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Abstract 

Fabric reinforced cementitious mortar (FRCM) materials have started to be employed during the last years 

with the aim of overcoming the drawbacks related to the use of fibre reinforced polymer (FRP) composites, 

proving to be potentially suitable for strengthening masonry structures. Moreover, the will to develop materials 

able to guarantee a certain degree of sustainability without renouncing to adequate mechanical properties has 

drawn the attention to the use of basalt fibres, which appear to be a valid alternative to carbon or glass fibres. 

This work presents an experimental investigation on a basalt FRCM (BFRCM) system to confine circular 

masonry columns, aimed at evaluating the effectiveness of this system in comparison with data obtained by 

BFRP jacketing. A total of eighteen clay brick masonry cylinders were prepared by using two different 

assembling schemes and subjected to uniaxial compression. Six cylinders were tested as control specimens, 

while the rest were reinforced by using either one or two layers of basalt textile. Traditional measuring 

instruments were integrated with digital image correlation (DIC) technique. The experimental results are 

presented in terms of stress-strain curves, and strength and strain enhancements of confined cylinders 

compared to control specimens. The failure modes are also discussed. All outcomes are compared to those 

obtained by the authors in a similar study performed on basalt FRP (BFRP)-confined cylinders realized with 

the same manufacturing in order to have an effective comparison. 

Keywords: Masonry cylinders, Basalt FRCM, Confinement, Strengthening and repair, Digital 

image correlation (DIC) 

 

1 Introduction 

Fabric reinforced cementitious mortar (FRCM) composite materials are currently receiving great attention as alternative 

strengthening technique to fibre reinforced polymers (FRPs), especially for masonry elements and when specific 

preservation criteria need to be fulfilled. Some limitations on the use of FRPs on masonry structures arise due to the low 

compatibility of epoxy resins or synthetic materials in general when applied to the masonry substrate. The use of 



FRCMs allows to alleviate these drawbacks, since the inorganic matrix makes the composite more compatible to the 

substrate, ensuring durability, also in aggressive environmental conditions, vapour permeability and good resistance to 

high temperatures. Despite these advantages, some issues are still open about the mechanical properties of FRCM 

materials and on their effectiveness when adopted in retrofitting techniques. For this reason, numerous recent studies 

have been performed to investigate the behaviour of FRCM composites in tension [1][2][3][4] and the features of the 

bond between FRCM and masonry [5][6], as discussed in [7]. 

In the recent years, experimental studies confirmed the effectiveness of confinement by FRCM for masonry columns. 

The use of such technique increases the compressive strength of the members and leads to a more ductile failure, with a 

softer descending behaviour in the post-peak range with respect to unreinforced members. On the other hand, the 

compressive performance of FRCM-strengthened elements depends on different parameters, such as the adopted fibres 

and the type of matrix used to apply the textile to the column, but also the kind of confined masonry. Fewer studies 

were carried out in the literature on the use of FRCMs for masonry confinement in comparison to similar works on 

FRPs, analytical [8][9][10] or experimental [11][12][13]. One of the first experimental contribution on the FRCM 

confinement of masonry is that of Di Ludovico et al. (2008) [14], who tested square tuff masonry columns strengthened 

by glass-grid bonded with a cement-based mortar and subjected to uniaxial compression.  Since then, different types of 

textile have been employed, such as glass [15][16], PBO [17], carbon [18], steel [19], however few studies were 

performed on the application of natural fibres in composites for structural retrofit. In this field, basalt fibres proved to be 

a promising alternative to the most common synthetic fabrics, such as carbon or glass fibres, and its development can be 

useful for the optimization of a retrofit intervention, allowing a reduction of costs with a sustainable and reversible 

solution. Among the first studies on the confinement by basalt FRCM (BFRCM), Yilmaz et al. (2013) [20] investigated 

on the efficiency of BFRCM wrapped historical masonry columns, subjected to concentric compressive load. 

Reinforced specimens showed quite small compressive strength increase (25%) compared to unconfined ones; on the 

other hand, a significant energy dissipation improvement was attained (86%). The rupture of the basalt fibres at the 

corners of the columns was observed.  As part of larger experimental study, Micelli et al. (2014) [12] tested circular 

masonry columns confined with continuous and discontinuous BFRCM wraps. Columns confined with discontinuous 

wraps presented unexpected results, i.e. the strength increase (73%) was higher than that obtained in the case of full-

wrapped columns (47%). The authors related this outcome to the double layer of the FRCM jacket and to the scattering 

typical of masonry material. The failure mode was by tensile rupture of the fibres, accompanied by a diffusive cracking 

along the height of the column, and the buckling of the cement-based composite jacket was observed. More recently, 

Mazrea et al. (2016) [21] tested, under compressive load, eighteen BFRCM-confined brick masonry piers with 

square/rectangular cross-section. Significant axial strain increments were observed, while compressive strength gains 



were not so pronounced. Moreover, the confinement was more effective on square masonry piers than on rectangular 

specimens. Traditional monitoring systems were supported by the use of a digital image correlation (DIC) system, 

which gave information about the progression of cracks during testing. The effect of masonry strength was investigated 

by Fossetti and Minafò (2017) [22], by varying the mortar grade of BFRCM-confined clay brick masonry columns. The 

outcomes showed an average strength increment of 75% for low-grade mortar masonry, while negligible effects were 

observed in the case of normal strength masonry columns. Santandrea et al. (2017) [23] tested BFRCM-confined square 

masonry columns, giving particular attention to the influence of the corner radius. The BFRCM jackets provided 

relatively low compressive strength gain (14-16%) compared to control specimens, due to the brittle failure of basalt 

fibres at the sharp or rounded corners of the square cross-section columns. Di Ludovico et al (2020) [24] studied the 

behaviour of full-scale limestone masonry columns strengthened by BFRCM jackets. The results showed an axial 

strength gain of the confined column of about 45% and the energy dissipation capacity increased of six times respect to 

the unreinforced specimen. The stress-strain curves presented a softening post-peak branch and, despite the initial 

strength drop after the peak load, the residual load capacity was close to the peak load of the unconfined column. The 

spalling of the jacket started at the corners, with the formation of vertical cracks followed by the buckling of the mortar 

reinforcement in different areas. Ombres and Verre (2020) [25] tested different FRCM systems for the confinement of 

clay brick masonry columns, among them BFRCM jacketing, showing that this system is able to allow very large lateral 

displacements at failure. Estevan at al. (2020) [26] performed compressive tests on calcarenite cylinders wrapped by 

one or three BFRCM layers, comparing the results to those obtained by using other FRCM or FRP systems.  Outcomes 

showed limited strength gains (21%-24%), while the set reinforced with three layers of basalt allowed an ultimate strain 

increase six times higher than unreinforced masonry, highlighting the suitability of BFRCM system to increase the 

ductility of masonry columns. 

Although the significant number of experimental tests performed during the last decades, a unified analytical approach 

to describe the compressive response of FRCM-confined masonry columns is still missing in the scientific literature. 

Numerous analytical formulations have been proposed on the confinement of masonry by FRP [27][28][29][30][31] 

and, for the sake of brevity, a comprehensive overview can be found in [9]. Some available analytical models on the 

confinement of masonry by cementitious composites [21][32] are inspired by the models calibrated on FRP-confined 

members, neglecting the properties of the FRCM, the effect of the matrix, cracking of the jacket, slippage between 

fibres and matrix. However, the consideration of the matrix role in the prediction of the compressive behaviour of 

FRCM-confined members appears to be crucial, because it concerns the effectiveness of the FRCM confinement, as 

shown by Cascardi et al (2017a) [33] that performed a multiple linear regression analysis in order to evaluate the 

influence of the interaction between the properties of the matrix and those of the fibres on the effectiveness of the 



confining pressure. The authors pointed out the need to take into account the matrix characteristics besides those of the 

fibres in the definition of analytical formulations and proposed a new design-oriented model (DOM) aimed at 

evaluating the strength increase due to FRCM confinement of masonry.  The importance of taking into account the 

matrix contribution for the definition of proper design formula was evidenced also by Balsamo et al. (2018) [34], who 

presented a DOM based on the proposal of the Italian CNR-DT 200/2013 [31] code for the FRP confinement of 

masonry. The accuracy of the proposed equations in predicting the compressive axial strength of FRCM-confined 

masonry was evaluated by comparison with experimental data. Cascardi et al. (2017b) [35] proposed an analysis-

oriented model (AOM) for the definition of the axial stress-strain law of axially loaded FRCM-confined columns made 

of concrete or masonry and having circular or square cross-section. The model is based on a step-by-step iterative 

procedure, which adopts the formulations commonly used for classical FRP modelling. More recently, Micelli et al. 

(2020) [36] proposed a new simplified AOM for the prediction of the stress-strain response of FRCM-confined 

members. Novel formulas for the computation of both the peak and ultimate axial strains were also proposed and their 

accuracy was demonstrated by considering an experimental versus theoretical comparison. 

Because of the novelty of the strengthening technique and the wide spectrum of FRCM materials (in terms of both 

grouts and grids) available on the market, as well as due to the variety of existing masonry kinds, further studies are 

needed to better understand the compressive behaviour of FRCM-confined masonry columns and to derive general 

design formulations. At the moment, the majority of available experimental works focuses on square/rectangular 

columns [14]-[25]. Although less common [12][26], the circular section of masonry specimens was chosen in the 

current investigation in order to study the effect of pure confinement. In fact, the absence of corners in the section 

allows avoiding stress concentration in the external wrap and, consequently, the strengthening system can reach 

theoretically its maximum stress in a uniform manner. However, it should be noted that the obtained strength increase 

can be considered as an upper bound of the confinement effect for real case studies. Moreover, most of experimental 

works considers specimens reinforced with one or two grid plies [14]-[18],[20]-[24], while the effect of the number of 

reinforcing layers on the stress-strain response of FRCM-confined columns is investigated only by few studies [25][26], 

sometimes considering a number of specimens not sufficient to draw general conclusions. Another aspect to be 

underlined is that the potential of innovative measuring techniques, such as DIC, which has shown to be particularly 

suitable for the mechanical characterization of FRCM, has been little investigated for the study of the compressive 

behaviour of FRCM-confined columns, and has been adopted with reference to only square/rectangular columns [21]. 

Finally, the literature review reveals that a direct and reasonable comparison between the performance of BFRCM and 

BFRP systems is still missing, which could allow evaluating the reliability of cement-based composites in enhancing 

the structural performance of masonry columns, in comparison to a more consolidated retrofitting technique, such as the 



use of FRP, which involves, however, shortcomings when used on masonry substrate. The effectiveness of BFRCM 

jacketing, as alternative to BFRP system, could allow several advantages, allowing the achievement of a sustainable and 

reversible intervention. 

The present work is part of a larger study [37] which aims at evaluating the effectiveness, in terms of strength and 

deformation capacity, of the confinement action provided by both BFRP [38][39] and BFRCM jackets [40], when 

applied on masonry members. This paper presents the results of a series of compressive tests carried out on small scale 

brick masonry cylinders strengthened by BFRCM wraps.  A preliminary investigation was carried out on the 

mechanical properties of constituent materials of the masonry and the jacket. Specimens were assembled using two 

different brick arrangements in order to investigate on the influence of the number of vertical mortar joints. The role of 

the reinforcing ratio was also studied preparing one and two-layer wrapped specimens. Strains obtained by traditional 

measuring instruments were compared with those obtained using the DIC technique. The experimental results, 

presented in terms of full stress-strain curves, compressive strength and strain increments, failure modes, are discussed 

and compared to the outcomes obtained from identical tests performed on BFRP-confined cylinders, by the authors 

[38][39], giving interesting information about the effectiveness of BFRCM jacketing as alternative to BFRP. 

2 Experimental program 

2.1 Specimen construction 

Eighteen small clay brick masonry cylinders were assembled and tested under uniaxial monotonic compression. All 

specimens had a diameter of 94 mm and height of 190 mm, and were produced by coring two different assembly 

schemes, Scheme I and Scheme II (see Fig. 1). Both schemes were made by three rows of pressed bricks and 8 mm 

thick mortar joints. Cylinders cored from Scheme I involved only one vertical joint in the middle third (Fig. 1a), while 

cylinders cored from Scheme II had three staggered vertical joints, one at each level (Fig. 1b). The samples were cored 

after a curing time of 30 days and then twelve of them were confined with one or two BFRCM layers, while the 

remaining cylinders were adopted as control samples. A list of all the specimens is presented in Table 1. It should be 

noted that the same number of specimens was planned to be tested for both schemes. However, the damage of some 

cylinders during the coring or the preparation operations entailed a different number of specimens for the two schemes. 

The cylinders were named as CnY_SXL: C means “cylinder”; n indicates the specimen number; Y refers to the matrix 

used to wrap the cylinders (M means mortar and is used for the cylinders discussed in this paper, R means resin and is 

used for the cylinders of the companion study [39], while the letter is omitted for unconfined specimens); S indicates 



the assembly scheme (W and C for Scheme I and Scheme II respectively); X refers to the number of confinement layers 

(1 or 2); L stands for “layer”. For unconfined samples, the last two letters were substituted by “Un”. 

Table 1: Specimen characteristics 

Specimen 

designation 

Brick layup 

scheme 

Number of vertical 

joints 

Number of BFRCM 

layers 

C1_WUn 

Scheme I 1 

0 
C2_WUn 

C3_WUn 

C4_WUn 

C1M_W1L 

1 
C2M_W1L 

C3M_W1L 

C4M_W1L 

C1M_W2L 

2 C2M_W2L 

C3M_W2L 

C1_CUn 

Scheme II 3 

0 
C2_CUn 

C1M_C1L 

1 C2M_C1L 

C3M_C1L 

C1M_C2L 
2 

C2M_C2L 

 

   

Fig. 1 Assembly schemes for preparing cylinders: a) Scheme I (wall); b) Scheme II (column) 



2.2 Materials 

2.2.1 Components of masonry 

Pressed bricks with nominal dimensions 50x100x210 mm were used for assembling walls and columns from which the 

cylinders were cored. In order to characterize the mechanical behaviour of the clay brick units, six 50 mm cubes were 

tested under uniaxial compression according to EN 772-1 [41]. The bricks had an average compressive strength equal to 

42.53 MPa (COV=8.75%). 

The mortar used for the masonry cylinders was composed of cement and sand, with a weight ratio of 1/5. Water was 

added in order to reach the minimum workability. Three-point bending tests were carried out on six standard 

40x40x160 mm mortar prisms and uniaxial compressive tests were performed on the obtained twelve halves, according 

to EN 1015-11 [42]. The mortar had an average compressive strength equal to 20.93 MPa (COV=5.52%) and an 

average tensile strength of 5.33 MPa (COV=5.13%). 

2.2.2 BFRCM system and components 

The textile used as internal reinforcement of the composite was a primed alkali-resistant basalt fibre bidirectional grid. 

According to the technical sheet, the grid had a nominal cell size of 6x6 mm, unit weight equal to 250 g/m2 and density 

equal to 2.75 g/cm3. The equivalent thickness was 0.039 mm and the nominal values of tensile strength, ultimate strain 

and Young’s modulus provided by the manufacturer were ffu = 60 kN/m, Ɛu = 1.8%, Ef = 89 GPa, respectively. To 

characterize the tensile behaviour of the basalt grid, a series of monotonic tensile tests was carried out on textile strips, 

according to ISO 13934-1 [43]. Twelve strips in the wrap and twelve in the weft direction were cut with dimension 

260x13.5 mm and equipped with 80 mm long aluminum tabs at the ends (Fig. 2a), in order to avoid slipping phenomena 

during testing and to guarantee a uniform load distribution of the applied load. Tensile tests were performed under 

displacement control by a 100 kN universal machine, using a rate of 2 mm/min. The samples were lighted up with a 

retrolight and displacements were recorded using the DIC technique, with the support of a videoextensometer able to 

track linear targets attached to the strips over a gauge length of 80 mm. The recorded average values of strength, strain 

and Young’s modulus are reported in  

Table 2, along with the coefficient of variation (COV).  For more details refer to [3][4][37]. 

A two-component premixed cement-based mortar, enriched with short glass fibres, was used as matrix of the BFRCM 

system.  According to the mechanical characteristics provided by the manufacturer, the mortar had flexural strength of 8 

MPa, compressive strength equal to 25 MPa and Young’s modulus of 10 GPa. Three-point bending tests were 



performed on six standard 40x40x160 mm prisms (Fig. 2b) according to EN 1015-11 [42]. The recorded average 

flexural strength and COV are reported on  

Table 2. 

Additionally, the mechanical behaviour of the composite was characterized under tension (Fig. 2c) [3][4][37]. Fourteen 

BFRCM coupons were manufactured according to available regulations [44], using different reinforcement ratios. In 

particular, one series involved eight specimens strengthened with one basalt textile layer, the second series of five 

specimens was reinforced by two layers and one more specimen was prepared by using three layers. BFRCM coupons 

were cut from 500x500 mm large slabs, with dimensions 400x40x8 mm, and provided by aluminum tabs on the edges 

to avoid local damage of the samples inside the clamping area during testing. The front and the thickness side of the 

strips were painted with a homogeneous layer of white paint and then coated with a random speckle pattern of black 

paint, defining a grey level distribution adequate for DIC measurements. Specimens were tested using a 100 kN 

universal testing machine, under displacement control with a speed rate of 0.2 mm/min, adopting the clevis-type grips 

method. The DIC technique was used to record the strain field. In particular, a high-resolution camera was used to 

acquire the displacements in the front side of each sample (Fig. 2c) and a videoextensometer was employed to monitor 

the thickness side in order to detect the possible presence of out-of-plane bending effects [3][4][37]. The specimens 

were lighted up by mean of artificial lighting to guarantee uniform light distribution. 

 

Table 2:  Mechanical characterization of basalt grid and mortar matrix 

BASALT GRID MORTAR 

 

Average Tensile strength 

[MPa] 

and COV 

Average Tensile strain 

[%] 

and COV 

Average Elastic modulus 

[GPa] 

and COV 

Average Flexural strength 

[MPa] 

and COV 

W
a

rp
 

2045 2.55 81.91  

(10.55%) (8.21%) (3.48%) 7.18 

W
ef

t 1983 2.40 81.88 (2.80%) 

(7.80%) (12.05%) (4.60%)  

 



 
 Fig. 2 BFRCM system and components: a) basalt samples; b) three-point bending test on mortar matrix; c) tensile tests 

on BFRCM composite coupons 

 

2.3 Application of BFRCM jacket 

The application of the FRCM jacket involved some sequential steps. In order to ensure good adhesion of the system 

particular care was taken in the preparation of the substrates, which needed to be perfectly clean and free of crumbling 

areas or dust. Before applying the products, the specimens were wet in order to have a saturated substrate with a dry 

surface. The bi-component mortar was prepared by mixing the two components until they were thoroughly blended. 

Then, an even layer of product of approximately 2 mm was applied on the surface of the specimens by using a flat metal 

smoothing trowel. While the mortar was still wet, the basalt mesh was placed on the surface and pressed down so that it 

adhered to the mortar. A second 2 mm thick layer of the same mortar was applied, so that the basalt grid was 

completely covered. The surface was then smoothed with a smoothing trowel. With the aim to ensure a sufficient bond, 

the basalt mesh was overlapped for a length equal to 1/3 of the circumference. The specimens were left to cure for more 



than one month. During this period, the cylinders were daily wet and covered using drenched gunny clothes covered by 

plastic sheet in order to ensure an adequate humidity level for the curing of the BFRCM jacket. 

2.4 Instrumentation and procedure 

A 600 kN electro-hydraulic loading frame was used to perform monotonic compressive tests on the cylinders (Fig. 3a). 

On each specimen, three loading/unloading cycles were carried out under load control up to 40-50 kN, followed by test 

to failure under displacement control at a loading rate of 0.002 mm/sec. The axial compression force on the cylinders 

was applied by a hydraulic jack connected to a manually controlled motor pump. The applied load was measured by a 

load cell attached to the loading cylinder and recorded by a data acquisition system. In order to guarantee a uniform 

distribution of axial stress and avoid any eccentricity, a steel spherical head was placed above the upper bearing plate 

and centered with the specimen. 

A total of six linear voltage differential transducers (LVDTs) were installed, four to monitor the displacement of the 

upper loading platen and two on the lower platen. In order to measure the local axial strain in the middle half of the 

specimens, three extensometers connected to two steel rings placed around the cylinders were also used (Fig. 3b).  

Furthermore, the DIC technique was used to analyze the strain field on the surface of the cylinders during compressive 

tests. For this purpose, cylinders were painted with a high-contrast texturing effect using white paint with black spackle 

pattern. A 22.3 Megapixel camera was used to record images of the specimens every four seconds using a remote 

trigger, with a resolution of 16 pixel/mm. The camera was positioned in front of the testing machine, perpendicular to 

the cylinder surface, with the lens directed towards the centre of the sample Fig. 3a. In the case of confined cylinders, it 

was ensured that the specimens were positioned in order to have the camera opposite to the FRCM overlap. The 

specimens were lighted up using two symmetrical white lights, able to provide a uniform light intensity on the front side 

of the samples (Fig. 3a). The software GOM Correlate [45] was used to process the images acquired during 

compression tests on the masonry cylinders. 

Strains were measured over a rectangular area of about 50x90 mm, as shown in Fig. 4, as in [46]. Axial strains were 

computed as the average of 20 virtual strain gauges with a gauge length of 90 mm. In the same way, hoop strains were 

measured as the average of 45 virtual strain gauges with a gauge length of 50 mm. 



Fig. 3 Compressive tests on masonry cylinders: a) overall setup; b) setup scheme 

 

 

Fig. 4 Strain rectangle used to measure hoop and axial strains (DIC) 

 

3 Experimental results and discussion 

3.1 BFRCM system 

The results of tensile tests on BFRCM coupons are reported in Fig. 5a in terms of load-strain curves. In general, for 

each curve it is simple to recognize the three stages typical of the tensile behaviour of FRCM composites. The first 

stage (Stage I) is characterized by a linear response up to the achievement of the tensile strength of the mortar, which 

determines the formation of the first crack. Stage II is characterized by consecutive load drops, due to the development 

of cracks in the matrix, and by a stiffness reduction. Once the crack pattern has fully developed, a regain in stiffness is 



observed and the growing applied displacement produces a nearly linear load increase (Stage III). This stage ends when 

the load bearing capacity of the composite material is reached. 

Table 3 reports the average experimental results in terms of peak load (FI, FII, FIII), peak stress (σI, σII, σIII) and 

corresponding strain (εI, εII, εIII) related to the three characteristic points at the end of each stage, for the three series of 

samples. The tangent moduli corresponding to the three stages are also listed. In terms of maximum load, it is evident 

that the specimens reinforced with two and three layers showed higher bearing capacity compared to one-layer coupons, 

with a progressive load increase from Stage I to Stage III. On the other hand, in terms of stress, results point out a 

progressive reduction of the values related to the characteristic points for over-reinforced specimens. Regarding the 

strain values, the average strains at the end of Stage I for the three series of specimens are quite similar. Conversely, 

with the increase of the reinforcing ratio, a progressive strain decrease was detected at the end of both Stage II and 

Stage III. 

Fig. 5b presents the crack pattern at failure for three specimens reinforced with one, two and three layers, respectively. 

The failure of BFRCM coupons was always characterized by the tensile rupture of the basalt grid, after a homogeneous 

cracking along the length of the specimens. The images show that the cracks are well widespread along the surface of 

the coupons, underlining the good ability of the basalt mesh to transfer load to the matrix. The increase of the number of 

reinforcing layers gave rise to a larger number of cracks, progressively closely spaced. DIC technique allowed a deep 

analysis of the full crack development over the surface of the strips and more details can be found in [3][4][37]. 

 

                   

Fig. 5 Tensile tests on BFRCM composite coupons: a) load-strain curves of the three series; b) one, two and three-layer 

reinforced specimens after testing 

 



Table 3:  Average results of tensile tests on BFRCM coupons 

Series Stage 

Peak load 

[kN] 

Peak stress 

[MPa] 

Strain  

[%] 

Tangent modulus 

[GPa] 

F σ ε E 

SP_1L 

I 1234.11 881.50 0.030 3309.50 

II 1398.03 998.60 1.019 17.01 

III 2054.93 1467.28 2.322 37.25 

SP_2L 

I 1448.22 517.22 0.035 1664.35 

II  1855.26 662.59 0.448 36.51 

III 3538.20 1263.64 1.912 40.90 

SP_3L 

I 1437.38 342.23 0.044 786.74 

II 1821.68 433.73 0.229 43.78 

III 4633.19 1103.14 1.466 54.13 

 

3.2 BFRCM-confined cylinders 

The axial stress-strain results of compressive tests on unconfined and BFRCM-confined cylinders are presented in Fig. 

6, for Scheme I and Scheme II respectively, using readings from external LVDTs and local transducers. The axial strain 

up to the peak was obtained considering the displacement recorded over the central half of the cylinders. The LVDTs 

placed at top and bottom plates were used instead to plot the post-peak branch, since the rings fixed on the cylinders had 

to be taken off during the last part of the tests. For unconfined cylinders C1_WUn, C2_WUn, and C3_WUn the 

readings in the central area of the specimens were lost during testing, thus the strain was fully evaluated using the 

external LVDTs on the top and bottom plates. It should be noted that the stiffness obtained in this way is likely lower 

than the actual stiffness of the specimen (see Fig. 6a and b), so it may be used as reference only. For this reason, the 

strains of these cylinders were excluded for the calculation of the average strain of unconfined specimens. 

The unconfined cylinders show a brittle behaviour, characterized by an almost linear ascending branch up to the peak 

and a steep load drop after the peak (Fig. 6). The stress-strain curves of BFRCM-confined cylinders present a linear 

behaviour up to the development of the first crack in the external jacket, which coincide with the failure of the inner 

masonry core. This is clearly detectable from the curves, which experience a limited stress drop. Afterwards, the curves 

show a new stress increase due to the activation of the jacket because of the lateral expansion of the crushed masonry 

core. This new stress increment develops up to the peak, with a less stiff trend than the initial one. After the maximum 

stress is reached, a quite steep descending branch can be detected, with a sudden drop in strength due to the basalt grid 

damage. Afterwards, the stress decrease starts to show a smoother trend: at this point the mesh was already broken in 

some parts, but the jacket could still guarantee a certain degree of ductility. The post-peak drop is quite pronounced for 

both Scheme I and Scheme II cylinders. All the specimens show an almost bilinear softening branch characterized by a 

steep strength decrease followed by a plateau region, with considerable values of residual strength, particularly in the 

case of two-layer wrapped specimens from Scheme I. On the other hand, there are not considerable differences in the 



softening behaviour of Scheme II cylinders wrapped with one or two basalt grid layers. Note that the full stress-strain 

curve of the cylinder C3M_W2L is not available because of a technical issue during testing. In particular, in Table 4 the 

compressive strength value is reported, but the corresponding strain is missing.  

In Table 4 the individual experimental results of unconfined and confined cylinders are reported in terms of peak stress 

(fm0 - fmc), axial strain at peak stress (εm0 - εmc) and ultimate axial strain corresponding to a 15% stress reduction with 

respect to the peak value (εmu - εmcu), along with the average values and the COVs. For unconfined cylinders from 

Scheme I, the ultimate axial strain is the last detected value.  

 

 

Table 5 provides the strength and strain increments of confined cylinders compared to unconfined cylinders. 

In the case of unconfined cylinders, the average peak stress values were 25.19 MPa and 19.85 MPa for Scheme I and 

Scheme II respectively, pointing out a considerable detrimental effect of the vertical mortar joints. For one-layer 

confined cylinders, the average strength increases were equal to 27% and 66% for Scheme I and Scheme II specimens 

respectively, compared to unconfined cylinders. Two layers of BFRCM produced an average strength enhancement of 

38% for Scheme I and 85% for Scheme II cylinders. Comparing specimens reinforced with one and two layers, the 

strength gain was of 9% and 11% for Scheme I and Scheme II respectively.  As expected, the effectiveness of BFRCM 

confinement was higher for the weakest masonry, namely in the case of Scheme II cylinders having three vertical joints. 

Results showed an increase of the strain at peak stress of BFRCM-confined specimens. One-layer reinforced cylinders 

from Scheme I and Scheme II exhibited an average increase equal to 59% and 45 % respectively, respect to unconfined 

cylinders. Regarding two-layer confined specimens, Scheme I showed an average increase of 72%, while specimens 

from Scheme II presented an average strain gain of 75%. 

Regarding the ultimate strain, Scheme I cylinders showed an average ultimate strain gain of 94% and 122% for one and 

two layers respectively, in comparison to unconfined samples. For cylinders from Scheme II, the increments were 96% 

and 121% for specimens wrapped with one and two layers respectively. 

Moreover, Scheme I cylinders exhibited an average ultimate axial strain increase of 29% and 37% than the peak strain 

for one and two layers respectively. The same increments for Scheme II cylinders were equal to 52% and 41%. 

 

 



Table 4:  Test results of BFRCM-confined masonry cylinders by using LVDTs/Transducers 

 

Specimen 

designation 

BFRCM 

layers 

Peak axial 

stress 

(MPa) 

Average and 

COV 

Peak axial 

strain 

[mm/mm] 

Average and 

COV 

Ultimate axial 

strain 

[mm/mm] 

Average and 

COV 

fm0  εm0  εmu  

U
N

C
O

N
F

IN
E

D
 

C1_WUn - 25.24 

25.19 

17.60% 

0.0043* 

0.0036 

12.41% 

0.0048* 

0.0038 

15.91% 

C2_WUn - 24.78 0.0052* 0.0054* 

C3_WUn - 19.95 0.0049* 0.0049* 

C4_WUn - 30.79 0.0036 0.0038 

C1_CUn - 22.25 19.85 

17.14% 

0.0036 0.0034 

8.88% 

0.0042 0.0038 

13.56% C2_CUn - 17.44 0.0032 0.0035 

   fmc  εmc  εmcu  

B
F

R
C

M
 C

O
N

F
IN

E
D

 

C1M_W1L 1 25.25 

32.04 

(17.40 %) 

0.0045 

0.0058 

(21.27 %) 

0.0072 

0.0074 

(13.37 %) 

C2M_W1L 1 35.73 0.0068 0.0083 

C3M_W1L 1 37.38 0.0068 0.0081 

C4M_W1L 1 29.80 0.0050 0.0061 

C1M_W2L 2 33.84 

34.78 

(10.35 %) 

0.0061 

0.0062 

(2.75 %) 

0.0081 

0.0085 

(6.76 %) 
C2M_W2L 2 31.75 0.0064 0.0089 

C3M_W2L 2 38.76 / / 

C1M_C1L 1 30.81 

32.98 

(9.60 %) 

0.0058 

0.0050 

(18.78 %) 

0.0078 

0.0075 

(7.07 %) 
C2M_C1L 1 36.61 0.0051 0.0069 

C3M_C1L 1 31.52 0.0040 0.0079 

C1M_C2L 2 39.22 36.73 

(9.58 %) 

0.0065 0.0060 

(12.16 %) 

0.0079 0.0085 

(8.90 %) C2M_C2L 2 34.24 0.0055 0.0090 

*Results not used for the calculation of the average peak and ultimate strain. 

 

 

 

Table 5:  Strength and strain increments for BFRCM-confined cylinders 

Assembly Confinement fmc/fm0 εmc/εm0 εmcu/εmu εmcu/εmc 

Scheme I 
1 layer 1.27 1.59 1.94 1.29 

2 layers 1.38 1.72 2.22 1.37 

Scheme II 
1 layer 1.66 1.45 1.96 1.52 

2 layers 1.85 1.75 2.21 1.41 

 



 

Fig. 6 Axial stress-strain curves of BFRCM-confined cylinders plotted by using readings of LVDTs: a) Scheme I – one 

layer; b) Scheme I – two layers; c) Scheme II – one layer; d) Scheme II – two layers 

The axial and hoop stress-strain curves obtained by DIC measurements are plotted in Fig. 7 and Fig. 8 for Scheme I and 

Scheme II cylinders respectively, along with results from LVDTs. DIC was not used for four unconfined cylinders 

(C1_WUn, C4_WUn, C1_CUn and C2_CUn) and for one-layer reinforced specimens from Scheme I.  

The comparison points out that along the ascending branch, readings of DIC are close to those of LVDTs and in general 

stiffer. In the case of confined cylinders, the axial stress-strain curves (LVDTs and DIC) of each specimen match each 

other pretty well up to the first load drop, which coincides with the start of crack development over the FRCM jacket. 

After this point, for some specimens (C3M_C1L, C1M_C2L) there are inconsistencies in the strain readings of the two 

acquisition systems. This can be explained considering that the digital system measured over a limited zone of the 

cylinder surface (90x50 mm) and the vertical deformations occurred on the wrapped surface (i.e. on the confinement 

layer) were gauged directly. On the other hand, the local transducers connected to the steel rings and the external 

LVDTs placed at top and bottom of the cylinders measured vertical displacements without contact with the jacket; 

moreover, external LVDTs, used to plot strains after the peak, measured global displacements with a gauge length equal 



to the cylinder length. Furthermore, during the development of the test, the jacket started to crack and the external layer 

of mortar started to separate from the masonry core in certain areas. Thus, it is possible to conclude that whereas DIC 

results describe the behaviour of the external wrap, measurements of LVDTs represent the overall behaviour of the 

specimen. As a result, because of the differences in gauge length, the measuring location (on the jacket for DIC and 

between rings/plates for the transducers) and the detachment of the jacket from the core, some differences between the 

two measurements could not be avoided. 

  

Fig. 7 Stress-strain curves in the axial and hoop direction for Scheme I cylinders, plotted by using DIC and LVDTs: a) 

b) unconfined; c) d) confined with two layers 

 



    

Fig. 8 Stress-strain curves in the axial and hoop direction for Scheme II cylinders, plotted by using DIC and LVDTs: a) 

b) c) confined with one layer; d) e) confined with two layers 

 



3.3 Failure modes of masonry cylinders 

Fig. 9 shows unconfined and BFRCM-confined cylinders at the end of the compression tests. As expected, the 

unconfined specimens showed a brittle behaviour and the failure was characterized by the formation of large and almost 

vertical cracks along the height. Not substantial differences were observed in the failure mode of Scheme I and Scheme 

II cylinders. Vertical joints created preferential routes for the development of cracks, which propagated at brick-mortar 

interface. This behaviour was more evident for Scheme II specimens having three vertical joints and less for Scheme I, 

which involved also cracks in bricks. The failure involved crushing of masonry with spalling of material for whole the 

height of the cylinders. In particular, large portions of bricks between mortar joints were detached from the cylinders 

(see Fig. 9a and b). 

Regarding confined cylinders, there were not marked differences in the failure mode of different schemes (Fig. 9c-e) 

and the ultimate condition was reached by failure of the basalt mesh at cracks developed in the mortar of the jacket (Fig. 

9g). The crack pattern was characterized by vertical cracks that developed for the entire length of the samples, 

producing the detachment of the external mortar layer of the jacket in those parts and the loss of material in some areas. 

Apart of these zones, the jacket was solid, with the grid and the two mortar layers very tight, and it was well linked to 

the inner masonry core. At failure, the masonry core was severely crushed (see Fig. 9f). 

Fig. 9h shows the failure mode of a representative BFRP-confined cylinder (C2R_C1L), tested by the authors in a 

previous companion study [39]. In the case of BFRP wrapping, the cylinders were characterized by two or more almost 

vertical cracks and the specimens failed for the tensile rupture of the BFRP jacket, as happened for BFRCM 

confinement. Crushed masonry could be observed at the end of the test inside the jacket. However, BFRP-confined 

cylinders showed a brittle failure, due to the brittle behaviour of FRP, and the jacket broke in defined zones of the 

specimens. On the contrary, there was not neither a brittle failure nor a clear failure point for BFRCM-confined 

specimens.  



    
Fig. 9 Failure mode of cylinders: a) Scheme I, unconfined; b) Scheme II, unconfined; c) Scheme I, 1 layer of BFRCM; 

d) Scheme II, 1 layer of BFRCM; e) Scheme II, 2 layers of BFRCM; f) severely crushed masonry core; g) failure of 

BFRCM jacket; h) Scheme II, 1 layer of BFRP  

 

 



3.4 Comparison between the performance of BFRCM and BFRP confinement 

Aiming at comparing the strengthened system studied in this work with a more consolidated retrofitting technique, 

reference is made to an experimental work carried out by the authors on BFRP-confined masonry. In a previous 

companion study [39], the authors tested the same clay brick masonry cylinders confined by BFRP wraps, using the 

same basalt grid used in this work. In this section, results from compressive tests on BFRCM and BFRP-confined 

cylinders are compared in terms of stress-strain curves, and strength and strain increments.  

In Fig. 10 the axial stress-strain curves of BFRCM and BFRP-confined cylinders belonging to the same scheme and 

strengthened with the same number of layers are depicted. The strength and strain increments of confined cylinders 

compared to unconfined cylinders, for both BFRCM and BFRP-confined specimens, are reported in Fig. 11, which 

includes also the ratio between ultimate and peak axial strain of confined cylinders. 

In general, it is clear that both the strengthening systems are able to improve the bearing capacity of the masonry, with 

the peak stress increasing with the increase of the reinforcing layers. Considering Scheme I cylinders confined with one 

layer, the strength increase with respect to unconfined specimens was comparable for BFRCM and BFRP-confined 

cylinders (27% and 29%, respectively), while two layers of BFRP (68% increase) were more effective than two layers 

of BFRCM (38% increase), see Fig. 11a. However, it should be noted that three specimens were tested by using two 

BFRCM plies and only two samples by using BFRP. Thus, differences observed in the strength increases should be 

revised by testing the same number of specimens. Despite the different strength gain, it is evident that BFRP 

confinement induced a more brittle behaviour with respect to BFRCM (Fig. 10a and b). In fact, the stress-strain curves 

of BFRP-confined specimens of Scheme I show a steep post-peak branch, which reflects the failure mode of the 

cylinders. On the contrary, BFRCM-wrapped specimens exhibit a more ductile softening, with greater values of residual 

strain.  

Analogously, BFRCM and BFRP-confined cylinders of Scheme II showed a different behaviour in terms of strength 

increase, with higher increments yielded by BFRCM respect to BFRP, for both one (66% vs 38%) and two layers (85% 

vs 71%) of reinforcement (Fig. 11a). 

It should be noted that the effectiveness of the confinement was higher for Scheme II (weaker masonry involving three 

vertical mortar joints), for both BFRP and BFRCM-confined specimens. The number of the joints, however, had a 

stronger effect in the case of BFRCM-confined cylinders (Fig. 11a). Indeed, considering BFRP-confined cylinders from 

Scheme II, the strength gains of one and two-layer reinforced samples were greater of 31% and 4% respectively, 

compared to the strength gains of Scheme I cylinders. On the other hand, for BFRCM-confined cylinders from Scheme 

II, the strength increases of one and two-layer strengthened samples were greater of 144% and 124% respectively, 



compared to the strength gains of Scheme I samples. The strength increases due to the addition of a second layer were 

more pronounced for BFRP-confined cylinders (Fig. 11a), with increments of 134% and 87% for Scheme I and Scheme 

II respectively, while the same increments for BFRCM-wrapped cylinders were equal to 41% and 29%. 

Other experimental studies pointed out that FRCM jacketing is able to guarantee compressive strength increases 

comparable to those achieved by using FRP, when employing glass or carbon fibres [47][48]. On the other hand, 

available outcomes on the confinement of masonry by BFRCM [26] evidenced limited strength gains (up to 26%), 

while considerable improvements of ductility were registered for the strengthened samples. It is worth to note that, in 

the literature, a direct comparison between the performance of BFRP and BFRCM is still missing. Thus, the results 

obtained in the present work are of paramount importance, but need to be integrated with additional experimental 

investigations. 

Regarding the average peak strain increments (Fig. 11b), for Scheme II the two strengthened systems produce 

comparable gains with respect to unconfined specimens, with slightly better results for the BFRP system when using 

one layer (45% vs 49%) and slightly better results for the BFRCM system with two layers (75% vs 69%). For Scheme I, 

BFRCM wrapping is more effective than BFRP wrapping for one layer, with strain increments of 59% and 17%, 

respectively, while for two layers the strain gains are comparable (72% vs 82%). 

Considering the average ultimate strain gains, BFRCM system is more effective than BFRP for Scheme I cylinders 

wrapped with one (94% vs 46% of increase) and two layers (122% vs 104% of increase). For Scheme II, one layer of 

BFRCM or BFRP produces comparable results, with strain gains of 96% and 93% respectively, while the BFRP system 

is more effective for two-layer wrapped samples (121% vs 146% of increase). 

In Fig. 11d to the average ratio between ultimate and peak strains of confined cylinders is reported in order to measure 

the ductility gains. The best results are achieved in the weaker masonry (Scheme II), for both BFRCM and BFRP 

system, with gains of 52% and 45% respectively for one-layer reinforced cylinders, and gains of 41% and 62% for two-

layer confined cylinders. For Scheme I, similar increments are achieved with one layer of BFRCM (29%) and BFRP 

(33%), while two layers are more effective using BFRCM than BFRP (37% vs 20%). 

 

 

 



 

Fig. 10 Axial stress-strain curves of confined cylinders: a) one-layer reinforced specimens of Scheme I; b) two-layer 

reinforced specimens of Scheme I; c) one-layer reinforced specimens of Scheme II; d) two-layer reinforced specimens 

of Scheme II 

 

 



 

Fig. 11 Comparison of average increments for BFRCM and BFRP-confined cylinders: a) strength increments; b) peak 

strain increment; c) ultimate strain increment; d) increment of ultimate strain respect to peak strain 

 

Conclusions 

This paper presented the results of an experimental study on small scale clay brick masonry cylinders confined by 

BFRCM wraps. The outcomes were compared with the experimental results of analogous tests performed by the authors 

on BFRP-confined cylinders. Based on the experimental analyses in the previous sections, the following conclusions 

can be drawn:  

• Unconfined cylinders with three vertical mortar joints (Scheme II) presented an average strength about 20% lower 

compared to cylinders with one vertical joint (Scheme I); 

• The ultimate condition of BFRCM-confined specimens was reached by tensile failure of the basalt textile, 

highlighting that the full capacity of the fabric was exploited. At failure, the inner masonry core of wrapped 

cylinders was crushed; 

• The BFRCM composite considerably increased the strength of the confined cylinders, with gains of 27% and 66% 



for one-layer reinforced specimens from Scheme I and II respectively, compared to control samples; strength 

gains of two-layer confined specimens were 38% and 85% for Scheme I and II respectively; 

• Regarding the strain at peak stress, one-layer reinforced cylinders from Scheme I and Scheme II exhibited an 

average increase of 59% and 45% respectively, compared to control specimens. Two-layer confined cylinders 

showed gains of 72% and 75% for Scheme I and Scheme II, respectively; 

• Masonry cylinders confined by BFRCM exhibited a ductile behaviour, with a softening post-peak branch and 

considerable values of residual strength, particularly for two-layer wrapped cylinders from Scheme I; 

• Results from transducers and DIC match each other quite well up to the crack development over the FRCM 

jacket. Because of the different measuring location, differences in gauge length, cracking and detachment of the 

jacket from the masonry core, some differences between the two measurements could not be avoided. DIC 

describes the behaviour of the external jacket, while measurements of LVDTs represent the overall response of 

the specimens; 

• The comparison between BFRCM and BFRP systems showed that the BFRCM can guarantee strength and 

ductility gains comparable to those obtained by using BFRP. The strength gains were higher for BFRCM system 

than BFRP, in the case of Scheme II, for both one- and two-layer confined cylinders. In general, results in terms 

of strain gain are comparable for the two strengthening systems and, in the case of considerable difference, the 

BFRCM gives better results; 

• Overall findings and the comparison with results obtained from compressive tests on BFRP-wrapped masonry 

underline that the BFRCM confinement can be considered an effective solution to improve the mechanical 

features of brick masonry cylinders, coupling the advantages of basalt fibres (reduced costs and low 

environmental impact) with those of the cementitious matrix (higher compatibility with masonry substrate). This 

is of paramount importance for future retrofit interventions. 

• The influence of other parameters, such as kind of masonry, shape of cross-section, type of cementitious matrix, 

on the effectiveness of the studied strengthening system needs to be investigated. Moreover, the study should be 

extended to the case of large-scale columns to understand the possible occurrence of scale effects. 
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