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Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics
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We consider a finite-time Otto engine operating on a quantum harmonic oscillator and driven by shortcut-to-
adiabaticity (STA) techniques to speed up its cycle. We study its efficiency and power when internal friction,
time-averaged work, and work fluctuations are used as quantitative figures of merit, showing that time-averaged
efficiency and power are useful cost functions for the characterization of the performance of the engine. We then
use the minimum allowed time for validity of STA protocol relation to establish a physically relevant bound to
the efficiency at maximum power of the STA-driven cycle.
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I. INTRODUCTION

Heat engines were the fulcrum of the first industrial rev-
olution and, remarkably, still play a major role in today’s
technological landscape, all the way down to the nanoscale.
However, at such a length scale, quantum fluctuations and
effects become relevant and their influences on the perfor-
mance of thermodynamic devices should be treated cum grano
salis [1].

Recently, this realization has led to the substantive devel-
opment of a quantum-based framework for the thermodynam-
ics of nonequilibrium processes and systems. The pathway
toward the construction of a fully operative quantum engine
has been paved by the demonstration of the first single-particle
heat engine based on trapped-ion technology [2]. The perspec-
tives for full-fledged quantum thermomachines are promising.

The efficiency of an engine, defined as the ratio of energy
output to energy input, is maximum for adiabatic modified
processes [3–5]. Such maximum performance is, however,
associated with vanishing power that hinders its any practical
purposes [6]. A major challenge is to design energy efficient
thermal machines that deliver more output for the same input
without sacrificing power [7]. One of the ways to achieve this
goal is to employ a shortcut-to-adiabaticity (STA) approach
[8], where a perfectly adiabatic process is mimicked by the
use of a suitably arranged fast manipulation of the system,
designed in a way to drive it toward the desired physical con-
figuration and suppress any final-state excitation that might
have been induced by the finite-time dynamics. Different
STA techniques have been developed, from counterdiabatic
driving (also known as transitionless quantum driving) [9–12]
to local counterdiabatic driving [13–15] and from methods
based on the use of dynamical invariants [16] to the so-
called fast-forward technique [17,18]. The effectiveness of
such approaches has been addressed in a significant number
of experimental endeavors [19–27], which have demonstrated
the viability of STA-based approaches to quantum dynamical
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control. Remarkably, recent theoretical studies have shown
that STA methods may be employed to enhance the perfor-
mance of thermal heat engines [28–35].

Despite such promising developments, the energetic cost
of shortcut driving of STA techniques and their impact on
the performance of quantum heat engines are not yet fully
understood [36]. Recently, the cost of achieving the desired
adiabatic state has been related to the time-energy uncertainty
relation [37–41] and time-averaged excess of the work fluctu-
ations [42,43]. Another approach that has been put forward
to quantify the cost of STA approaches is based on the
quantification of the energy invested to operate the controller
and the system [44].

A specific scenario is of particular relevance in this context,
namely the performance or efficiency of heat engines opti-
mized to yield maximum power. As a significant case, it is
worth considering the case of an Otto cycle, whose efficiency
at maximum power in the adiabatic limit has been shown
to corresponds to the so-called Curzon-Ahlborn efficiency
[45–48]

ηCA = 1 −
√

βC/βH ,

where βC and βH are the inverse temperature of a cold
and a hot heat reservoir, respectively. This expression is not
universal and depends on the assumption that the cycle time
is constant. Thus, an interesting point is to understand the
bounds imposed on the efficiency of engines such as the
Otto one when operating at maximum power and driven by
STA-based protocols.

Motivated by such observation and the somehow paradig-
matic nature of the Otto cycle, in this paper we analyze the
performance of a STA quantum Otto heat engine that uses
a harmonic system as its working medium. We calculate the
internal friction, time-averaged work, and work fluctuations
to illustrate the energy cost of driving it through a STA
technique. We further show the time-averaged efficiency and
power of the engine are faithful and meaningful criteria to
evaluate the performance of a STA-based engine. In addition,
the bound on the efficiency at maximum power of STA
Otto engine is derived considering the time imposed by the
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energy-time uncertainty relation on the system evolution dur-
ing the STA protocol.

The remainder of this paper is organized as follows. In
Sec. II we illustrate the nonequilibrium thermodynamics of
a quantum Otto cycle, providing explicit formulas for work
done, heat exchanged, and entropy produced during the rel-
evant strokes of the cycle. Section III is dedicated to the
illustration of a STA-driven version of the cycle and the effect
that the drive has on relevant thermodynamic quantities. In
addition, we quantify the cost of such quantum control strat-
egy using a number of physically different figures of merit,
including work friction and time-averaged work variance. In
Sec. IV we set physically rigorous bounds on the efficiency
of the STA-driven cycle run at maximum power, showing
the effectiveness of the quantum control strategy in achieving
values of power and efficiency close to the adiabatic ones.
Finally, in Sec. V we draw our conclusions and set up the path
to further investigations.

II. QUANTUM OTTO CYCLE

In a quantum Otto heat engine, the working medium un-
dergoes a four-stroke cycle by being alternatively coupled
to two baths at different temperatures. The Hamiltonian of
the working medium H (λt ) depends on the time-dependent
work parameter λt , which determines the overall evolution
of the medium. As shown in Fig. 1, the cycle is made of the
following steps:

(i) An isentropic compression (branch AB of the cycle),
during which the working medium is isolated from the en-
vironment and its work parameter λt is increased from λ1

to λ2 in a time τ1. As a result of this transformation, work
〈W1〉 = 〈H〉B − 〈H〉A is performed on the medium.

(ii) A hot isochore (branch BC of the cycle), during which
heat 〈Q2〉 = 〈H〉C − 〈H〉B is transferred—in a time τ2—from
the hot bath at inverse temperature β2 to the working medium.

(2) Hot isochore

Heat added

(3) Isentropic expansion

Work done 3W

(4) Cold isochore

Heat removed

(1) Isentropic compression

Work done W

2Q4Q

FIG. 1. Diagram of a quantum Otto cycle. The thermodynamic
cycle consists of two isentropic (compression and expansion steps 1
and 3) and two isochoric processes (heating and cooling steps 2 and
3). Here 〈Wj〉 ( j = 1, 3) and 〈Qj〉 ( j = 2, 4) stand for the average
work done and heat exchanged during the relevant stroke of the cycle.
The red- and blue-colored areas represent the wave function of the
oscillator embodying the working medium of the cycle.

During such process, the working parameter takes the constant
value λ2.

(iii) An isentropic expansion (branch CD of the cycle)
where the work parameter is decreased—in a time τ3—from
value λ2 to λ1. During such transformation, an amount of work
〈W3〉 = 〈H〉D − 〈H〉C is extracted from the medium.

(iv) A cold isochore (branch DA of the cycle) where heat
〈Q4〉 = 〈H〉A − 〈H〉D is transferred—in a time τ4—from the
working medium to the cold bath at inverse temperature β1 >

β2. The work parameter is again kept constant at value λ1.
The control parameters are the time length of the different

branches, the temperatures of the baths, and the modulated
frequency. We will assume, as is customary [36,47–50], that
the thermalization times τ2,4 are much shorter than the com-
pression or expansion times τ1,3. The total cycle time is then
τcycle = τ1 + τ3 = 2τ for equal step duration.

For an engine, the produced work is negative, 〈W1〉 +
〈W3〉 < 0, and the absorbed heat is positive, 〈Q2〉 > 0. The
two important quantities characterizing thermal machines are
efficiency and power. The total change in entropy for one
complete cycle reads

�Stot = −β2〈Q2〉 − β1〈Q4〉 � 0, (1)

where we used the fact that the entropy change during the
isentropic processes AB and CD are zero. From the first law
of thermodynamics we have

−(〈W1〉 + 〈W3〉) = 〈Q2〉 + 〈Q4〉. (2)

In light of Eqs. (1) and (2), the efficiency of the cycle can be
written as

ηO = −〈W1〉 + 〈W3〉
〈Q2〉 � 1 − β2

β1
:= ηC . (3)

That is, the efficiency is always less than Carnot efficiency
ηC = 1 − β2/β1 and the equality holds only when β2/β1 =
λ1/λ2. On the other hand, the power of the engine is given by
the ratio of the work done to the time taken for one complete
cycle, i.e.,

P = −〈W1〉 + 〈W3〉
τcycle

. (4)

As the compression and expansion steps consist of both
reversible and irreversible processes, the total work is 〈Wtot〉 =
〈Wad〉 + 〈Wirr〉. The first term corresponds to the reversible
(quasistationary) part of the transformation undergone by
the working medium, while the second quantifies the inner
friction of the process. The latter is connected to the quantum
relative entropy between the density operator resulting from
the nonequilibrium path and that associated with the hypothet-
ical adiabatic one [30,51,52]. Explicitly, the work dissipated
irreversibly along the nonadiabatic path reads

〈Wirr〉 = S
(
ρt

∥∥ρad
t

)/
βt , (5)

where S(ρ‖σ ) = tr{ρ ln ρ − ρ ln σ } is the quantum relative
entropy, ρt is the instantaneous state at time t , and ρad

t is the
corresponding adiabatic state. Further details on inner friction
and irreversibility can be found in Refs. [53–55].

Here we consider when the working medium is a time-
dependent quantum harmonic oscillator. The corresponding
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Hamiltonian is of the standard form, H0(ωt ) = p2/(2m) +
mω2

t x2/2, where x and p are the position and momentum
operators of an oscillator of mass m.

During the first and third strokes (compression and ex-
pansion), the quantum oscillator is isolated and only work is
performed by changing the frequency in time. As the dynamic
is unitary, the Schrödinger equation for the parametric har-
monic oscillator can be solved exactly for any given frequency
modulation [56,57]. The corresponding work values are given
by [48]

〈W1〉 = h̄ω1

2
(Q∗

1/x − 1) coth

(
h̄β1ω1

2

)
,

〈W3〉 = h̄ω1

2
(Q∗

3 − 1/x) coth

(
h̄β2ω2

2

)
,

(6)

where we have introduced the frequency ratio x = ω1/ω2 and
the dimensionless adiabaticity parameter Q∗

i (i = 1, 3) [58].
The latter is defined as the ratio of the instantaneous and
corresponding adiabatic mean energy and takes unit value
for any adiabatic process [57]. Its explicit expression for any
frequency modulation ωt may be found in Refs. [56,57]. On
the other hand, the heat exchanged with the reservoirs during
the thermalization step (the hot isochoric process) reads

〈Q2〉 = h̄ω2

2

[
coth

(
h̄β2ω2

2

)
− Q∗

1 coth

(
h̄β1ω1

2

)]
. (7)

The exact engine efficiency and power read as follows [48]

ηO = 1 − x

(
x Q∗

3 〈H〉C − 〈H〉A

x 〈H〉C − Q∗
1〈H〉A

)
, (8)

P = [〈H〉A(1 − Q∗
1/x) + (1 − x Q∗

3 )〈H〉C]/τcycle, (9)

where 〈H〉A = h̄ω1 coth(h̄β1ω1/2)/2 and 〈H〉C = h̄ω2 coth
(h̄β2ω2/2)/2. These expressions are exact and valid at arbi-
trary temperatures, frequencies, and time length. In the limit
of slow driving (i.e., when τcycle becomes very large and the
cycle tends toward adiabaticity), during the isentropic pro-
cesses Q∗

i = 1, and the engine efficiency reads ηAD
O = 1 − x,

while the power vanishes. However, it has been shown that
the optimal performance corresponds to an adiabatic version
of the first and third stroke of the engine cycle [47,48].

III. SHORTCUT-TO-ADIABATICITY ENGINE

The dynamics of the quantum Otto engine may be sped up
with the help of STA techniques applied to the compression
and expansion steps. STA protocols suppress the unwanted
nonadiabatic transitions, thereby reducing the associated pro-
duction of entropy [47,48,59,60]. The effective Hamiltonian
of the oscillator is then of the form

Heff (t ) = H0(t ) + Hi
STA(t ), (10)

where Hi
STA(t ) is the STA driving Hamiltonian and i =

(1, 3) indicates the respective compression/expansion step.
The STA protocol satisfies boundary conditions that ensure
〈Hi

STA(0)〉 = 〈Hi
STA(τ )〉 = 0. These correspond to requesting

ω(0) = ωi, ω̇(0) = ω̈(0) = 0,
(11)

ω(τ ) = ω f , ω̇(τ ) = ω̈(τ ) = 0,

where ωi, f = ω1,2 denote the respective initial and final fre-
quencies of the compression or expansion steps. Equations
(11) are satisfied, for instance, by the following functional
forms [13–16,28,61]:

ω(1)(t ) = ωi + 10δs3 − 15δs4 + 6δs5,

ω(2)(t ) = ωi + (3s2 − 2s3)δ,

ω(3)(t ) = ωi

√
[(a2 + 1) − (a2 − 1) cos(πs)]/2,

(12)

where s = t/τ, a = ω f /ωi, and δ = ω f − ωi.
Let us consider when the compression or expansion steps

are driven by a suitable STA approach. Here, we employed
the counterdiabatic driving (transitionless quantum driving)
whose goal is to find a Hamiltonian HCD for which the
adiabatic approximation to the original Hamiltonian H0 is the
exact solution of the time-dependent Schrödinger equation for
HCD. The explicit form of HCD is [11,62]

HCD(t ) = H0(t ) + ih̄
∑

n

(|∂t n〉〈n| − 〈n|∂t n〉|n〉〈n|)

= H0(t ) + HCD
STA(t ), (13)

where |n〉 ≡ |n(t )〉 denotes the nth eigenstate of the original
Hamiltonian H0(t ), |∂t n〉 ≡ |∂t n(t )〉 and HCD

STA(t ) is the STA
driving Hamiltonian. For a time-dependent harmonic oscilla-
tor, the latter is given by [8,62]

HCD
STA(t ) = − ω̇t

4 ωt
(xp + px) = ih̄ω̇t

4 ωt

(
a2

t − a†2
t

)
, (14)

where we used the notation shortcut ωt ≡ ω(t ) and intro-
duced the standard bosonic annihilation and creation op-
erators a|n〉 = √

n|n − 1〉 and a†|n〉 = √
n + 1|n + 1〉. The

Hamiltonian in Eq. (13) is quadratic in x and p, so it may be
considered describing a generalized harmonic oscillator with
a nonlocal operator [16,62,63]

HCD(t ) = p2

2m
+ mω2

t x2

2
− ω̇t

4ωt
(xp + px). (15)

The instantaneous eigenenergies of the Hamiltonian HCD(t )
are given by [34,64]

En = 〈HCD(t )〉 = h̄ωt Q
∗
CD(n + 1/2), (16)

where Q∗
CD = 1/

√
1 − (ω̇2

t /4ω4
t ) is the STA protocol adia-

baticity parameter and n = 1/[exp(βi h̄ωi ) − 1] is the occupa-
tion quantum number. Here the label i stands for the initial
frequency and inverse temperature. The mean average of the
STA control at any time is [34]

〈
HCD

STA(t )
〉 = ωt

ωi
(Q∗

CD − 1)〈H (0)〉, (17)

where we used 〈H (0)〉 = h̄ωi coth(β h̄ωi/2)/2. The adiabatic-
ity parameter during the compression process for the three
protocols in Eq. (12) are plotted in Fig. 2.

A. Energy cost of shorcut driving

As STAs are designed so that the initial and final state
corresponds to the adiabatic ones, one might naively think that
their implementation is actually cost free. Unfortunately, this
is not the case, and the quantification of the energetic cost
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FIG. 2. The adiabaticity parameter for different time-dependent
frequency protocol. The blue dashed line is for ω(1)(t ), the green
dotted line is for ω(2)(t ), and the red dotted-dashed line is for ω(3)(t )
in Eq. (12). The orange solid curve is the time-dependent frequency
control ωt = ωi + (ω f − ωi )t/τ , which does not satisfy the STA
boundary conditions. The parameters used in all the curves shown
in this plot are ωi/ω f = 0.35 and τ = 3 (in units of 1/ω f ).

associated with STA driving has been investigated, recently,
using various approaches.

First, based on an optimal control approach [65], the time
average of the difference between the mean work produced
using the STA-modified and original Hamiltonian can be used
as a quantifier. Quantitatively, we have

〈δW 〉τ = 1

τ

∫ τ

0
δW dt, (18)

where we have introduced the work difference δW ≡
〈HCD

STA(t )〉 = 〈HCD(t )〉 − 〈H0(t )〉. Interestingly, this cost pa-
rameter corresponds to the time-averaged STA control Hamil-
tonian use when analyzing the efficiency of the protocol as
well as the range of validity of the control technique [30,33].
Explicitly, we have

〈δW 〉τ = 〈
HCD

STA(t )
〉
τ
. (19)

The second approach employs the time average of the
difference between the values of the variance of the work
distribution corresponding to the effective Hamiltonian and
the adiabatic counterpart of the original Hamiltonian [42]. It
reads

〈δ�W 〉τ = 1

τ

∫ τ

0
δ(�W )dt, (20)

where δ(�W )2 = 〈�WCD(t )2〉 − 〈�WAD(t )2〉 and 〈δ�W 〉 =√
δ(�W )2. This cost functional is shown to relate with quan-

tum speed limit of the evolution and allegedly gives a tighter
bound [42].

Finally, to understand the inner friction of the driving,
we consider the difference between the actual (nonadiabatic)
work and the adiabatic one. That is,

Wfric = 〈W 〉NA − 〈W 〉AD = 〈Ht 〉 − 〈Ht 〉AD, (21)

where 〈W 〉NA is the exact work calculated from the working
medium dynamics at any given time.

In Fig. 3 we show the time-averaged work difference and
variance for a harmonic oscillator with a time-dependent
frequency undergoing compression. We compare the result
with the exact work friction at any given time and the adiabatic

Wfric

W

W

0 5 10 15 20 25
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Time

E
ne
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y
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FIG. 3. The energetic cost (in unit of h̄ω f ) of STA driving as a
function of driving time τ (in units of 1/ω f ) for compression pro-
cess. We used the time-dependent frequency ω(t ) = ωi + 10(ω f −
ωi )s3 − 15(ω f − ωi )s4 + 6(ω f − ωi )s5 with the parameters ωi/ω f =
0.35, β2/β1 = 0.1, and h̄ = 1.

work. In the example that follows, we show that the first
definition, 〈δW 〉τ , of STA protocol vanishes at the point where
the traditional friction is zero, whereas the second definition
is remains finite. This shows that the time-averaged work
difference definition is the actual energetic cost of the STA-
driven protocol and should be importance in thermodynamics
analysis than the energy variance approach. Further analysis,
of energy cost of the protocol ωt = ωi + (ω f − ωi )t/τ which
does not satisfy the STA boundary conditions ω̇t = ω̈t = 0
gives some finite term at t = τ . This elucidates how evaluating
the cost in the sense of a two-point energy measurement at
the initial and final stages of the protocol does not give us
meaningful results.

B. Engine performance

Currently, there is no consensus on how to evaluate the
cost of STA-based driving when considering the engine per-
formance. This is mainly because of the boundary condition
imposed by STA, [cf. Eq. (11)], which leads to vanishing of
the adiabaticity parameter at the beginning and the final state
of the driving protocol. An approach adopted so far is taking
the cost required for the control pulse as an additional energy
input in efficiency [33,34] and which should be subtracted
from the output power of the engine [35]. Therefore, the
efficiency of a STA engine reads [33]

ηSTA = energy output

energy input
= −

∑
j=0,1〈W2 j+1〉STA

〈Q2〉 + ∑
j=0,1

〈
H2 j+1

STA

〉
τ

, (22)

where 〈Wi〉STA = 〈HCD(t )〉 − 〈H (0)〉 is corresponding mean
work of the STA protocol and 〈Hi

STA〉
τ

= (1/τ )
∫ τ

0 dt
〈Hi

STA(t )〉 is the time average of the mean STA driving term.
Equation (22) takes the energetic cost of the STA driving
along the compression or expansion steps into account. It
reduces to the adiabatic efficiency ηAD in the absence of these
two contributions as it assumes that 〈WSTA〉 = 〈WAD〉.

The power produced by the STA-driven cycle is, on the
other hand, given by the expression [35]

PSTA = − 1

τcycle

∑
j=0,1

(〈W2 j+1〉STA − 〈
H2 j+1

STA

〉
τ

)
. (23)
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FIG. 4. Power (a) and efficiency (b) of the engine as a function of driving time τ (in units of 1/ω f ). The black solid line is the adiabatic
power (efficiency) when Q∗

i = 1 in Eqs. (8) and (9), while the blue dotted curve shows the nonadiabatic scenario without the STA Hamiltonian,
cf. Eqs. (8) and (9). The red dotted curve shows the performance based on STA driving (including the energetic cost of running the STA
protocol), cf. Eqs. (22) and (23). Finally, the green dotted curve is the STA-driven performance based on time averages [cf. Eqs. (24)]. In our
numerical evaluations, we have used the parameters ωi/ω f = 0.35, β2/β1 = 0.1, and h̄ = 1. (c) Efficiency at maximum power as a function
of temperature ratio. We show the efficiency at maximum power of STA protocol η∗

STA (red dotted) and compare it to the Curzon-Alhborn
efficiency ηCA = 1 − √

β2/β1 (blue dashed). The inset shows their difference �η∗ = η∗
STA − ηCA.

At the initial and final time, the STA protocol ensures adi-
abatic work output, 〈Wi〉STA = 〈Wi〉AD (i = 1, 3). It has been
shown that in a shorter cycle duration τcycle, the superadiabatic
power PSTA is always greater than the nonadiabatic power
PNA = −(〈W1〉 + 〈W3〉)/τcycle [33].

The STA technique is reminiscent of a periodic power
signal which is zero at the beginning and the end of one
complete cycle. The actual power of the cycle is thus custom-
arily defined as the time-averaged one [66]. That is, despite
the instantaneous performance of the STA engine seems the
same as that of the adiabatic engine, their time-averaged
performance is different. Thus, we define the time-averaged
efficiency and power as

〈ηSTA〉τ = −
〈−〈W1〉STA + 〈W3〉STA

〈Q2〉
〉
τ

,

〈PSTA〉τ = −〈〈W1〉STA + 〈W3〉STA〉τ
τcycle

.

(24)

Such quantities are presented in Fig. 4, where we observe
that the numerical evaluation of the time-averaged perfor-
mance (efficiency and power) corresponds to the definitions
taking the cost of STA into account. The little discrepancy
or deviation in the efficiency plot is a result of taking the
condition Q∗ = 1 in the input heat 〈Q2〉. Thus, taking the
time average of the exact efficiency and power for the Otto
engine when considering the finite-time protocol gives the true
performance at any given time.

IV. BOUNDS ON PERFORMANCE:
EFFICIENCY AT MAXIMUM POWER

The efficiency at maximum power is a very informative
figure of merit. Standard thermodynamic-cycle analysis is
based on the concept of equilibrium, which implies quasi-
static transformations and thus vanishingly small power out-
puts. Nonequilibrium thermodynamics, on the other hand,
explicitly accounts for finite-time transformations that deliver
a non-null power output, at the expense of the efficiency of the
cycle. The idea is usually to incorporate the time dependence
of heat transfer in the analysis of heat engine or to follow

the engineers approach to calculate the so-called “second-law
or exergy efficiency” [5]. However, for an Otto engine cycle,
this approach leads to the assumption of constant (although
finite) cycle time, thereby treating power as work [36,46,48]
and leading to the efficiency at maximum power or work,
η∗

O = 1 − √
β2/β1 ≡ ηCA in the high-temperature reservoirs

limit. This is nothing else but the Curzon-Alhborn efficiency
[45].

When considering time-dependent transformation, addi-
tional constraints might have to be considered that could
affect efficiency at optimal values of power. In our case, the
STA-driven counterdiabatic protocol dynamics is valid only
when ω2

t (1 − ω̇2
t )/(4ω4

t ) > 0, which has to be enforced in
order to avoid the inversion of the harmonic trap [34,64].
For simplicity, we assume that the nonadiabatic excitations
vanish at the end of the STA protocol, which correspond to
〈Hi

STA〉
τ

= 0 and Q∗ = 1. We further assume that the time for
isochoric processes are negligible. Then, the total time can
be written as τ = τ1 + τ3 � 1/ω1 + 1/ω2, where we used the
condition that the final time and final frequency are inversely
related, i.e., t f = 1/ω f . To compute efficiency at maximum
power that is valid in both classical and semiclassical limits,
we employ the power P = −(〈W1〉AD + 〈W3〉AD)/τ . By maxi-
mizing the resulting expression with respect to x and fixing
initial frequency ω1 and temperatures, we find the optimal
ratio

x = γβ + √
2γβ (1 + γβ )

2 + γβ

, (25)

where γβ = 〈H〉A/〈H〉C . The corresponding efficiency at
maximum power reads

η∗
STA = 1 − γβ + √

4γβ (1 + γβ )

2 + γβ

. (26)

This expression is valid for any cold-reservoir temperature
and for both reservoirs in the high-temperature limit. In
Fig. 4(c), we show η∗

STA and compare it to the Curzon-Ahlborn
efficiency that will result for fixed time [36,47,48] as the
temperature ratio β2/β1 varies. Clearly, η∗

STA is very close
to such bound, showing the effectiveness of the constrained
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STA approach to deliver high-efficiency cycles outputting
maximum power. The small discrepancy between the two
quantities is due to the fact that the Curzon-Alhborn efficiency
of the Otto engine was derived based solely on work output
[46–48]. Thus, including the finite-time duration of the work
(isentropic) branch in the performance at maximum power
analysis of the engine gives the actual bound. This contributes
to the discussion of nonuniversality of the efficiency at maxi-
mum power of irriversible heat engines.

V. CONCLUSIONS

We have performed a detailed study of a STA Otto heat en-
gine showing that the nonadiabatic transition between the ini-
tial and final state of the engine depends on the chosen driving
protocol. We have calculated internal friction, time-averaged
work, and work fluctuations of the heat engine with the aim
of understanding the energetic cost of an STA driving. We
have shown that the STA-based heat engine performance are

better computed by the time-averaged efficiency and power.
Furthermore, we have derived the bound on the efficiency
at maximum power of the STA-based heat engine based on
the minimum allowed time for validity of STA protocol. Our
study provides a suitable and rigorous route to analyze the
performance of STA Otto engine for any kind of driving
protocol, which will hopefully stimulate the development of
STA for thermodynamics applications.
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