S) of identifying the generating model and failure rate related to under (U) and
overestimating (O) the number of components. Standard errors are shown in parentheses. See Appendix B.3
for the definition of the approximate success rate and failure rate
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is represented by a session. Using this methodology, we were able to obtain 43,182
user sessions. Those sessions having T = 3 clicks (i.e. short length sessions) were
removed since they were likely to be accidental users. After all these refinements, the
dataset was reduced to n = 10,252 user sessions.

Each session enabled us to follow a user’s path within the site through a sequence of
pages viewed. However, instead of consideringweb pages as elements of the sequence,
we decided to view page categories. This was due to the high number of pages and
also because in the reference period, they were removed, added or modified. These
categories correspond to the thematic areas on the site and are as follows. The “Home-
page” area contains several pages that have image links to pages in other areas. The
“Attractions” area contains information on tourist attractions or general information
on Sicily. In the “Accommodation” area, the user can view pages of apartments for
rent and search by a period of the year or number of guests. The “Events” area pro-
vides a calendar of the leading seasonal concerts and festivals. The “Experiences”
area contains additional bookable tourist activities. In the “Services” area, we find
bookable transport or food delivery services. Finally, the “Info” area provides general
information on the company and its staff and business partners.
To summarise, the dataset contained sequences of pages visited by users, where a
sequence derived from a combination of seven basic states: Homepage, Attractions,
Accommodation, Events, Experiences, Services and Info. This dataset is an example of
single-channel sequence data with seven categorical states.11 The maximum sequence
length among the considered datawas T = 20 (the few sequences exceeding this length
were removed as outliers).

5.2 Empirical analysis

We apply MHMMs to explore if and how browsing behaviour differs across users.
Analysis was performed through R package seqHMM.12 MHMMs are particularly
suitable for this analysis as they capture the underlying variability in users’movements
by incorporating a latent process. This process reveals hidden “mental states” that
influence the choices users make as they explore a website. Mixture Markov models
identify clusters based solely on observed sequences, which often require a large
number of clusters to achieve relatively homogeneous groups. In contrast, MHMMs
leverage hidden sequences to identify clusters. Each cluster corresponds to a particular
hidden behaviour, identified by a latent Markovian process whose dynamic behaviour
represents changes in people’s goals and underlying “mental states” (i.e the hidden
states) during their navigation in the website. By considering the hidden aspects of
user sequences, MHMMs can capture latent patterns that may not be apparent in

11 Multi-channel sequence data refer to the presence of multiple interdependent sequences for the same
subject, see Helske et al. (2018) as an example of three-channel data (partnership, parenthood, labourmarket
participation).
12 seqHMM allows us to account for sequences having different lengths Ti by considering sample size as
N = ∑n

i=1
∑T

t=1 I (yit ), where I is the indicator function equal to 1 for “observed” yit and zero if yit is
“missing”. If all sequences have the same length T , then this summation is equal to n×T . If each sequence
has length Ti , then let T = max(T1, . . . , Tn), and sequences with shorter lengths than T are augmented
with T − Ti NA.
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Table 7 Results of the model
selection procedure: different
candidate MHMMs and their
BICH value

(S1, S2, . . . , SK ) BICH

(5,4) 122041.8

(2,3) 124267.5

(2,5) 131526.6

(4,6) 123685.2

(3,3,3) 129330.9

(3,4,3) 130747.1

(4,3,4) 129125.4

(4,4,4) 128768.4

(3,2,4) 116936.1

(4,5,4) 128661.4

(5,5,5) 131517.3

(3,2,3) 122801.7

(3,3,3,3) 128452.2

(4,4,4,4) 127663.5

(4,5,5,4) 132606.7

(2,4,3,3,2) 127621.7

(2,5,3,3,2) 119308.8

(2,2,3,6,2) 118674.1

(2,3,3,6,2) 129943.2

The models are identified by the vector (S1, S2, . . . , SK ) that repre-
sents the number of hidden states within each component k in a K
components MHMM. The selected model is in italic
The best among the selection criteria are indicated in bold

observed data alone. Thus,moremeaningful and informative clusters can be identified,
resulting in a more detailed analysis of the clickstream data and amore comprehensive
understanding of user behaviour and preferences.

Prior cluster membership was estimated through a multinomial logistic model (see
Eq. (2)) with three time-constant covariates: IP address geographic area (i.e., Africa,
Asia, Eastern Europe, Italy, Latin America, theMiddle East, North America, Northern
Europe, Oceania, Russia and Southern Europe), access device (PC and mobile) and
access month (September, October, November, December).13

Different MHMMs are considered by varying the number of components K ∈
{2, 3, 4, 5}, and hidden states for each component Sk ∈ {2, 3, 4, 5}. Using the BICH

to take into account two levels of uncertainty and identify clusters and states, we have
selected the MHMM consisting of three components and hidden states (3,2,4) (i.e.
identifying three clusters/browsing profiles). Results of the model selection procedure
are shown in Table 7.

These three clusters contain 22%, 19% and 59% of web sequences, respectively.
Figure 2 shows the empirical distributions of each covariate (geographical area,

access device, and access month) within each cluster. The i-th subject is assigned to

13 Due to the significant percentage of Italian users in the dataset (44.9%), we decided to separate Italy
from the rest of Europe.
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Fig. 2 Empirical distributions of each covariate: a geographical area, b access device, and c access month
within each cluster

cluster j according to the posterior cluster probability, which is calculated conditioned
on the sequence yi and the covariates Xi . In Fig. 2a), we observe that Italians are
mostly assigned to cluster 3 (51% of the cluster) and cluster 2 (43%). Users from
the North of Europe are mainly in clusters 2 and 3 too (22% and 21%), while North
Americans are primarily found in cluster 2 (25% of that cluster) and are less present
in the other two (10% and 13%). Asian and Eastern European users, sparsely featured
in the data, are present in Cluster 1 (10% and 30% of this cluster, respectively), while
their presence in other Clusters is below 3% and 5%, respectively. In Fig. 2b), we note
similar distributions as regards access by PC or Mobile. In Fig. 2c), in Clusters 1 and
3 user access is almost uniformly from September till December, whereas in Cluster
2 it is mostly in November and December.
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Figure 3 sketches the path of users in each profile (i.e. cluster). Each pie graph
represents a hidden state; the edges are the transitions between states (transition prob-
abilities displayed on the edges). The colour and size of the pie slices represent the
emission probabilities of the observed states (the thematic area of the page). Emission
probabilities lower than 0.05 are classified as “others”. Initial and emission probabil-
ities are reported in Appendix C. As shown in Fig. 3a), Cluster 1 users start their web
navigation from state 1, which emits the observed state “Homepage”with a probability
of 0.98. They remain on pages from this area with a probability of 0.73 or transition to
state 2 with a probability of 0.15 and state 3 with a probability of 0.12 and remain in
these states (with probabilities of 0.9 and 0.85 respectively). Specifically, state 2 tends
to emit “Services” with a probability of 0.34, “Attractions” with a probability of 0.22
and “Accommodation” with a probability of 0.19. In Cluster 2, Fig. 3b), users have
a higher probability of starting from state 1 (0.66) and a 0.99 probability of staying
there. State 1 emits “Attractions” with a probability of 0.91. If they start from state 2
with a probability of 0.34 and remain there with a probability of 0.96, they have a high
probability (0.61) of accessing “Events” pages. Finally, in Cluster 3, Fig. 3c), users
start from state 1 with a probability of 0.56 and move to state 2 with a probability of
0.43. Once users reach state 2, their probability of staying there is 0.85. State 2 emits
“Attractions” with a probability of 0.74. Another path is moving from state 1 to state
3 with a probability of 0.25 and staying in this state with a probability of 0.94. State
3 emits “Accommodation” with a probability equal to 0.91. In summary, by crossing
the probability of belonging to a cluster with transaction probabilities, we can identify
three user profiles of browsing, namely the casual explorer or potential partner (Cluster
1), the Information seeker (Cluster 2), and the potential tourist (Cluster 3).

Concerning the casual explorer or potential partner (Cluster 1), hidden states in
this cluster identify three different “mental-states” and three sub-paths. The first one is
related to a lack of interest in the website or an interest in general tourist information,
as this state emits pages in the “Homepage” area. A second hidden state emits different
areas and seems to indicate an exploratory attitude. Finally, there is a third hidden state
that emits “Info”, indicating that there is a specific subgroup of users which seems
interested in accessing information about the company and its partners. This group
includes most Asians and Eastern Europeans and has the lowest percentage of access
via mobile. This cluster makes up 22% of users.

The information seekers (Cluster 2) are looking for tourist information. Here the
hidden states identify two different sub-paths. Some users start from state 2 accessing
only “Attractions” pages, while others start from state 1 and follow amixed exploratory
path with a focus on “Events” pages. These users seem not to be interested in accessing
purchase-oriented pages. However, the second “mental state” may actually be related
to the desire to schedule a trip to see one of the seasonal events listed. This cluster has
the highest percentage of mobile access (although PC access is still the preferred one)
and includes 19% of users.

The potential tourists (Cluster 3) view the website to search for both tourist infor-
mation and tourist products (59% of the sessions). Hidden states represent preliminary
states related to browsing the “Homepage” area, an exploratory state looking at “Attrac-
tions” and a buying state going through “Accommodation” pages. There is also a fourth
state that accounts for the other thematic areas which, although rarely accessed, indi-
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Fig. 3 HiddenMarkov process structures for clusters 1,2, and 3. Vertices represent hidden states. The slices
show emission probabilities, and the edges show the transition. Details on initial, transition and emission
matrices probabilities are reported in Appendix C—Table D10–D18 probabilities

cates an interest in accessing “Experiences” pages. Users in this cluster begin by
selecting something from “Homepage” before moving on to tourist attractions pages
or bookable apartments. There is still a greater interest in information-oriented pages,
but the cluster does identify two sub-behaviours related to purchase-oriented pages.
One is a group of users who start at “Homepage” and then move to “Accommodation”
(state 3) and stay there; the other moves from “Homepage” to a mixed path mainly
concentrated in “Experiences” (state 4). This is a cluster of Italian, North American
and Northern European users. Users with this profile preferred exploring the site using
their PC and logging in during November and December.

Our findings show that the website reaches two types of primary users, involving
two business models. One concerns the last two clusters and consists of potential
tourists interested in knowing about or buying tourist products or services. This result
is expected since it reflects the business model B2C adopted by the firm, i.e. the so-
called business-to-consumer model. The second user target refers to cluster 1, which,
based on its characteristics, likely includes Asian and Eastern European businesses
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potentially interested in promoting outgoing tourism toward Italy. This second group
of users should give LovePanormus pause for thought as to whether its B2C business
model is too limited and that they may also need to focus on selling products and
services to other companies (i.e. the business model of B2B, business-to-business).

6 Conclusion

Following the literature on model selection in mixture models and hidden Markov
models, this study proposes a score based on classification criteria, i.e. BICH , for
mixture hidden Markov models. The main contribution of our work is to enrich the
literature from a methodological perspective by proposing a model selection criterion
based on an integrated completed likelihood approach that accounts for the two latent
classes in the model: subpopulations (i.e. mixture components) and hidden states.
We used an approximation of the integrated completed likelihood based on BIC, the
BICH , by defining a new entropy penalization, i.e. a joint entropy obtained as the
sum of cluster-level entropy and state-level entropy. The former is the mixture model
entropy and the latter is based on the Hernando et al. (2005) conditional entropy
definition.
The most suitable model was selected from a set of candidates by minimizing the
BICH . We employed the proposed criterion to identify the number of states and com-
ponents with the best degree of class separation. We implemented a Monte Carlo
simulation study to compare selection criteria (BIC, AIC and ssBIC) with the new
entropy-based criterion BICH by varying sample size and sequence length. Simu-
lations demonstrated that with all the selection criteria, it is not straightforward to
identify the correct number of components and states. However, it is worth noting that
the proposed BICH , although it requires a range of possibilities for the number of
clusters and states to be defined, seems to outperform the other criteria.

The BIC, commonly used in literature, struggles to identify clusters and states,
particularly when the sequence length is short, which is a common scenario in web
sequences. Further research is needed to improve the measure of entropy and the pro-
cedure of modelling selection of MHMMs because of their increasing use, especially
by businesses in analysing clickstream data from their websites.

We used MHMMs to analyse web sequences related to a Sicilian hospitality com-
pany’s website. To select a model and the number of clusters and states for each hidden
Markov model, we used the proposed BICH that accounts for hidden heterogeneity
in clickstream data. The company had recently had its website modified by enriching
the tourist information provided and requested an analysis of the clickstream data to
understand better its users’ browsing behaviour: how many users selected purchase-
oriented pages, how they behaved before accessing the “Accommodation” pages, and
the characteristics of potential buyers.

At first, we explored the web sequences by estimating simple transition proba-
bilities that highlighted a “single track” navigation behaviour. We noticed that users
who viewed “Accommodation” or “Attractions” continued browsingwithout changing
areas, while those in other areas began to vary their route. The exploratory analysis
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carried out gave us insights into user behaviour and suggested the presence of different
behavioural profiles.

By adopting a MHMM selected through our proposed model selection score, we
discovered three user profiles of website browsing: the Casual explorer/Potential part-
ner, the Information seeker and the Potential tourist. The discriminant factors in these
profiles are the users’ movements and the geographical location of the IP address, the
access device and the access month.

The MHMM allows us to identify, through hidden states, similarities between
observed states (the thematic areas) accessed by users to achieve the same goals.
These hidden states identified the most accessed areas with hidden states and iso-
lated the least commonly accessed areas into one state. They also provided a better
understanding of user movements by highlighting sub-behaviours inside clusters.

Our findings have raised concerns for the company management. The homepage
offers a personalized search menu, links to different site areas, and image links related
to “Attractions” at the foot of the page to encourage further exploration. However, once
users start exploring attractions, there is no encouragement to switch areas, leading
them to navigate along “separate tracks”.
Oneway of overcoming these problemswould be to diversify the image links provided
in each area, thus improving site links. However, in view of the company’s main mis-
sion, it would be better to focus on the “Accommodation” area and include image links
relating to apartments adjacent to the tourist attraction described on each “Attractions”
page.
Furthermore, the profile identification results indicate two primary user types and
business models. The last two clusters represent potential tourists interested in buying
products or services (B2C model). Cluster 1, however, likely includes potential Asian
and Eastern European business partners interested in promoting outgoing tourism
(B2Bmodel). LovePanormus needs to focus on targeting both user groups and adapting
its business model accordingly.
This would involve selling to other companies and creating business partnerships to
promote Sicily as a tourist destination.

In conclusion, we have shown that the use of entropy-based measures should be
encouraged since, in the case of short length sequences, they perform better than
classic IC measures. Importantly, our empirical findings have also demonstrated that
MHMMs, although not commonly used for clickstream data, are very useful in iden-
tifying user profiles with similar browsing behaviour.

Appendix A Proposed criterion

In this section, we describe the calculation of the degree of freedom for the BICH (see
(4)).
The df is the number of free parameters given by

df =
K∑

k=1

[Sk(R − 1) + Sk − 1 + Sk(Sk − 1)]

123



Model selection for mixture hidden Markov...

+(K − 1){1 + [2Qc − 1] + [(
Qd∏

q=1

xdq ) − 1]}. (A1)

Here, K is the number of components, Sk is the number of hidden states for each
component k, R is the number of observed states, Qc is the number of continuous
covariates, Qd is the number of categorical covariates and xdq is the cardinality of the
categorical covariate q. In other words, the

∏
q x

d
q inside braces is the total number

of coefficients in the multinomial regression model (Sect. 2.2, Eq. 2) considering Qd

categorical covariates and all the possible interactions between covariates.
Let consider amodelwith no continuous covariates and three categorical covariates,

i.e. Qc = 0 and Qd = 3, with the latter having number of values xd1 , x
d
2 and xd3 ; then,

the total number of coefficients in the multinomial regression model is

(K − 1){1 + (xd1 − 1) + (xd2 − 1) + (xd3 − 1)

+ (xd1 − 1) × (xd2 − 1) + (xd1 − 1) × (xd3 − 1)

+ (xd2 − 1) × (xd3 − 1) + (xd1 − 1) × (xd2 − 1) × (xd3 − 1)}
= (K − 1){[(xd1 − 1) + 1][(xd2 − 1) + 1][(xd3 − 1) + 1]}
= (K − 1){1 + [(

∏

q

xdq ) − 1]}.

Appendix B Simulation study

In this section, we give some details of the simulation study.

B.1 Details on theMHMMparameters for the data generating process

Next, we show the parameters�k = {πk, Ak, Bk} used to generate the simulated data,
varying the number of components and hidden states. Firstly, we recall the models in
Table 8. Then, we report initial probability vectors, transition and emission matrices
necessary to generate the data.

Table 8 MHMMs component
and hidden state numbers

Model K (S1, S2, . . . , SK )

O2 2 (3,4)

O3 3 (2,3,4)

O4 4 (2,3,4,2)

O5 5 (2,3,4,2,4)

O6 6 (2,3,4,2,4,3)

O7 7 (2,3,4,2,4,3,4)
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1. Hidden states initial probabilities for each component πk :

π1 = (0.30, 0.70); π2 = (0.40, 0.20, 0.40); π3 = (0.30, 0.30, 0.20, 0.20);

π4 = (0.40, 0.60); π5 = (0.20, 0.30, 0.15, 0.35); π6 = (0.10, 0.40, 0.50);
π7 = (0.40, 0.10, 0.20, 0.30).

2. Hidden states Transition Matrices for each component Ak :

A1 =
[
0.80 0.20
0.20 0.80

]
; A2 =

⎡

⎣
0.10 0.80 0.10
0.70 0.10 0.20
0.30 0.10 0.60

⎤

⎦ ;

A3 =

⎡

⎢⎢⎣

0.50 0.20 0.10 0.20
0.00 0.60 0.20 0.20
0.10 0.30 0.00 0.60
0.20 0.00 0.20 0.60

⎤

⎥⎥⎦ A4 =
[
0.20 0.80
0.80 0.20

]
;

A5 =

⎡

⎢⎢⎣

0.10 0.20 0.10 0.60
0.20 0.10 0.50 0.20
0.10 0.10 0.60 0.20
0.70 0.00 0.10 0.20

⎤

⎥⎥⎦ A6 =
⎡

⎣
0.35 0.50 0.15
0.40 0.30 0.30
0.50 0.20 0.30

⎤

⎦

A7 =

⎡

⎢⎢⎣

0.30 0.35 0.05 0.30
0.30 0.20 0.00 0.50
0.00 0.30 0.60 0.10
0.10 0.50 0.30 0.10

⎤

⎥⎥⎦ .

3. Observed states emission matrices for each component, Bk :

B1 =
[
0.10 0.20 0.10 0.60
0.50 0.05 0.20 0.25

]
; B2 =

⎡

⎣
0.10 0.10 0.60 0.20
0.20 0.50 0.20 0.10
0.15 0.15 0.10 0.60

⎤

⎦

B3 =

⎡

⎢⎢⎣

0.00 0.10 0.30 0.60
0.20 0.60 0.20 0.00
0.55 0.00 0.10 0.35
0.25 0.00 0.60 0.15

⎤

⎥⎥⎦ ; B4 =
[
0.10 0.60 0.10 0.20
0.20 0.10 0.45 0.25

]

B5 =

⎡

⎢⎢⎣

0.20 0.65 0.15 0.00
0.50 0.00 0.25 0.25
0.05 0.00 0.35 0.60
0.15 0.00 0.70 0.15

⎤

⎥⎥⎦ ; B6 =
⎡

⎣
0.30 0.40 0.10 0.20
0.00 0.40 0.30 0.30
0.35 0.00 0.25 0.40

⎤

⎦

B7 =

⎡

⎢⎢⎣

0.00 0.35 0.35 0.30
0.10 0.30 0.60 0.00
0.30 0.00 0.30 0.40
0.20 0.40 0.10 0.30

⎤

⎥⎥⎦ .

123



Model selection for mixture hidden Markov...

Table 9 Information criteria
AIC −2�̂ + 2df

BIC −2�̂ + (
log N

)
df

ssBIC −2�̂ + log
( 2+N

24
)
df

B.2 Most commonly used information criteria

Most commonly used ICs are presented in Table 9.
We considered a comparison of our proposed BICH with these ICs since, to the best

of our knowledge, model selection criteria related to these MHMMs are only based
on information criteria (Du et al. 2011; Marino and Alfo 2020) and have the same
limitations as model selection for MMs and HMMs. Helske et al. (2018) suggested a
BIC score to select the number of clusters and states analyzing short length categorical
sequences, but the information criterion “kept suggesting models with more and more
states” (Helske et al. 2018).Dias et al. (2009) applied anMHMMto analyze continuous
financial sequences and identified the number of clusters using BIC, with the authors
assuming they knew the number of states a priori. In a later work they relaxed that
assumption and usedMHMM to classify financial series identifying clusters and states
by using BIC (Dias et al. 2015).

B.3 Measure of success for themodel selection procedure

To define the approximate success rate, we first verified whether the number of com-
ponents selected by the criterion, denoted as Ksl , was equal to the number of elements
fixed for generating the sequences, i.e. K . If that condition was satisfied and the cri-
terion selected a model with K components, we checked whether or not the number
of hidden states picked, denoted as ssl = (S1sl , S

2
sl , . . . , S

Kc
sl ), was an approximation

of the number of hidden states used to generate sequences, s = (S1, S2, . . . , SK ).
The model selection is a success if Ksl = K and the Manhattan distance between

s and ssl ,

d(ssl , s) = min
η[s(k)sl ]

K∑

k=1

∣∣∣s(k)sl − s(k)
∣∣∣ < 3, (B2)

where η[s(k)sl ] is a permutation of the selected numbers of states, is satisfied. Setting
the threshold at three means that we considered the model selection a success even if
we over or underestimated the number of states by, at best, two states. For example,
let us assume the number of clusters and the number of states used to generate the
data were K = 4 and s = (3, 4, 5, 5); thus, if a selection criterion led to choosing
a model with Ksl = 4 clusters, the following selection for the number of states
{(3, 4, 4, 5), (2, 4, 5, 5), (4, 5, 5, 5), (2, 5, 5, 5)}, is considered a success. Note that
the threshold was selected by trying options with one and two.When the threshold was
one(i.e. the correct number identification), all the criteria failed, as they did when the
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threshold was two. A threshold of three was theminimum value which had satisfactory
success rates.
Moreover, we considered any permutation of the hidden states vector in defining Eq.
(B2) to avoid the label-switching problem that may occur during estimation. This
means that the estimated components will not respect the order of generation, and we
would need to identify the correct order before comparing results.

As regards the results presented in Tables 3 and 5, we refer to the failure rates
which help in distinguishing between the over and underestimation of the number of
clusters and states. Overestimation rises if Ksl > K and underestimation if Ksl < K .
In the case of Ksl = K but when the success threshold in Eq. (B2) is not satisfied, i.e.
d(ssl , sc) ≥ 3, it is considered an overestimation if the sum of errors between selected
and correct hidden states in each cluster is

K∑

k=1

(s(k)sl (η) − s(k)) ≥ 3,

where ssl(η) is the vector of selected hidden states considering the permutation that
minimizes the Manhattan distance in B2; it is considered an underestimation if

K∑

k=1

(s(k)sl (η) − s(k)) ≤ −3.

B.4 Details on the explored scenarios

We restrict the simulation study to a scenario where a certain amount of prior infor-
mation about the problem under analysis is available. These restrictions are due to the
fact that all criteria struggle to identify the correct number of components and states
and to the high number of models that should be considered in the simulation, e.g. if
K ∈ {1, 2, . . . , 7} and Sk ∈ {2, 3, . . . , 6} for each component k, the number of models
can be computed as a sum of K combinations with repetition:

K∑

k=1

(s + k − 1)!
k!(s − 1)! ,

where s = 5 represents the Sk alternatives.Consequently,wehave791 combinations of
components and states. Thus, once the sequences are generated for a specific scenario,
we fitted to the simulated data a model having the correct number of components and
states and 19 other models with a number of components close to the correct one (i.e.
K − 1 or K + 1) and the number of hidden states for each component Sk from a
discrete uniform distribution taking values between 2 and 6, i.e. Sk ∼ U (2, 6).
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Table 10 Results of the Monte Carlo study for n = 300, T = 10

AIC BIC ssBIC

n = 300 T = 10 O2 Statistic 21.192 36.92 36.92

p value 2.077e−06 6.154e−10 6.154e−10

Conf.int [0.186; 1] [0.265; 1] [0.265; 1]

O3 Statistic 8.369 21.413 21.413

p value 0.001908 1.852e−06 1.852e−06

Conf.int [0.089; 1] [0.206; 1] [0.206; 1]

O4 Statistic 6.021 6.723 6.021

p value 0.007069 0.00476 0.007069

Conf.int [0.058; 1] [0.068; 1] [0.058; 1]

O5 Statistic 12.626 14.674 14.674

p value 0.0001902 6.39e−05 6.39e−05

Conf.int [0.138; 1] [0.159; 1] [0.159; 1]

O6 Statistic 7.018 8.595 7.789

p value 0.004035 0.001685 0.002628

Conf.int [0.067; 1] [0.086; 1] [0.076; 1]

O7 Statistic 4.502 5.789 5.125

p value 0.01693 0.008062 0.01179

Conf.int [0.035; 1] [0.056; 1] [0.045; 1]

Z-tests related to BICH success rate against other information criteria. The results reported are the statistic,
p value and 95% confidence interval

B.5 Statistical tests on simulation results

The simulation study in the main text highlights that BICH has the best performance
when it comes to identifying the number of clusters and states in MHMMs for short
length sequences. In Tables 10, 11, 12 and 13, we present Z-tests performed to assess
whether the BICH success rate is higher than that of AIC, BIC and ssBIC.

B.6 Increasing the number of sequences and sequence lengths

Due to the computational time required for each scenario, the simulation study results
reported in the main text are obtained from a number of sequences smaller than real
clickstream data, i.e. we considered n ∈ {300, 500}. As an example, in Table 14 we
report a scenario with a number of sequences n = 10, 000, specifically with T = 10
and the two-component model O2. It should be noted that all criteria perform better
even if BIC still selects the HMMover theMHMM. Furthermore, we report the results
obtained when n = 300 and T ∈ {40, 60} in Tables 15 and 16. Results still confirm
what is seen in the main text. However, if K = 2 AIC outperforms the BICH while
BIC and ssBIC still select the lack of clusters.
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Table 11 Results of the Monte Carlo study for n = 300, T = 20

AIC BIC ssBIC

n = 300 T = 20 O2 Statistic 0.821 35.38 27.612

p value 0.1825 1.356e−09 7.414e−08

Conf.int [−0.049; 1] [0.248; 1] [0.213; 1]

O3 Statistic 3.381 21.425 14.963

p value 0.03297 1.84e−06 5.482e−05

Conf.int [0.015; 1] [0.213; 1] [0.16; 1]

O4 Statistic 7.385 15.637 15.637

p value 0.003289 3.837e−05 3.837e−05

Conf.int [0.073; 1] [0.163; 1] [0.163; 1]

O5 Statistic 4.067 6.629 7.364

p value 0.02187 0.005016 0.003326

Conf.int [0.027; 1] [0.067; 1] [0.077; 1]

O6 Statistic 1.636 0.994 0.994

p value 0.1004 0.1593 0.1593

Conf.int [−0.025; 1] [−0.045; 1] [−0.045; 1]

O7 Statistic 0.505 1.286 0.726

p value 0.2386 0.1284 0.1971

conf.int [−0.066; 1] [−0.036; 1] [−0.056; 1]

Z-tests related to BICH success rate against other information criteria. Results reported are the statistic, p
value and 95% confidence interval

Table 12 Results of the Monte Carlo study for n = 500, T = 10

AIC BIC ssBIC

n = 500 T = 10 O2 Statistic 5.746 33.58 29.04

p value 0.008264 3.42e−09 3.545e−08

Conf.int [0.052; 1] [0.26; 1] [0.237; 1]

O3 Statistic 14.793 34.133 32.279

p value 5.999e−05 2.573e−09 6.676e−09

Conf.int [0.159; 1] [0.298; 1] [0.287; 1]

O4 Statistic 10.127 19.501 18.309

p value 0.0007307 5.028e−06 9.389e−06

Conf.int [0.109; 1] [0.201; 1] [0.19; 1]

O5 Statistic 5.789 6.486 5.789

p value 0.008062 0.005437 0.008062

Conf.int [0.056; 1] [0.066; 1] [0.056; 1]
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Table 12 continued

AIC BIC ssBIC

O6 Statistic 5.356 6.723 6.021

p value 0.01032 0.00476 0.007069

Conf.int [0.048; 1] [0.068; 1] [0.058; 1]

O7 Statistic 7.768 7.768 8.561

p value 0.002659 0.002659 0.001717

Conf.int [0.082; 1] [0.082; 1] [0.093; 1]

Z-tests related to BICH success rate against other information criteria. Results reported are the statistic, p
value and 95% confidence interval

Table 13 Results of the Monte Carlo study for n = 500, T = 20

AIC BIC ssBIC

n = 500 T = 20 O2 Statistic 0.741 38.005 23.337

p value 0.1946 3.528e−10 6.799e−07

Conf.int [−0.054; 1] [0.289; 1] [0.211; 1]

O3 Statistic 1.623 19.864 14.871

p value 0.1014 4.158e−06 5.754e−05

Conf.int [−0.026; 1] [0.202; 1] [0.16; 1]

O4 Statistic 3.392 5.782 3.93

p value 0.03275 0.008094 0.02372

Conf.int [0.015; 1] [0.056; 1] [0.025; 1]

O5 Statistic 1.28 0.72 0.32

p value 0.1289 0.1981 0.2857

Conf.int [−0.036; 1] [−0.056; 1] [−0.076; 1]

O6 Statistic 0.51 0.327 0.185

p value 0.2376 0.2836 0.3337

Conf.int [−0.065; 1] [−0.075; 1] [−0.085; 1]

O7 Statistic 0.32 0.08 0.02

p value 0.2858 0.3886 0.4437

Conf.int [−0.076; 1] [−0.096; 1] [−0.106; 1]

Z-tests related to BICH success rate against other information criteria. Results reported are the statistic, p
value and 95% confidence interval

Table 14 Results of the Monte Carlo study for n = 10, 000, T = 10

AIC BIC ssBIC BICH

n = 10000 T = 10 O2 S 0.81 (0.039) 0.50 (0.050) 0.57 (0.050) 0.88 (0.032)

U 0.00 (0.000) 0.50 (0.050) 0.43 (0.050) 0.00 (0.000)

O 0.19 (0.039) 0.00 (0.000) 0.00 (0.000) 0.12 (0.032)

Approximate success rate (S) of identifying the correct model or an approximation of the model and Failure
rate related to underestimate (U) and overestimate (O) the number of components. Standard errors are
shown in parentheses. See Appendix B.3 for the definition of the approximate success or failure rate
The best among the selection criteria are indicated in bold
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Table 15 Results of the Monte Carlo study for n = 300, T ∈ {40, 60}
n = 300 AIC BIC ssBIC BICH

T = 40 O2 0.34 (0.047) 0.10 (0.030) 0.16 (0.037) 0.58 (0.049)

O3 0.50 (0.050) 0.32 (0.047) 0.41 (0.049) 0.57 (0.050)

O4 0.49 (0.050) 0.48 (0.050) 0.51 (0.050) 0.63 (0.048)

O5 0.50 (0.050) 0.35 (0.048) 0.36 (0.048) 0.60 (0.049)

O6 0.57 (0.050) 0.55 (0.050) 0.56 (0.050) 0.72 (0.045)

O7 0.46 (0.050) 0.42 (0.049) 0.42 (0.049) 0.56 (0.050)

T = 60 O2 0.44 (0.050) 0.20 (0.040) 0.34 (0.047) 0.39 (0.049)

O3 0.50 (0.050) 0.34 (0.047) 0.42 (0.049) 0.58 (0.049)

O4 0.30 (0.046) 0.44 (0.050) 0.44 (0.050) 0.64 (0.048)

O5 0.36 (0.048) 0.46 (0.050) 0.45 (0.050) 0.59 (0.049)

O6 0.57 (0.050) 0.56 (0.050) 0.59 (0.049) 0.67 (0.047)

O7 0.50 (0.050) 0.50 (0.050) 0.52 (0.050) 0.60 (0.049)

Approximate success rate of identifying the correct model or an approximation of the model. Standard
errors are shown in parentheses. See Appendix B.3 for the definition of the approximate success rate
The best among the selection criteria are indicated in bold

Table 16 Results of the Monte Carlo study for n = 300, T ∈ {40, 60}
n = 300 AIC BIC ssBIC BICH

T = 40 O2 U 0.66 (0.047) 0.90 (0.030) 0.84 (0.037) 0.37 (0.048)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.05 (0.022)

O3 U 0.48 (0.050) 0.68 (0.047) 0.59 (0.049) 0.22 (0.041)

O 0.02 (0.014) 0.00 (0.000) 0.00 (0.000) 0.21 (0.041)

O4 U 0.51 (0.050) 0.52 (0.050) 0.49 (0.050) 0.25 (0.043)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.12 (0.032)

O5 U 0.50 (0.050) 0.65 (0.048) 0.64 (0.048) 0.33 (0.047)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.17 (0.038)

O6 U 0.43 (0.050) 0.45 (0.050) 0.44 (0.050) 0.23 (0.042)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.05 (0.022)

O7 U 0.54 (0.050) 0.58 (0.049) 0.58 (0.049) 0.42 (0.049)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.02 (0.014)

T = 60 O2 U 0.56 (0.050) 0.80 (0.040) 0.66 (0.047) 0.00 (0.000)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.61 (0.049)

O3 U 0.48 (0.050) 0.65 (0.048) 0.66 (0.047) 0.36 (0.048)

O 0.02 (0.014) 0.01 (0.0099) 0.02 (0.014) 0.06 (0.024)

O4 U 0.70 (0.046) 0.66 (0.047) 0.66 (0.047) 0.34 (0.047)
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Table 16 continued

n = 300 AIC BIC ssBIC BICH

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.02 (0.014)

O5 U 0.64 (0.048) 0.54 (0.050) 0.55 (0.050) 0.40 (0.049)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.01 (0.010)

O6 U 0.43 (0.050) 0.44 (0.050) 0.41 (0.049) 0.33 (0.047)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.01 (0.010)

O7 U 0.50 (0.050) 0.50 (0.050) 0.48 (0.050) 0.40 (0.049)

O 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000)

Failure rate related to underestimate (U) and overestimate (O) the number of components. Standard errors
are shown in parentheses. See Appendix B.3 for the definition of the failure rate

Appendix C MHMM: parameters’ estimates

In this section, we present results related to the selected model referred to in the
main text. The selected model is that with K = 3 components and S = (3, 2, 4)
hidden states. Moreover, the prior probabilities are estimated through a multinomial
regression model, which was presented in the main text in Eq. (2), considering the
additive contribution of the three covariates: Nationality, Device andMonth (excluding
interactions).

ln
ωk
i

ω1
i

= ln
P(Mk |Xi )

P(M1|Xi )
= γ0 + γ1Nationali t yi + γ2Devicei + γ3Monthi .

Tables 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 show the parameter estimates obtained
through the EM algorithm.
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Table 17 Multinomial
regression model results

Covariate effects
Estimate Sd. error

Cluster 2

(Intercept) − 1.5852 0.267

Device:PC − 1.2951 0.085

Zone:Africa − 1.3114 0.892

Zone:Latin America − 0.0514 0.537

Zone:Oceania 2.8312 1.109

Zone:North Europe − 0.9248 0.252

Zone:Asia − 0.6925 0.292

Zone:East Europe − 1.4603 0.276

Zone:North America − 1.6719 0.255

Zone:Middle East − 0.4519 0.644

Zone:Italy − 0.6502 0.245

Zone:Russia − 0.3587 0.399

Month:October − 1.6045 0.131

Month:November 2.3577 0.132

Month:December 2.3665 0.134

Cluster 3

(Intercept) − 1.6141 0.1697

Device:PC − 0.3258 0.0708

Zone:Africa − 1.1951 0.7813

Zone:Latin America − 0.2512 0.3423

Zone:Oceania 2.5224 1.0392

Zone:North Europe − 0.0479 0.1688

Zone:Asia − 2.8154 0.2147

Zone:East Europe − 2.2718 0.1730

Zone:North America − 0.1630 0.1747

Zone:Middle East − 0.7601 0.4921

Zone:Italy − 0.0225 0.1625

Zone:Russia − 1.3035 0.2580

Month:October − 0.1619 0.0724

Month:November − 0.2997 0.0772

Month:December − 0.4363 0.0795

Cluster 1, Mobile, South Europe and September as the baselines

Table 18 Mixture hidden
Markov model

State 1 State 2 State 3

0.7737 0.1370 0.0893

Initial probabilities in Cluster 1

123



Model selection for mixture hidden Markov...

Table 19 Mixture hidden
Markov model

State 1 State 2

0.655 0.345

Initial probabilities in Cluster 2

Table 20 Mixture hidden
Markov model

State 1 State 2 State 3 State 4

0.561 0.115 0 0.214 0.110

Initial probabilities in Cluster 3

Table 21 Mixture hidden
Markov model

State 1 State 2 State 3

State 1 0.73217 0.1496 0.1182

State 2 0.00833 0.8958 0.0959

State 3 0.05551 0.0951 0.8494

Transition probabilities in Cluster 1

Table 22 Mixture hidden
Markov model

State 1 State 2

State 1 0.9947 0.00533

State 2 0.0347 0.96528

Transition probabilities in Cluster 2

Table 23 Mixture hidden
Markov model

State 1 State 2 State 3 State 4

State 1 0.2283 0.4275 0.2487 0.0955

State 2 0.0231 0.8494 0.0261 0.0231

State 3 0.0115 0.0390 0.9382 0.0113

State 4 0.0339 0.0389 0.0365 0.8907

Transition probabilities in Cluster 3

Table 24 Mixture hidden Markov model

Accommodation Attractions Experiences Events Homepage Info Services

State 1 0.000 0.0115 0.000816 0.00000 0.9877 0.000 0.00000

State 2 0.188 0.2168 0.087138 0.05482 0.1113 0.000 0.34144

State 3 0.000 0.1327 0.001514 0.00419 0.0733 0.781 0.00717

Emission probabilities in Cluster 1
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Table 25 Mixture hidden Markov model

Accommodation Attractions Experiences Events Homepage Info Services

State 1 0.0194 0.908 0.0205 0.00105 0.0333 0.00750 0.01059

State 2 0.1657 0.109 0.0166 0.61265 0.0882 0.00423 0.00356

Emission probabilities cluster 2

Table 26 Mixture hidden Markov model

Accommodation Attractions Experiences Events Homepage Info Services

State 1 0.000 0.0514 0.00929 0.028945 0.8973 0.00851 0.004511

State 2 0.141 0.7399 0.00000 0.000240 0.0407 0.05631 0.022153

State 3 0.912 0.0623 0.00500 0.000423 0.0172 0.00254 0.000904

State 4 0.210 0.1295 0.54329 0.016053 0.0475 0.00884 0.044802

Emission probabilities in Cluster 3
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