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Abstract

A grain scale framework for thermo-elastic analysis and computational homogenization of poly-

crystalline materials is proposed. The morphology of crystal aggregates is represented employing

Voronoi tessellations, which retain the main statistical features of polycrystalline materials. The be-

haviour of the individual grains is modelled starting from an integral representation for anisotropic

thermo-elasticity, which is numerically addressed through a dual reciprocity boundary element

method. The integrity of the aggregate is enforced through suitable intergranular thermo-elastic

continuity conditions. By virtue of the features of the underlying formulation, the polycrystalline

thermo-elastic problem is expressed in terms of grain boundary variables only, thus simplifying the

subsequent task of meshing and reducing the overall computational cost of the analysis, ultimately

providing an appealing tool for multiscale applications. The framework has been tailored for com-

putational thermo-elastic homogenization of polycrystalline materials and it has been applied to

the statistical computational homogenization of SiC and Al2O3 polycrystals, with accurate results

confirming its robustness and effectiveness. The extension of the proposed framework to multiscale

modelling of materials failure in thermally active environments is eventually discussed.

Keywords: Thermo-elasticity, Polycrystalline materials, Computational homogenization,

Computational micro-mechanics, Multiscale materials modelling, Boundary element method

1. Introduction

Materials computational modelling has become an established practice in engineering and sci-

ence, for both analysis and design purposes [1]. The capability to understand, model, interpret and
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explain materials behaviours has been gradually extended, evolving from simple phenomenological

modelling at a selected application scale to physically based modelling spanning several scales, and5

even including ab initio, or first principles, tools in the most inclusive applications [2].

Such evolution has been underpinned both by remarkable developments in experimental mul-

tiscale characterization of materials [3, 4, 5, 6], which make now experimentally accessible even

complex phenomena at the smallest scales, and by the rapid technological progress and consequent

increased affordability and availability of high performance computing [7], which has allowed the10

inclusion of a broader range of morphological and constitutive features in the materials model rep-

resentation, making it possible to simulate complex, interacting nonlinear phenomena, e.g. damage

and cracking [8, 9]. Nowadays, the convergence of multiscale experimental materials characteriza-

tion, computational multiscale materials modelling and advanced manufacturing technologies, e.g.

additive manufacturing or continuous tow shearing [10], is unfolding the potential of the materials15

by design paradigm [11].

This work proposes an original computational framework for thermo-elastic homogenization of

polycrystalline materials, built on an explicit Voronoi representation of three-dimensional crystal

aggregates and on a boundary elements model of the coupled thermo-elastic behaviour at the

crystal scale. Polycrystalline materials, which include metals, ceramics and alloys, are an important20

class of materials with countless applications in many technological sectors, from civil to industrial

engineering. Their physical properties at the component level, whose size may span the range

10−3−101 m, depend on the features of and mutual interactions among the aggregate grains, whose

individual size may range from nm (10−9 m) to µm (10−6 m).

Computational homogenization allows estimating the properties of the material at the compo-25

nent macro-level, where it is represented as a continuum medium, from the knowledge of the mor-

phological and constitutive features of the material micro-constituents or phases. Such estimation is

made through suitable volume averages of the strain and/or stress micro-fields, as reconstructed by

solving a well-posed boundary value problem (BVP) with a certain computational method [12, 13].

While the finite element method (FEM) has often been employed as a popular computational choice30

in this context [14], this work proposes a different framework, based on the employment of integral

equations as a starting point for the solution of the thermo-elastic polycrystalline BVP.

Computational tools based on integral equations and on the employment of the boundary el-

ement method (BEM) [15, 16] for their solution have been already successfully developed for the
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analysis of polycrystalline materials, both in 2D [17] and 3D [18, 19], and have been applied to either35

computational homogenization [20], multiscale materials modelling [21, 22, 23] or micro-cracking

analysis [24, 25, 26], also considering piezo-electric polycrystals [27], high-cycle and low-cycle fatigue

[28, 29] and hydrogen assisted cracking [30]. Such formulations, often built on Voronoi tessellations

[31], which provide a reasonable approximation of the microstructural morphology [32, 33], are ex-

pressed uniquely in terms of displacements and tractions of points belonging to the boundary of the40

crystals in the aggregate, thus providing a reduction in the number of degrees of freedom needed for

analysing a give microstructure. Moreover, such boundary-only nature of formulation is particularly

convenient, as it allows its natural coupling with cohesive zone modelling, thus providing a powerful

reduced order tool for polycrystalline micro-cracking.

However, the pure boundary nature of the formulation is generally lost when volume body forces,45

inertial forces or more complex constitutive behaviours are considered [16]. For polycrystalline

materials, this is the case when crystal plasticity [34, 35] or dynamic loading [36] are considered; it is

also the case of thermo-elastic analysis, in which the constitutive thermo-elastic coupling introduces

volume integrals in the boundary integral equations [37]. In some cases, such volume integrals may

be re-transformed into boundary integrals, either using an exact transformation method, as done50

for example by Geraci & Aliabadi in Ref.[38], who addressed steady-state and transient thermo-

elasticity in two-dimensional polycrystals, or by introducing an auxiliary approximation of the

volume terms and re-applying the reciprocity theorem to such approximating terms, so as to obtain

an approximated boundary representation of the volume integrals, as done by Galvis and co-workers,

who applied the so-called dual reciprocity method (DRM) [39, 40, 41] to the analysis of dynamic55

cracks propagation in 2D polycrystals [36] and to the dynamic analysis of 3D polycrystals [42].

In this study, for the first time, a three-dimensional multi-region dual reciprocity boundary

element formulation is developed for the thermo-elastic homogenization of three-dimensional poly-

crystalline materials. The formulation is based of the work by Kögl and Gaul [43], who developed a

boundary element method for anisotropic coupled thermo-elasticity. The fundamental solutions of60

the uncoupled elasto-static and thermal steady-state operators are employed to build a dual reci-

procity method for coupled anisotropic thermo-elasticity, which provides the key building block of

the Voronoi-DRM polycrystalline formulation. The formulation is then applied to the direct thermo-

elastic homogenization of two example polycrystalline materials, employing an original method for

enforcing periodic boundary conditions on periodic non-prismatic unit cells, while removing prob-65

3



lematic rigid body motions.

The paper is organized as follows. Section 2 introduces the digital representation of poly-

crystalline aggregates based on three-dimensional tessellation algorithms, an essential item for the

correct morphological representation of the material microstructure. Section 3 briefly recalls the

governing equations of thermo-elasticity and restricts the focus on steady-state thermo-elasticity;70

Section 3.1, in particular, introduces a generalized thermo-elastic notation that allow writing the

thermo-elastic integral representation introduced in Section 4 in a compact format, particularly

suited for computer implementation; Section 4.2 discusses the treatment of the volume integral

terms originating from the thermo-elastic coupling and their transformation to boundary integrals

by the DRM. Section 5 describes the boundary element discretization technique and the compu-75

tational solution of the obtained discrete system of equations. The tailoring of the method to the

computational thermo-elastic homogenization of polycrystals is thoroughly discussed in Section 6,

while Section 7 is devoted to the statistical computational homogenization of two polycrystalline

materials. Section 8 eventually discusses some limitations and subsequent possible directions for

further research, before Conclusions are drawn.80

2. Artificial morphology representation of polycrystalline specimens

The first essential step towards modelling polycrystalline specimens is the provision of a suit-

able morphological representation of the considered aggregates. In the literature, several different

strategies have been adopted, from highly idealized, rough, morphologies to highly accurate mi-

crostructural reconstructions based on the use of sophisticated experimental techniques [44, 14].85

A good compromise between mathematical and computational simplicity and morphological

fidelity is provided by some well defined mathematical algorithms able to provide artificial space

tessellations constituting a reasonable approximations of real polycrystalline microstructures: in

this study, three-dimensional Voronoi-Laguerre tessellations are employed to build the artificial

representations of crystal aggregates, as they have been proved able to retain the main statisti-90

cal morphological features of polycrystals [45, 46, 33]. The morphological representation is then

supplemented with a suitable crystallographic characterization, in which each grain is assigned a

specific crystallographic orientation in the three-dimensional space.

In the developed model, a particularly convenient property of Laguerre-Voronoi tessellations is

the fact that each cell/grain/crystal g, occupying the region Ωg, is geometrically represented by a95
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convex polyhedron enclosed by the union of flat convex polygonal faces Γgf , so that

Γg = ∂Ωg =

Ng
f⋃

f=1

Γgf , (1)

where Γgf is the generic f -th face of the g-th grain, with f = 1, . . . , Ng
f . As it will be discussed

in Section 5, this aspect provides a remarkable simplification in the discretisation and numerical

treatment of the proposed boundary integral formulation.

From the operational point of view, an aggregate occupying the volume V bounded by S = ∂V ,100

can be effectively generated using open source software packages such as 1Voro++ [47], Neper2 [45] or

OptiMic3 [48] or other proprietary software suites such as VoroCrust4 [49], developed by the Sandia

National Laboratories. Such packages can be either directly or indirectly employed to tessellate

either convex or non-convex volumes V , which is particularly convenient, as non-convex domains

might be useful to effectively represent the geometry of polycrystalline micro-devices (micro-beams,105

brackets, gears, etc.) [50, 28]. Additionally, they can be employed to generate periodic non-prismatic

tessellations, useful to remove possible boundary layer effects originating from the presence of small

fractions of grains resulting from their cutting in correspondence of the domain boundary walls

and thus to improve the convergence of homogenization procedures employing periodic boundary

conditions, as discussed in e.g. in Ref.[20], to which the interested readers are referred for further110

details. Fig.(1) shows examples of a generic, non-periodic, prismatic tessellation and of a periodic

non-prismatic tessellation.

3. Thermo-elasticity governing equations

The equations of elasticity, in presence of thermal loadings, may be written in tensorial notation

as115

εkl =
1

2
(uk,l + ul,k) , σij = Cijklεkl − γijθ, σij,j + fi = ρüi, (2)

where i, j = 1, 2, 3, the Einstein summation convention is assumed, a comma in a subscript denotes

differentiation with respect to the spatial coordinate identified by the letters following the comma

1http://math.lbl.gov/voro++/
2https://neper.info/#
3https://github.com/ElsevierSoftwareX/SOFTX-D-21-00006
4https://vorocrust.sandia.gov
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a b

Figure 1: Example of: a) a 300-grain non-periodic tessellation of a prismatic domain (cube); b) a 300-grain periodic

non-prismatic tessellation.

itself and the overdots denote time differentiation. In Eqs.(2): ui, εkl, σij express, respectively, the

components of the displacement field, small strains tensor and Cauchy stress tensor; θ = ∆T =

T − T0 is the difference with respect to a reference temperature T0; Cijkl are the components of120

the fourth-order elasticity tensor, measured at constant temperature; γij are the components of

the thermo-elasticity tensor; ρ is the material mass density; fi are components of the body force

density. It is straightforward to recognise that Eqs.(2) collect the strains-displacements relations,

the constitutive equations in presence of thermal loads and the momentum balance equations.

On the other hand, the equations governing the thermal evolution may be collected as125

qi = −kijT,j = −kijθ,j , s = γijεij +
c

T0
θ, T ṡ = ω − qi,i (3)

where qi are the components of the heat flux vector, s is the entropy density, kij are the components

of the thermal conductivity tensor, c is the volumetric heat capacity and ω is the heat source density.

Eqs.(3) represent respectively a) the Fourier’s law of heat conduction, linking the heat flux vector

to the temperature field, b) the thermal constitutive equations, linking the entropy density to the

strains and temperature difference with respect to a reference thermal status, and c) the local130

entropy balance.

Combining and suitably manipulating Eqs.(2) and Eqs.(3), the following equations of linear
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anisotropic thermo-elasticity are obtainedCijkluk,lj + fi = ρüi + γijθ,j

kijθ,ij + ω = cθ̇ + T0γij u̇i,j

(4)

that, for the solution of specific thermo-elastic problems, must be complemented with suitable sets

of mechanical boundary and initial conditions135

MBCs

ui(τ) = ūi(τ) on Γu

ti(τ) = t̄i(τ) on Γt

MICs

ui(τ = 0) = u0
i

u̇i(τ = 0) = u̇0
i

in Ω (5)

and thermal boundary and initial conditions

TBCs

 θ(τ) = θ̄(τ) on Γθ

q(τ) = q̄(τ) on Γq

TICs θ(τ = 0) = θ0 in Ω (6)

where the elastic and thermal fluxes are defined by

ti(τ) = σijnj = Cijkluk,lnj − γijnjθ

q(τ) = qini = −kijθ,jni
(7)

and τ represents time.

Eqs.(4-7) model three-dimensional anisotropic fully coupled transient thermo-elastic problems,

where volume body forces and heat sources are present, both inertial and transient thermal terms

play a role, and the thermo-elastic coupling is bidirectional, with mechanical dissipation affecting140

the thermal field, through the dissipation terms T0γij u̇i,j , and temperature affecting the mechanical

fields through the terms γijθ,j . However, as discussed e.g. in Ref.[43], different simplified thermo-

elastic formulations may be obtained by selectively neglecting some terms in Eqs.(4): the theory

of thermal stresses is obtained by neglecting the dissipation terms T0γij u̇i,j ; coupled quasi-static

thermo-elasticity is obtained by neglecting the inertial terms ρüi; by neglecting both inertial and145

dissipation terms, uncoupled, or weakly-coupled, thermo-elasticity studied; eventually, by neglecting,

besides the above terms, also the time derivative of the thermal field, weakly coupled steady-state

thermo-elasticity is represented.

In this work, a multi-region boundary element formulation for steady-state thermo-elastic anal-

ysis of polycrystalline aggregates is developed and implemented. The equations governing the150
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behaviour of a generic anisotropic domain, representing a crystal in the polycrystalline aggregate,

can thus be obtained by suitably simplifying Eqs.(4) asL el
ik (uk) = γijθ,j

L th (θ) = 0

(8)

where

L el
ik (·) = Cijkl (·),lj = Cijkl

∂2 (·)
∂yl∂yj

L th (·) = kij (·),ij = kij
∂2 (·)
∂yi∂yj

(9)

represent the elasto-static and steady thermal conductivity second-order linear differential operators

respectively. The accompanying boundary conditions are given in Eqs.(5-6), where τ now represents155

an ordering parameter used to express a quasi-static evolution of the boundary loading terms, while

initial conditions are no relevant for stationary problems. No external force or heat volume sources

are considered, although they could be numerically treated as in Ref.[43].

3.1. Generalized thermo-elasticity notation

In the proposed integral formulation for thermo-elastic problems, it may be convenient to resort160

to the definition of generalized thermo-elastic displacements UI and tractions TI , with I = 1, . . . , 4,

defined as

UI =

 {ui}
θ

 =

 ui I = i ≤ 3

θ I = 4
, TI =

 {ti}
q

 =

 ti I = i ≤ 3

q I = 4
, (10)

which allow a compact expression of the integral equations for thermo-elastic analysis.

An essential item in such integral equations are the fundamental solutions, which appear as

kernels in the integrand expressions. The proposed formulation employs the fundamental solutions165

of three-dimensional fully anisotropic and uncoupled elasto-static and steady-state thermal conduc-

tivity operators, i.e. the solutions u∗ij (x,y) and θ∗ (x,y) of the following uncoupled differential

systems
L el
jr (u∗ir) + δji δ (x,y) = 0

L th (θ∗) + δ (x,y) = 0
(11)

and the associated fundamental tractions t∗ij (x,y) and thermal flux q∗ (x,y) defined by

t∗ij = Cjkrsu
∗
ir,snk = L̄ el

jr (u∗ir)

q∗ = −kijθ∗,jni = L̄ th (θ∗)
(12)
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where i, j, k, r, s = 1, 2, 3, the differentiations in the operators L el
jr (u∗ir) = Cjkrsu

∗
ir,sk, L th (θ∗) =170

kijθ,ij and in the flux operators = L̄ el
jr (·) = Cjkrsnk∂ (·) /∂ys and L̄ th (·) = −kijni∂ (·) /∂yj are

taken with respect to the variables yk, δ (x,y) is the Dirac’s delta function collocated at the source

point x and δij is the Kronecker delta. In the vectorial case, the generic fundamental solution

component f∗ij (x,y) is the j-th component of the considered field at the point y when the source

point is loaded along the i-th direction at the point x; in the scalar case, the subscripts are not175

needed, and the fundamental solutions express values at y when the source is at x. Further details

about the computation of the fundamental solutions are given in Appendix A.

If the generalized notation is adopted, the components of the above elastic and thermal funda-

mental solutions may be collected as

U ∗IJ =

 {u∗ij} {0}

{0} −θ∗

 , T ∗IJ =

 {t∗ij} {0}

{0} −q∗

 , (13)

which would be the solution of the following generalized thermo-elastic differential system180

L te
JR (U∗IR) + δJI δ (x,y) = 0 (14)

where

L te
IJ (·) =

 {L el
ij (·)

}
{0}

{0} −L th (·)

 , (15)

with I, J = 1, . . . , 4 and i, j = 1, 2, 3 and L te
IJ (·) identifying a generalized thermo-elastic differential

operator.

It is worthing underlying again that, in the present approach, u∗ij and t∗ij , on one side, and θ∗ and

q∗, on the other side, are respectively associated with a static elastic and a steady thermal problem185

uncoupled from each other. Thus, in the above form, the terms U ∗IJ and T ∗IJ do not allow expressing

the coupled thermo-elastic integral equations as a generalization of their elastic counterparts. For

such a purpose, it is useful to introduce the generalized fundamental fluxes

T̂ ∗IJ =

 {t∗ij} {
−u∗ijγjknk

}
{0} −q∗

 , (16)

which, as it will be shown in the next section, will introduce in the integral equations the thermo-

elastic coupling through the terms T̂ ∗i4 = −u∗ijγjknk, with i = 1, 2, 3, and through the presence of190

derivatives of θ in some volume integrals appearing in the elastic integral equations; the over-hat
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in T̂ ∗IJ signals precisely the presence of the coupling terms T̂ ∗i4 and it is employed to distinguish T̂ ∗IJ
from T ∗IJ defined in Eqs.(13), as both such tensors will be employed in the integral formulation.

The employment of generalized displacements, tractions and fundamental solutions will no-

ticeably simplify the expression of the thermo-elastic integral equations, allowing a compact form195

particularly suited for computer implementation, analogous to that often used in the treatment of

piezoelectric problems, see e.g. Refs.[51, 27].

4. Boundary integral formulation for thermo-elastic analysis of polycrystals

In this section, the boundary integral formulation for thermo-elastic polycrystalline analysis is

developed. The method is based on the use of integral equations for the description of the thermo-200

mechanical behaviour of individual grains, whose morphology is digitally represented by Laguerre-

Voronoi tessellations, as discussed in Section 2. The integrity of the aggregate is retrieved through

suitable generalized intergranular conditions. Several scholars have addressed different aspects of

the thermo-elastic analysis of solids by boundary integral methods [52, 53, 54, 55, 56, 57, 58, 59].

In this work, the approach developed for 3D anisotropic thermo-elasticity by Kögl & Gaul [43] is205

adopted. An important aspect is related with the appearance, in the integral equations, of terms

requiring volume integration; their presence, induced by the thermo-elastic coupling, might reduce

the appeal of the integral approach. However, a pure boundary integral representation is retrieved

employing the dual reciprocity method (DRM), originally developed to deal with inertial terms in

elastodynamics [39].210

4.1. Thermo-elastic integral equations for the individual grains

The integral representation of the microstructural thermo-elastic problem for a generic individual

grain g ≤ Ng, where Ng is the number of grains in the analysed aggregate, may be expressed in

terms of the generalized thermo-elastic variables defined in Section 3.1 as

cij (x)Uj (x) +−
∫

Γg

T̂ ∗ij (x,y)Uj (y)dΓy =

∫
Γg

U ∗ij (x,y)Tj (y)dΓy+

+

∫
Ωg

U ∗ij (x,y)Fj (y)dΩy i, j = 1, ..., 4,

(17)

which links the generalized displacement components Uj (x) at a generic collocation point x ∈ Γg215

with the grain boundary generalized displacements Uj (y) and tractions Tj (y), where y ∈ Γg
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is the generic integration point spanning the grain boundary in the integration procedure. In

Eq.(17), U ∗ij (x,y) and T̂ ∗ij (x,y) are the components of the generalized 3D anisotropic thermo-

elastic fundamental solutions introduced in Section 3.1 and detailed in Appendix A, computed with

reference to the g-th grain’s material, i.e. considering the material constants associated with the220

grain g in Eqs.(11-12); c̃ij(x) are free terms, arising from the boundary limiting procedure and

depend on the smoothness of the boundary Γg at the collocation point x; the symbol −
∫
denotes the

Cauchy principal value of the integral, which identifies the value of the improper integral induced

by the fact that the collocation point belongs to the domain of integration, x ∈ Γg; the subscript

y in dΓy and dΩy indicates that the integration is performed with respect to y; eventually, Fj (y)225

represents the components of the volume force terms induced by the thermo-elastic coupling that,

for steady-state thermo-elastic problems, are defined as

{FI} =

 {−γijθ,j}
0

 (18)

with I = 1, . . . , 4, i, j = 1, 2, 3.

It is worth noting that, as anticipated in Section 3.1, the fundamental traction kernels appearing

in Eq.(17) are the components T̂ ∗ij (x,y), defined in Eq.(16), i.e. those containing the coupling230

thermo-elastic terms T̂ ∗i4 = −u∗ijγjknk. The specific form of the thermo-elastic boundary integral

equations in Eq.(17) derives from the fact that the fundamental solutions of the uncoupled elastic

and thermal problems are employed in the formulation; further details about their derivation, either

from a weighted residuals or from reciprocity statements, can be found in Refs. [15, 60, 16, 43].

As mentioned above, the presence of volume integrals, also arising from the thermo-elastic235

coupling, makes the numerical integration of Eq.(17) more demanding with respect to problems

involving boundary integrals only, e.g. elastic or piezoelectric ones, thus partially reducing the

attractiveness of the integral formulation. However, such volume integrals may be transformed into

boundary integrals by employing the dual reciprocity method, as details in the next section.

4.2. Volume integrals transformation by the dual reciprocity method240

The transformation of the volume integrals appearing in Eq.(17) into boundary integrals may

be performed exploiting the following reciprocity statement∫
Ωg

U ∗ijFjdΩy +

∫
Γg

U ∗ij T̃jdΓy = −
∫

Γg

T ∗ij ŨjdΓy + cijŨj (x) i, j = 1, ..., 4, (19)
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where the explicit expression of the functional dependencies has been dropped, for the sake of

brevity, and ŨI and T̃I are displacement and traction particular solutions associated with the

generic volume density terms Fj obtained by solving the system245

L te
ji

(
Ũi

)
+ Fj = 0 (20)

with i, j = 1, . . . , 4, and evaluating the associate fluxes as T̃j = L̄ te
ji

(
Ũi

)
.

The reciprocity statement in Eq.(19) can be effectively exploited only if the particular solu-

tions are known, i.e. if system (20) may be analytically solved, which is not the case for generic

body volume terms Fj . Additionally, in the present thermo-elastic case, Fj is a function of the

derivatives of the unknown field Ui, see Eq.(18), which thus requires additional considerations. The250

dual reciprocity method, as proposed in Ref.[39] for elastodynamics and developed in Ref.[43] for

anisotropic thermo-elastic problems, is based on the expression of the volume density terms Fj as

a linear superposition of known tensorial radial basis functions F̃ sjk for which the primitives with

respect to the thermo-elastic operators, i.e. the solutions of Eq.(20), can be analytically evaluated.

More specifically, it is assumed that255

Fj (y) ≈
Ns∑
n=1

F̃ sjkα
s
k =

Ns∑
n=1

F̃jk (xs,y)αsk (21)

where j, k = 1, . . . , 4, αsk are unknown coefficients to be suitably determined, F̃ sjk are tensorial radial

basis components associated with a generic source xs, with s = 1, . . . , Ns, such that

L te
ji

(
Ũsik

)
+ F̃ sjk = 0 (22)

and T̃ sjk are the associated tractions; both Ũsjk and T̃
s
jk may be expressed ad function of the Euclidean

distance r (xs,y).

Indeed, considering the fully anisotropic nature of the thermo-elastic differential operator L te (·),260

finding functions F̃ sjk for which Eq.(22) can be analytically computed is not possible. The issue is

circumvented by adopting an inverse approach, i.e. by assuming a known radial basis form for the

tensorial components Ũsjk and then evaluating T̃ sjk and F̃ sjk by derivation: the procedure is detailed

in Appendix B, where also the analytic form adopted in this work for Ũsjk, T̃
s
jk and F̃ sjk is given.

The calculation of F̃ sjk is important for the subsequent expression of the unknown coefficient αsk in265

terms of the unknown nodal values of the generalized displacements, which will allow the numerical

solution of the problem, see Section 5.3.
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Adopting the approximation (21) into Eq.(19) eventually results in the following boundary

integral representation of the volume terms∫
Ωg

U ∗ijFjdΩy =

Ns∑
s=1

αsk

∫
Ωg

U ∗ijΨ
s
jkdΩy =

Ns∑
s=1

[
cijŨ

s
jk (x) +−

∫
Γg

T ∗ij Ũ
s
jkdΓy −

∫
Γg

U ∗ij T̃
s
jkdΓy

]
αsk,

(23)

which, replaced into Eq.(17), provides the boundary integral representation of the thermo-elastic270

problem

cijUj (x) +−
∫

Γg

T̂ ∗ijUjdΓy −
∫

Γg

U ∗ijTjdΓy =

=

Ns∑
s=1

[
cijŨ

s
jk (x) +−

∫
Γg

T ∗ij Ũ
s
jkdΓy −

∫
Γg

U ∗ij T̃
s
jkdΓy

]
αsk,

(24)

where i, j, k = 1, . . . , 4. Few observations are worthwhile about the above representation. First, the

above equations must be used with reference to the specific grain g considered within the aggregate,

which implies that the material constants used to compute the fundamental solutions appearing in

them are referred to the grain’s material. Thus, the continuity of the aggregate at the interface275

between two grains should be suitably enforced, see Section 4.3. It is then important to realise

that the unknown fields are the grain boundary displacements and tractions Uj and Tj , while the

fundamental solutions U ∗ij , T ∗ij , T̂ ∗ij and the particular solutions Ũ s
jk, T̃

s
jk all have known analytical

expressions. Also, it should be noted that both the fundamental tractions components T ∗ij and T̂ ∗ij
appear in the equations. Eventually, as already mentioned, the solution of the equation requires280

expressing the unknown coefficients of the approximation in Eq.(21) as a function of the unknown

generalized displacements, i.e. α = φ (U), in vector notation; the numerical strategy used for

achieving this will be described in Section 5.

4.3. Intergranular continuity

The intergranular continuity conditions are enforced, considering couples of homologous nodes285

at the interface between two generic crystals a and b, through the equations ǔai + ǔbi = 0

θa − θb = 0
,

 ťai − ťbi = 0

qa + qb = 0
(25)

where the symbol ·̌ denotes components expressed in local reference systems attached to each

grain face, see Fig.(2), introduced to allow the distinction between face-normal and face-tangential

mechanical components. The interested readers are referred to Refs.[18, 20, 27] for further details.
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5. Boundary element numerical integration and discrete system solution290

For the effective solution of the microstructural thermo-elastic problem, the generalized bound-

ary integral equations, Eqs.(24), and the associated interface conditions, Eqs.(25), must be suitably

implemented. The steps for the discretization of the continuum integral equations and the solution

of the resulting algebraic system are discussed in this section.

5.1. Meshing of the artificial micro-morphologies295

Since only boundary integrals appear in Eqs.(24), their numerical discretization requires the

creation of a mesh of the grains surfaces only, as long as the assumption of linear constitutive

behaviour of the crystal interiors hold and no crystal plastic slips are activated. The possibility of

studying the polycrystalline mechanics employing boundary grids only provides a relevant benefit for

the computational analysis, also enhancing its robustness, as it noticeably simplifies the generation300

of quality meshes that, considering the statistical nature of Voronoi-Laguerre tessellations, would

otherwise require specific time-consuming checks from the analyst. In this work, the grains surface

meshing is performed following the procedure detailed in Ref.[20], illustrated in Fig.(2b), and briefly

recalled below.

As mentioned in Section 2, polycrystalline aggregates are here represented through Laguerre-305

Voronoi tessellations, which collect convex polyhedral grains g bounded by flat convex polygonal

faces Γgf , see Eq.(1). In the discretization procedure, each face Γgf is subdivided into a set of non-

overlapping triangular or quadrangular, continuous and semi-discontinuous elements egfk , so that

Γgf =

Ngf
e⋃

k=1

egfk , (26)

with egfk being the k-th boundary finite element of the f -th face of the g-th grain, with k =310

1, . . . , Ngf
e . Each element egfk is characterised by its geometrical vertices yekn and functional nodes

xekn , which coincide for continuous elements and differ for discontinuous ones. Semi-discontinuous

elements are employed in proximity of the face’s edges, to avoid well-known complexities arising

in boundary element formulations when the surface normal can not be unambiguously defined at

a node [61], as in the case of nodes collocated on grains edges, where two contiguous faces meet,315

see Ref.[20] for further details. The collection of all the elements egfk , and their associated nodes

xeks , for all the faces f of all the grains g of the considered tessellation, constitute the boundary
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element mesh over which the numerical integration of Eqs.(24) is performed, as described in the

next section.

a b

x1 x2

x3

ťn

ťs

ť(x)

x̌1
x̌2

x̌3

Figure 2: Example grain morphology and mesh: a) each grain is a convex polyhedron bounded by flat convex

polygonal faces; each face carries its own local reference system {x̃1x̃2x̃3}, differing from the global reference system

{x1x2x3}, which allows the decomposition of boundary displacements and tractions into normal and tangential

components; b) each grain face is meshed into non-overlapping triangular or quadrangular elements.

5.2. Numerical integration of the boundary integral equations320

Once an artificial tessellation and its suitable boundary elements discrezation are available, the

computational treatment of the polycrystalline problem is addressed according to the following

scheme.

For each grain of the aggregate, Eqs.(24) are collocated at the functional node xn associated

with the boundary element mesh. Considering the grain boundary decomposition in Eqs.(1-26),325

each of the integrals appearing in Eqs.(24) may be expressed as

∫
Γg

F ∗ijVjdΓy =

Ng
f∑

f=1

∫
Γg
f

F̌ ∗ij V̌jdΓy =

Ng
f∑

f=1

Ngf
e∑

k=1

∫
egfk

F̌ ∗ij V̌jdΓy, (27)

where each of the integrals in the summation is defined over a flat two-dimensional domain, either

a face or element. The terms F ∗ij represent the components of the generic kernels appearing in

Eqs.(24), while Vj represent the components of the generic integrated field, be it either the unknown
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displacements/tractions or the known particular solutions. The over check ·̌ indicates that the330

corresponding components are expressed in the local face reference systems, defined over each

face, obtained by the transformation Vj = Rgfjk V̌k, with Rgfjk indicating the components of the

transformation matrix associated with the considered grain face.

Over each boundary element, the coordinates of the generic integration point y ∈ egfk are

expressed through a linear combination of shape functions Φekm (η1, η2) weighing the coordinates335

of the element geometrical vertices yekmi, while the unknown boundary displacement and traction

fields are expressed through a linear combination of shape functions weighing the nodal values of

boundary displacements Ǔekli and tractions Ť ekli , defined with respect to locally defined 2D (surface)

coordinate systems {η1, η2}, so that

yi =
∑
m

Φekm (η1, η2) yekmi, ǓI =
∑
l

Φekl (η1, η2) ǓeklI , ŤI =
∑
l

Φekl (η1, η2) Ť eklI (28)

where i = 1, 2, 3 and I = 1, . . . , 4 denote the coordinate and generalized components respectively, m340

spans the geometrical nodes associated with the considered element (either 3 or 4), and l spans the

its functional nodes. Considering the above approximation and denoting with J(η) the Jacobian

of the coordinates transformation yi = yi (η1, η2), each of the integrals appearing in the integral

decomposition in Eq.(27) may be written as∫
egfk

F̌ ∗ij V̌jdΓy =

[∫
egfk

F̌ ∗ij (xn,η) Φekl (η)J (η) dη1η2

]
V̌ eklj , (29)

which can be numerical evaluated using a suitable quadrature rule; in the numerical integration,345

specific procedures must be employed when the collocation point belongs to the element being

integrated, i.e. when xn ∈ egfk , as singular integrals arise in such a case. For further discussion

about such aspects, interested readers are referred to Refs. [15, 16].

In particular, considering the left-hand side of Eqs.(24), the numerical integration over an ele-

ment egfk yields350

−
∫
egfk

ˇ̂
T ∗ij ǓjdΓy =

[
−
∫
egfk

ˇ̂
T ∗ij (xn,η) Φekl (η)J (η) dη1η2

]
︸ ︷︷ ︸

Ĥ matrix entries

Ǔeklj → ĤekǓek , (30)

and ∫
egfk

Ǔ ∗ij ŤjdΓy =

[∫
egfk

Ǔ ∗ij (xn,η) Φekl (η)J (η) dη1η2

]
︸ ︷︷ ︸

G matrix entries

Ť eklj → GekŤek , (31)
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where the vectors Ǔek , Ťek collect the generalized displacement and traction components associated

with the Nek
n functional nodes belonging to egfk , while Ĥek ,Gek ∈ R4×4N

ek
n are matrix blocks

contributing to the population of the larger grain matrices Ĥg,Gg ∈ R4Ng
n×4Ng

n , which multiply

respectively the vectors Ǔg, Ťg ∈ R4Ng
n×1 collecting the generalized components of displacements355

and tractions for all the grain functional nodes, Ng
n being the total number of nodes associated

with the considered grain g. When collocated at a specific boundary node xn, the integration of

Eqs.(24) allows computing four rows of the matrices Ĥg and Gg: the whole matrices are populated

by sequentially collocating them over all the Ng
n nodes associated with the grain in the meshing

procedure.360

When all the terms in Eqs.(24) are considered, the numerical scheme leads, for each grain, to

the system

ĤgǓg −GgŤg =
(
HgŨg −GgT̃g

)
αg (32)

where: the matrix Hg ∈ R4Ng
n×4Ng

n is obtained from the integrals involving the kernels T ∗ij 6=

T̂ ∗ij , and it is then different from Ĥg, although both can be computed simultaneously within the

same routine; the terms Ũg, T̃g ∈ R4Ng
n×4Ng

s are known matrices obtained by collocating the365

particular solutions Ũsjk and T̃ sjk introduced in Section 4.2, and detailed in Appendix B, at the

mesh boundary nodes, Ng
s being the number of tensorial terms employed in the series expansion in

Eq.(21); eventually αg ∈ R4Ng
s×1 are the unknown coefficients of the mentioned series expansion,

to be expressed in terms of the unknown components of displacements for the actual solution of

the problem, as it will be discussed in the next section.370

5.3. Volume terms approximation coefficients α

In the application of the dual reciprocity method to classical or generalized elastodynamics,

for the solution of Eq.(32) the unknown coefficients α appearing in the series expansion given in

Eq.(21) – the superscript g is momentarily dropped for the sake of readability – are quite naturally

expressed in terms of the time derivatives of the nodal components of displacements Ǔ, see e.g.375

Refs. [39, 62, 51]. An analogous technique was proposed in Ref.[43] for anisotropic thermo-elasticity,

although the functional form of the body terms as spatial derivative of the generalized displacements,

see Eq.(18), requires a slightly more involved treatment, briefly recalled below.

First of all, it is observed that, selecting Ng
s = Ng

n and collocating Eq.(21) at Ng
n suitably
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selected points yn, e.g. at the Ng
n mesh functional nodes, the following link380

F = F̃α (33)

between the vector F ∈ R4Ng
n×1, collecting the generalized components of the body volume terms,

and the vector α is obtained; F̃ ∈ R4Ng
n×4Ng

s is the known matrix generated by direct collation at

yn of the tensorial functions F̃ sjk = F̃jk (xs,yn), see Section 4.2 and Appendix B for details.

On the other hand, according to the definition in Eq.(18), the body terms FI may be expressed in

terms of derivatives of the temperature, which is a component of generalized displacements UI ; such385

displacements may themselves be approximated by a series expansion analogous to that employed

in Eq.(21), namely

UI (y) ≈
Ng

s∑
n=1

F̃ ′sIKβ
s
K =

Ng
s∑

n=1

F̃ ′IK (xs,y)βsK (34)

where F̃ ′sIK , in general different from F̃ sIK – the prime symbol ′ is used to mark such difference and

it is not related to derivation – are suitable known tensorial radial basis functions, see Appendix

B for the specific form assumed in this study, while βsK are unknown coefficients of the expansion.390

Accordingly, the spatial derivatives of UI may be written as

UI,j (y) ≈
Ng

s∑
n=1

F̃ ′sIK,jβ
s
K , (35)

which in turn allows expressing FI as

FI (y) ≈ −
Ng

s∑
n=1

B̃sIKβ
s
K = −

Ng
s∑

n=1

(
ΓIMlF̃

′s
MK,l

)
βsK , (36)

with

ΓIMl =

 γil, I = i = 1, 2, 3, M = 4

0 I = 4, M 6= 4
(37)

where γil are the thermo-elasticity constants appearing in Eqs.(2).

Collocating Eqs.(34) and Eqs.(36) at the Ng
s = Ng

n points yn, following the same procedure as395

that that led to Eq.(33), yields

Ǔ = F̃′β, F = −B̃β, (38)

which, combined with Eq.(33), allow writing

α = −F̃−1B̃F̃′−1Ǔ, (39)
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which expresses the sought after link between α and Ǔ. Introducing such expression into Eq.(32)

eventually provides [
Ĥ +

(
HŨ−GT̃

)
F̃−1B̃F̃′−1

]
Ǔ = GŤ, (40)

which may be written more compactly as400

Hg
teǓ

g = GgŤg, (41)

where the reference to the grain g has been restored and the subscript te expresses the influence of

the thermo-elastic coupling through the matrix terms added to Ĥ at the left-hand side of Eq.(40).

Eq.(39) has been written by assuming Ng
s = Ng

n and collocating the series expansions in

Eqs.(21,35,36) at the Ng
n boundary functional nodes; in some instances however, to improve the

method accuracy, it may be useful, or necessary, employing Ng
i additional internal points, i.e. lo-405

cated within the grain, to which a consistent number of additional integral equations and functional

terms in the series expansions are associated. In this work, the use of boundary nodes only has

provided accurate results; however, the developed framework may easily accommodate the use of

internal nodes, as done e.g. in Ref.[34] for crystal plasticity analysis or in Ref.[25] for transgranular

micro-cracking analysis. The interested readers are referred to Ref.[43] and references therein for410

further information about the use of internal nodes within the context of the DRM.

5.4. Aggregate system and solution

As seen in the previous sections, the collocation, discretization and numerical integration proce-

dures lead, for each grain/crystal g in the aggregate, to a system of the form of Eq.(41), where the

generalized components of displacements and tractions of the functional nodes associated with the415

grains are collected in the vectors Ǔg and Ťg: in such equations, no consideration has been given so

far to either boundary or interface conditions and Ǔg, Ťg collect indeed all the nodal components

of displacement and traction; however, the enforcement of consistent boundary conditions is nec-

essary for the solution of relevant engineering problems, while intergranular continuity conditions

are needed to represent the integrity of the polycrystalline specimen.420

The enforcement of boundary conditions involves the reordering and regrouping of the nodal

components into unknown values Ǔg
un, Ťg

un and known values Ǔg
kn = Ūg, Ťg

kn = T̄g, where the

known values are generally associated with functional nodes belonging to grain faces lying on the
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external surface Γext of the aggregate. Such operation leads, for each grain, to a system of the form

425

Ag ·Xg = Bg ·Yg (42)

where Xg =
[
Ǔg
un; Ťg

un

]
, Yg =

[
Ūg; T̄g

]
collect unknown and prescribed values of grain-boundary

displacements and tractions respectively, while the matrices Ag and Bg collect columns from Hg
te

and Gg associated by the matrix-vector multiplications in Eq.(41) with the above unknown and

prescribed degrees of freedom [15, 16]. It is worth noting that the vector Xg also collects the

unknown components of intergranular displacements and tractions.430

If the considered aggregate contains Ng grains, thus Ng systems of the form specified in Eq.(42)

may be written and collected into a unique aggregate system as

AX =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · ANg




X1

X2

...

XNg

 =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · BNg




Y1

Y2

...

YNg

 = BY. (43)

The aggregate system in the form given above may directly accommodate external kinematic and/or

static boundary conditions and it may be straightforwardly generalized to include periodic boundary

conditions, see e.g. [22, 20]; however, it does not include intergranular conditions yet.435

The discrete intergranular conditions are enforced by applying at node-by-node level the condi-

tions specified in Section 4.3 at the continuum level; for this purpose, conformal meshes are gener-

ated on the faces of contiguous grains coming into contact, so that the functional nodes belonging

to different grains share the same geometrical location on the intergranular interface. Following

such procedure, the interface conditions may be enforced by associating to Eq.(43) the following440

system

IIGX = 0 (44)

where IIG is a matrix containing only zeros or ones, suitably placed to enforce the continuity of

nodal displacements and the equilibrium of nodal tractions for contiguous intergranular nodes.

The aggregate system, comprised of Eqs.(43-44), can eventually be recast in the compact form A

IIG

 ·X =

B ·Y

0

 → M ·X = Z (λ) , (45)
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where the coefficient matrix M is highly sparse and thus requires the use of dedicated solvers for445

the effective solution of the system; in this work, PARDISO (http://www.pardiso-project.org/)

was selected for such a task. In Eq.(45), the loading vector may depend on a loading factor λ,

to allow the possibility of expressing the progressive thermo-elastic loading of the aggregate with

quasi-steady boundary conditions, see e.g. Ref.[20] for further details.

Eventually it is worth mentioning that, since Eq.(45) stems from a boundary element procedure,450

higher computational efficiency could be achieved using Krylov iterative solvers in conjunction with

special matrix representations, such as fast multipoles [63] or hierarchical matrices [64, 65, 66, 67].

6. Computational thermo-elastic homogenization of polycrystals

The numerical formulation described in Section 5 can be further developed for applications to

computational thermo-elastic homogenization of polycrystalline materials. The goal of homogeniza-455

tion is to infer the properties of a material at a certain scale, at which it is conceived as a continuum,

from the knowledge of the morphological and constitutive features of its constituents/phases at a

lower scale level [12, 68, 69]. More specifically, the thermo-elastic homogenization of polycrys-

talline materials can be schematically seen as a procedure to infer the effective material macro-

scopic properties CEijkl, κ
E
ij , and γEij from the knowledge of the aggregate’s morphological features,460

also in terms of grains and grains size distributions, and of the constants Cijkl, κij and γij of

the different grains/crystals forming the aggregate itself; here the superscript E denotes effective

macro-properties as opposed to the analogous properties of the micro-constituents.

Homogenization problems are related to the issue of identifying a material representative volume

element (RVE), which for polycrystalline materials could be defined as an aggregate containing465

a number of grains large enough so to exhibit homogenized properties that can be considered

representative of the macroscopic continuum material, but whose dimensions are small compared

with the scale of the macro-solid, so that the homogenized properties can be reasonably attributed

to a continuum point of the macro-solid itself [12]. Computational material homogenization can be

performed by applying suitable macro-boundary conditions to a RVE, solving the corresponding470

µ-BVP – µ stands for micro – within a selected computational framework and then computing

suitable volume-averages of the solved micro-fields over the RVE [13]. More specifically, considering

an aggregate with Ng grains, without any a priori assumption on its representativity, the thermo-
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elastic constitutive relationship between macro-fields may be expressed as

〈σ〉
〈q〉

 =

CA 0 γA

0 κA 0




+〈ε〉

−〈∇θ〉

−〈θ〉

 (46)

where the Voigt notation has been assumed for the mechanical fields σ and ε and constants C,475

γ, and where the generic macro-field 〈f〉, be it either 〈σ〉, 〈q〉, 〈ε〉, 〈∇θ〉 or 〈θ〉, is defined as the

average of the corresponding micro-field f over the volume Ω of the aggregate

〈f〉 =
1

Ω

∫
Ω

f dΩ. (47)

In Eq.(46), the (6 × 6) matrix CA, the (3 × 3) matrix κA and the (6 × 1) matrix γA collect,

according to the Voigt convention, the components CAijkl, κ
A
ij , and γAij , where the superscript A

denotes apparent material properties: since no assumption has been made on the representativity of480

the aggregate, in general apparent and effective properties do not coincide; however, as the number

of grains included in the aggregate increases, making the aggregate itself more representative, then

CAijkl → CEijkl, κ
A
ij → κEij , and γAij → γEij .

Eqs.(46-47) provide a practical method for estimating the macroscopic material properties: if

suitable macro boundary conditions are enforced on a sufficiently large aggregate, e.g. as indepen-485

dent unitary macro strains, thermal gradients or temperature, the sought after macro properties

can be estimated as volume averages of the mechanical stress and thermal flux micro-fields after

solving the corresponding µ-BVP. Alternative approaches exploit the ergodicity assumption and use

both ensemble and volume averages over multiple micro-morphologies smaller than a fully repre-

sentative one, so to obtain an estimate of the effective properties by solving several, but individually490

less computationally challenging, µ-BVPs [70, 71].

In this work, the thermo-elastic homogenization is performed employing the statistical procedure

already adopted for standard and piezoelectric polycrystalline materials in Refs.[18, 20, 27]:

i) A set of Nm morphologies, each containing Ng grains, are generated;

ii) Suitable independent unitary macro-BCs are enforced on each morphology and the corre-495

sponding µ-BVPs are solved;

iii) The volume averages 〈σ〉 and 〈q〉 are computed for each considered independent macro BC and

for each morphology, so to obtain an estimate of the apparent properties for each aggregate;
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iv) The apparent properties are ensemble-averaged over the Nm considered morphologies.

The procedure is repeated increasing the number Ng of grains contained in the generated morpholo-500

gies, until convergence of the ensemble-averaged apparent properties is obtained, thus providing a

reasonable estimate of the effective ones.

Few remarks about the proposed framework, some of them specific to the thermo-elastic prob-

lem, are worthwhile. First, it is worth noting that periodic non-prismatic micro-morphologies are

generated in step (i) and employed in the subsequent steps. As mentioned in Section 2 and discussed505

in Ref.[20], such a kind of morphologies enhance the convergence of the homogenization procedure

as they allow avoiding possible boundary layer artefacts in the BVP resolved micro-fields, induced

by the presence of grains fragments resulting from the cutting operations required for obtaining

prismatic morphologies.

In step (ii), as suggested by the structure of Eq.(46), a set of 10 linearly independent macro510

thermo-mechanical BCs must be enforced on each aggregate to infer the apparent properties through

volume averages. A natural choice consists in enforcing, independently, three unitary normal macro-

strains, three unitary shear macro-strains, three unitary temperature macro-gradients, and a unitary

temperature homogeneous macro-variation, which allow sequentially populating the columns of the

macro constitutive matrix. In compact matrix notation, the ten independent macro-BCs can be515

expressed as 
+〈ε〉k

−〈∇θ〉k

−〈θ〉k

 = ek k = 1, . . . , 10 (48)

where the over-bar denotes prescribed values, k identifies the considered macro-BC and ek is a

(10× 1) vector whose components are all zero but the k-th one, which has value 1. The macro-BCs

corresponding to k = {1, 6, 7, 10}, enforced on a periodic non-prismatic aggregate, are represented

in Fig.(3).520

It is important to observe that, in order to infer also the thermo-elastic constants γA, the

macro-BCs in Eq.(48) have to be applied as a mix of mechanical periodic and thermal kinematic

relationships. Indeed, upon identifying pairs (m, s) of conjugated master/slave boundary functional

nodes on periodically contiguous couples of grains faces, see e.g. Ref[22], the following mechanical
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a b

c d

e f

x1

x2 x3

Figure 3: Examples of macro-BCs enforced on the aggregate for the computation of the apparent properties through

volume averages: a) 〈ε〉11 = 1.0, all the other components in {〈ε〉, 〈∇θ〉, 〈θ〉} are null; b) 〈ε〉12 = 〈ε〉12 = 0.5, all

the other components are null; c) deformed configuration of a, amplification factor 0.5; d) deformed configuration of

b, amplification factor 0.5; e) 〈∇θ〉1 = 1.0, all other components null; f ) 〈θ〉 = 1.0, all other components null. The

above BCs would allow the computation of the columns {1, 6, 7, 10} of the constitutive matrix in Eq.(46)
24



periodic boundary conditions (MPBCs)525

MPBCs ∀ (m, s)

ǔ
s
i + ǔmi = Rsmin 〈ε〉

k
nj

(
xsj − xmj

)
ťsi − ťmi = 0

k = 1, . . . , 10

i, j, n = 1, 2, 3,
(49)

and the following thermal kinematic boundary conditions (TKBCs)

TKBCs ∀ (m, s) ,∀s


θfp = 〈θ〉k

θs − θfp = 〈∇θ〉kj
(
xsj − x

fp
j

)
θs − θm = 〈∇θ〉kj

(
xsj − xmj

)
k = 1, . . . , 10

j = 1, 2, 3,
(50)

are applied, where: the superscript k identifies the applied maco-BCs; the superscripts m and s

refer to master and slave nodes respectively; Rsmin are the components of the rotation matrix used to

express the enforced displacements in the local reference system of the considered periodic interface,

over which the (m, s) pair is located; and the superscript fp refers to a fixed point, to which a specific530

value of temperature is directly assigned.

Now, while the mechanical relationships in Eqs.(49) represent a set of periodic boundary condi-

tions, which enforce relative displacements and tractions equilibrium at the periodic interfaces, the

thermal relationships in Eqs.(50) have a different nature, as they directly enforce only temperature

values on all the external functional nodes of the aggregate: indeed, all temperatures are directly en-535

forced through gradients with respect to the mentioned fixed point, to which the temperature jump

θ̄ is directly assigned, while the balance of thermal fluxes is not enforced, leaving its verification

as an a posteriori assessment. This particular choice allows the possibility of enforcing a homoge-

neous temperature jump 〈θ〉 in Eqs.(50), which is needed to estimate the apparent thermo-elastic

constants γA and could not be enforced as a periodic condition.540

To better understand the incompatibility between thermal periodic boundary conditions and the

application of a homogeneous temperature jump, it should be considered that periodic boundary

conditions are generally enforced in terms of gradients, be them strains or temperature gradients:

for their numerical application, they thus require that any generalized rigid body modes be removed

from the discrete boundary integral equations. Now, a homogeneous temperature jump is precisely545

a rigid body mode for the thermal problem and its removal would conflict with the application

of the TKBCs in Eq.(50), thus preventing the possibility of inferring the thermo-elastic constants

γA. Care must thus be taken in ensuring that only the mechanical rigid modes are removed. In

25



this work, such selective removal is achieved recalling that the matrix Hg
te appearing in the grains

discrete boundary integral equations – Eq.(41) – has the following structure [43]550

Hg
te =

Hg
uu Hg

uθ

0 Hg
θθ

 , (51)

and applying the technique discussed in Ref.[72] to the matrix block Hg
uu, associated with a generic

grain, say g (it is sufficient to remove the rigid modes from the integral equations of a single grain).

From the numerical point of view, both the MPBCs and the TKBCs can be applied through the

matrix block IIG in Eq.(45), which induces a slight modification of the structure of system itself.

Indeed, if all the nodal variables related to the external boundary of the aggregate are kept in the555

vector X as unknowns, the blocks Bg do not appear in Eq.(45), and the enforcements of Eqs.(49-50)

leads to systems of the form  A

IIG

 ·X =

 0

ψk

 k = 1, . . . , 10 (52)

where k identifies the enforced unitary macro boundary condition. It is interesting to observe

that, due to the nature of Eqs.(49-50), the sparsity pattern of the block IIG does not change when

different macro-BCs are enforced: only the right-hand side of Eq.(52) is affected by the application560

of the macro-BCs, which allows computing the solution of the ten independent µ-BVPs with a

single factorization of the system’s coefficient matrix, i.e. with a single call to the PARDISO solution

routines.

Eventually, it is worth observing that, once the µ-BVP is solved for the considered aggregate,

the volume averages of stresses and thermal fluxes, needed for estimating the apparent constitutive565

properties, may conveniently evaluated as

〈σ〉ij =
1

Ω

∫
Γ

tixj dΓ, 〈q〉i =
1

Ω

∫
Γ

qxi dΓ, (53)

i.e. through integration, over the external boundary of the morphology, of functions involving me-

chanical traction components and the thermal normal flux, which are among the primary variables

of the proposed formulation and are directly provided by the solution of the µ-BVP.

The procedure for the population of the apparent constitutive matrix in Eq.(46) is schematically570

depicted in Figs.(4-6)
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⟨ε̄⟩k
ijEnforce Integrate ⟨σ⟩k

ij = 1
Ω ∫Γ

tk
i xj d Γ

Solve  
μ-BVP

x1

x2 x3

Figure 4: Schematic procedure for the population of the columns k = {1, . . . , 6} of the apparent constitutive matrix

in Eq.(46): i) suitable mechanical macro-strains 〈ε〉k are enforced; ii) the µ-BVP is solved with the proposed

computational technique and; iii) the components of the mechanical tractions are suitably integrated over the

surface of the aggregate to compute the related apparent elastic constants.

7. Computational experiments

The statistical computational homogenization approach described in the previous section is

applied here to Al2O3 and SiC polycrystalline aggregates. Their single-crystal material constants

are summarised in Table 1.575

For SiC, the elastic coefficients Cijkl are taken from Ref.[73]. The coefficients of thermal expan-

sions α11 = α22 and α33 are retrieved from Refs.[74, 75, 76], which provide for them simple polyno-

mial expressions for temperatures ranging from 0 ◦C to 1000 ◦C; the thermo-elastic coefficients γij

are then computed as γij = Cijklαkl. The coefficients of thermal conductivity, as computed from

first principles, are found in Refs.[77] and confirmed by measurements reported in Ref.[78].580

For single-crystal alumina (αAl2O3, corundum, sapphire), the elastic constants at room temper-

ature are given in Ref.[79]. Thermal expansion coefficients are available in Ref.[80] for temperatures

ranging between 100 K and 1100 K; the thermal-elastic coefficients can thus be computed from the

thermal expansion data, if the stiffness coefficients at that temperature are available. The thermal

conductivity coefficients for alumina are taken form Refs.[81, 82]. Other material data for alumina585
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x1

x2 x3

⟨∇θ⟩k
iEnforce ⟨q⟩k

i = 1
Ω ∫Γ

qk xi d ΓIntegrate

Solve  
μ-BVP

Figure 5: Schematic procedure for the population of the columns k = {7, . . . , 9} of the apparent constitutive matrix

in Eq.(46): i) suitable temperature macro-gradients 〈∇θ〉k are enforced; ii) the µ-BVP is solved with the proposed

computational technique and; iii) the thermal normal flux is suitably integrated over the surface of the aggregate to

compute the related apparent thermal conductivity constants.

is available in Refs.[83, 84, 85, 86].

The statistical homogenization is implemented considering aggregates withNg = {25, 50, 75, 100}

grains, with random orientation in the 3D space assigned to each grain. For each value of Ng,

Nm = 10 different periodic non-prismatic morphologies are generated, employing Neper [45], see

Section 2. Each batch of morphologies is employed in the homogenization of both materials. All590

the generated morphologies are publicly available on Mendeley Data5 through the link provided in

the Data availability section.

First, the generalized (9 × 10) matrices of the apparent coefficients, as appearing in Eq.(46)

and computed through ensemble averages over Nm = 10 morphologies of volume averages on

aggregates with Ng = 100 grains, here compactly denoted as K
A(100,10)
Al2O3

and K
A(100,10)
SiC , are reported595

as directly provided in output by the developed computational framework, to assess the emergence

of macroscopic isotropy and exclude the presence of spurious couplings. For polycrystalline alumina,

5https://data.mendeley.com
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x1

x2 x3

⟨θ ⟩ = 1Enforce

Solve  
μ-BVP

γ A
ij = − 1

Ω ∫Γ
tixj d ΓIntegrate

Figure 6: Schematic procedure for the population of the column k = 10 of the apparent constitutive matrix in

Eq.(46): i) a unitary homogeneous temperature macro-variation 〈θ〉 is enforced; ii) the µ-BVP is solved with the

proposed computational technique and; iii) the components of the mechanical tractions are suitably integrated over

the surface of the aggregate to compute the related apparent thermo-elastic constants.

the output for K
A(100,10)
Al2O3

is



C︷ ︸︸ ︷
468.76 139.54 143.52 -0.41 -3.44 2.26 0.00 0.00 -0.00

γ︷︸︸︷
4.02

139.53 470.75 141.52 -0.42 0.68 -0.07 0.00 0.00 -0.00 4.02

143.52 141.49 467.94 1.36 2.51 -2.02 0.00 0.00 -0.00 4.04

-0.42 -0.42 1.35 163.04 -2.16 0.84 -0.00 -0.00 0.00 0.01

-3.44 0.67 2.52 -2.15 165.06 -0.77 -0.00 -0.00 0.00 -0.00

2.24 -0.06 -2.02 0.84 -0.78 161.89 -0.00 -0.00 -0.00 0.00

0.00 -0.00 0.00 -0.00 0.00 -0.00 30.18 0.02 -0.05 0.00

0.00 -0.00 0.00 -0.00 0.00 -0.00 0.02 30.17 0.09 -0.00

0.00 -0.00 0.00 -0.00 0.00 -0.00 ︸ ︷︷ ︸
κ

-0.05 0.08 30.38 0.00



(54)

while for K
A(100,10)
SiC it is
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Table 1: Material constants for silicon carbide SiC [73, 74, 76, 77, 78] and alumina Al2O3 [79, 80, 81]

Material property Component SiC Al2O3

Elastic constants C1111, C2222 502.0 496.8

C3333 565.0 498.1

C1122 95.0 163.6

[GPa] C1133, C2233 96.0 110.9

C1123, C1132 0.0 -23.5

C2223, C2232 0.0 23.5

C2323, C1313 169.0 147.4

C3112, C3121 0.0 -23.5

C1212 (C1111 − C1122)/2

Thermo-elastic constants γ11, γ22 2.29 4.22

[10−3 GPa/K] γ33 2.45 3.67

γ23, γ31, γ12 0.0 0.0

Thermal conductivity κ11, κ22 428.8 33.0

[W/(m ·K)] κ33 350.6 25.0



C︷ ︸︸ ︷
493.45 108.80 110.40 -0.47 -2.16 -0.25 0.00 0.00 -0.00

γ︷︸︸︷
2.35

108.79 496.16 107.75 2.75 0.99 0.20 0.00 0.00 -0.00 2.35

110.40 107.75 493.05 -2.94 1.50 -0.13 0.00 0.00 -0.00 2.35

-0.46 2.77 -2.94 191.61 0.02 0.80 -0.00 0.00 -0.00 -0.00

-2.16 0.99 1.49 0.02 194.26 -0.05 0.00 0.00 -0.00 0.00

-0.26 0.20 -0.13 0.79 -0.05 191.77 0.00 0.00 -0.00 -0.00

0.00 0.00 0.00 -0.00 0.00 -0.00 390.12 0.19 -0.44 -0.00

0.00 0.00 0.00 -0.00 0.00 -0.00 0.20 389.99 0.86 -0.00

0.00 0.00 0.00 -0.00 0.00 -0.00 ︸ ︷︷ ︸
κ

-0.47 0.81 392.05 -0.00



, (55)

600

where the units of the different matrix sub-blocks are consistent with those given in Table 1.

For both polycrystalline materials, the main macroscopic symmetries and isotropy are confirmed
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in terms of elastic stiffness, thermal conductivity and thermo-elastic coupling, as highlighted by the

structure of the sub-blocks CA, κA and γA in Eqs.(54-55). In particular: i) the homogenized elastic

matrix blocks CA exhibit acceptable macroscopic symmetry and do not reveal meaningful coupling605

between normal and shear components of stress/strain; ii) the thermal conductivity blocks κA tend

to become scalar matrices, i.e. diagonal matrices with the same value for all the diagonal entries;

this is especially true for Al2O3, which presents a less pronounced thermal anisotropy at the crystal

level with respect to SiC; iii) the thermo-elastic constants γA highlight macroscopic thermo-elastic

isotropy and do not reveal the emergence of any spurious thermo-elastic shear stress, i.e. γij = 0610

if i 6= j. Moreover, correctly, no macroscopic spurious coupling emerges between 〈σ〉 and 〈∇θ〉 or

between 〈q〉 and 〈ε〉 or 〈θ〉 in Eq.(46).

Additionally, upon successfully verifying that, for both materials, the coefficients CA(100,10)
11 ,

κ
A(100,10)
11 , γA(100,10)

11 fall within the Reuss’ and Voigt’s bounds, as done e.g. in Refs.[20, 27]. it has

been concluded that both the number of grains Ng = 100 considered in the volume averages and615

the number of morphologies Nm = 10 considered in the ensemble averages provide a satisfactory

approximation of the effective properties of the considered polycrystals.

Eventually, for giving a better representation of the overall homogenization process, the trends

of the volume and ensemble averages vs. Ng are investigated. Fig.(7) shows, for both considered

materials, the homogenization results for the stiffness coefficients C11, C12 and C44, the thermal620

conductivity coefficients κii, for i = 1, 2, 3, and the the thermo-elastic coefficients γii, for i = 1, 2, 3.

In each plot, the black markers + represent the values of the volume averaged property for specific

individual aggregates, while the continuous curve represent the ensemble averaged values: the black

markers help then provide information about the scattering of the averaged properties that may be

expected when considering aggregates containing a certain number of grains Ng. Moreover, in each625

plot, the shaded area identifies the Reuss’ and Voigt’s bounds for each considered constant for the

two polycrystalline materials.

It can be observed as, in general, the scatter of the specimens’ volume averages around the

ensemble averages decreases as Ng increases and how both the ensemble averages and almost all

the volume averages fall within the Reuss’ and Voigt’s bounds when Ng = 100 for C11, C44, κ11,630

κ22, γ11 and γ22. On the other hand, although the behaviour of the constants C12, κ33 and γ33 may

appear slightly more problematic, this observation does not entail specific concerns, as it might

signal the presence of some texture in the considered 100 grains specimens, whose effects could be
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removed by considering larger values of Nm and/or Ng, as discussed and shown for example in

Refs.[18, 20, 27]. All the data needed to generate Fig.(7) is publicly available on Mendeley Data6
635

through the link provided in the Data availability section.

Eventually, Fig.(8) reports information about system assembly and solution times vs. Ng and

about the number of DoFs involved in the proposed computational homogenization procedure.

Assembly and solution times refer to the time needed to populate and solve the system in Eq.(52) for

an individual morphologies. The averages are computed over the Nm = 10 morphologies considered640

for each value of Ng.

8. Discussion and further developments

In this study, an original multi-region dual reciprocity boundary element framework has been

proposed for computational thermo-elastic homogenization of polycrystalline materials. The DRM

for single domain anisotropic thermo-elastic analysis had been previously developed by Kögl and645

Gaul [43]. A multi-region DRM has been proposed by Galvis & Sollero [36] for the analysis of

dynamic cracks propagation in 2D polycrystals and by Galvis el al. for dynamic analysis of 3D

polycrystals [42]. The present work goes then beyond the state of the art both in terms of method-

ology, as it extends to multiple regions the technique proposed in Ref.[43] for single regions, and in

terms of application, as it considers the problem of polycrystalline thermo-elastic homogenization,650

not previously covered in the literature with an analogous technique.

At a general level, the developed tool could find application for multiscale analysis of engineering

components as well as for the analysis and design of MEMS. In terms of methodology, several

directions of further investigation may identified.

First, including a suitable representation of intergranular damage evolution [87, 88, 27, 29, 89],655

the framework could be extended for the investigation of thermo-mechanic micro-cracking in brittle

and quasi-brittle materials, both in a steady-state and transient setting [90, 91]. In this respect, it

might be observed that the dependence of the material coefficients on the temperature, i.e. the fact

that Cijkl = Cijkl (T ), kij = kij (T ), γij = γij (T ), has not been accounted for in the formulation,

which is suitable for the proposed task of computational homogenization, but could not be an660

accurate assumption for the analysis of thermal phenomena involving large temperature jumps, e.g.

6https://data.mendeley.com
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Figure 7: Statistical computational homogenization of selected stiffness coefficients (top), thermal conductivity co-

efficients (mid-page), thermo-elastic coefficients (bottom) for polycrystalline Al2O3 (left column) and SiC (right

column). In each plot the ’+’ markers represent volume averages for individual specimens, while the continuous

curves represent ensemble averages; the shaded area identifies the Reuss’ and Voigt’s bounds.
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Figure 8: Average system assembly and solution times vs. Ng and number of DoFs vs. Ng for the analysed

morphologies. The shaded areas around each curve identify maximum and minimum values. Times and number of

DoFs are referred to individual morphologies.

thermal shocks or quenching. A simple method for accounting for such dependency could rely on

an iterative implementation with sequential grain-by-grain update of the material coefficients as

function of the grain average temperature. More general implementations, for example with point-

wise dependency of the material properties on the temperature, would require a deeper reformulation665

of the boundary integral framework, e.g. drawing from methods developed for the analysis of

functionally graded materials [92].

Analogously, as the developed numerical/computational DRM architecture can straightfor-

wardly incorporate the representation of inertial terms, the inclusion in the framework of a suitable

representation of intergranular de-cohesion under dynamic loading [93, 94] would open to the in-670

vestigation of dynamic micro-cracking [36] and fragmentation [95] in 3D crystal aggregates. An

alternative boundary element framework for polycrystalline elastodynamic analysis could be de-

veloped employing a Laplace transform re-formulation of the elastodynamics equations [96, 67],

instead of the DRM representation.

For the thermo-elastic analysis of multiphase materials with more complex constitutive be-675

haviours, the present method could by hybridized with other numerical techniques, with the aim
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of extending its constitutive modelling capabilities at contained computational cost, in a multi-

technique optimization perspective, as proposed for example in Refs.[97, 98], where the boundary

element method has been used in conjunction with the rapidly emerging virtual element method

[99, 100, 101, 102]. In this respect, the hybridization with discontinuous Galerkin methods [103]680

could offer some definite advantages both in terms of constitutive modelling [104, 105, 106] as well

as elastodynamic analysis [107].

Eventually, it is worth observing that, for effective use in multiscale materials modelling, where

the solution of many µ-RVEs has to be simultaneous tackled, or for the simulation of larger aggre-

gates, the development of tools with reduced computational costs, both in terms of storage memory685

and computational time, is generally highly desirable. In this sense, the developed framework is

appealing in terms of overall reduction of number of DOFs with respect to other more popular

numerical techniques. However, further gains could be obtained employing, for the solution of

the thermo-elastic polycrystalline boundary element equations, in either Eq.(45) or Eq.(52), spe-

cific iterative solvers in conjunction with special matrix formats, e.g. either fast multipoles [63]690

or hierarchical matrices [64, 65, 67, 108], which have been proved highly effective in reducing the

computational complexity of the solution of systems stemming from boundary integral equations.

9. Conclusions

In this work a three-dimensional framework for thermo-elastic homogenization and analysis

of polycrystalline materials has been proposed. The model is built employing from a grain-scale695

Voronoi representation of crystal aggregates and an integral representation of the thermo-elastic

coupling for the individual crystals. Such integral formulation is numerical addressed through a

dual reciprocity boundary element method for fully anisotropic thermo-elasticity, which allows to

express the overall formulation in terms of intergranular mechanical and thermal variables only, with

consequential simplification in terms of data preparation and reduction of the number of degrees of700

freedom needed for the analysis, with respect to more popular methods. The framework has been

tailored and tested for statistical thermo-elastic homogenization of Al2O3 and SiC polycrystals.

The obtained results have highlighted the effectiveness and robustness of the approach, which may

find application in thermo-mechanical multiscale analysis of engineering components.
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Data availability705

A dataset supporting the finding of this study are openly available on Mendeley Data and can

be accessed through the link

https://data.mendeley.com/datasets/m7phkgw3dn/draft?a=4c70825a-0ee6-4dbe-bb8b-76c4539cc17b

The dataset is currently shared for review purposes. It will be published for public open access

once the manuscript is accepted for publication.710
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Appendix A. Anisotropic elastostatic and thermal steady-state Green’s functions

As discussed in Section 3.1, the generalized fundamental solutions U ∗IJ , T
∗
IJ , T̂

∗
IJ , defined in

Eqs.(13,16) and appearing in Eqs.(17,24), are expressed in terms of the uncoupled elastic and720

thermal fundamental functions u∗ij and θ∗, defined as the solution of the differential systems in

Eqs.(11), and their associated fluxes t∗ij , q∗, given by Eqs.(12), which have to be computed for each

grain g of the aggregate.

Following Ref.[109, 110], the elastic kernels u∗ij(x,y) and their derivatives, and thus also the

associated tractions t∗ij , can be computed in terms of spherical harmonics as725

∂Iu∗ij(r)

∂rα1
1 ∂rα2

2 ∂rα3
3

=
1

4πrI+1

∞∑
`∈L

P I` (0)
∑̀
m=−`

G̃`,mij,(α1,α2,α3)Y
m
` (r̂), (A.1)

where r ≡ y − x, r =
√
rkrk, r̂ = r/r; I = α1 + α2 + α3 denotes the order of derivation and L is

the set of positive even (odd) integers when I is even (odd). P I` (0) is the `-th associated Legendre

polynomials of degree I evaluated at 0 and Y m` (r̂) is the spherical harmonic of order ` and degree
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m. The coefficients G̃`,mij,(α1,α2,α3) of the series are computed by means of the following integral over

the unit sphere S1:730

G̃`,mij,(α1,α2,α3) =

∫
S1

(ξ̂1)α1(ξ̂2)α2(ξ̂3)α3G̃ij(ξ̂)Ȳ m` (ξ̂)dS(ξ̂), (A.2)

being G̃ij(ξ) = [Cikjlξkξl]
−1 and Ȳ m` the complex conjugate of Y m` . The interested readers are

referred to Ref.[109] for further details.

On the the other hand, following Ref.[43], the thermal kernels θ∗, q∗ can be computed as

θ∗ =
1

4πJ

1

r′
, q∗ =

1

4πJ

rknk
r′3

(A.3)

where J =
√
κ1κ2κ3, κi being the i-th eigenvalue of the thermal conductivity tensor kij , and

r′ =
√
rik
−1
ij rj , with rk = yk − xk.735

Appendix B. Particular solutions and matrices for the dual reciprocity method

The particular solutions ŨsIJ , T̃
s
IJ and F̃ sIJ employed in the DRM, introduced in Section 4.2, are

tensorial radial basis functions associated with a generic source point xs, so that their value at a

generic point y may be expressed as

ŨsIJ (y) = ŨIJ (xs,y) = ŨIJ (r)

T̃ sIJ (y) = T̃IJ (xs,y) = T̃IJ (r) (B.1)

F̃ sIJ (y) = F̃IJ (xs,y) = F̃IJ (r)

where I, J = 1, . . . , 4 and r = r (xs,y) = [(yk − xsk)(yk − xsk)]
1/2, k = 1, 2, 3. Using the general-

ized notation introduced in Section 3.1, they may be written as

ŨsIJ =

{ũij} {0}
{0} θ̃

 , T̃ sIJ =

{t̃ij} {0}

{0} q̃

 , F̃ sIJ =

{f̃ij} {0}

{0} −ω̃

 (B.2)

where i, j = 1, 2, 3. In this work, following Ref.[43], it has been assumed that

ũij =
(
r2 + r3

)
δij , θ̃ =

r2

6
+
r3

12
, (B.3)

from which the following expressions are derived for the elastic tractions and thermal flux fields740

t̃ij = Ciskl ũkj,l ns = Ciskl (2 + 3r) rl δkj ns

q̃ = −kijniθ̃,j = −kijnirj
(

1

3
+
r

4

) (B.4)
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and for the force and heat source volume density fields

f̃ij = −Ciskl ũkj,ls = −Ciskl
[

3rlrs
r

+ (2 + 3r) δls

]
δkj

ω̃ = −kij θ̃,ij = −knn
(

1

3
+
r

4

)
− kij

4

rirj
r
,

(B.5)

where rk = yk − xsk.

On the other hand, the determination of the coefficients α discussed in Section 5.3 requires the

definition of the auxiliary functions F̃ ′sIJ and their spatial derivatives F̃ ′sIJ,k, needed to evaluate the

functions B̃sIJ , see Eqs.(34-36). In this work, the expressions proposed in Ref.[43] are employed,745

which read

F̃ ′sIJ (y) = F̃ ′IJ (xs,y) =
(
1 + r2 + r3

)
δIJ

F̃ ′sIJ,k (y) = F̃ ′IJ,k (xs,y) = (2 + 3r) rkδIJ

B̃sIJ (y) = B̃IJ (xs,y) = ΓIMkF̃
′
MJ,k (xs,y) = ΓIMk (2 + 3r) rkδMJ

(B.6)

with ΓIMk defined as in Eq.(37).

The above definitions allow the straightforward population of the DRM coefficient matrices Ũ,

T̃, F̃, F̃′ and B̃ appearing in Eq.(40). In particular, each of these matrices can be evaluated by

direct collocation as750 
Ψ̃11 Ψ̃12 · · · Ψ̃1Ng

n

Ψ̃21 Ψ̃22 · · · Ψ̃2Ng
n

...
...

. . .
...

Ψ̃Ng
n1 Ψ̃Ng

n2 · · · Ψ̃Ng
nN

g
n

 (B.7)

where the individual matrix blocks Ψ̃mn ∈ R4×4 are defined by

Ψ̃mn
IJ =



ŨmnIJ = Ũ n
IJ (xm) = ŨIJ (xn,xm) → Ũ

T̃mnIJ = T̃ n
IJ (xm) = T̃IJ (xn,xm) → T̃

F̃mnIJ = F̃ n
IJ (xm) = F̃IJ (xn,xm) → F̃

F̃ ′mnIJ = F̃ ′nIJ (xm) = F̃ ′IJ (xn,xm) → F̃′

B̃mnIJ = B̃ n
IJ (xm) = B̃IJ (xn,xm) → B̃

(B.8)

and can be directly computed from Eqs.(B.1-B.6).
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